

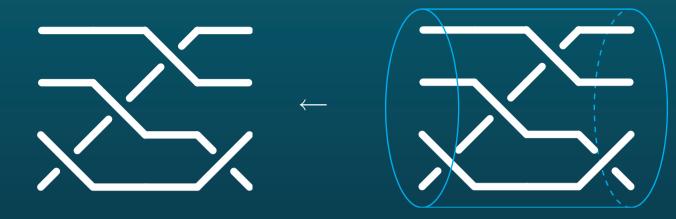
BRAID-BASED CRYPTOLOGY Patrick Dehornoy http://www.math.unicaen.fr/~dehornoy

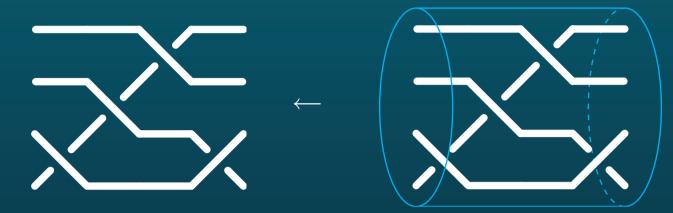
Laboratoire de Mathématiques Nicolas Oresme, Caen

BRAID-BASED CRYPTOLOGY Patrick Dehornoy http://www.math.unicaen.fr/~dehornoy

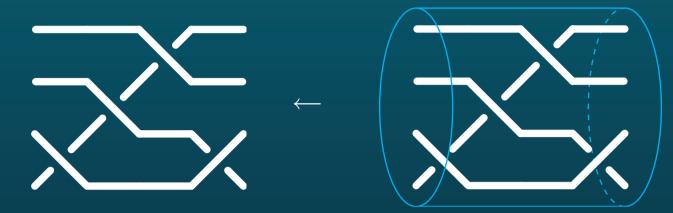
Laboratoire de Mathématiques Nicolas Oresme, Caen

- Introduction to braid groups;
- Description of some braid-based cryptographical protocols, after Sidelnokov & al. and Ko, Lee & al.;
- Length attack against the conjugacy problem, after Hofheinz–Steinwandt;
- A resisting protocol, after Sibert;
- New braid primitives: the shifted conjugacy problem;
- Discussion.

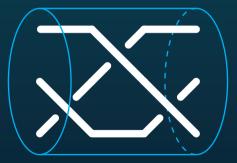


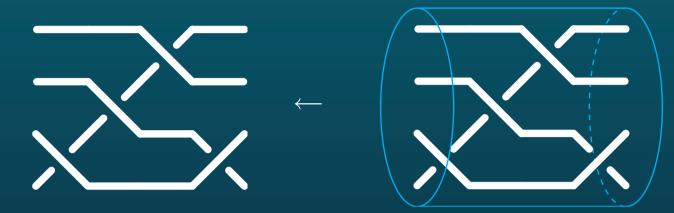


• isotopy = move the strands on the 3D-figure keeping the ends fixed

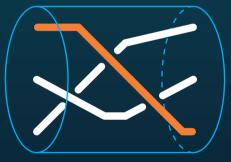


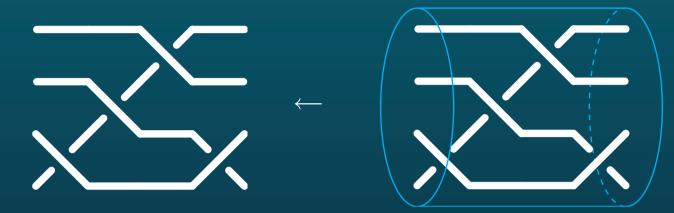
• isotopy = move the strands on the 3D-figure keeping the ends fixed



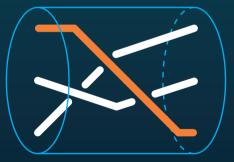


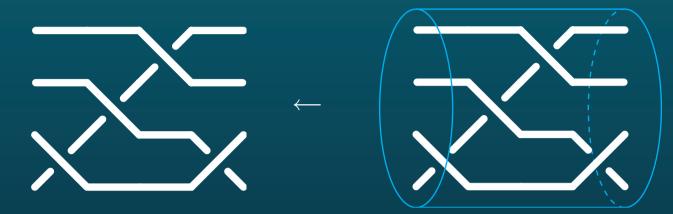
• isotopy = move the strands on the 3D-figure keeping the ends fixed



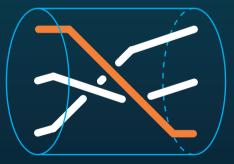


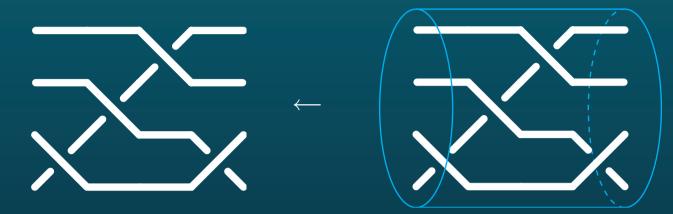
• isotopy = move the strands on the 3D-figure keeping the ends fixed



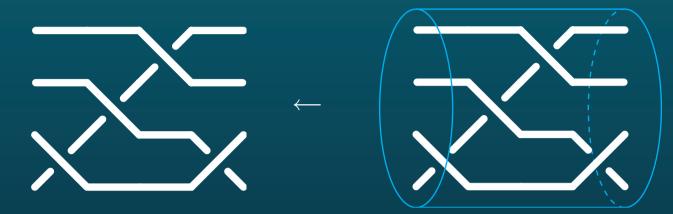


• isotopy = move the strands on the 3D-figure keeping the ends fixed

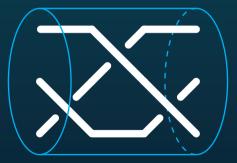


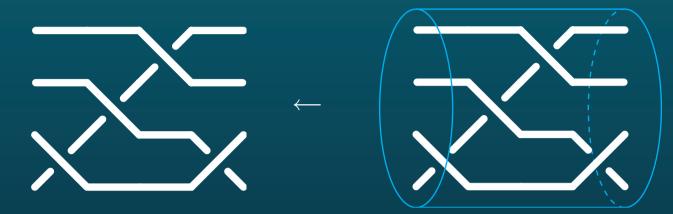


• isotopy = move the strands on the 3D-figure keeping the ends fixed

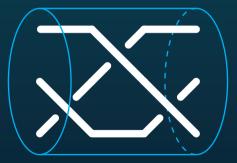


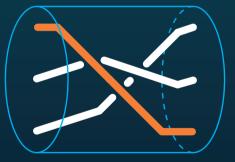
• isotopy = move the strands on the 3D-figure keeping the ends fixed

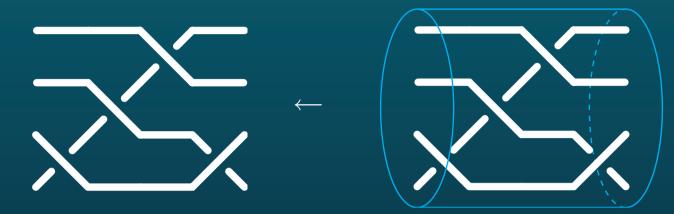




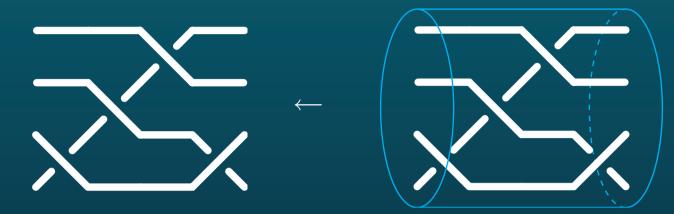
• isotopy = move the strands on the 3D-figure keeping the ends fixed



