
BRAID-BASED CRYPTOLOGY

Patrick Dehornoy

http://www.math.unicaen.fr/ ∼dehornoy

Laboratoire de Math´ ematiques Nicolas Oresme, Caen

BRAID-BASED CRYPTOLOGY

Patrick Dehornoy

http://www.math.unicaen.fr/ ∼dehornoy

Laboratoire de Math´ ematiques Nicolas Oresme, Caen

• Introduction to braid groups;

• Description of some braid-based cryptographical

protocols, after Sidelnokov & al. and Ko, Lee & al. ;

• Length attack against the conjugacy problem,

after Hofheinz–Steinwandt ;

• A resisting protocol, after Sibert ;

• New braid primitives: the shifted conjugacy problem;

• Discussion.

BRAIDS

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

• a braid = an isotopy class

��������� can be represented by 2D-diagram,

but different 2D-diagrams may give rise to the same braid.

THE BRAID GROUPS

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:= tresse

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:= tresse

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:= tresse

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:=

tres
se

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:=

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:=

tres
se

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:= tresse

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:= tresse

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:= tresse

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:= tresse

��������� For each nnn, a group : the group BnBnBn of nnn strand braids (Emil Artin , ∼1925).

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:= tresse

��������� For each nnn, a group : the group BnBnBn of nnn strand braids (Emil Artin , ∼1925).

• Presentation of BnBnBn: === ∗∗∗ ∗∗∗ ∗∗∗

σ
1

σ
1σ1

σ
2

σ
2σ2

σ
3

σ
3σ3

σ−1
1σ−1
1σ−1
1

THE BRAID GROUPS

• The product of two braids:

∗∗∗ :=:=:=

(((
tresse

)−1)−1)−1

:=:=:= tresse

��������� For each nnn, a group : the group BnBnBn of nnn strand braids (Emil Artin , ∼1925).

• Presentation of BnBnBn: === ∗∗∗ ∗∗∗ ∗∗∗

σ
1

σ
1σ1

σ
2

σ
2σ2

σ
3

σ
3σ3

σ−1
1σ−1
1σ−1
1

• Theorem (Artin): The braid group BnBnBn is generated by σ
1
, ..., σ

n−1
σ
1
, ..., σ

n−1σ
1
, ..., σ

n−1
, subject to the relations

σ
i
σ
j

= σ
j
σ
i

σ
i
σ
j

= σ
j
σ
iσ

i
σ
j

= σ
j
σ
i

with |i − j| � 2|i − j| � 2|i − j| � 2, and σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j

σ
i
σ
j
σ
i
= σ

j
σ
i
σ
jσ

i
σ
j
σ
i
= σ

j
σ
i
σ
j

with |i − j| = 1|i − j| = 1|i − j| = 1.

KEY EXCHANGE

KEY EXCHANGE

• Problem: A and B wish to agree on a common secret, so that an intruder E cannot deduce

the secret from the communication.

KEY EXCHANGE

• Problem: A and B wish to agree on a common secret, so that an intruder E cannot deduce

the secret from the communication.

• Notation: LBnLBnLBn (UBnUBnUBn) subgroup generated by σ1σ1σ1, ..., σm−1σm−1σm−1 (σm+1σm+1σm+1, ..., σn−1σn−1σn−1), m = �n/2�m = �n/2�m = �n/2�.

KEY EXCHANGE

• Problem: A and B wish to agree on a common secret, so that an intruder E cannot deduce

the secret from the communication.

• Notation: LBnLBnLBn (UBnUBnUBn) subgroup generated by σ1σ1σ1, ..., σm−1σm−1σm−1 (σm+1σm+1σm+1, ..., σn−1σn−1σn−1), m = �n/2�m = �n/2�m = �n/2�.

• Protocol (Sidelnikov–Cherepnev–Yashchenko ’93), (Ko–Lee–Cheon–Han–Kang–Park ’00):

- Key: ppp in BnBnBn (public);

KEY EXCHANGE

• Problem: A and B wish to agree on a common secret, so that an intruder E cannot deduce

the secret from the communication.

• Notation: LBnLBnLBn (UBnUBnUBn) subgroup generated by σ1σ1σ1, ..., σm−1σm−1σm−1 (σm+1σm+1σm+1, ..., σn−1σn−1σn−1), m = �n/2�m = �n/2�m = �n/2�.

• Protocol (Sidelnikov–Cherepnev–Yashchenko ’93), (Ko–Lee–Cheon–Han–Kang–Park ’00):

- Key: ppp in BnBnBn (public);

- A chooses rrr in LBnLBnLBn, and sends pA = rpr−1pA = rpr−1pA = rpr−1 to B;

KEY EXCHANGE

• Problem: A and B wish to agree on a common secret, so that an intruder E cannot deduce

the secret from the communication.

• Notation: LBnLBnLBn (UBnUBnUBn) subgroup generated by σ1σ1σ1, ..., σm−1σm−1σm−1 (σm+1σm+1σm+1, ..., σn−1σn−1σn−1), m = �n/2�m = �n/2�m = �n/2�.

• Protocol (Sidelnikov–Cherepnev–Yashchenko ’93), (Ko–Lee–Cheon–Han–Kang–Park ’00):

- Key: ppp in BnBnBn (public);

- A chooses rrr in LBnLBnLBn, and sends pA = rpr−1pA = rpr−1pA = rpr−1 to B;

- B chooses sss in UBnUBnUBn, and sends pB = sps−1pB = sps−1pB = sps−1 to A;

KEY EXCHANGE

• Problem: A and B wish to agree on a common secret, so that an intruder E cannot deduce

the secret from the communication.

• Notation: LBnLBnLBn (UBnUBnUBn) subgroup generated by σ1σ1σ1, ..., σm−1σm−1σm−1 (σm+1σm+1σm+1, ..., σn−1σn−1σn−1), m = �n/2�m = �n/2�m = �n/2�.

• Protocol (Sidelnikov–Cherepnev–Yashchenko ’93), (Ko–Lee–Cheon–Han–Kang–Park ’00):

- Key: ppp in BnBnBn (public);

- A chooses rrr in LBnLBnLBn, and sends pA = rpr−1pA = rpr−1pA = rpr−1 to B;

- B chooses sss in UBnUBnUBn, and sends pB = sps−1pB = sps−1pB = sps−1 to A;

- A computes sA = rpBr−1sA = rpBr−1sA = rpBr−1;

KEY EXCHANGE

• Problem: A and B wish to agree on a common secret, so that an intruder E cannot deduce

the secret from the communication.

• Notation: LBnLBnLBn (UBnUBnUBn) subgroup generated by σ1σ1σ1, ..., σm−1σm−1σm−1 (σm+1σm+1σm+1, ..., σn−1σn−1σn−1), m = �n/2�m = �n/2�m = �n/2�.

• Protocol (Sidelnikov–Cherepnev–Yashchenko ’93), (Ko–Lee–Cheon–Han–Kang–Park ’00):

- Key: ppp in BnBnBn (public);

- A chooses rrr in LBnLBnLBn, and sends pA = rpr−1pA = rpr−1pA = rpr−1 to B;

- B chooses sss in UBnUBnUBn, and sends pB = sps−1pB = sps−1pB = sps−1 to A;

- A computes sA = rpBr−1sA = rpBr−1sA = rpBr−1;

- B computes sB = spAs−1sB = spAs−1sB = spAs−1.

KEY EXCHANGE

• Problem: A and B wish to agree on a common secret, so that an intruder E cannot deduce

the secret from the communication.

• Notation: LBnLBnLBn (UBnUBnUBn) subgroup generated by σ1σ1σ1, ..., σm−1σm−1σm−1 (σm+1σm+1σm+1, ..., σn−1σn−1σn−1), m = �n/2�m = �n/2�m = �n/2�.

