DIAGRAM COLOURINGS AND APPLICATIONS
Seoul, Feb. 2004

® General principle ( ). Colour the arcs of a braid or a link diagram
A~ extract information about the braid or the link.
~~  Self-distributivity rx(y*xz)=(r*xy)*(T*2).

~a~ algebraic translation of Reidemeister move of type lll.
a~» Use various types of self-distributive operations (classical and non-classical)
A~ various applications.
e Aim: To show how various colouring techniques can be used.



Arc colouring

e Consider a standard braid or link diagram D:

2

e Attach colours from a set S to the arcs of [, and propagate them along the arcs.
a~ Not much to learn if colours never change;

a~» More interesting if colours may change: a~» Fix rules for crossings:
T *x Y T *Y

Y Y



Invariance under isotopy

e \Want information about the braid or the link represented by the diagram, not about the diagram
A~ require invariance under isotopy.
e Case of braids:
- Standard generators:

0 z—l—l
- Standard presentation for
~~ the braid group B,,, and ~~ the braid monoid B;':
O1y.eey 0015 B ¢ _ 1

a~» Then: invariance under isotopy = compatibility with braid relations.



Case of positive braids

® Fact.- Colouring is compatible with isotopy iff * satisfies Identity LD:

rx(yxz)=(rxy)*(T*2). (1)
Proof: L Y Z x Y Z

X

yy
y
xy

'4 '4
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e Def— (5, %) is an LD-system if x satisfies (1).



Case of arbitrary braids

e Fact.- Colouring is compatible with isotopy iff * satisfies Identity LD, plus

rx(rxy)=x*x(r*xy) =y. (2)
Proof:

L Y L Y L Y

AN /

'4 N\

~~ x is a left inverse for *: left translations rel to * and * are bijections,
~~ left cancellation is allowed for * and *

~~ x determines *: x * ¢ = the unique z satisfying x * 2 = .

e Def— (R, *, %) is a rack if * satisfies (1) plus (2).



Case of links

® Invariance under isotopy = compatibility with Reidemeister moves

e Fact.- Colouring is compatible with Reidemeister moves iff *, * satisfies the rack identities, plus

T*xT =1, (3)
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Case of links (cont'd)

® Def.— (Q, *, ?) is a quandle if * satisfies (1), (2), (3).



Two ways of using colourings

Braids are open, knots and links are closed a~» different ways of using colourings.

e Braids: The Hurwitz action of braids on sequences of colours.
~~ Fix one rack (R, *), and use it to colour every braid b: ~» b defines a map of R" to itself.

r1 To X3 ... €R"

[l b e — pp: R — R™
Y1 Y2 ys ... €R"

® Def— For (R, X, ?) a rack, put x e £ = x (for € = empty word), and
o (o, W)= (T1,...,Ti—1,Ti * Tip1,Ti, Tiqg2...) oW
-1 —
I e (Oi w) = (5131, cee s g1, L4541, L3 X Lj41,T542 - - - ) o W.
® Proposition.- ( ) For each LD-system (.5, *) one obtains an action of B, on S™.

For each rack (R, *, %) one obtains an action of B,, on R".




Two ways of using colourings (cont’d)

® Links: pushing the colours leads to obstructions
a~ quotient of the initial quandle (depending on the link) a~ invariant of that link

L=>5b

X1

= QL:Q/(?J1:$1,ZU2:$2,---)

Y1

a~» the more general the quandle, the most powerful the invariant.
~~ fundamental quandle: (), for () free on n generators if L closure of an n strand braid.

® Proposition.- ( ) The fundamental quandle is a complete invariant of the isotopy type
up to a mirror symmetry.

(BUT problem: how to compute () ,?)



Example 1: trivial rack

e Take S = any set, and

L*rY=Y, TxY=1Y.
a~ arack, even a quandle;
A~ amounts to not changing colours.

e For braids: leads to
x o b = perm(b)(x)
where perm(b) is the permutation associated with b.
~~ Here, the Hurwitz action leads to

perm : B, > G,,.

e For links: identifying output colours with input colours yields a quotient with k elements for a link L with
k components.