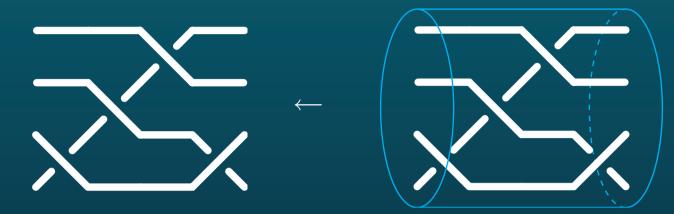




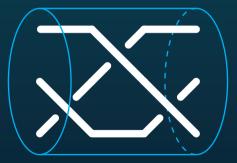
• isotopy = move the strands on the 3D-figure keeping the ends fixed

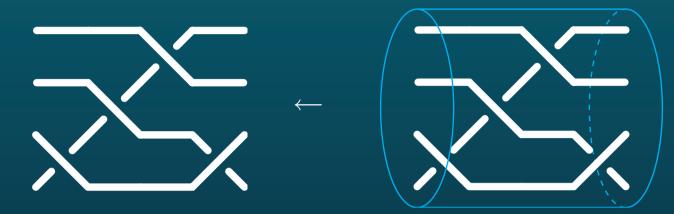


• isotopy = move the strands on the 3D-figure keeping the ends fixed

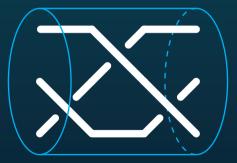


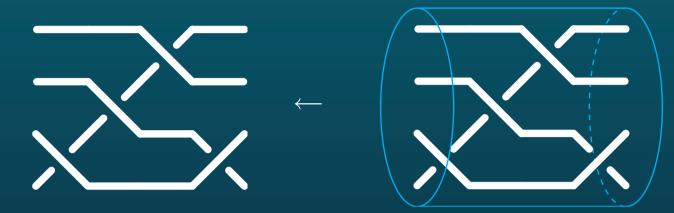
• isotopy = move the strands on the 3D-figure keeping the ends fixed





• isotopy = move the strands on the 3D-figure keeping the ends fixed





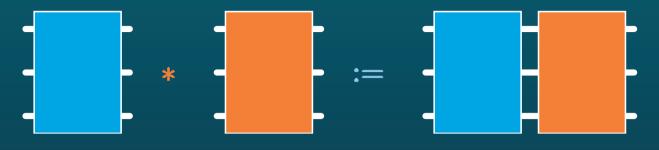
• isotopy = move the strands on the 3D-figure keeping the ends fixed

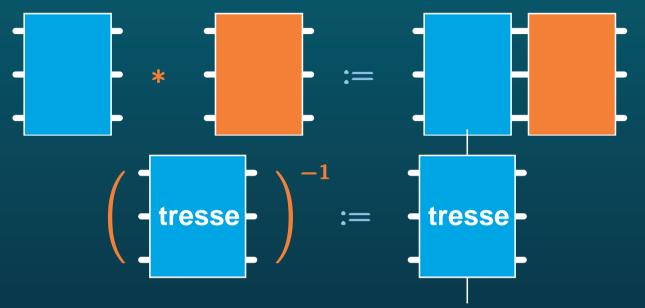
isotopic to

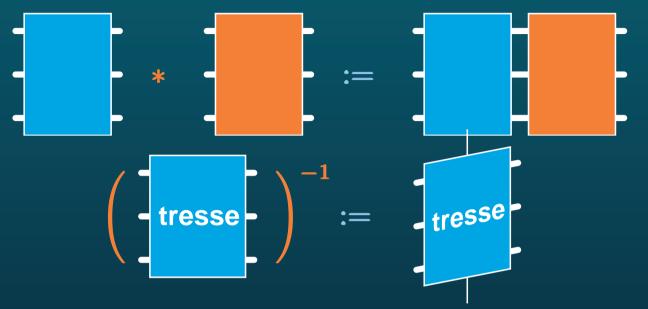
• a **braid** = an isotopy class

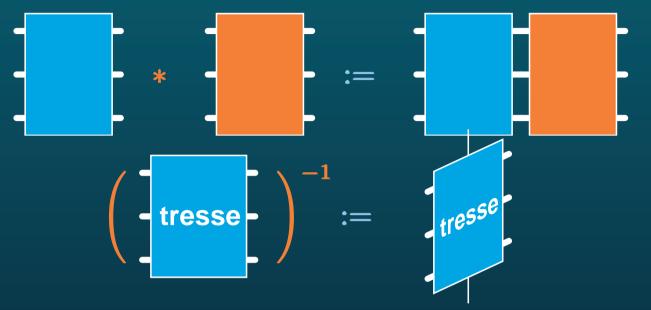
↔ can be represented by 2D-diagram,

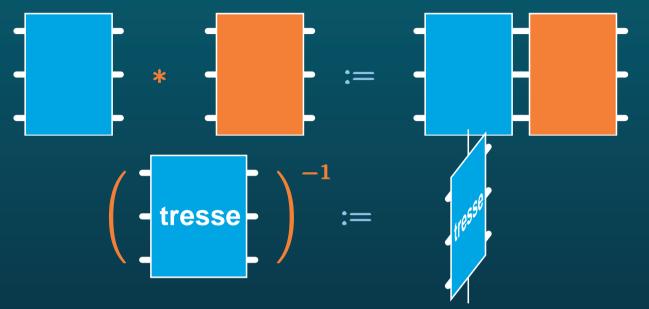
but different 2D-diagrams may give rise to the same braid.