• Protocol (Sidelnikov–Cherepnev–Yashchenko ’93), (Ko–Lee–Cheon–Han–Kang–Park ’00):

- Key: ppp in BnBnBn (public);

- A chooses rrr in LBnLBnLBn, and sends pA = rpr−1pA = rpr−1pA = rpr−1 to B;

- B chooses sss in UBnUBnUBn, and sends pB = sps−1pB = sps−1pB = sps−1 to A;

- A computes sA = rpBr−1sA = rpBr−1sA = rpBr−1;

- B computes sB = spAs−1sB = spAs−1sB = spAs−1.

• Justification: rs = srrs = srrs = sr, so sA = rsps−1r−1 = srpr−1s−1 = sBsA = rsps−1r−1 = srpr−1s−1 = sBsA = rsps−1r−1 = srpr−1s−1 = sB .

KEY EXCHANGE

• Problem: A and B wish to agree on a common secret, so that an intruder E cannot deduce

the secret from the communication.

• Notation: LBnLBnLBn (UBnUBnUBn) subgroup generated by σ1σ1σ1, ..., σm−1σm−1σm−1 (σm+1σm+1σm+1, ..., σn−1σn−1σn−1), m = �n/2�m = �n/2�m = �n/2�.

• Protocol (Sidelnikov–Cherepnev–Yashchenko ’93), (Ko–Lee–Cheon–Han–Kang–Park ’00):

- Key: ppp in BnBnBn (public);

- A chooses rrr in LBnLBnLBn, and sends pA = rpr−1pA = rpr−1pA = rpr−1 to B;

- B chooses sss in UBnUBnUBn, and sends pB = sps−1pB = sps−1pB = sps−1 to A;

- A computes sA = rpBr−1sA = rpBr−1sA = rpBr−1;

- B computes sB = spAs−1sB = spAs−1sB = spAs−1.

• Justification: rs = srrs = srrs = sr, so sA = rsps−1r−1 = srpr−1s−1 = sBsA = rsps−1r−1 = srpr−1s−1 = sBsA = rsps−1r−1 = srpr−1s−1 = sB .

• Security: Difficulty of retrieving xxx from (p, xpx−1)(p, xpx−1)(p, xpx−1): the Conjugacy Search Problem .

ENCRYPTION–DECRYPTION

ENCRYPTION–DECRYPTION

• Problem: A wishes to send a message mmm to B.
↖∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗

ENCRYPTION–DECRYPTION

• Problem: A wishes to send a message mmm to B.
↖∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗

• Notation: HHH hash function from BnBnBn to {0, 1}∗{0, 1}∗{0, 1}∗ (= non-invertible + injective);

⊕⊕⊕ for “exclusive or”.

ENCRYPTION–DECRYPTION

• Problem: A wishes to send a message mmm to B.
↖∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗

• Notation: HHH hash function from BnBnBn to {0, 1}∗{0, 1}∗{0, 1}∗ (= non-invertible + injective);

⊕⊕⊕ for “exclusive or”.

• Protocol (Ko–Lee & al. ’00):

- Keys: private: sss in LBnLBnLBn: only B knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

ENCRYPTION–DECRYPTION

• Problem: A wishes to send a message mmm to B.
↖∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗

• Notation: HHH hash function from BnBnBn to {0, 1}∗{0, 1}∗{0, 1}∗ (= non-invertible + injective);

⊕⊕⊕ for “exclusive or”.

• Protocol (Ko–Lee & al. ’00):

- Keys: private: sss in LBnLBnLBn: only B knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- A chooses rrr in UBnUBnUBn, sends p′ = rpr−1p′ = rpr−1p′ = rpr−1 and m′ = m ⊕ H(rqr−1)m′ = m ⊕ H(rqr−1)m′ = m ⊕ H(rqr−1);

ENCRYPTION–DECRYPTION

• Problem: A wishes to send a message mmm to B.
↖∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗

• Notation: HHH hash function from BnBnBn to {0, 1}∗{0, 1}∗{0, 1}∗ (= non-invertible + injective);

⊕⊕⊕ for “exclusive or”.

• Protocol (Ko–Lee & al. ’00):

- Keys: private: sss in LBnLBnLBn: only B knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- A chooses rrr in UBnUBnUBn, sends p′ = rpr−1p′ = rpr−1p′ = rpr−1 and m′ = m ⊕ H(rqr−1)m′ = m ⊕ H(rqr−1)m′ = m ⊕ H(rqr−1);

- B computes m′′ = m′ ⊕ H(sp′s−1)m′′ = m′ ⊕ H(sp′s−1)m′′ = m′ ⊕ H(sp′s−1).

ENCRYPTION–DECRYPTION

• Problem: A wishes to send a message mmm to B.
↖∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗

• Notation: HHH hash function from BnBnBn to {0, 1}∗{0, 1}∗{0, 1}∗ (= non-invertible + injective);

⊕⊕⊕ for “exclusive or”.

• Protocol (Ko–Lee & al. ’00):

- Keys: private: sss in LBnLBnLBn: only B knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- A chooses rrr in UBnUBnUBn, sends p′ = rpr−1p′ = rpr−1p′ = rpr−1 and m′ = m ⊕ H(rqr−1)m′ = m ⊕ H(rqr−1)m′ = m ⊕ H(rqr−1);

- B computes m′′ = m′ ⊕ H(sp′s−1)m′′ = m′ ⊕ H(sp′s−1)m′′ = m′ ⊕ H(sp′s−1).

• Justification: rqr−1 = rsps−1r−1 = srpr−1s−1 = sp′s−1rqr−1 = rsps−1r−1 = srpr−1s−1 = sp′s−1rqr−1 = rsps−1r−1 = srpr−1s−1 = sp′s−1, hence m′′ = mm′′ = mm′′ = m.

ENCRYPTION–DECRYPTION

• Problem: A wishes to send a message mmm to B.
↖∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗

• Notation: HHH hash function from BnBnBn to {0, 1}∗{0, 1}∗{0, 1}∗ (= non-invertible + injective);

⊕⊕⊕ for “exclusive or”.

• Protocol (Ko–Lee & al. ’00):

- Keys: private: sss in LBnLBnLBn: only B knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- A chooses rrr in UBnUBnUBn, sends p′ = rpr−1p′ = rpr−1p′ = rpr−1 and m′ = m ⊕ H(rqr−1)m′ = m ⊕ H(rqr−1)m′ = m ⊕ H(rqr−1);

- B computes m′′ = m′ ⊕ H(sp′s−1)m′′ = m′ ⊕ H(sp′s−1)m′′ = m′ ⊕ H(sp′s−1).

• Justification: rqr−1 = rsps−1r−1 = srpr−1s−1 = sp′s−1rqr−1 = rsps−1r−1 = srpr−1s−1 = sp′s−1rqr−1 = rsps−1r−1 = srpr−1s−1 = sp′s−1, hence m′′ = mm′′ = mm′′ = m.

• Security: Difficulty of retrieving sss from the pair (p, sps−1)(p, sps−1)(p, sps−1): CSP again.

AUTHENTICATION

AUTHENTICATION

• Problem: The prover A wishes to prove her identity to the verifier B.

AUTHENTICATION

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol:

- Keys: private: sss in LBnLBnLBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

AUTHENTICATION

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol:

- Keys: private: sss in LBnLBnLBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- B chooses rrr in UBnUBnUBn, sends the challenge x = rpr−1x = rpr−1x = rpr−1;

AUTHENTICATION

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol:

- Keys: private: sss in LBnLBnLBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- B chooses rrr in UBnUBnUBn, sends the challenge x = rpr−1x = rpr−1x = rpr−1;

- A sends the response y = sxs−1y = sxs−1y = sxs−1;

AUTHENTICATION

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol:

- Keys: private: sss in LBnLBnLBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- B chooses rrr in UBnUBnUBn, sends the challenge x = rpr−1x = rpr−1x = rpr−1;

- A sends the response y = sxs−1y = sxs−1y = sxs−1;

- B checks y = rqr−1y = rqr−1y = rqr−1.