Example 2: shift rack

e Take Z = the integers, and
rxy=y+1, zxy=y—1.
~~ arack, not a quandle (0 x 0 = 1).

e For braids: leads to

Y (xeb)=> a+ sum(b)
where sum(b) is the exponent sum of b.
a~» Here, the Hurwitz action leads to the augmentation homomorphism

sum : B, —(Z, +)

mapping every o, to 1.



Example 3: Alexander rack

eTake for F a Z[t, ¢~ ']-module, and
rxy=(1—-thr+ty, zxy=(1—t"Dax+tly

a~ arack, even a quandle.

e For braids: leads to
xeb=ax xXrg(bh)

where 75 () is an n. X n matrix associated with b)
a~ Here, the Hurwitz action gives a linear representation

rg : B, — GL,(Z[t,t71])

a~ the (unreduced) Burau representation

e For links: quotienting under & ¢ b = @ gives the Alexander ideal
~~ hence the Alexander polynomial.



Example 4: conjugacy rack

e Take for F}, a the free group based on {x1, ..., z,}, and
:U*y:a:y:c—l, x?y:x_lya:

a~» arack, even a quandle.

e For braids: Define y1,..., Yy by
(1,...,xn) eb= (Y1, ,Yn).

Then ¢(b) : x; — y; is an automorphism of F},.
a~ Here the Hurwitz action gives Artin’s representation

¢ : B, — Aut(F,).

e For links: quotienting under ¢ b = x defines a group associated with the closure of b
~~ the fundamental group of the complement of b, via its Wirtinger presentation.



Example 5: free racks

a~» Are there many more different types of racks?
a~ NO: conjugacy racks are close to free racks, i.e., the most general possible racks.

Let G beagroupand X C GG;on G x X take
(a,2) % (b,y) = (aza™'b,y),  (a,2)* (b,y) = (ax”'a"'b,y).

e Fact.- This is a rack, and, for (G free based on X, the rack is free.

a~ close to conjugacy (‘first half of conjugacy words’),
A~ In particular, always nearly idempotent:

rxy = (x*xT)*Y.

® Questions.— 1. Does there exist LD-systems of a different type?
(in particular where left division has no cycle)
2. (If so) Can one use them to colour braid or link diagrams?



Example 6: injection bracket

e Take /., = the set of all injective, non-bijective mappings of N into itself, and

fgf~t(n) for n in the image of f,
fxg(n)= .
n otherwise.

~~ An LD-system in which x * y = (x * x) * y is false
(and whose presentation is unknown).



Colouring with more general LD-systems

At the end of the 1980’s: new, completely different LD-systems coming from Set Theory
a~» not directly useful here, but gave (strong) motivation for further study.

a~ Arbitrary LD-systems are OK for positive braid diagrams, but
a~» Problem for arbitrary diagrams
(Can be coloured, but no uniqueness or invariance).

a~ Technical detour: braid word reversing



Braid word reversing

Let o = the sequence 01,05, . ... Define f : 0 X 0 — o™ (the words on o) by
(o, for|i—j|>2,
flog,05) = qo;0, for|i—j|=1,
G for 1 = 3.

~~ the presentation of ,, consists of all relations
op f(Uz'an):Uj f(Uja%)- (*)
Now (*) also implies
-1 —
g, Jj:f(0i70j>f(0j7ai) h

~~ When we replace a subword of the form Ji_laj with the corresponding f(c;,0;)f(0,;,0; )~ Lin
a braid word, we obtain an equivalent word.

e Def— Say that a braid word w is right reversible to w’ if one can transform w into w’ in this way
(i.e., by iteratively pushing the negative letters to the right and the positive to the left).

~~ If w is right reversible to w, then w and w’ are equivalent, but no converse (of course).



