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• General principle (Brieskorn, Alexander): Colour the arcs of a braid or a link diagram

��������� extract information about the braid or the link.

��������� Self-distributivity x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).
��������� algebraic translation of Reidemeister move of type III.

��������� Use various types of self-distributive operations (classical and non-classical)

��������� various applications.

• Aim: To show how various colouring techniques can be used.



Arc colouring

• Consider a standard braid or link diagram D:

• Attach colours from a set S to the arcs of D, and propagate them along the arcs.

��������� Not much to learn if colours never change;

��������� More interesting if colours may change: ��������� Fix rules for crossings:

x x x x

y y

x ∗ y x ∗ y



Invariance under isotopy

• Want information about the braid or the link represented by the diagram, not about the diagram

��������� require invariance under isotopy.

• Case of braids:

- Standard generators: 1 2 i i+1 n

σi : . . . . . .

- Standard presentation for

��������� the braid group Bn, and ��������� the braid monoid B+
n :〈

σ1 , . . . , σn−1 ;

{
σi σj = σj σi for |i − j| � 2
σi σj σi = σj σi σj for |i − j| = 1

〉
��������� Then: invariance under isotopy = compatibility with braid relations.



Case of positive braids

• Fact.- Colouring is compatible with isotopy iff ∗ satisfies Identity LD:

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z). (1)

Proof: x y z

(x∗y)∗(x∗z) x∗y x

x

x∗y
x∗z

x y z

x∗(y∗z) x∗y x

x
y

y∗z

• Def.– (S, ∗) is an LD-system if ∗ satisfies (1).



Case of arbitrary braids

• Fact.- Colouring is compatible with isotopy iff ∗ satisfies Identity LD, plus

x ∗ (x ∗ y) = x ∗ (x ∗ y) = y. (2)

Proof:

x y

y y ∗ x

y ∗ (y ∗ x) y x y

x y x y

x ∗ y x

x x ∗ (x ∗ y)

��������� ∗ is a left inverse for ∗: left translations rel to ∗ and ∗ are bijections,

��������� left cancellation is allowed for ∗ and ∗
��������� ∗ determines ∗: x ∗ y = the unique z satisfying x ∗ z = y.

• Def.– (R, ∗, ∗) is a rack if ∗ satisfies (1) plus (2).



Case of links

• Invariance under isotopy = compatibility with Reidemeister moves

• Fact.- Colouring is compatible with Reidemeister moves iff ∗, ∗ satisfies the rack identities, plus

x ∗ x = x. (3)

Proof: x

x

x ∗ x

x

x

x

y

y y ∗ x

y ∗ (y ∗ x)

y x y

x y x y

x ∗ y x

x x ∗ (x ∗ y)



Case of links (cont’d)

x y z

y∗((y∗x)∗z) y y∗x

y∗x

y (y∗x)∗z

x y z

x∗(y∗z) y y∗x

x
y

y∗z

• Def.– (Q, ∗, ∗) is a quandle if ∗ satisfies (1), (2), (3).



Two ways of using colourings

Braids are open, knots and links are closed ��������� different ways of using colourings.

• Braids: The Hurwitz action of braids on sequences of colours.

��������� Fix one rack (R, ∗), and use it to colour every braid b: ��������� b defines a map of Rn to itself.
x1

y1

x2

y2

x3

y3

b

. . .

. . .

. . .

∈ Rn

∈ Rn

�−→ ρb : Rn → Rn

• Def.– For (R, ∗, ∗) a rack, put x • ε = x (for ε = empty word), and

x • (σi w) = (x1, . . . , xi−1, xi ∗ xi+1, xi, xi+2 . . . ) • w
x • (σ−1

i w) = (x1, . . . , xi−1, xi+1, xi ∗ xi+1, xi+2 . . . ) • w.

• Proposition.- (Brieskorn) For each LD-system (S, ∗) one obtains an action of B+
n on Sn.

For each rack (R, ∗, ∗) one obtains an action of Bn on Rn.



Two ways of using colourings (cont’d)

• Links: pushing the colours leads to obstructions

��������� quotient of the initial quandle (depending on the link) ��������� invariant of that link

x1

y1

x2

y2

x3

y3

b . . . �−→ QL = Q/(y1 = x1, y2 = x2, . . . )

L = b̂

��������� the more general the quandle, the most powerful the invariant.

��������� fundamental quandle: QL for Q free on n generators if L closure of an n strand braid.

• Proposition.- (Joyce, Matveev) The fundamental quandle is a complete invariant of the isotopy type

up to a mirror symmetry.

(BUT problem: how to compute QL?)



Example 1: trivial rack

• Take S = any set, and

x ∗ y = y, x ∗ y = y.

��������� a rack, even a quandle;

��������� amounts to not changing colours.

• For braids: leads to

x • b = perm(b)(x)
where perm(b) is the permutation associated with b.

��������� Here, the Hurwitz action leads to

perm : Bn →→ Sn.

• For links: identifying output colours with input colours yields a quotient with k elements for a link L with

k components.



Example 2: shift rack

• Take Z = the integers, and

x ∗ y = y + 1, x ∗ y = y − 1.