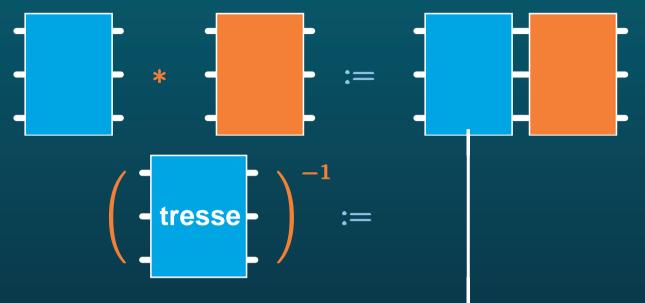


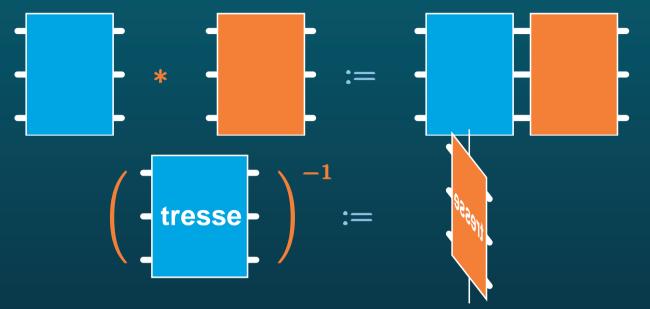


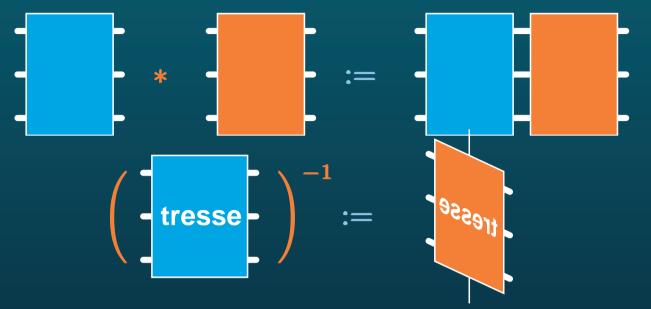


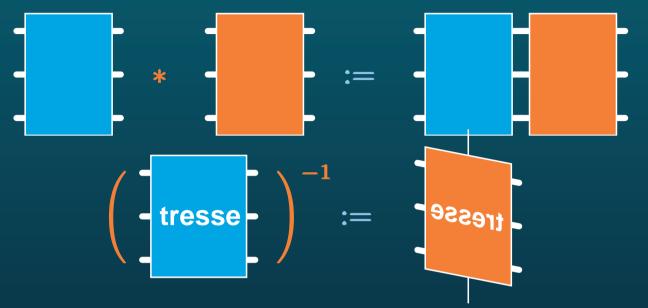


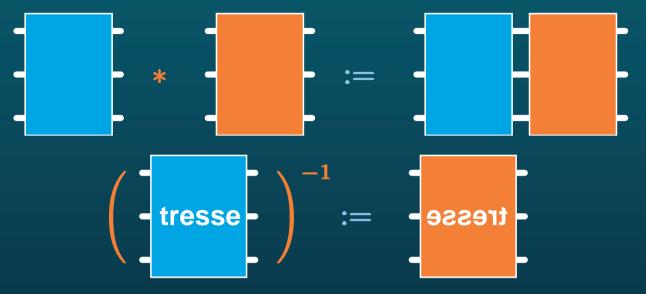




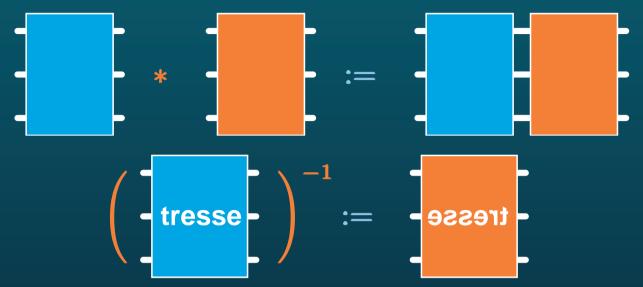






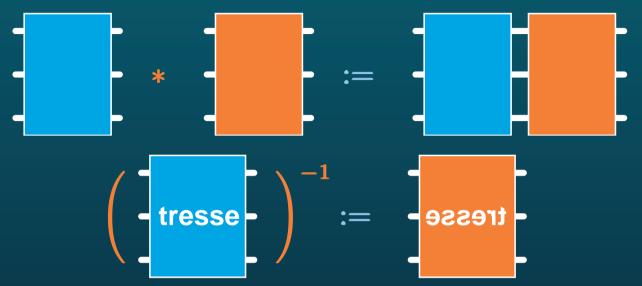


• The product of two braids:

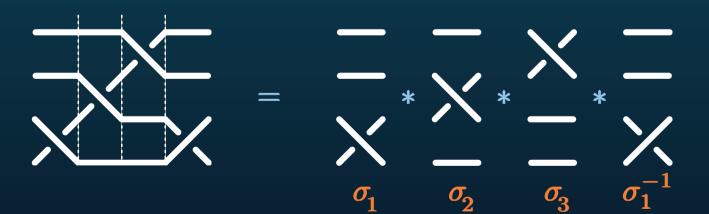


 \rightsquigarrow For each n, a group: the group B_n of n strand braids (Emil Artin, \sim 1925).

• The product of two braids:

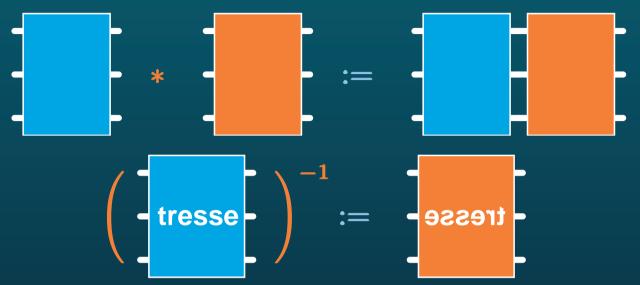


 \rightsquigarrow For each n, a group: the group B_n of n strand braids (Emil Artin, \sim 1925).

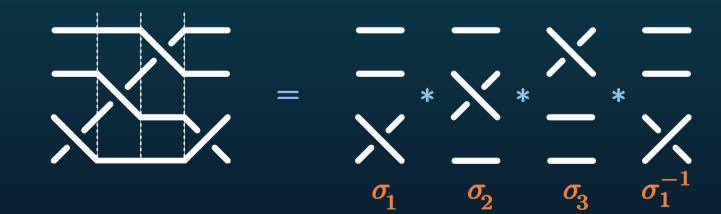


• Presentation of B_n :

• The product of two braids:



 \rightsquigarrow For each n, a group: the group B_n of n strand braids (Emil Artin, \sim 1925).



• Presentation of B_n :

• Theorem (Artin): The braid group B_n is generated by $\sigma_1, ..., \sigma_{n-1}$, subject to the relations $\sigma_i \sigma_j = \sigma_j \sigma_i$ with $|i - j| \ge 2$, and $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ with |i - j| = 1.

KEY EXCHANGE

• Notation: LB_n (UB_n) subgroup generated by σ_1 , ..., σ_{m-1} (σ_{m+1} , ..., σ_{n-1}), $m = \lfloor n/2 \rfloor$.

• Notation: LB_n (UB_n) subgroup generated by σ_1 , ..., σ_{m-1} (σ_{m+1} , ..., σ_{n-1}), $m = \lfloor n/2 \rfloor$.

• Protocol (Sidelnikov–Cherepnev–Yashchenko '93), (Ko–Lee–Cheon–Han–Kang–Park '00): - Key: p in B_n (public);

• Notation: LB_n (UB_n) subgroup generated by $\sigma_1, ..., \sigma_{m-1}$ ($\sigma_{m+1}, ..., \sigma_{n-1}$), $m = \lfloor n/2 \rfloor$.

• Protocol (Sidelnikov–Cherepnev–Yashchenko '93), (Ko–Lee–Cheon–Han–Kang–Park '00): - Key: p in B_n (public);

- A chooses r in LB_n , and sends $p_A = rpr^{-1}$ to B;

• Notation: LB_n (UB_n) subgroup generated by $\sigma_1, ..., \sigma_{m-1}$ ($\sigma_{m+1}, ..., \sigma_{n-1}$), $m = \lfloor n/2 \rfloor$.

• Protocol (Sidelnikov–Cherepnev–Yashchenko '93), (Ko–Lee–Cheon–Han–Kang–Park '00): - Key: p in B_n (public);

- A chooses r in $L\!B_n$, and sends $p_A = rpr^{-1}$ to B;

- B chooses s in UB_n , and sends $p_B = sps^{-1}$ to A;

• Notation: LB_n (UB_n) subgroup generated by $\sigma_1, ..., \sigma_{m-1}$ ($\sigma_{m+1}, ..., \sigma_{n-1}$), $m = \lfloor n/2 \rfloor$.

• Protocol (Sidelnikov–Cherepnev–Yashchenko '93), (Ko–Lee–Cheon–Han–Kang–Park '00): - Key: p in B_n (public);

- A chooses r in $L\!B_n$, and sends $p_A = rpr^{-1}$ to B;

- B chooses s in UB_n , and sends $p_B = sps^{-1}$ to A;

- A computes $s_A = r p_B r^{-1}$;

• Notation: LB_n (UB_n) subgroup generated by $\sigma_1, ..., \sigma_{m-1}$ ($\sigma_{m+1}, ..., \sigma_{n-1}$), $m = \lfloor n/2 \rfloor$.