A partial Hurwitz action

... hevertheless, partial converse implication:

e Proposition.- If u, v are positive braid words, then © and v are equivalent (i.e., represent the same
braid) if and only if u s right reversible to the empty word.

e ~~» Let (9, %) be a left cancellative LD-system;
for each sequence of input colours @ and each braid word w,
- there exists at most one colouring of (the diagram coded by) w starting with @,
- if so, there exists exactly one colouring with the same input and output colours
for each word w’ such that w is right reversible to w’.

~~ A partial action of B,, on S™: for x a sequence of colours and b a braid,
- & ¢ b need not exist, but
- there always exists at least one sequence x s.t. & e b exists, and
- o b is uniquely determined when it exists.



Free LD-systems

e Def.— D = the free LD-system on one generator.

~+ D consists of all expressions g, g*g, g*(g*g), ... with LD-equivalent expressions identified;
~ similar to Z . when self-distributivity x(yz) = (xy)(x2) replaces associativity x(yz) = (xy)z.
(Z . is the free semigroup on one generator)

e Inthe case of Z: (d2)(y = x + z) defines a linear ordering;
~~ similar in the case of D (but more difficult to prove...):

e Proposition.- The transitive closure  of the relation (32)(y = x * 2) is a linear ordering on D.

~» D is left cancellative
a~ Use D to colour braids, and its ordering to order them:

e Proposition.- For by, by in B,,, say that by < by is true if & e by = x e by holds for some x
in D™. Then < is a linear ordering on B,, compatible with multiplication on the left.




An intrinsic construction of the braid ordering

~~ Intrinsic construction of the previous braid ordering? (not appealing to 1J)
e O = shift endomorphism of B, i.e., 0 : o; + 0, foreach 1.

® Def— A braid b is 0 -positive if, among all possible expressions of b, there is at least one in which o]
occurs, but 01_1 does not. A braid b is o-positive if it is 0% by for some 01 -positive braid bg.

_ —1. I -1 _ -1 _ —1
~» Example: 0,050, " is 0-positive: 00,0 = 0, 0;05:0n€0,,N00 .

® Proposition.- The relation "bl_le is o-positive” is a linear ordering on B,,, and it coincides with the
ordering coming from D.

a~ Two points to prove (and we shall do it using colourings):
e Property A: A o -positive braid is not trivial;
e Property C': Every braid is 0 -positive, or 0 -negative, or o -free.
(bis o, -negative = b~ ! is o -positive; b is o -free= b belongs to the image of 0)



Proof of Property A

Consider a o -positive diagram (want to prove it does not represents 1)
~~» put colours from D:

<0
G
<1
<2
<3

By construction: zp C 21 C 22 C ..., hence 2, # 2.

(Recall: z = 2’ is the transitive closure of (Jy) (2’

=z %))



A self-distributive operation on braids

e Def— For by, by in By, define by * by = by - Oby - 04 - 8b1_1.

~ Example: 1x1 =0, 1% (1x1) =o0y0,, (1x1)x1=020,", ..

e Fact.- (B, *) is a left cancellative LD-system.
~~ One can use B, * to colour braids.



Special braids

e Def— A braid b is called special if it belongs to the closure of {1} under .

e Fact.- For bspecial, (1,1,...)eb=(b,1,1,...) (“special braids are self-colouring”).

1 1 1 ...
1 1 1|
b
b 1 1 ...
_ 1 1 1 1
Inductive proof: i i [ (] ]

by xby 1 1 1



Proof of Property C

Property C': every braid is 0 -positive, 0 -negative or o -free)
1 1 1

b1 b2 b3
oFact[l implies b = 0"~ 1o 1. ... Oby byt b, - Obh - .. -0
i b/ b/

~~ Every braid b in B,, admits a decomposition
—17—1 —1 -1 —1
b=0"""b, -...-0by " -by" by -0b,-...- 0" b,

where by, ..., by, b, ..., b are special.

e Fact.- If b, b are special braids, then b= 10 is either 01 -positive, or 0 -negative, or equal to 1.
(easy from properties of D and *: b’ = b x x implies b~ 0’ = () - o4 - O(b™1).)

