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® Introduction to braid groups;
® Description of some braid-based cryptographical
protocols, after Sidelnokov & al. and Ko, Lee & al. ;

® Length attack against the conjugacy problem,
after Hofheinz—Steinwandt ;

® A resisting protocol, after  Sibert;

e New braid primitives: the shifted conjugacy problem;
® Discussion.
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BRAIDS

e A 4-strand braid diagram = 2D-projection of a 3D-figure

® a braid = an isotopy class
a~» can be represented by 2D-diagram,

but different 2D-diagrams may give rise to the same braid.
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THE BRAID GROUPS
~~ For each m, a group : the group B,, of n strand braids ( Emil Artin , ~1925).

N\ - \/ -
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N * NCx
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® The product of two braids:

l * l |
-1

N\

e Presentation of B,,:

1
o O3 03

e Theorem (Artin ): The braid group B,, is generated by 0y54,0, subject to the relations

n—1’
0.0. =0.0, with [t—j|>2,  and 0.0.0, =0.0.0. wih |i—j|=1.
ij "~ g iji - joig
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® Problem: A and B wish to agree on a common secret, so that an intruder E cannot deduce
the secret from the communication.

e Notation: LB, (UB,,) subgroup generated by 01, ..., Oyn—1 (Omt1, .os Op—1), m = [n/2].

® Protocol ( Sidelnikov—Cherepnev-Yashchenko '93), (Ko—Lee—Cheon—Han—Kang—Park ’00):
- Key: pin B,, (public);
- Achooses 7 in LB,,, and sends p, = 'rpr_1 to B;
- B chooses s in UB,,, and sends pg = sps— ! to A;

- A computes 4 = rpBr_l;
- B computes sp = SpAS_l.
P _ _ -1,.—1 _ —1,.-1 _
e Justification: 78 = 8r,so 84 = TSps "r ~ = S8rpr S ~— = Sg.

e Security: Difficulty of retrieving @ from (p, mpzl:_l): the Conjugacy Search Problem
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® Problem: A wishes to send a message m to B.

N\ e {0,1}*

e Notation: H hash function from B, to {0, 1}* (= non-invertible + injective);
& for “exclusive or”.

® Protocol ( Ko—Lee & al. '00):

- Keys: private: s in LB,,: only B knows it; public: ~ (p, q), with p in By, and ¢ = sps™*;

- Achooses 7in UB,,, sends p’ =rpr—!and m' =m® H(rqr™?!);
-Bcomputes m” =m' ® H(sp's™1).

1 1,.—1 1.—-1

e Justification: rqr—! = rsps~lr—! = srpr—1s7! = sp’s~!, hence m” = m.

e Security: Difficulty of retrieving s from the pair (p, sps_l): CSP again.
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AUTHENTICATION

® Problem: The prover A wishes to prove her identity to the  verifier B.

® Protocol:

- Keys: private: s in LB,,: only A knows it; public:  (p, q), with p in By, and ¢ = sps™*;

- B chooses 7 in UB,,, sends the challenge 2 = rpr—!;
- A sends the response Yy = srs~1;
- B checks y = 'rqr_l.
e Justification: Yy = 'rq'r'_1 = rsps‘lr_l = srpr_ls_l = sxs~ 1.

e Improvement: Asends H(sxs™'), and B checks y = H(rqr—!) with H a hash function.
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e Justification (case ¢=1): x = rpr—1 = (rs~1)(sps~1)(sr~ 1) = yqy !,
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AUTHENTICATION (bis)

® Problem: The prover A wishes to prove her identity to the  verifier B.

® Protocol: ( Sibert-D.-Girault '02, after Fiat-Shamir )

- Keys: private: s in B,,: only A knows it; public: (p, q), with pin B,, and ¢ = sps_l;

- Repeat k times the sequence:

(i) A chooses r in B,,, and sends the commitment & = 'rp'r_l;
(i) B chooses cin {0, 1}, and sends ¢;
(iii) case ¢ =0 casec=1

Asends Yy = r; Asends Yy = rs—1:

B checks o = 'ypy_l; B checks o = yqy’l.

1 1

= (rs™')(sps™)(sr™) = yqy~
~~ probability that A succeeds without knowing Sis < 1/2'“.

e Justification (case ¢ = 1): & = rpr—

e Improvement: Replace x with H (x).
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® Security of the previous protocols: all relie on the difficulty of Conjugacy Search Problem:
Assuming that p and q are conjugate in B,,, find s satisfying q = sps_l.