AUTHENTICATION

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol:

- Keys: private: sss in LBnLBnLBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- B chooses rrr in UBnUBnUBn, sends the challenge x = rpr−1x = rpr−1x = rpr−1;

- A sends the response y = sxs−1y = sxs−1y = sxs−1;

- B checks y = rqr−1y = rqr−1y = rqr−1.

• Justification: y = rqr−1 = rsps−1r−1 = srpr−1s−1 = sxs−1y = rqr−1 = rsps−1r−1 = srpr−1s−1 = sxs−1y = rqr−1 = rsps−1r−1 = srpr−1s−1 = sxs−1.

AUTHENTICATION

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol:

- Keys: private: sss in LBnLBnLBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- B chooses rrr in UBnUBnUBn, sends the challenge x = rpr−1x = rpr−1x = rpr−1;

- A sends the response y = sxs−1y = sxs−1y = sxs−1;

- B checks y = rqr−1y = rqr−1y = rqr−1.

• Justification: y = rqr−1 = rsps−1r−1 = srpr−1s−1 = sxs−1y = rqr−1 = rsps−1r−1 = srpr−1s−1 = sxs−1y = rqr−1 = rsps−1r−1 = srpr−1s−1 = sxs−1.

• Improvement: A sends H(sxs−1)H(sxs−1)H(sxs−1), and B checks y = H(rqr−1)y = H(rqr−1)y = H(rqr−1) with HHH a hash function.

AUTHENTICATION (bis)

AUTHENTICATION (bis)

• Problem: The prover A wishes to prove her identity to the verifier B.

AUTHENTICATION (bis)

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol: (Sibert-D.-Girault ’02, after Fiat-Shamir)

AUTHENTICATION (bis)

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol: (Sibert-D.-Girault ’02, after Fiat-Shamir)

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

AUTHENTICATION (bis)

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol: (Sibert-D.-Girault ’02, after Fiat-Shamir)

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- Repeat kkk times the sequence:

AUTHENTICATION (bis)

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol: (Sibert-D.-Girault ’02, after Fiat-Shamir)

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = rpr−1x = rpr−1x = rpr−1;

AUTHENTICATION (bis)

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol: (Sibert-D.-Girault ’02, after Fiat-Shamir)

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = rpr−1x = rpr−1x = rpr−1;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

AUTHENTICATION (bis)

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol: (Sibert-D.-Girault ’02, after Fiat-Shamir)

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = rpr−1x = rpr−1x = rpr−1;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0
A sends y = ry = ry = r;
B checks x = ypy−1x = ypy−1x = ypy−1;

AUTHENTICATION (bis)

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol: (Sibert-D.-Girault ’02, after Fiat-Shamir)

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = rpr−1x = rpr−1x = rpr−1;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends y = ry = ry = r;
B checks x = ypy−1x = ypy−1x = ypy−1;

A sends y = rs−1y = rs−1y = rs−1;
B checks x = yqy−1x = yqy−1x = yqy−1.

AUTHENTICATION (bis)

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol: (Sibert-D.-Girault ’02, after Fiat-Shamir)

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = rpr−1x = rpr−1x = rpr−1;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends y = ry = ry = r;
B checks x = ypy−1x = ypy−1x = ypy−1;

A sends y = rs−1y = rs−1y = rs−1;
B checks x = yqy−1x = yqy−1x = yqy−1.

• Justification (case c = 1c = 1c = 1): x = rpr−1 = (rs−1)(sps−1)(sr−1) = yqy−1x = rpr−1 = (rs−1)(sps−1)(sr−1) = yqy−1x = rpr−1 = (rs−1)(sps−1)(sr−1) = yqy−1,

AUTHENTICATION (bis)

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol: (Sibert-D.-Girault ’02, after Fiat-Shamir)

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = rpr−1x = rpr−1x = rpr−1;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends y = ry = ry = r;
B checks x = ypy−1x = ypy−1x = ypy−1;

A sends y = rs−1y = rs−1y = rs−1;
B checks x = yqy−1x = yqy−1x = yqy−1.

• Justification (case c = 1c = 1c = 1): x = rpr−1 = (rs−1)(sps−1)(sr−1) = yqy−1x = rpr−1 = (rs−1)(sps−1)(sr−1) = yqy−1x = rpr−1 = (rs−1)(sps−1)(sr−1) = yqy−1,

��������� probability that A succeeds without knowing sss is � 1/2k� 1/2k� 1/2k .

AUTHENTICATION (bis)

• Problem: The prover A wishes to prove her identity to the verifier B.

• Protocol: (Sibert-D.-Girault ’02, after Fiat-Shamir)

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = sps−1q = sps−1q = sps−1;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = rpr−1x = rpr−1x = rpr−1;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends y = ry = ry = r;
B checks x = ypy−1x = ypy−1x = ypy−1;

A sends y = rs−1y = rs−1y = rs−1;
B checks x = yqy−1x = yqy−1x = yqy−1.

• Justification (case c = 1c = 1c = 1): x = rpr−1 = (rs−1)(sps−1)(sr−1) = yqy−1x = rpr−1 = (rs−1)(sps−1)(sr−1) = yqy−1x = rpr−1 = (rs−1)(sps−1)(sr−1) = yqy−1,

��������� probability that A succeeds without knowing sss is � 1/2k� 1/2k� 1/2k .

• Improvement: Replace xxx with H(x)H(x)H(x).

THE CONJUGACY PROBLEM

• Security of the previous protocols: all relie on the difficulty of Conjugacy Search Problem:

Assuming that ppp and qqq are conjugate in BnBnBn, find sss satisfying q = sps−1q = sps−1q = sps−1.

THE CONJUGACY PROBLEM

• Security of the previous protocols: all relie on the difficulty of Conjugacy Search Problem:

Assuming that ppp and qqq are conjugate in BnBnBn, find sss satisfying q = sps−1q = sps−1q = sps−1.

��������� more generally: the conjugacy problem of BnBnBn.

THE CONJUGACY PROBLEM

• Security of the previous protocols: all relie on the difficulty of Conjugacy Search Problem:

Assuming that ppp and qqq are conjugate in BnBnBn, find sss satisfying q = sps−1q = sps−1q = sps−1.

��������� more generally: the conjugacy problem of BnBnBn.

• Theorem (Garside , 1969): The conjugacy problem of BnBnBn is solvable.

THE CONJUGACY PROBLEM

• Security of the previous protocols: all relie on the difficulty of Conjugacy Search Problem:

Assuming that ppp and qqq are conjugate in BnBnBn, find sss satisfying q = sps−1q = sps−1q = sps−1.

��������� more generally: the conjugacy problem of BnBnBn.

• Theorem (Garside , 1969): The conjugacy problem of BnBnBn is solvable.

��������� Proposition: For each braid bbb, there exists a finite, effectively computable subset SS(b)SS(b)SS(b) of

the conjugacy class of bbb — ” summit set ” of bbb — s.t. b, b′b, b′b, b′ are conjugate iff SS(b′) = SS(b)SS(b′) = SS(b)SS(b′) = SS(b).

THE CONJUGACY PROBLEM

• Security of the previous protocols: all relie on the difficulty of Conjugacy Search Problem:

Assuming that ppp and qqq are conjugate in BnBnBn, find sss satisfying q = sps−1q = sps−1q = sps−1.