��������� a rack, not a quandle (0 ∗ 0 = 1).

• For braids: leads to ∑
(x • b) =

∑
x + sum(b)

where sum(b) is the exponent sum of b.

��������� Here, the Hurwitz action leads to the augmentation homomorphism

sum : Bn →→ (Z,+)
mapping every σi to 1.



Example 3: Alexander rack

•Take for E a Z[t, t−1]-module, and

x ∗ y = (1 − t)x + ty, x ∗ y = (1 − t−1)x + t−1y

��������� a rack, even a quandle.

• For braids: leads to

x • b = x × rB(b)
where rB(b) is an n × n matrix associated with b)

��������� Here, the Hurwitz action gives a linear representation

rB : Bn → GLn(Z[t, t−1])
��������� the (unreduced) Burau representation

• For links: quotienting under x • b = x gives the Alexander ideal

��������� hence the Alexander polynomial.



Example 4: conjugacy rack

• Take for Fn a the free group based on {x1, . . . , xn}, and

x ∗ y = xyx−1, x ∗ y = x−1yx

��������� a rack, even a quandle.

• For braids: Define y1, . . . , yn by

(x1, . . . , xn) • b = (y1, . . . , yn).
Then ϕ(b) : xi �→ yi is an automorphism of Fn.

��������� Here the Hurwitz action gives Artin’s representation

ϕ : Bn → Aut(Fn).

• For links: quotienting under x • b = x defines a group associated with the closure of b
��������� the fundamental group of the complement of b̂, via its Wirtinger presentation.



Example 5: free racks

��������� Are there many more different types of racks?

��������� NO: conjugacy racks are close to free racks, i.e., the most general possible racks.

Let G be a group and X ⊆ G; on G × X take

(a, x) ∗ (b, y) = (axa−1b, y), (a, x) ∗ (b, y) = (ax−1a−1b, y).

• Fact.- This is a rack, and, for G free based on X , the rack is free.

��������� close to conjugacy (‘first half of conjugacy words’),

��������� in particular, always nearly idempotent:

x ∗ y = (x ∗ x) ∗ y.

• Questions.– 1. Does there exist LD-systems of a different type?

(in particular where left division has no cycle)

2. (If so) Can one use them to colour braid or link diagrams?



Example 6: injection bracket

• Take I∞ = the set of all injective, non-bijective mappings of N into itself, and

f ∗ g(n) =

{
fgf−1(n) for n in the image of f,

n otherwise.

��������� An LD-system in which x ∗ y = (x ∗ x) ∗ y is false

(and whose presentation is unknown).



Colouring with more general LD-systems

At the end of the 1980’s: new, completely different LD-systems coming from Set Theory

��������� not directly useful here, but gave (strong) motivation for further study.

��������� Arbitrary LD-systems are OK for positive braid diagrams, but

��������� Problem for arbitrary diagrams

(Can be coloured, but no uniqueness or invariance).

��������� Technical detour: braid word reversing



Braid word reversing

Let σ = the sequence σ1 , σ2 , . . . . Define f : σ × σ → σ∗ (the words on σ) by

f(σi , σj ) =


σj for |i − j| � 2,
σj σi for |i − j| = 1,
ε for i = j.

��������� the presentation of Bn consists of all relations

σi f(σi , σj ) = σj f(σj , σi ). (*)

Now (*) also implies

σ−1
i σj = f(σi , σj ) f(σj , σi )−1.

��������� When we replace a subword of the form σ−1
i σj with the corresponding f(σi , σj )f(σj , σi )−1 in

a braid word, we obtain an equivalent word.

• Def.– Say that a braid word w is right reversible to w′ if one can transform w into w′ in this way

(i.e., by iteratively pushing the negative letters to the right and the positive to the left).

��������� If w is right reversible to w, then w and w′ are equivalent, but no converse (of course).



A partial Hurwitz action

... nevertheless, partial converse implication:

• Proposition.- If u, v are positive braid words, then u and v are equivalent (i.e., represent the same

braid) if and only if u−1v is right reversible to the empty word.

•��������� Let (S, ∗) be a left cancellative LD-system;

for each sequence of input colours x and each braid word w,

- there exists at most one colouring of (the diagram coded by) w starting with x,

- if so, there exists exactly one colouring with the same input and output colours

for each word w′ such that w is right reversible to w′.

��������� A partial action of Bn on Sn: for x a sequence of colours and b a braid,

- x • b need not exist, but

- there always exists at least one sequence x s.t. x • b exists, and

- x • b is uniquely determined when it exists.



Free LD-systems

• Def.– D = the free LD-system on one generator.

��������� D consists of all expressions g, g∗g, g∗(g∗g), ... with LD-equivalent expressions identified;

��������� similar to Z+ when self-distributivity x(yz) = (xy)(xz) replaces associativity x(yz) = (xy)z.

(Z+ is the free semigroup on one generator)

• In the case of Z+: (∃z)(y = x + z) defines a linear ordering;

��������� similar in the case of D (but more difficult to prove...):

• Proposition.- The transitive closure � of the relation (∃z)(y = x ∗ z) is a linear ordering on D.