• Protocol (Sidelnikov–Cherepnev–Yashchenko '93), (Ko–Lee–Cheon–Han–Kang–Park '00): - Key: p in B_n (public);

- A chooses r in $L\!B_n$, and sends $p_A = rpr^{-1}$ to B;

- B chooses s in UB_n , and sends $p_B = sps^{-1}$ to A;
 - A computes $s_A = r p_B r^{-1}$;
 - B computes $s_B = sp_A s^{-1}$.

• Notation: LB_n (UB_n) subgroup generated by $\sigma_1, ..., \sigma_{m-1}$ ($\sigma_{m+1}, ..., \sigma_{n-1}$), $m = \lfloor n/2 \rfloor$.

• Protocol (Sidelnikov–Cherepnev–Yashchenko '93), (Ko–Lee–Cheon–Han–Kang–Park '00): - Key: p in B_n (public);

- A chooses r in LB_n , and sends $p_A = rpr^{-1}$ to B;

- B chooses s in UB_n , and sends $p_B = sps^{-1}$ to A;
 - A computes $s_A = r p_B r^{-1}$;
 - B computes $s_B = s p_A s^{-1}$.

• Justification: rs = sr, so $s_A = rsps^{-1}r^{-1} = srpr^{-1}s^{-1} = s_B$.

• Notation: LB_n (UB_n) subgroup generated by $\sigma_1, ..., \sigma_{m-1}$ ($\sigma_{m+1}, ..., \sigma_{n-1}$), $m = \lfloor n/2 \rfloor$.

• Protocol (Sidelnikov–Cherepnev–Yashchenko '93), (Ko–Lee–Cheon–Han–Kang–Park '00): - Key: p in B_n (public);

- A chooses r in LB_n , and sends $p_A = rpr^{-1}$ to B; - B chooses s in UB_n , and sends $p_B = sps^{-1}$ to A; - A computes $s_A = rp_Br^{-1}$;
 - B computes $s_B = sp_A s^{-1}$.

• Justification: rs = sr, so $s_A = rsps^{-1}r^{-1} = srpr^{-1}s^{-1} = s_B$.

• Security: Difficulty of retrieving x from (p, xpx^{-1}) : the Conjugacy Search Problem.

- Problem: A wishes to send a message m to B. $\nwarrow \in \{0,1\}^*$
- Notation: H hash function from B_n to $\{0,1\}^*$ (= non-invertible + injective); \oplus for "exclusive or".

• Notation: H hash function from B_n to $\{0,1\}^*$ (= non-invertible + injective); \oplus for "exclusive or".

- Protocol (Ko–Lee & al. '00):
- Keys: private: s in $L\!B_{m n}$: only B knows it; public: (p,q), with p in $B_{m n}$ and $q=sps^{-1}$;

• Notation: H hash function from B_n to $\{0,1\}^*$ (= non-invertible + injective); \oplus for "exclusive or".

• Protocol (Ko–Lee & al. '00):

- Keys: private: s in LB_n : only B knows it; public: (p,q), with p in B_n and $q = sps^{-1}$; - A chooses r in UB_n , sends $p' = rpr^{-1}$ and $m' = m \oplus H(rqr^{-1})$;

• Notation: H hash function from B_n to $\{0,1\}^*$ (= non-invertible + injective); \oplus for "exclusive or".

• Protocol (Ko–Lee & al. '00):

- Keys: private: s in LB_n : only B knows it; public: (p,q), with p in B_n and $q = sps^{-1}$; - A chooses r in UB_n , sends $p' = rpr^{-1}$ and $m' = m \oplus H(rqr^{-1})$; - B computes $m'' = m' \oplus H(sp's^{-1})$.

• Notation: H hash function from B_n to $\{0,1\}^*$ (= non-invertible + injective); \oplus for "exclusive or".

• Protocol (Ko–Lee & al. '00):

- Keys: private: s in LB_n : only B knows it; public: (p,q), with p in B_n and $q = sps^{-1}$; - A chooses r in UB_n , sends $p' = rpr^{-1}$ and $m' = m \oplus H(rqr^{-1})$; - B computes $m'' = m' \oplus H(sp's^{-1})$.

• Justification: $rqr^{-1} = rsps^{-1}r^{-1} = srpr^{-1}s^{-1} = sp's^{-1}$, hence m'' = m.

• Notation: H hash function from B_n to $\{0,1\}^*$ (= non-invertible + injective); \oplus for "exclusive or".

- Protocol (Ko–Lee & al. '00):
- Keys: private: s in LB_n : only B knows it; public: (p,q), with p in B_n and $q = sps^{-1}$; - A chooses r in UB_n , sends $p' = rpr^{-1}$ and $m' = m \oplus H(rqr^{-1})$; - B computes $m'' = m' \oplus H(sp's^{-1})$.
- Justification: $rqr^{-1} = rsps^{-1}r^{-1} = srpr^{-1}s^{-1} = sp's^{-1}$, hence m'' = m.
- Security: Difficulty of retrieving s from the pair (p, sps^{-1}) : CSP again.

• Protocol:

- Keys: private: s in LB_n : only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;

- Protocol:
- Keys: private: s in LB_n : only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;
 - B chooses r in $U\!B_n$, sends the challenge $x=rpr^{-1}$;

- Protocol:
- Keys: private: s in LB_n : only A knows it; public: (p,q), with p in B_n and $q=sps^{-1}$;
 - B chooses r in $U\!B_n$, sends the challenge $x=rpr^{-1}$;
 - A sends the response $y = sxs^{-1}$;

- Protocol:
- Keys: private: s in $L\!B_{m n}$: only A knows it; public: (p,q), with p in $B_{m n}$ and $q=sps^{-1}$;
 - B chooses r in $U\!B_{m n}$, sends the challenge $x=rpr^{-1};$
 - A sends the response $y = sxs^{-1}$;
 - B checks $y = rqr^{-1}$.

- Protocol:
- Keys: private: s in $L\!B_n$: only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;
 - B chooses r in $U\!B_n$, sends the challenge $x=rpr^{-1}$;
 - A sends the response $y = sxs^{-1}$;
 - B checks $y = rqr^{-1}$.

• Justification: $y = rqr^{-1} = rsps^{-1}r^{-1} = srpr^{-1}s^{-1} = sxs^{-1}$.

- Protocol:
- Keys: private: s in $L\!B_n$: only A knows it; public: (p,q), with p in B_n and $q=sps^{-1}$;
 - B chooses r in $U\!B_{m n}$, sends the challenge $x=rpr^{-1}$;
 - A sends the response $y = sxs^{-1}$;
 - B checks $y = rqr^{-1}$.

• Justification:
$$y = rqr^{-1} = rsps^{-1}r^{-1} = srpr^{-1}s^{-1} = sxs^{-1}$$
.

• Improvement: A sends $H(sxs^{-1})$, and B checks $y = H(rqr^{-1})$ with H a hash function.