��������� more generally: the conjugacy problem of BnBnBn.

• Theorem (Garside , 1969): The conjugacy problem of BnBnBn is solvable.

��������� Proposition: For each braid bbb, there exists a finite, effectively computable subset SS(b)SS(b)SS(b) of

the conjugacy class of bbb — ” summit set ” of bbb — s.t. b, b′b, b′b, b′ are conjugate iff SS(b′) = SS(b)SS(b′) = SS(b)SS(b′) = SS(b).

• In practice: SS(b)SS(b)SS(b) is very large (exponential in the size of bbb),

THE CONJUGACY PROBLEM

• Security of the previous protocols: all relie on the difficulty of Conjugacy Search Problem:

Assuming that ppp and qqq are conjugate in BnBnBn, find sss satisfying q = sps−1q = sps−1q = sps−1.

��������� more generally: the conjugacy problem of BnBnBn.

• Theorem (Garside , 1969): The conjugacy problem of BnBnBn is solvable.

��������� Proposition: For each braid bbb, there exists a finite, effectively computable subset SS(b)SS(b)SS(b) of

the conjugacy class of bbb — ” summit set ” of bbb — s.t. b, b′b, b′b, b′ are conjugate iff SS(b′) = SS(b)SS(b′) = SS(b)SS(b′) = SS(b).

• In practice: SS(b)SS(b)SS(b) is very large (exponential in the size of bbb),

but improvements: ElRifai–Morton , Gonzalez-Meneses , Gebhardt ,...

��������� replace SS(b)SS(b)SS(b) with smaller subsets SSS(b)SSS(b)SSS(b), then USS(b)USS(b)USS(b)...

that can be computed more easily

THE CONJUGACY PROBLEM

• Security of the previous protocols: all relie on the difficulty of Conjugacy Search Problem:

Assuming that ppp and qqq are conjugate in BnBnBn, find sss satisfying q = sps−1q = sps−1q = sps−1.

��������� more generally: the conjugacy problem of BnBnBn.

• Theorem (Garside , 1969): The conjugacy problem of BnBnBn is solvable.

��������� Proposition: For each braid bbb, there exists a finite, effectively computable subset SS(b)SS(b)SS(b) of

the conjugacy class of bbb — ” summit set ” of bbb — s.t. b, b′b, b′b, b′ are conjugate iff SS(b′) = SS(b)SS(b′) = SS(b)SS(b′) = SS(b).

• In practice: SS(b)SS(b)SS(b) is very large (exponential in the size of bbb),

but improvements: ElRifai–Morton , Gonzalez-Meneses , Gebhardt ,...

��������� replace SS(b)SS(b)SS(b) with smaller subsets SSS(b)SSS(b)SSS(b), then USS(b)USS(b)USS(b)...

that can be computed more easily
↑

instead of considering all conjugates,

restrict to those for which some parameter

— the canonical length — decreases

THE CANONICAL LENGTH

THE CANONICAL LENGTH

• Garside’s fundamental braid ∆n∆n∆n: the half-turn on nnn strands

THE CANONICAL LENGTH

• Garside’s fundamental braid ∆n∆n∆n: the half-turn on nnn strands

• For bbb in BnBnBn, define

inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b },

↖aaa ��� bbb means b ∈ a · xb ∈ a · xb ∈ a · x with no σ−1
i

σ−1
i

σ−1
i

in xxx

THE CANONICAL LENGTH

• Garside’s fundamental braid ∆n∆n∆n: the half-turn on nnn strands

• For bbb in BnBnBn, define

inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }, sup b = min{ � ; b � ∆�

n },sup b = min{ � ; b � ∆�
n },sup b = min{ � ; b � ∆�
n },

↖aaa ��� bbb means b ∈ a · xb ∈ a · xb ∈ a · x with no σ−1
i

σ−1
i

σ−1
i

in xxx

THE CANONICAL LENGTH

• Garside’s fundamental braid ∆n∆n∆n: the half-turn on nnn strands

• For bbb in BnBnBn, define

inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }, sup b = min{ � ; b � ∆�

n },sup b = min{ � ; b � ∆�
n },sup b = min{ � ; b � ∆�
n },

↖aaa ��� bbb means b ∈ a · xb ∈ a · xb ∈ a · x with no σ−1
i

σ−1
i

σ−1
i

in xxx

���(b) := sup(b) − inf(b)(b) := sup(b) − inf(b)(b) := sup(b) − inf(b): the canonical length of bbb.

THE CANONICAL LENGTH

• Garside’s fundamental braid ∆n∆n∆n: the half-turn on nnn strands

• For bbb in BnBnBn, define

inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }, sup b = min{ � ; b � ∆�

n },sup b = min{ � ; b � ∆�
n },sup b = min{ � ; b � ∆�
n },

↖aaa ��� bbb means b ∈ a · xb ∈ a · xb ∈ a · x with no σ−1
i

σ−1
i

σ−1
i

in xxx

���(b) := sup(b) − inf(b)(b) := sup(b) − inf(b)(b) := sup(b) − inf(b): the canonical length of bbb.

��������� Definition: The SSS of bbb consists of all conjugates of bbb with minimum canonical length.

THE CANONICAL LENGTH

• Garside’s fundamental braid ∆n∆n∆n: the half-turn on nnn strands

• For bbb in BnBnBn, define

inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }, sup b = min{ � ; b � ∆�

n },sup b = min{ � ; b � ∆�
n },sup b = min{ � ; b � ∆�
n },

↖aaa ��� bbb means b ∈ a · xb ∈ a · xb ∈ a · x with no σ−1
i

σ−1
i

σ−1
i

in xxx

���(b) := sup(b) − inf(b)(b) := sup(b) − inf(b)(b) := sup(b) − inf(b): the canonical length of bbb.

��������� Definition: The SSS of bbb consists of all conjugates of bbb with minimum canonical length.

• We always have

inf(a) + inf(b) � inf(ab) � inf(a) + sup(b)inf(a) + inf(b) � inf(ab) � inf(a) + sup(b)inf(a) + inf(b) � inf(ab) � inf(a) + sup(b),

THE CANONICAL LENGTH

• Garside’s fundamental braid ∆n∆n∆n: the half-turn on nnn strands

• For bbb in BnBnBn, define

inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }, sup b = min{ � ; b � ∆�

n },sup b = min{ � ; b � ∆�
n },sup b = min{ � ; b � ∆�
n },

↖aaa ��� bbb means b ∈ a · xb ∈ a · xb ∈ a · x with no σ−1
i

σ−1
i

σ−1
i

in xxx

���(b) := sup(b) − inf(b)(b) := sup(b) − inf(b)(b) := sup(b) − inf(b): the canonical length of bbb.

��������� Definition: The SSS of bbb consists of all conjugates of bbb with minimum canonical length.

• We always have

inf(a) + inf(b) � inf(ab) � inf(a) + sup(b)inf(a) + inf(b) � inf(ab) � inf(a) + sup(b)inf(a) + inf(b) � inf(ab) � inf(a) + sup(b),

and we almost always have

inf(ab) = inf(a) + inf(b)inf(ab) = inf(a) + inf(b)inf(ab) = inf(a) + inf(b),

THE CANONICAL LENGTH

• Garside’s fundamental braid ∆n∆n∆n: the half-turn on nnn strands

• For bbb in BnBnBn, define

inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }, sup b = min{ � ; b � ∆�

n },sup b = min{ � ; b � ∆�
n },sup b = min{ � ; b � ∆�
n },

↖aaa ��� bbb means b ∈ a · xb ∈ a · xb ∈ a · x with no σ−1
i

σ−1
i

σ−1
i

in xxx

���(b) := sup(b) − inf(b)(b) := sup(b) − inf(b)(b) := sup(b) − inf(b): the canonical length of bbb.

