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• Introduction to braid groups;

• Description of some braid-based cryptographical

protocols, after Sidelnokov & al. and Ko, Lee & al. ;

• Length attack against the conjugacy problem,

after Hofheinz–Steinwandt ;

• A resisting protocol, after Sibert ;

• New braid primitives: the shifted conjugacy problem;

• Discussion.
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• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

• a braid = an isotopy class

��������� can be represented by 2D-diagram,

but different 2D-diagrams may give rise to the same braid.
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— the canonical length — decreases
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to increase infinfinf & decrease supsupsup
until q′ ∈ SSS(p)q′ ∈ SSS(p)q′ ∈ SSS(p);

- Conjugate q′q′q′ by one permutation braid
to (hopefully) obtain ppp.
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��������� main problem: choosing the instances (cf. RSA...)
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• Option 1 : Keep the conjugacy problem as the primitive, but choose the keys better;

��������� Find families of braids with large SSSSSSSSS and USSUSSUSS (Ko, Lee );

��������� connected with dynamical properties and the Nielsen–Thurston theory;

��������� also depends on the way braids are specified (normal form vs. arbitrary words).

• Option 2: Use a new primitive such as the root problem: starting from ppp, find sss s.t. s2 = ps2 = ps2 = p.

��������� connected with the conjugacy problem, and solvable in exponential time ( Stychnev ).

• Option 3: Use a really new primitive such as the shifted conjugacy problem:

Replace

s ∗ p = s · p · s−1s ∗ p = s · p · s−1s ∗ p = s · p · s−1

with

sss ∗∗∗ p := s ·p := s ·p := s ·∂∂∂p · σ
1
· ∂s−1p · σ

1
· ∂s−1p · σ

1
· ∂s−1

↑
the shift endomorphism σ

i

→ σ

i+1
σ
i

→ σ

i+1σ
i

→ σ

i+1
for each iii
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↑

the point : like conjugacy, operation ∗∗∗ is self-distributive
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1
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• Authentication protocol (variant):

- Keys: private: sss in BnBnBn: only A knows it; public: ppp, with p = s ∗ sp = s ∗ sp = s ∗ s;

- Repeat kkk times the sequence:

(i) A chooses rrr in BnBnBn, and sends the commitment x = r ∗ px = r ∗ px = r ∗ p;

(ii) B chooses ccc in {0, 1}{0, 1}{0, 1}, and sends ccc;

(iii) case c = 0c = 0c = 0 case c = 1c = 1c = 1
A sends y = ry = ry = r;
B checks x = y ∗ px = y ∗ px = y ∗ p;

A sends y = r ∗ sy = r ∗ sy = r ∗ s;
B checks x = y ∗ yx = y ∗ yx = y ∗ y.

• Justification (case c = 1c = 1c = 1):

x = r ∗ q = r ∗ (s ∗ s) = (r ∗ s) ∗ (r ∗ s) = y ∗ yx = r ∗ q = r ∗ (s ∗ s) = (r ∗ s) ∗ (r ∗ s) = y ∗ yx = r ∗ q = r ∗ (s ∗ s) = (r ∗ s) ∗ (r ∗ s) = y ∗ y,
↑

self-distributivity of ∗∗∗ again
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... and much more still to be discovered.