- Problem: The prover A wishes to prove her identity to the verifier B.
- Protocol: (Sibert-D.-Girault '02, after Fiat-Shamir)

- Problem: The prover A wishes to prove her identity to the verifier B.
- Protocol: (Sibert-D.-Girault '02, after Fiat-Shamir)
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;

- Problem: The prover A wishes to prove her identity to the verifier B.
- Protocol: (Sibert-D.-Girault '02, after Fiat-Shamir)
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;
 - Repeat \boldsymbol{k} times the sequence:

- Problem: The prover A wishes to prove her identity to the verifier B.
- Protocol: (Sibert-D.-Girault '02, after Fiat-Shamir)
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;
 - Repeat \boldsymbol{k} times the sequence:

(i) A chooses r in B_n , and sends the commitment $x = rpr^{-1}$;

- Problem: The prover A wishes to prove her identity to the verifier B.
- Protocol: (Sibert-D.-Girault '02, after Fiat-Shamir)
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;
 - Repeat \boldsymbol{k} times the sequence:
 - (i) A chooses r in B_n , and sends the commitment $x = rpr^{-1}$;
 - (ii) B chooses c in $\{0,1\}$, and sends c;

Protocol: (Sibert-D.-Girault '02, after Fiat-Shamir)

- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;

```
- Repeat \boldsymbol{k} times the sequence:
```

(i) A chooses r in B_n , and sends the commitment $x = rpr^{-1}$;

```
(ii) B chooses c in \{0,1\}, and sends c;
```

```
(iii) case c = 0
```

```
A sends y = r;
B checks x = ypy^{-1};
```

• Protocol: (Sibert-D.-Girault '02, after Fiat-Shamir)

- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;

- Repeat k times the sequence:

(i) A chooses r in B_n , and sends the commitment $x = rpr^{-1}$; (ii) B chooses c in $\{0, 1\}$, and sends c;

(iii) case c = 0case c = 1A sends y = r;A sends $y = rs^{-1};$ B checks $x = ypy^{-1};$ B checks $x = yqy^{-1}.$

• Protocol: (Sibert-D.-Girault '02, after Fiat-Shamir)

- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;

- Repeat k times the sequence: (i) A chooses r in B_n , and sends the commitment $x = rpr^{-1}$; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1

A sends y = r;A sends $y = rs^{-1};$ B checks $x = ypy^{-1};$ B checks $x = yqy^{-1}.$

• Justification (case c = 1): $x = rpr^{-1} = (rs^{-1})(sps^{-1})(sr^{-1}) = yqy^{-1}$,

• Protocol: (Sibert-D.-Girault '02, after Fiat-Shamir)

- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;

- Repeat m k times the sequence:

(i) A chooses r in B_n , and sends the commitment $x = rpr^{-1}$; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1A sends y = r; A sends $y = rs^{-1}$; B checks $x = ypy^{-1}$; B checks $x = yqy^{-1}$.

• Justification (case c = 1): $x = rpr^{-1} = (rs^{-1})(sps^{-1})(sr^{-1}) = yqy^{-1}$,

 \rightsquigarrow probability that A succeeds without knowing s is $\leq 1/2^k$.

• Protocol: (Sibert-D.-Girault '02, after Fiat-Shamir)

- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and $q = sps^{-1}$;

- Repeat m k times the sequence:

(i) A chooses r in B_n , and sends the commitment $x = rpr^{-1}$; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1A sends y = r; A sends $y = rs^{-1}$; B checks $x = ypy^{-1}$; B checks $x = yqy^{-1}$.

• Justification (case c = 1): $x = rpr^{-1} = (rs^{-1})(sps^{-1})(sr^{-1}) = yqy^{-1}$,

 \rightsquigarrow probability that A succeeds without knowing s is $\leq 1/2^k$.

• Improvement: Replace x with H(x).

• Security of the previous protocols: all relie on the difficulty of Conjugacy Search Problem: Assuming that p and q are conjugate in B_n , find s satisfying $q = sps^{-1}$. • Security of the previous protocols: all relie on the difficulty of Conjugacy Search Problem:

Assuming that p and q are conjugate in B_n , find s satisfying $q=sps^{-1}$.

 \rightsquigarrow more generally: the conjugacy problem of B_n .

• Security of the previous protocols: all relie on the difficulty of Conjugacy Search Problem: Assuming that p and q are conjugate in B_n , find s satisfying $q = sps^{-1}$. \rightsquigarrow more generally: the conjugacy problem of B_n .

• Theorem (Garside, 1969): The conjugacy problem of B_n is solvable.

• Theorem (Garside, 1969): The conjugacy problem of B_n is solvable.

↔ Proposition: For each braid b, there exists a finite, effectively computable subset SS(b) of the conjugacy class of b — "summit set" of b — s.t. b, b' are conjugate iff SS(b') = SS(b).

• Theorem (Garside, 1969): The conjugacy problem of B_n is solvable.

↔ Proposition: For each braid b, there exists a finite, effectively computable subset SS(b) of the conjugacy class of b — "summit set" of b — s.t. b, b' are conjugate iff SS(b') = SS(b).

• In practice: SS(b) is very large (exponential in the size of b),

• Theorem (Garside, 1969): The conjugacy problem of B_n is solvable.

↔ Proposition: For each braid b, there exists a finite, effectively computable subset SS(b) of the conjugacy class of b — "summit set" of b — s.t. b, b' are conjugate iff SS(b') = SS(b).

In practice: SS(b) is very large (exponential in the size of b),
 but improvements: EIRifai–Morton, Gonzalez-Meneses, Gebhardt,...
 ↔ replace SS(b) with smaller subsets SSS(b), then USS(b)...
 that can be computed more easily

• Theorem (Garside, 1969): The conjugacy problem of B_n is solvable.

↔ Proposition: For each braid b, there exists a finite, effectively computable subset SS(b) of the conjugacy class of b — "summit set" of b — s.t. b, b' are conjugate iff SS(b') = SS(b).

• Garside's fundamental braid Δ_n : the half-turn on n strands

• Garside's fundamental braid Δ_n : the half-turn on n strands

• For b in B_n , define $\inf b = \max\{k; \Delta_n^k \preccurlyeq b\},$ $a \preccurlyeq b$ means $b \in a \cdot x$ with no σ_i^{-1} in x

• Garside's fundamental braid Δ_n : the half-turn on n strands

• For b in B_n , define $\inf b = \max\{k; \Delta_n^k \preccurlyeq b\}, \qquad \sup b = \min\{\ell; b \preccurlyeq \Delta_n^\ell\}, \qquad \land a \preccurlyeq b \text{ means } b \in a \cdot x \text{ with no } \sigma_i^{-1} \text{ in } x$

• Garside's fundamental braid Δ_n : the half-turn on n strands

• For b in B_n , define $\inf b = \max\{k; \Delta_n^k \preccurlyeq b\}, \quad \sup b = \min\{\ell; b \preccurlyeq \Delta_n^\ell\},$ $a \preccurlyeq b$ means $b \in a \cdot x$ with no σ_i^{-1} in x $\ell(b) := \sup(b) - \inf(b)$: the canonical length of b.

• Garside's fundamental braid Δ_n : the half-turn on n strands

• For b in B_n , define $\inf b = \max\{k; \Delta_n^k \preccurlyeq b\}, \qquad \sup b = \min\{\ell; b \preccurlyeq \Delta_n^\ell\}, \qquad \land a \preccurlyeq b \text{ means } b \in a \cdot x \text{ with no } \sigma_i^{-1} \text{ in } x$ $\ell(b) := \sup(b) - \inf(b): \text{ the canonical length of } b.$

 \rightsquigarrow Definition: The SSS of b consists of all conjugates of b with minimum canonical length.

• Garside's fundamental braid Δ_n : the half-turn on n strands

• For b in B_n , define $\inf b = \max\{k; \Delta_n^k \preccurlyeq b\}, \qquad \sup b = \min\{\ell; b \preccurlyeq \Delta_n^\ell\}, \qquad \land a \preccurlyeq b \text{ means } b \in a \cdot x \text{ with no } \sigma_i^{-1} \text{ in } x$ $\ell(b) := \sup(b) - \inf(b): \text{ the canonical length of } b.$

 \rightsquigarrow Definition: The SSS of b consists of all conjugates of b with minimum canonical length.

• We always have

 $\inf(a) + \inf(b) \leq \inf(ab) \leq \inf(a) + \sup(b)$,

• Garside's fundamental braid Δ_n : the half-turn on n strands

• For b in B_n , define $\inf b = \max\{k; \Delta_n^k \preccurlyeq b\}, \qquad \sup b = \min\{\ell; b \preccurlyeq \Delta_n^\ell\},$ $a \preccurlyeq b$ means $b \in a \cdot x$ with no σ_i^{-1} in x $\ell(b) := \sup(b) - \inf(b)$: the canonical length of b.