��������� Definition: The SSS of bbb consists of all conjugates of bbb with minimum canonical length.

• We always have

inf(a) + inf(b) � inf(ab) � inf(a) + sup(b)inf(a) + inf(b) � inf(ab) � inf(a) + sup(b)inf(a) + inf(b) � inf(ab) � inf(a) + sup(b),

and we almost always have

inf(ab) = inf(a) + inf(b)inf(ab) = inf(a) + inf(b)inf(ab) = inf(a) + inf(b),

and id. for supsupsup. Using inf(a−1) = − sup(a)inf(a−1) = − sup(a)inf(a−1) = − sup(a), we deduce a. a.

inf(sps−1) = inf(s) + inf(p) − sup(s)inf(sps−1) = inf(s) + inf(p) − sup(s)inf(sps−1) = inf(s) + inf(p) − sup(s),

and id. for supsupsup, whence, a.a.,

THE CANONICAL LENGTH

• Garside’s fundamental braid ∆n∆n∆n: the half-turn on nnn strands

• For bbb in BnBnBn, define

inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }inf b = max{ k ; ∆k
n � b }, sup b = min{ � ; b � ∆�

n },sup b = min{ � ; b � ∆�
n },sup b = min{ � ; b � ∆�
n },

↖aaa ��� bbb means b ∈ a · xb ∈ a · xb ∈ a · x with no σ−1
i

σ−1
i

σ−1
i

in xxx

���(b) := sup(b) − inf(b)(b) := sup(b) − inf(b)(b) := sup(b) − inf(b): the canonical length of bbb.

��������� Definition: The SSS of bbb consists of all conjugates of bbb with minimum canonical length.

• We always have

inf(a) + inf(b) � inf(ab) � inf(a) + sup(b)inf(a) + inf(b) � inf(ab) � inf(a) + sup(b)inf(a) + inf(b) � inf(ab) � inf(a) + sup(b),

and we almost always have

inf(ab) = inf(a) + inf(b)inf(ab) = inf(a) + inf(b)inf(ab) = inf(a) + inf(b),

and id. for supsupsup. Using inf(a−1) = − sup(a)inf(a−1) = − sup(a)inf(a−1) = − sup(a), we deduce a. a.

inf(sps−1) = inf(s) + inf(p) − sup(s)inf(sps−1) = inf(s) + inf(p) − sup(s)inf(sps−1) = inf(s) + inf(p) − sup(s),

and id. for supsupsup, whence, a.a.,

�(sps−1) = �(p) + 2�(s)�(sps−1) = �(p) + 2�(s)�(sps−1) = �(p) + 2�(s).

LENGTH ATTACK

LENGTH ATTACK

• Attack to the braid CSP (Hofheinz–Steinwandt ’03):

Starting with (p, q)(p, q)(p, q) s.t. p, qp, qp, q are conjugate and �(p) < �(q)�(p) < �(q)�(p) < �(q) :

LENGTH ATTACK

• Attack to the braid CSP (Hofheinz–Steinwandt ’03):

Starting with (p, q)(p, q)(p, q) s.t. p, qp, qp, q are conjugate and �(p) < �(q)�(p) < �(q)�(p) < �(q) :

- Check p ∈ SSS(p)p ∈ SSS(p)p ∈ SSS(p);

- Iteratively conjugate qqq by ”cycling”
to increase infinfinf & decrease supsupsup
until q′ ∈ SSS(p)q′ ∈ SSS(p)q′ ∈ SSS(p);

- Conjugate q′q′q′ by one permutation braid
to (hopefully) obtain ppp.

LENGTH ATTACK

• Attack to the braid CSP (Hofheinz–Steinwandt ’03):

Starting with (p, q)(p, q)(p, q) s.t. p, qp, qp, q are conjugate and �(p) < �(q)�(p) < �(q)�(p) < �(q) :

braids

sup− infsup− infsup− inf

conjugacy

cycling

qqq

q′q′q′

ppp
SSS(p)SSS(p)SSS(p)

- Check p ∈ SSS(p)p ∈ SSS(p)p ∈ SSS(p);

- Iteratively conjugate qqq by ”cycling”
to increase infinfinf & decrease supsupsup
until q′ ∈ SSS(p)q′ ∈ SSS(p)q′ ∈ SSS(p);

- Conjugate q′q′q′ by one permutation braid
to (hopefully) obtain ppp.

LENGTH ATTACK

• Attack to the braid CSP (Hofheinz–Steinwandt ’03):

Starting with (p, q)(p, q)(p, q) s.t. p, qp, qp, q are conjugate and �(p) < �(q)�(p) < �(q)�(p) < �(q) :

braids

sup− infsup− infsup− inf

conjugacy

cycling

qqq

q′q′q′

ppp
SSS(p)SSS(p)SSS(p)

- Check p ∈ SSS(p)p ∈ SSS(p)p ∈ SSS(p);

- Iteratively conjugate qqq by ”cycling”
to increase infinfinf & decrease supsupsup
until q′ ∈ SSS(p)q′ ∈ SSS(p)q′ ∈ SSS(p);

- Conjugate q′q′q′ by one permutation braid
to (hopefully) obtain ppp.

• Key point : The attack need not always work, but it does with non-negligible probability,

��������� typically for p ∈ SSS(p)p ∈ SSS(p)p ∈ SSS(p) and qqq obtained by conjugating ppp — which is frequent.

LENGTH ATTACK

• Attack to the braid CSP (Hofheinz–Steinwandt ’03):

Starting with (p, q)(p, q)(p, q) s.t. p, qp, qp, q are conjugate and �(p) < �(q)�(p) < �(q)�(p) < �(q) :

braids

sup− infsup− infsup− inf

conjugacy

cycling

qqq

q′q′q′

ppp
SSS(p)SSS(p)SSS(p)

- Check p ∈ SSS(p)p ∈ SSS(p)p ∈ SSS(p);

- Iteratively conjugate qqq by ”cycling”
to increase infinfinf & decrease supsupsup
until q′ ∈ SSS(p)q′ ∈ SSS(p)q′ ∈ SSS(p);

- Conjugate q′q′q′ by one permutation braid
to (hopefully) obtain ppp.

• Key point : The attack need not always work, but it does with non-negligible probability,

��������� typically for p ∈ SSS(p)p ∈ SSS(p)p ∈ SSS(p) and qqq obtained by conjugating ppp — which is frequent.

• Difference between

- what is mathematically significant: what is always true,

- what is cryptographically significant: what is possibly (e.g., almost always) true.

LENGTH ATTACK

• Attack to the braid CSP (Hofheinz–Steinwandt ’03):

Starting with (p, q)(p, q)(p, q) s.t. p, qp, qp, q are conjugate and �(p) < �(q)�(p) < �(q)�(p) < �(q) :

braids

sup− infsup− infsup− inf

conjugacy

cycling

qqq

q′q′q′

ppp
SSS(p)SSS(p)SSS(p)

- Check p ∈ SSS(p)p ∈ SSS(p)p ∈ SSS(p);

- Iteratively conjugate qqq by ”cycling”
to increase infinfinf & decrease supsupsup
until q′ ∈ SSS(p)q′ ∈ SSS(p)q′ ∈ SSS(p);

- Conjugate q′q′q′ by one permutation braid
to (hopefully) obtain ppp.

• Key point : The attack need not always work, but it does with non-negligible probability,

��������� typically for p ∈ SSS(p)p ∈ SSS(p)p ∈ SSS(p) and qqq obtained by conjugating ppp — which is frequent.

• Difference between

- what is mathematically significant: what is always true,

- what is cryptographically significant: what is possibly (e.g., almost always) true.