~~ more generally: the conjugacy problem of  B,,.
e Theorem ( Garside , 1969): The conjugacy problem of B,, is solvable.

~~ Proposition: For each braid b, there exists a finite, effectively computable subset SS (b) of
the conjugacy class of b — "summit set " of b—s.t. b, b’ are conjugate iff SS(b") = SS(b).

e In practice: SS(b) is very large (exponential in the size of  b),
but improvements: EIRifai-Morton , Gonzalez-Meneses , Gebhardt ,...

~~ replace SS(b) with smaller subsets SSS(b), then USS(b)...

that can be computed more easily

I

instead of considering all conjugates,
restrict to those for which some parameter
— the canonical length — decreases
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e Garside’s fundamental braid /\,,: the half-turn on 7 strands

/7 N\ \
e For bin B,,, define

infb=max{ k; AF b}, supb=min{ £; b A’ },
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and we almost always have
inf(ab) = inf(a) + inf(b),
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U(sps—1) = £(p) + 2£(s).
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- Check p € SSS(p); | ¢ 4 S - -
- Iteratively conjugate @ by "cycling” ! _ " e - o °

to increase inf & decrease sup Leoyclng 3 o/ o ¢ °, SSS(p)

until ¢’ € SSS(p); I (pee v v v )
- Conjugate ¢’ by one permutation braid conjugacy S

to (hopefully) obtain  p. »

e Key point : The attack need not always work, but it does with non-negligible probability,
~ typically for p € SSS(p) and q obtained by conjugating P — which is frequent.

e Difference between
- what is mathematically significant: what is always true,
- what is cryptographically significant: what is possibly (e.g., almost always) true.

~~ Here: ¢ conjugate of pimplies £(q) > £(p) "a.a” — although “conjugate” is symmetric...
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a~» Easy solution:
- Use conjugates in the SSS;
- Do not publish (p, sps™1), but (sbs™2, s’bs’ ") with b secretand s’ resembling s:
same inf, sup...

e Authentication Protocol (  Sibert '03):

- Keys: private: b, Sg, 81 in By,: only A knows it; public: (po,pl), with p; = s,,;bsi_l;
- Repeat k times the sequence:
(i) A chooses 7 in B,,, and sends the commitment & = sbs_l;
(i) B chooses cin {0, 1}, and sends c¢;

(i) case ¢ =0 casec=1
Asends Yy = ssal; A sends Yy = 331_1;
B checks o = ypoy_l; B checks & = yply_l.

e In theory, no change; in  practice , resists; uses same problem (CSP), but different Instances .

a~» main problem: choosing the instances (cf. RSA...)
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e Option 2: Use a new primitive such as the  root problem: starting from p, find s s.t. s? = P.
a~» connected with the conjugacy problem, and solvable in exponential time ( Stychnev ).

® Option 3: Use a really new primitive such as the shifted conjugacy problem:

Replace
SkxpP=S8-p- s~ 1
with

s*¥p:=5-0p-o, .0s~1
1

the shift endomorphism g, +— ¢, , for each 2

+
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the point : like conjugacy, operation x* is self-distributive

e Probability that A succeeds = probability of finding 2z s.t. 2% (r*p) = (r * 8) * (7 * p).
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~» very small, e.g., Cs(1) = {1}.
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AUTHENTICATION (quater)

e Authentication protocol (variant):

- Keys: private: s in B,,: only A knows it; public: P, with p = S % s;
- Repeat k times the sequence:
(i) A chooses 71 in B,,, and sends the commitment = = 7 * p;
(i) B chooses cin {0, 1}, and sends c¢;

(iii) case ¢ =0 case c = 1
Asends Yy =T, Asends Yy = 1T x S;
B checks & = ¥y * p; B checks & = y * .

e Justification (case ¢ = 1):

p=rrg=rx(sks) = (res) % (res) = yry.

self-distributivity of  * again
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A~ many questions and possibilities.

® How to prove security results?
- What is a random braid?
~~ no invariant probability measure on  B,,: not an amenable group:;

® How to choose the keys?
- What is needed, e.g., for the CSP:
a~» not a proof that all instances of the problem are difficult,
a~ but a method for constructing some (enough) provably difficult instances.
- here connected with the size of the SSS and USS;
- Id. for the SCSP (easier because SCSP (much) more difficult than CSP)

N

Shifted Conjugacy Search Problem

e Use Dynnikov ’s formulas, in particular to design hash functions.

coordinization map B,, — 7R coming from the theory of laminations

... and much more still to be discovered.