 \rightsquigarrow Definition: The SSS of b consists of all conjugates of b with minimum canonical length.

• We always have

 $\inf(a) + \inf(b) \leq \inf(ab) \leq \inf(a) + \sup(b),$

and we almost always have

 $\inf(ab) = \inf(a) + \inf(b),$

• Garside's fundamental braid Δ_n : the half-turn on n strands

• For b in B_n , define $\inf b = \max\{k; \Delta_n^k \preccurlyeq b\}, \qquad \sup b = \min\{\ell; b \preccurlyeq \Delta_n^\ell\}, \qquad \land a \preccurlyeq b \text{ means } b \in a \cdot x \text{ with no } \sigma_i^{-1} \text{ in } x$ $\ell(b) := \sup(b) - \inf(b)$: the canonical length of b.

 \rightsquigarrow Definition: The SSS of b consists of all conjugates of b with minimum canonical length.

• We always have

 $\inf(a) + \inf(b) \leq \inf(ab) \leq \inf(a) + \sup(b),$

and we almost always have

 $\inf(ab) = \inf(a) + \inf(b),$ and *id.* for sup. Using $\inf(a^{-1}) = -\sup(a)$, we deduce a. a. $\inf(sps^{-1}) = \inf(s) + \inf(p) - \sup(s),$

and *id.* for sup, whence, a.a.,

• Garside's fundamental braid Δ_n : the half-turn on n strands

• For b in B_n , define $\inf b = \max\{k; \Delta_n^k \preccurlyeq b\}, \qquad \sup b = \min\{\ell; b \preccurlyeq \Delta_n^\ell\}, \qquad \land a \preccurlyeq b \text{ means } b \in a \cdot x \text{ with no } \sigma_i^{-1} \text{ in } x$ $\ell(b) := \sup(b) - \inf(b)$: the canonical length of b.

 \rightsquigarrow Definition: The SSS of b consists of all conjugates of b with minimum canonical length.

• We always have

 $\inf(a) + \inf(b) \leq \inf(ab) \leq \inf(a) + \sup(b),$

and we almost always have

 $\inf(ab) = \inf(a) + \inf(b),$ and *id.* for sup. Using $\inf(a^{-1}) = -\sup(a)$, we deduce a. a. $\inf(sps^{-1}) = \inf(s) + \inf(p) - \sup(s),$

and *id.* for sup, whence, a.a.,

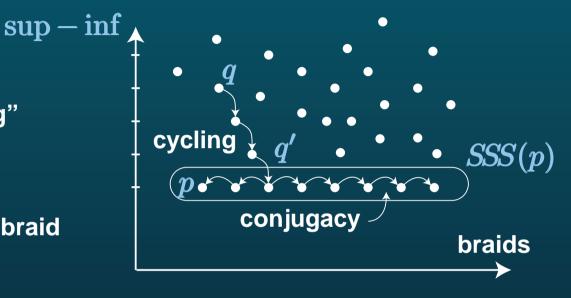
 $\ell(sps^{-1}) = \ell(p) + 2\ell(s).$

• Attack to the braid CSP (Hofheinz–Steinwandt '03): Starting with (p,q) s.t. p,q are conjugate and $\ell(p) < \ell(q)$:

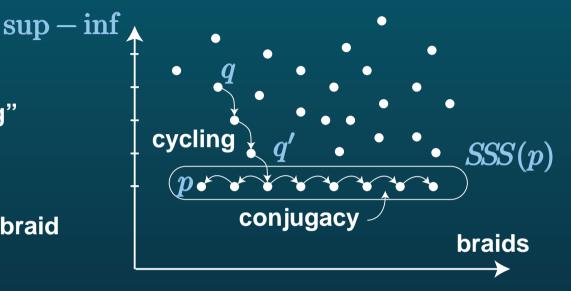
• Attack to the braid CSP (Hofheinz–Steinwandt '03): Starting with (p,q) s.t. p,q are conjugate and $\ell(p) < \ell(q)$:

- Check $p \in SSS(p)$;
- Iteratively conjugate q by "cycling" to increase \inf & decrease \sup until $q' \in SSS(p)$;
- Conjugate q' by one permutation braid to (hopefully) obtain p.

- Attack to the braid CSP (Hofheinz–Steinwandt '03): Starting with (p,q) s.t. p,q are conjugate and $\ell(p) < \ell(q)$:
 - Check $p\in S\!S\!S(p)$;
 - Iteratively conjugate q by "cycling" to increase \inf & decrease \sup until $q' \in SSS(p)$;
 - Conjugate q' by one permutation braid to (hopefully) obtain p.

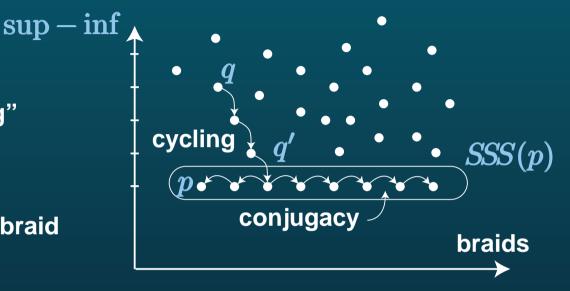


- Attack to the braid CSP (Hofheinz–Steinwandt '03): Starting with (p,q) s.t. p,q are conjugate and $\ell(p) < \ell(q)$:
 - Check $p \in S\!S\!S(p)$;
 - Iteratively conjugate q by "cycling" to increase \inf & decrease \sup until $q' \in SSS(p)$;
 - Conjugate q' by one permutation braid to (hopefully) obtain p.



• Key point: The attack need not always work, but it does with non-negligible probability, \rightsquigarrow typically for $p \in SSS(p)$ and q obtained by conjugating p — which is frequent.

- Attack to the braid CSP (Hofheinz–Steinwandt '03): Starting with (p,q) s.t. p,q are conjugate and $\ell(p) < \ell(q)$:
 - Check $p\in S\!S\!S(p)$;
 - Iteratively conjugate q by "cycling" to increase \inf & decrease \sup until $q' \in SSS(p)$;
 - Conjugate q' by one permutation braid to (hopefully) obtain p.

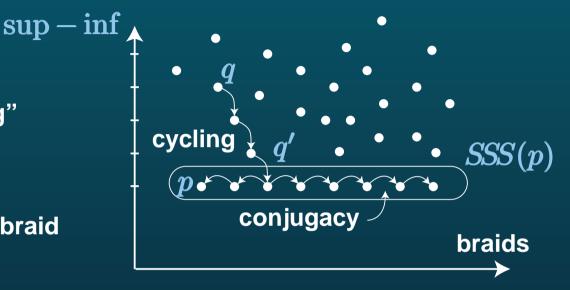


• Key point: The attack need not always work, but it does with non-negligible probability, \rightsquigarrow typically for $p \in SSS(p)$ and q obtained by conjugating p — which is frequent.

• Difference between

- what is mathematically significant: what is always true,
- what is cryptographically significant: what is possibly (e.g., almost always) true.

- Attack to the braid CSP (Hofheinz–Steinwandt '03): Starting with (p,q) s.t. p,q are conjugate and $\ell(p) < \ell(q)$:
 - Check $p \in S\!S\!S(p)$;
 - Iteratively conjugate q by "cycling" to increase \inf & decrease \sup until $q' \in SSS(p)$;
 - Conjugate q' by one permutation braid to (hopefully) obtain p.



• Key point: The attack need not always work, but it does with non-negligible probability, \rightsquigarrow typically for $p \in SSS(p)$ and q obtained by conjugating p — which is frequent.