��������� Here: qqq conjugate of ppp implies �(q) > �(p)�(q) > �(p)�(q) > �(p) ”a.a.” — although “conjugate” is symmetric...

SOLUTION

SOLUTION

��������� Easy solution:

- Use conjugates in the SSS;

SOLUTION

��������� Easy solution:

- Use conjugates in the SSS;

- Do not publish (p, sps−1)(p, sps−1)(p, sps−1), but (sbs−1, s′bs′−1)(sbs−1, s′bs′−1)(sbs−1, s′bs′−1) with bbb secret and s′s′s′ resembling sss:

same inf, supinf, supinf, sup...

SOLUTION

��������� Easy solution:

- Use conjugates in the SSS;

- Do not publish (p, sps−1)(p, sps−1)(p, sps−1), but (sbs−1, s′bs′−1)(sbs−1, s′bs′−1)(sbs−1, s′bs′−1) with bbb secret and s′s′s′ resembling sss:

same inf, supinf, supinf, sup...

• Authentication Protocol (Sibert ’03):

- Keys: private: b, s0, s1b, s0, s1b, s0, s1 in BnBnBn: only A knows it; public: (p0, p1)(p0, p1)(p0, p1), with pi = sibs
−1
ipi = sibs
−1
ipi = sibs
−1
i ;

SOLUTION

��������� Easy solution:

- Use conjugates in the SSS;

- Do not publish (p, sps−1)(p, sps−1)(p, sps−1), but (sbs−1, s′bs′−1)(sbs−1, s′bs′−1)(sbs−1, s′bs′−1) with bbb secret and s′s′s′ resembling sss:

same inf, supinf, supinf, sup...

• Authentication Protocol (Sibert ’03):

- Keys: private: b, s0, s1b, s0, s1b, s0, s1 in BnBnBn: only A knows it; public: (p0, p1)(p0, p1)(p0, p1), with pi = sibs
−1
ipi = sibs
−1
ipi = sibs
−1
i ;

- Repeat kkk times the sequence:

SOLUTION

��������� Easy solution:

- Use conjugates in the SSS;

- Do not publish (p, sps−1)(p, sps−1)(p, sps−1), but (sbs−1, s′bs′−1)(sbs−1, s′bs′−1)(sbs−1, s′bs′−1) with bbb secret and s′s′s′ resembling sss:

same inf, supinf, supinf, sup...

• Authentication Protocol (Sibert ’03):

- Keys: private: b, s0, s1b, s0, s1b, s0, s1 in BnBnBn: only A knows it; public: (p0, p1)(p0, p1)(p0, p1), with pi = sibs
−1
ipi = sibs
−1
ipi = sibs
−1
i ;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = sbs−1x = sbs−1x = sbs−1;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

SOLUTION

��������� Easy solution:

- Use conjugates in the SSS;

- Do not publish (p, sps−1)(p, sps−1)(p, sps−1), but (sbs−1, s′bs′−1)(sbs−1, s′bs′−1)(sbs−1, s′bs′−1) with bbb secret and s′s′s′ resembling sss:

same inf, supinf, supinf, sup...

• Authentication Protocol (Sibert ’03):

- Keys: private: b, s0, s1b, s0, s1b, s0, s1 in BnBnBn: only A knows it; public: (p0, p1)(p0, p1)(p0, p1), with pi = sibs
−1
ipi = sibs
−1
ipi = sibs
−1
i ;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = sbs−1x = sbs−1x = sbs−1;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends y = ss−1

0y = ss−1
0y = ss−1
0 ;

B checks x = yp0y
−1x = yp0y
−1x = yp0y
−1;

A sends y = ss−1
1y = ss−1
1y = ss−1
1 ;

B checks x = yp1y
−1x = yp1y
−1x = yp1y
−1.

SOLUTION

��������� Easy solution:

- Use conjugates in the SSS;

- Do not publish (p, sps−1)(p, sps−1)(p, sps−1), but (sbs−1, s′bs′−1)(sbs−1, s′bs′−1)(sbs−1, s′bs′−1) with bbb secret and s′s′s′ resembling sss:

same inf, supinf, supinf, sup...

• Authentication Protocol (Sibert ’03):

- Keys: private: b, s0, s1b, s0, s1b, s0, s1 in BnBnBn: only A knows it; public: (p0, p1)(p0, p1)(p0, p1), with pi = sibs
−1
ipi = sibs
−1
ipi = sibs
−1
i ;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = sbs−1x = sbs−1x = sbs−1;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends y = ss−1

0y = ss−1
0y = ss−1
0 ;

B checks x = yp0y
−1x = yp0y
−1x = yp0y
−1;

A sends y = ss−1
1y = ss−1
1y = ss−1
1 ;

B checks x = yp1y
−1x = yp1y
−1x = yp1y
−1.

• In theory, no change; in practice , resists; uses same problem (CSP), but different instances .

SOLUTION

��������� Easy solution:

- Use conjugates in the SSS;

- Do not publish (p, sps−1)(p, sps−1)(p, sps−1), but (sbs−1, s′bs′−1)(sbs−1, s′bs′−1)(sbs−1, s′bs′−1) with bbb secret and s′s′s′ resembling sss:

same inf, supinf, supinf, sup...

• Authentication Protocol (Sibert ’03):

- Keys: private: b, s0, s1b, s0, s1b, s0, s1 in BnBnBn: only A knows it; public: (p0, p1)(p0, p1)(p0, p1), with pi = sibs
−1
ipi = sibs
−1
ipi = sibs
−1
i ;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = sbs−1x = sbs−1x = sbs−1;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends y = ss−1

0y = ss−1
0y = ss−1
0 ;

B checks x = yp0y
−1x = yp0y
−1x = yp0y
−1;

A sends y = ss−1
1y = ss−1
1y = ss−1
1 ;

B checks x = yp1y
−1x = yp1y
−1x = yp1y
−1.

• In theory, no change; in practice , resists; uses same problem (CSP), but different instances .

��������� main problem: choosing the instances (cf. RSA...)

DISCUSSION

• Should one renounce to braid cryptography?

DISCUSSION

• Should one renounce to braid cryptography? NO ��������� just work on it!

DISCUSSION

• Should one renounce to braid cryptography? NO ��������� just work on it!

��������� several options:

• Option 1 : Keep the conjugacy problem as the primitive, but choose the keys better;

��������� Find families of braids with large SSSSSSSSS and USSUSSUSS (Ko, Lee);

��������� connected with dynamical properties and the Nielsen–Thurston theory;

��������� also depends on the way braids are specified (normal form vs. arbitrary words).

DISCUSSION

• Should one renounce to braid cryptography? NO ��������� just work on it!

��������� several options:

• Option 1 : Keep the conjugacy problem as the primitive, but choose the keys better;

��������� Find families of braids with large SSSSSSSSS and USSUSSUSS (Ko, Lee);

��������� connected with dynamical properties and the Nielsen–Thurston theory;

��������� also depends on the way braids are specified (normal form vs. arbitrary words).

• Option 2: Use a new primitive such as the root problem: starting from ppp, find sss s.t. s2 = ps2 = ps2 = p.

��������� connected with the conjugacy problem, and solvable in exponential time (Stychnev).

DISCUSSION

• Should one renounce to braid cryptography? NO ��������� just work on it!

��������� several options:

• Option 1 : Keep the conjugacy problem as the primitive, but choose the keys better;

��������� Find families of braids with large SSSSSSSSS and USSUSSUSS (Ko, Lee);

��������� connected with dynamical properties and the Nielsen–Thurston theory;

��������� also depends on the way braids are specified (normal form vs. arbitrary words).