~~ Property C' (other proofs known, but none much easier).



A few open questions

e Property S
A non-trivial property of the braid ordering: For every braid b, one has bo, > b for each 7.
~~ Question.— Is there a natural proof of Property .S based on diagram colourings?

e Handle reduction

An efficient solution to the isotopy problem of braids: A o, -handle is a braid word of the form waai_
with e = =1 and w containing no ajj-[l with 7 < 7 and, in addition, not containing both 0,1 and 047
Reducing a handle means deleting the initial and final Uf and substituting each U,fl+1 with O‘Z-_+€1 Uszerl-

e

The braid ordering forces convergence (and practical efficiency), but
a~ Question.— What is the complexity of handle reduction?

e Special braids (those that can be obtained from 1 using z * y = x - O(y) - 04 - (z 1))
~~ Question.— How many special braids lie in 3,,?



A few open questions (cont'd)

e Twisted conjugacy

The self-distributive operation * on B is a twisted version of conjugacy.

a~ Question.— Can one replace the standard conjugacy operation with its twisted version involving * in
the design of braid-based cryptosystems?

~~ Question.— Is there an algorithm deciding whether two braids b, b’ are twisted-conjugate?

~~ Question.— Is there a constructive way to recover b from b * 1?

® Arbitrary LD-systems

a~ Question.— Can one use arbitrary left cancellative LD-systems, in particular those that are not racks,
to colour links diagrams?

a~ Question.— Can one use arbitrary LD-systems, in particular those that are not left cancellative, to
colour braid (or link) diagrams?



Thompson’s braid group

a~ A new (seemingly very interesting) group that extends
both Artin’s group B, and 's group .

F ={(ai,az,...;a;a; =ajt1a; forj>1i).
braid diagrams replaced with tree diagrams;

connected with associativity, and with piecewise linear diffeomorphisms of (O, 1);

01,00, ... Artin’s relations + 0.0, 1a; = a;4110;
o Def — BT _ 1>Y2» . | +1Y4

) .
ai,az, ... Thompson’s relations + o, 0, a;11 = a;0;

a~ includes B, and F;
e Def.— For by, by in B, define by % by = by - Obs - oq - 81)1_1

e Fact.- (Br,*) is a left cancellative LD-system. (

~~ Question.— What can one do with Bp-colourings?
(prove that B is orderable)



Thompson’s braid group as a mapping class group

S? \ Cantor set

with countably

many bridges




Artin representation of B
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~~ faithful representation of Bp:
® action of 01: X1 F— :lega:l_l, ro t— &1,xX3 — L3.. IT1,1 xlmg,lxl_l, X211 XL1,1--
e actionofay: *1 — T1xr2, T2+ T3, T3r> Ty4.. T11+— T1, T21+— T3 1.



The Laver tables

a~» A distinguished family of finite LD-systems. 1 N
1
2 3
a~» Construct a left self-distributive operation on {1, 2,..., N} from
~~ At most one solution, N-1 1 N
~~ can be completed for NV = 2" only N 1

~» A, the nth Laver table, a finite LD-system with 2" elements

A3 |1 2 3 4 5 6 7 8

1 12 4 6 8 2 4 6 8

Ay |1 2 3 4 2 |3 4 7 8 3 4 7 8

Ao\l Ay |1 2 112 4 2 4 3 |4 8 4 8 4 8 4 8
1‘1 1 |2 2 2 |3 4 3 4 4|5 6 7 8 5 6 7 8
2 |1 2 3 /4 4 4 4 5|6 8 6 8 6 8 6 8

4 |1 2 3 4 6 |7 8 7 8 7 8 7 8

7 |8 8 8 8 8 8 8 38

8 |1 2 3 4 5 6 7 8

a~ Question.— Can one use the Laver tables to colour diagrams? (enough complicated to be promising)
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