• Difference between

- what is mathematically significant: what is always true,
- what is cryptographically significant: what is possibly (e.g., almost always) true.

 \rightsquigarrow Here: q conjugate of p implies $\ell(q) > \ell(p)$ "a.a." — although "conjugate" is symmetric...

SOLUTION

- → Easy solution:
 - Use conjugates in the SSS;

→ Easy solution:

- Use conjugates in the SSS;
- Do not publish (p, sps^{-1}) , but $(sbs^{-1}, s'bs'^{-1})$ with b secret and s' resembling s:

same \inf, \sup ...

- → Easy solution:
 - Use conjugates in the SSS;

- Do not publish (p, sps^{-1}) , but $(sbs^{-1}, s'bs'^{-1})$ with b secret and s' resembling s: same \inf , sup...

• Authentication Protocol (Sibert '03):

- Keys: private: b, s_0, s_1 in B_n : only A knows it; public: (p_0, p_1) , with $p_i = s_i b s_i^{-1}$;

- → Easy solution:
 - Use conjugates in the SSS;
 - Do not publish (p, sps^{-1}) , but $(sbs^{-1}, s'bs'^{-1})$ with b secret and s' resembling s: same \inf , sup...
- Authentication Protocol (Sibert '03):
- Keys: private: b, s_0, s_1 in B_n : only A knows it; public: (p_0, p_1) , with $p_i = s_i b s_i^{-1}$;
 - Repeat \boldsymbol{k} times the sequence:

same inf, sup...

- → Easy solution:
 - Use conjugates in the SSS;
 - Do not publish (p, sps^{-1}) , but $(sbs^{-1}, s'bs'^{-1})$ with b secret and s' resembling s:

- Authentication Protocol (Sibert '03):
- Keys: private: b, s_0, s_1 in B_n : only A knows it; public: (p_0, p_1) , with $p_i = s_i b s_i^{-1}$;
 - Repeat *k* times the sequence:

(i) A chooses r in B_n , and sends the commitment $x = sbs^{-1}$; (ii) B chooses c in $\{0, 1\}$, and sends c;

→ Easy solution:

- Use conjugates in the SSS;
- Do not publish (p, sps^{-1}) , but $(sbs^{-1}, s'bs'^{-1})$ with b secret and s' resembling s:
 - same \inf, \sup ...

- Authentication Protocol (Sibert '03):
- Keys: private: b, s_0, s_1 in B_n : only A knows it; public: (p_0, p_1) , with $p_i = s_i b s_i^{-1}$;
 - Repeat \boldsymbol{k} times the sequence:

(i) A chooses r in B_n , and sends the commitment $x = sbs^{-1}$; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1A sends $y = ss_0^{-1}$; A sends $y = ss_1^{-1}$; B checks $x = yp_0y^{-1}$; B checks $x = yp_1y^{-1}$.

- ↔ Easy solution:
 - Use conjugates in the SSS;
 - Do not publish (p, sps^{-1}) , but $(sbs^{-1}, s'bs'^{-1})$ with b secret and s' resembling s:
 - same \inf, \sup ...

- Authentication Protocol (Sibert '03):
- Keys: private: b, s_0, s_1 in B_n : only A knows it; public: (p_0, p_1) , with $p_i = s_i b s_i^{-1}$;
 - Repeat *k* times the sequence:

(i) A chooses r in B_n , and sends the commitment $x = sbs^{-1}$; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1A sends $y = ss_0^{-1}$; A sends $y = ss_1^{-1}$; B checks $x = yp_0y^{-1}$; B checks $x = yp_1y^{-1}$.

• In theory, no change; in practice, resists; uses same problem (CSP), but different instances.

↔ Easy solution:

- Use conjugates in the SSS;

- Do not publish (p, sps^{-1}) , but $(sbs^{-1}, s'bs'^{-1})$ with b secret and s' resembling s:

same \inf, \sup ...

• Authentication Protocol (Sibert '03):

- Keys: private: b, s_0, s_1 in B_n : only A knows it; public: (p_0, p_1) , with $p_i = s_i b s_i^{-1}$;

- Repeat *k* times the sequence:

(i) A chooses r in B_n , and sends the commitment $x = sbs^{-1}$; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1A sends $y = ss_0^{-1}$; A sends $y = ss_1^{-1}$; B checks $x = yp_0y^{-1}$; B checks $x = yp_1y^{-1}$.

• In theory, no change; in practice, resists; uses same problem (CSP), but different instances.

→ main problem: choosing the instances (cf. RSA...)

• Should one renounce to braid cryptography?

• Should one renounce to braid cryptography? NO \rightsquigarrow just work on it!

- Should one renounce to braid cryptography? NO ~> just work on it!
 >> several options:
- Option 1 : Keep the conjugacy problem as the primitive, but choose the keys better;
 Sind families of braids with large SSS and USS (Ko, Lee);
 - ↔ connected with dynamical properties and the Nielsen–Thurston theory;
 - → also depends on the way braids are specified (normal form *vs.* arbitrary words).

Should one renounce to braid cryptography? NO ~> just work on it!
 >> several options:

Option 1 : Keep the conjugacy problem as the primitive, but choose the keys better;
 SSS and USS (Ko, Lee);
 connected with dynamical properties and the Nielsen–Thurston theory;

- \rightarrow also depends on the way braids are specified (normal form *vs.* arbitrary words).
- Option 2: Use a new primitive such as the root problem: starting from p, find s s.t. $s^2 = p$. \rightsquigarrow connected with the conjugacy problem, and solvable in exponential time (Stychnev).

Should one renounce to braid cryptography? NO ~> just work on it!
 >> several options:

Option 1 : Keep the conjugacy problem as the primitive, but choose the keys better;
 Sind families of braids with large SSS and USS (Ko, Lee);
 connected with dynamical properties and the Nielsen–Thurston theory;

→ also depends on the way braids are specified (normal form *vs.* arbitrary words).

• Option 2: Use a new primitive such as the root problem: starting from p, find s s.t. $s^2 = p$. \rightsquigarrow connected with the conjugacy problem, and solvable in exponential time (Stychnev).

 Option 3: Use a really new primitive such as the shifted conjugacy problem: Replace

$$s*p=s\cdot p\cdot s^{-1}$$

Option 1 : Keep the conjugacy problem as the primitive, but choose the keys better;
 SSS and USS (Ko, Lee);
 connected with dynamical properties and the Nielsen–Thurston theory;

→ also depends on the way braids are specified (normal form *vs.* arbitrary words).

• Option 2: Use a new primitive such as the root problem: starting from p, find s s.t. $s^2 = p$. \rightsquigarrow connected with the conjugacy problem, and solvable in exponential time (Stychnev).

 Option 3: Use a really new primitive such as the shifted conjugacy problem: Replace

$$s * p = s \cdot p \cdot s^{-1}$$

with

$$s * p := s \cdot \frac{\partial}{\partial p} \cdot \sigma_1 \cdot \partial s^{-1}$$

the shift endomorphism $\sigma_i \mapsto \sigma_{i+1}$ for each i

- Authentication protocol:
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and q = s st p;

- Authentication protocol:
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and q = s st p;
 - Repeat \boldsymbol{k} times the sequence:

(i) A chooses r in B_n , and sends the commitments x = r * p & y = r * q;

- Authentication protocol:
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and q=sst p;
 - Repeat \boldsymbol{k} times the sequence:
 - (i) A chooses r in B_n , and sends the commitments x = r * p & y = r * q; (ii) B chooses c in $\{0, 1\}$, and sends c;

- Authentication protocol:
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and q = s st p;
 - Repeat \boldsymbol{k} times the sequence:

```
(i) A chooses r in B_n, and sends the commitments x = r * p \& y = r * q;
(ii) B chooses c in \{0, 1\}, and sends c;
```

(iii) case c=0

A sends z = r;

B checks x = z * p & y = z * q;

- Authentication protocol:
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and q = s * p; - Repeat k times the sequence:

(i) A chooses r in B_n , and sends the commitments x = r * p & y = r * q; (ii) B chooses c in $\{0, 1\}$, and sends c;

(iii) case c = 0 case c = 1A sends z = r; A sends z = r * s; B checks x = z * p & y = z * q; B checks y = z * x.