• Option 2: Use a new primitive such as the root problem: starting from ppp, find sss s.t. s2 = ps2 = ps2 = p.

��������� connected with the conjugacy problem, and solvable in exponential time (Stychnev).

• Option 3: Use a really new primitive such as the shifted conjugacy problem:

Replace

s ∗ p = s · p · s−1s ∗ p = s · p · s−1s ∗ p = s · p · s−1

DISCUSSION

• Should one renounce to braid cryptography? NO ��������� just work on it!

��������� several options:

• Option 1 : Keep the conjugacy problem as the primitive, but choose the keys better;

��������� Find families of braids with large SSSSSSSSS and USSUSSUSS (Ko, Lee);

��������� connected with dynamical properties and the Nielsen–Thurston theory;

��������� also depends on the way braids are specified (normal form vs. arbitrary words).

• Option 2: Use a new primitive such as the root problem: starting from ppp, find sss s.t. s2 = ps2 = ps2 = p.

��������� connected with the conjugacy problem, and solvable in exponential time (Stychnev).

• Option 3: Use a really new primitive such as the shifted conjugacy problem:

Replace

s ∗ p = s · p · s−1s ∗ p = s · p · s−1s ∗ p = s · p · s−1

with

sss ∗∗∗ p := s ·p := s ·p := s ·∂∂∂p · σ
1
· ∂s−1p · σ

1
· ∂s−1p · σ

1
· ∂s−1

↑
the shift endomorphism σ

i

→ σ

i+1
σ
i

→ σ

i+1σ
i

→ σ

i+1
for each iii

AUTHENTICATION (ter)

• Authentication protocol:

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = s ∗ pq = s ∗ pq = s ∗ p;

AUTHENTICATION (ter)

• Authentication protocol:

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = s ∗ pq = s ∗ pq = s ∗ p;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitments x = r ∗ px = r ∗ px = r ∗ p & y = r ∗ qy = r ∗ qy = r ∗ q;

AUTHENTICATION (ter)

• Authentication protocol:

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = s ∗ pq = s ∗ pq = s ∗ p;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitments x = r ∗ px = r ∗ px = r ∗ p & y = r ∗ qy = r ∗ qy = r ∗ q;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

AUTHENTICATION (ter)

• Authentication protocol:

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = s ∗ pq = s ∗ pq = s ∗ p;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitments x = r ∗ px = r ∗ px = r ∗ p & y = r ∗ qy = r ∗ qy = r ∗ q;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0
A sends z = rz = rz = r;
B checks x = z ∗ px = z ∗ px = z ∗ p & y = z ∗ qy = z ∗ qy = z ∗ q;

AUTHENTICATION (ter)

• Authentication protocol:

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = s ∗ pq = s ∗ pq = s ∗ p;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitments x = r ∗ px = r ∗ px = r ∗ p & y = r ∗ qy = r ∗ qy = r ∗ q;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends z = rz = rz = r;
B checks x = z ∗ px = z ∗ px = z ∗ p & y = z ∗ qy = z ∗ qy = z ∗ q;

A sends z = r ∗ sz = r ∗ sz = r ∗ s;
B checks y = z ∗ xy = z ∗ xy = z ∗ x.

AUTHENTICATION (ter)

• Authentication protocol:

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = s ∗ pq = s ∗ pq = s ∗ p;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitments x = r ∗ px = r ∗ px = r ∗ p & y = r ∗ qy = r ∗ qy = r ∗ q;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends z = rz = rz = r;
B checks x = z ∗ px = z ∗ px = z ∗ p & y = z ∗ qy = z ∗ qy = z ∗ q;

A sends z = r ∗ sz = r ∗ sz = r ∗ s;
B checks y = z ∗ xy = z ∗ xy = z ∗ x.

• Justification (case c = 1c = 1c = 1):

y = r ∗ q = r ∗ (s ∗ p)y = r ∗ q = r ∗ (s ∗ p)y = r ∗ q = r ∗ (s ∗ p) === (r ∗ s) ∗ (r ∗ p) = z ∗ x(r ∗ s) ∗ (r ∗ p) = z ∗ x(r ∗ s) ∗ (r ∗ p) = z ∗ x,

AUTHENTICATION (ter)

• Authentication protocol:

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = s ∗ pq = s ∗ pq = s ∗ p;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitments x = r ∗ px = r ∗ px = r ∗ p & y = r ∗ qy = r ∗ qy = r ∗ q;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends z = rz = rz = r;
B checks x = z ∗ px = z ∗ px = z ∗ p & y = z ∗ qy = z ∗ qy = z ∗ q;

A sends z = r ∗ sz = r ∗ sz = r ∗ s;
B checks y = z ∗ xy = z ∗ xy = z ∗ x.

• Justification (case c = 1c = 1c = 1):

y = r ∗ q = r ∗ (s ∗ p)y = r ∗ q = r ∗ (s ∗ p)y = r ∗ q = r ∗ (s ∗ p) === (r ∗ s) ∗ (r ∗ p) = z ∗ x(r ∗ s) ∗ (r ∗ p) = z ∗ x(r ∗ s) ∗ (r ∗ p) = z ∗ x,
↑

the point : like conjugacy, operation ∗∗∗ is self-distributive

AUTHENTICATION (ter)

• Authentication protocol:

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = s ∗ pq = s ∗ pq = s ∗ p;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitments x = r ∗ px = r ∗ px = r ∗ p & y = r ∗ qy = r ∗ qy = r ∗ q;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends z = rz = rz = r;
B checks x = z ∗ px = z ∗ px = z ∗ p & y = z ∗ qy = z ∗ qy = z ∗ q;

A sends z = r ∗ sz = r ∗ sz = r ∗ s;
B checks y = z ∗ xy = z ∗ xy = z ∗ x.

• Justification (case c = 1c = 1c = 1):

y = r ∗ q = r ∗ (s ∗ p)y = r ∗ q = r ∗ (s ∗ p)y = r ∗ q = r ∗ (s ∗ p) === (r ∗ s) ∗ (r ∗ p) = z ∗ x(r ∗ s) ∗ (r ∗ p) = z ∗ x(r ∗ s) ∗ (r ∗ p) = z ∗ x,
↑

the point : like conjugacy, operation ∗∗∗ is self-distributive

• Probability that A succeeds = probability of finding zzz s.t. z ∗ (r ∗ p) = (r ∗ s) ∗ (r ∗ p)z ∗ (r ∗ p) = (r ∗ s) ∗ (r ∗ p)z ∗ (r ∗ p) = (r ∗ s) ∗ (r ∗ p).

��������� size of the shifted commutator of a = ∂(r ∗ p)σ
1

a = ∂(r ∗ p)σ
1a = ∂(r ∗ p)σ
1↖

C∂(a) = {x;x a = a ∂x}C∂(a) = {x;x a = a ∂x}C∂(a) = {x;x a = a ∂x}

AUTHENTICATION (ter)

• Authentication protocol:

- Keys: private: sss in BnBnBn: only A knows it; public: (p, q)(p, q)(p, q), with ppp in BnBnBn and q = s ∗ pq = s ∗ pq = s ∗ p;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitments x = r ∗ px = r ∗ px = r ∗ p & y = r ∗ qy = r ∗ qy = r ∗ q;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends z = rz = rz = r;
B checks x = z ∗ px = z ∗ px = z ∗ p & y = z ∗ qy = z ∗ qy = z ∗ q;

A sends z = r ∗ sz = r ∗ sz = r ∗ s;
B checks y = z ∗ xy = z ∗ xy = z ∗ x.

• Justification (case c = 1c = 1c = 1):

y = r ∗ q = r ∗ (s ∗ p)y = r ∗ q = r ∗ (s ∗ p)y = r ∗ q = r ∗ (s ∗ p) === (r ∗ s) ∗ (r ∗ p) = z ∗ x(r ∗ s) ∗ (r ∗ p) = z ∗ x(r ∗ s) ∗ (r ∗ p) = z ∗ x,
↑

the point : like conjugacy, operation ∗∗∗ is self-distributive

• Probability that A succeeds = probability of finding zzz s.t. z ∗ (r ∗ p) = (r ∗ s) ∗ (r ∗ p)z ∗ (r ∗ p) = (r ∗ s) ∗ (r ∗ p)z ∗ (r ∗ p) = (r ∗ s) ∗ (r ∗ p).

��������� size of the shifted commutator of a = ∂(r ∗ p)σ
1

a = ∂(r ∗ p)σ
1a = ∂(r ∗ p)σ
1↖

C∂(a) = {x;x a = a ∂x}C∂(a) = {x;x a = a ∂x}C∂(a) = {x;x a = a ∂x}
��������� very small, e.g., C∂(1) = {1}C∂(1) = {1}C∂(1) = {1}.

AUTHENTICATION (quater)

• Authentication protocol (variant):

AUTHENTICATION (quater)

• Authentication protocol (variant):

- Keys: private: sss in BnBnBn: only A knows it; public: ppp, with p = s ∗ sp = s ∗ sp = s ∗ s;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = r ∗ px = r ∗ px = r ∗ p;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

AUTHENTICATION (quater)

• Authentication protocol (variant):

- Keys: private: sss in BnBnBn: only A knows it; public: ppp, with p = s ∗ sp = s ∗ sp = s ∗ s;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = r ∗ px = r ∗ px = r ∗ p;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0
A sends y = ry = ry = r;
B checks x = y ∗ px = y ∗ px = y ∗ p;

AUTHENTICATION (quater)

• Authentication protocol (variant):

- Keys: private: sss in BnBnBn: only A knows it; public: ppp, with p = s ∗ sp = s ∗ sp = s ∗ s;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = r ∗ px = r ∗ px = r ∗ p;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends y = ry = ry = r;
B checks x = y ∗ px = y ∗ px = y ∗ p;

A sends y = r ∗ sy = r ∗ sy = r ∗ s;
B checks x = y ∗ yx = y ∗ yx = y ∗ y.

AUTHENTICATION (quater)

• Authentication protocol (variant):

- Keys: private: sss in BnBnBn: only A knows it; public: ppp, with p = s ∗ sp = s ∗ sp = s ∗ s;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = r ∗ px = r ∗ px = r ∗ p;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends y = ry = ry = r;
B checks x = y ∗ px = y ∗ px = y ∗ p;

A sends y = r ∗ sy = r ∗ sy = r ∗ s;
B checks x = y ∗ yx = y ∗ yx = y ∗ y.

• Justification (case c = 1c = 1c = 1):

x = r ∗ q = r ∗ (s ∗ s) = (r ∗ s) ∗ (r ∗ s) = y ∗ yx = r ∗ q = r ∗ (s ∗ s) = (r ∗ s) ∗ (r ∗ s) = y ∗ yx = r ∗ q = r ∗ (s ∗ s) = (r ∗ s) ∗ (r ∗ s) = y ∗ y,
↑

self-distributivity of ∗∗∗ again

FURTHER DISCUSSION

• Is this the future of braid cryptography?

FURTHER DISCUSSION

• Is this the future of braid cryptography? NO ��������� just work on it!

FURTHER DISCUSSION

• Is this the future of braid cryptography? NO ��������� just work on it!

��������� many questions and possibilities.

• How to prove security results?

FURTHER DISCUSSION

• Is this the future of braid cryptography? NO ��������� just work on it!

��������� many questions and possibilities.

• How to prove security results?

- What is a random braid?

��������� no invariant probability measure on BnBnBn: not an amenable group;

FURTHER DISCUSSION

• Is this the future of braid cryptography? NO ��������� just work on it!

��������� many questions and possibilities.

• How to prove security results?

- What is a random braid?

��������� no invariant probability measure on BnBnBn: not an amenable group;

• How to choose the keys?

FURTHER DISCUSSION

• Is this the future of braid cryptography? NO ��������� just work on it!

��������� many questions and possibilities.

• How to prove security results?

- What is a random braid?

��������� no invariant probability measure on BnBnBn: not an amenable group;

• How to choose the keys?

- What is needed, e.g., for the CSP:

��������� not a proof that all instances of the problem are difficult,

FURTHER DISCUSSION

• Is this the future of braid cryptography? NO ��������� just work on it!

��������� many questions and possibilities.

• How to prove security results?

- What is a random braid?

��������� no invariant probability measure on BnBnBn: not an amenable group;

• How to choose the keys?

- What is needed, e.g., for the CSP:

��������� not a proof that all instances of the problem are difficult,

��������� but a method for constructing some (enough) provably difficult instances.

- here connected with the size of the SSSSSSSSS and USSUSSUSS;

FURTHER DISCUSSION

• Is this the future of braid cryptography? NO ��������� just work on it!

��������� many questions and possibilities.

• How to prove security results?

- What is a random braid?

��������� no invariant probability measure on BnBnBn: not an amenable group;

• How to choose the keys?

- What is needed, e.g., for the CSP:

��������� not a proof that all instances of the problem are difficult,

��������� but a method for constructing some (enough) provably difficult instances.

- here connected with the size of the SSSSSSSSS and USSUSSUSS;

- Id. for the SCSP
↖

Shifted Conjugacy Search Problem

FURTHER DISCUSSION

• Is this the future of braid cryptography? NO ��������� just work on it!

��������� many questions and possibilities.

• How to prove security results?

- What is a random braid?

��������� no invariant probability measure on BnBnBn: not an amenable group;

• How to choose the keys?

- What is needed, e.g., for the CSP:

��������� not a proof that all instances of the problem are difficult,

��������� but a method for constructing some (enough) provably difficult instances.

- here connected with the size of the SSSSSSSSS and USSUSSUSS;

- Id. for the SCSP (easier because SCSP (much) more difficult than CSP) .
↖

Shifted Conjugacy Search Problem

FURTHER DISCUSSION

• Is this the future of braid cryptography? NO ��������� just work on it!

��������� many questions and possibilities.

• How to prove security results?

- What is a random braid?

��������� no invariant probability measure on BnBnBn: not an amenable group;

• How to choose the keys?

- What is needed, e.g., for the CSP:

��������� not a proof that all instances of the problem are difficult,

��������� but a method for constructing some (enough) provably difficult instances.

- here connected with the size of the SSSSSSSSS and USSUSSUSS;

- Id. for the SCSP (easier because SCSP (much) more difficult than CSP) .
↖

Shifted Conjugacy Search Problem

• Use Dynnikov ’s formulas, in particular to design hash functions.
↖

coordinization map Bn → Z2nBn → Z2nBn → Z2n coming from the theory of laminations

FURTHER DISCUSSION

• Is this the future of braid cryptography? NO ��������� just work on it!

��������� many questions and possibilities.

• How to prove security results?

- What is a random braid?

��������� no invariant probability measure on BnBnBn: not an amenable group;

• How to choose the keys?

- What is needed, e.g., for the CSP:

��������� not a proof that all instances of the problem are difficult,

��������� but a method for constructing some (enough) provably difficult instances.

- here connected with the size of the SSSSSSSSS and USSUSSUSS;

- Id. for the SCSP (easier because SCSP (much) more difficult than CSP) .
↖

Shifted Conjugacy Search Problem

• Use Dynnikov ’s formulas, in particular to design hash functions.
↖

coordinization map Bn → Z2nBn → Z2nBn → Z2n coming from the theory of laminations

... and much more still to be discovered.