- Authentication protocol:
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and q = s * p; - Repeat k times the sequence:

(i) A chooses r in B_n , and sends the commitments x = r * p & y = r * q; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1

A sends z = r;A sends z = r * s;B checks x = z * p & y = z * q;B checks y = z * x.

• Justification (case c = 1):

$$y = r * q = r * (s * p) = (r * s) * (r * p) = z * x$$
,

- Authentication protocol:
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and q = s * p; - Repeat k times the sequence:

(i) A chooses r in B_n , and sends the commitments x = r * p & y = r * q; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1A sends z = r; A sends z = r * s;

- B checks x = z * p & y = z * q; B checks y = z * x.
- Justification (case c = 1):

$$y = r * q = r * (s * p) = (r * s) * (r * p) = z * x,$$

the point: like conjugacy, operation * is self-distributive

- Authentication protocol:
- Keys: private: s in B_n : only A knows it; public: (p, q), with p in B_n and q = s * p; - Repeat k times the sequence:

(i) A chooses r in B_n , and sends the commitments x = r * p & y = r * q; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1A sends z = r; A sends z = r * s;

- B checks x = z * p & y = z * q; B checks y = z * x.
- Justification (case c = 1):

$$y = r * q = r * (s * p) = (r * s) * (r * p) = z * x,$$

the point: like conjugacy, operation * is self-distributive

• Probability that A succeeds = probability of finding z s.t. z * (r * p) = (r * s) * (r * p). \rightsquigarrow size of the shifted commutator of $a = \partial(r * p)\sigma_1$

$$C_{\partial}(a) = \{x; x \, a = a \, \partial x\}$$

- Authentication protocol:
- Keys: private: s in B_n : only A knows it; public: (p,q), with p in B_n and q = s * p; - Repeat k times the sequence:
 - (i) A chooses r in B_n , and sends the commitments x = r * p & y = r * q; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1A sends z = r; A sends z = r * s;
 - B checks x = z * p & y = z * q; B checks y = z * x.
- Justification (case c = 1):

$$y = r * q = r * (s * p) = (r * s) * (r * p) = z * x$$
,

the point: like conjugacy, operation * is self-distributive

• Probability that A succeeds = probability of finding z s.t. z * (r * p) = (r * s) * (r * p). \rightsquigarrow size of the shifted commutator of $a = \partial(r * p)\sigma_1$

$$\stackrel{\widehat{}}{\rightsquigarrow} \text{ very small, e.g., } C_{\partial}(1) = \{1\}.$$

• Authentication protocol (variant):

- Authentication protocol (variant):
- Keys: private: s in B_n : only A knows it; public: p, with p = s * s;
 - Repeat \boldsymbol{k} times the sequence:

(i) A chooses r in B_n , and sends the commitment x = r * p;

(ii) B chooses c in $\{0,1\}$, and sends c;

- Authentication protocol (variant):
- Keys: private: s in B_n : only A knows it; public: p, with p = s * s;
 - Repeat *k* times the sequence:

(i) A chooses r in B_n , and sends the commitment x = r * p; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0A sends y = r; B checks x = y * p; • Authentication protocol (variant):

```
- Keys: private: s in B_n: only A knows it; public: p, with p = s * s;
```

- Repeat \boldsymbol{k} times the sequence:

(i) A chooses r in B_n , and sends the commitment x = r * p; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1A sends y = r; A sends y = r * s; B checks x = y * p; B checks x = y * y.

• Authentication protocol (variant):

- Keys: private:
$$s$$
 in B_n : only A knows it; public: p , with $p = s st s$;

- Repeat *k* times the sequence:

(i) A chooses r in B_n , and sends the commitment x = r * p; (ii) B chooses c in $\{0, 1\}$, and sends c; (iii) case c = 0 case c = 1A sends y = r; A sends y = r * s; B checks x = y * p; B checks x = y * y.

• Justification (case c = 1):

$$x = r * q = r * (s * s) = (r * s) * (r * s) = y * y,$$

 \uparrow
self-distributivity of * again

• Is this the future of braid cryptography?

• Is this the future of braid cryptography? NO \rightsquigarrow just work on it!

• How to prove security results?

• How to prove security results?

- What is a random braid?

 \rightsquigarrow no invariant probability measure on B_n : not an amenable group;

• How to prove security results?

- What is a random braid?
 - \rightsquigarrow no invariant probability measure on B_n : not an amenable group;

• How to choose the keys?

• How to prove security results?

- What is a random braid?

 \rightsquigarrow no invariant probability measure on B_n : not an amenable group;

• How to choose the keys?

- What is needed, *e.g.*, for the CSP:

→ not a proof that all instances of the problem are difficult,

• How to prove security results?

- What is a random braid?

 \rightsquigarrow no invariant probability measure on B_n : not an amenable group;

• How to choose the keys?

- What is needed, *e.g.*, for the CSP:
 - → not a proof that all instances of the problem are difficult,
 - → but a method for constructing **some** (enough) provably difficult instances.
 - here connected with the size of the SSS and USS;

• How to prove security results?

- What is a random braid?

 \rightsquigarrow no invariant probability measure on B_n : not an amenable group;

• How to choose the keys?

- What is needed, *e.g.*, for the CSP:

→ not a proof that all instances of the problem are difficult,

→ but a method for constructing some (enough) provably difficult instances.

- here connected with the size of the *SSS* and *USS*;

- Id. for the SCSP

Shifted Conjugacy Search Problem

• How to prove security results?

- What is a random braid?

 \rightsquigarrow no invariant probability measure on B_n : not an amenable group;

• How to choose the keys?

- What is needed, *e.g.*, for the CSP:

→ not a proof that all instances of the problem are difficult,

→ but a method for constructing some (enough) provably difficult instances.

- here connected with the size of the SSS and USS;

- Id. for the SCSP (easier because SCSP (much) more difficult than CSP).

Shifted Conjugacy Search Problem

• How to prove security results?

- What is a random braid?

 \rightsquigarrow no invariant probability measure on B_n : not an amenable group;

• How to choose the keys?

- What is needed, *e.g.*, for the CSP:

→ not a proof that all instances of the problem are difficult,

→ but a method for constructing **some** (enough) provably difficult instances.

- here connected with the size of the *SSS* and *USS*;

- Id. for the SCSP (easier because SCSP (much) more difficult than CSP).

Shifted Conjugacy Search Problem

• Use Dynnikov's formulas, in particular to design hash functions.

 $\hat{\}$ coordinization map $B_n o \mathbb{Z}^{2n}$ coming from the theory of laminations

• How to prove security results?

- What is a random braid?

 \rightsquigarrow no invariant probability measure on B_n : not an amenable group;

• How to choose the keys?

- What is needed, e.g., for the CSP:

→ not a proof that all instances of the problem are difficult,

→ but a method for constructing some (enough) provably difficult instances.

- here connected with the size of the SSS and USS;

- Id. for the SCSP (easier because SCSP (much) more difficult than CSP).

Shifted Conjugacy Search Problem

• Use Dynnikov's formulas, in particular to design hash functions.

 $\hat{\}$ coordinization map $B_n o \mathbb{Z}^{2n}$ coming from the theory of laminations

... and much more still to be discovered.