��������� D is left cancellative

��������� Use D to colour braids, and its ordering to order them:

• Proposition.- For b1, b2 in Bn, say that b1 < b2 is true if x • b1 �Lex x • b2 holds for some x
in Dn. Then < is a linear ordering on Bn compatible with multiplication on the left.



An intrinsic construction of the braid ordering

��������� Intrinsic construction of the previous braid ordering? (not appealing to D)

• ∂ = shift endomorphism of B∞, i.e., ∂ : σi �→ σi+1 for each i.

• Def.– A braid b is σ1 -positive if, among all possible expressions of b, there is at least one in which σ1

occurs, but σ−1
1 does not. A braid b is σ-positive if it is ∂kb0 for some σ1 -positive braid b0.

��������� Example: σ1σ2σ−1
1 is σ1 -positive: σ1σ2σ−1

1 = σ−1
2 σ1σ2 : one σ1 , no σ−1

1 .

• Proposition.- The relation “b−1
1 b2 is σ-positive” is a linear ordering on Bn, and it coincides with the

ordering coming from D.

��������� Two points to prove (and we shall do it using colourings):

• Property A: A σ1 -positive braid is not trivial;

• Property C : Every braid is σ1 -positive, or σ1 -negative, or σ1 -free.

(b is σ1 -negative = b−1 is σ1 -positive; b is σ1 -free= b belongs to the image of ∂)



Proof of Property A

Consider a σ1 -positive diagram (want to prove it does not represents 1)

��������� put colours from D:

z0

z1

z2

z3

By construction: z0 � z1 � z2 � . . . , hence zp �= z0.

(Recall: z � z′ is the transitive closure of (∃y)(z′ = z ∗ y))



A self-distributive operation on braids

• Def.– For b1, b2 in B∞, define b1 ∗ b2 = b1 · ∂b2 · σ1 · ∂b−1
1 .

b1

b2

b−1
1

��������� Example: 1 ∗ 1 = σ1 , 1 ∗ (1 ∗ 1) = σ2σ1 , (1 ∗ 1) ∗ 1 = σ2
1σ−1

2 , ...

• Fact.- (B∞, ∗) is a left cancellative LD-system.

��������� One can use B∞, ∗ to colour braids.



Special braids

• Def.– A braid b is called special if it belongs to the closure of {1} under ∗.

• Fact.- For b special, (1, 1, . . . ) • b = (b, 1, 1, . . . ) (“special braids are self-colouring”).
1

b

1

1

1

1

b

. . .

. . .

. . .

Inductive proof:
1 1 1 1

b1

b2

b−1
1

b1 1 1 1

b2
b1

1 1

b1 ∗ b2 1 1 1



Proof of Property C

(Property C : every braid is σ1 -positive, σ1 -negative or σ1 -free)

• Fact.-

b1

b′1

b2

b′2

b3

b′3

b

. . .

. . .

implies b = ∂n−1b−1
n · . . . · ∂b−1

2 · b−1
1 · b′1 · ∂b′2 · . . . · ∂n−1b′n.

��������� Every braid b in Bn admits a decomposition

b = ∂n−1b−1
n · . . . · ∂b−1

2 · b−1
1 · b′1 · ∂b′2 · . . . · ∂n−1b′n

where b1, . . . , bn, b′1, . . . , b
′
n are special.

• Fact.- If b, b′ are special braids, then b−1b′ is either σ1 -positive, or σ1 -negative, or equal to 1.

(easy from properties of D and ∗: b′ = b ∗ x implies b−1b′ = ∂(x) · σ1 · ∂(b−1).)

��������� Property C (other proofs known, but none much easier).



A few open questions

• Property S
A non-trivial property of the braid ordering: For every braid b, one has bσi > b for each i.
��������� Question.– Is there a natural proof of Property S based on diagram colourings?

• Handle reduction

An efficient solution to the isotopy problem of braids: A σi -handle is a braid word of the form σe
i wσ−e

i

with e = ±1 and w containing no σ±1
j with j � i and, in addition, not containing both σi+1 and σ−1

i+1.

Reducing a handle means deleting the initial and final σe
i and substituting each σd

i+1 with σ−e
i+1σ

d
i σe

i+1.

The braid ordering forces convergence (and practical efficiency), but

��������� Question.– What is the complexity of handle reduction?

• Special braids (those that can be obtained from 1 using x ∗ y = x · ∂(y) · σ1 · ∂(x−1))

��������� Question.– How many special braids lie in Bn?



A few open questions (cont’d)

• Twisted conjugacy

The self-distributive operation ∗ on B∞ is a twisted version of conjugacy.

��������� Question.– Can one replace the standard conjugacy operation with its twisted version involving ∗ in

the design of braid-based cryptosystems?

��������� Question.– Is there an algorithm deciding whether two braids b, b′ are twisted-conjugate?

��������� Question.– Is there a constructive way to recover b from b ∗ 1?

• Arbitrary LD-systems

��������� Question.– Can one use arbitrary left cancellative LD-systems, in particular those that are not racks,

to colour links diagrams?

��������� Question.– Can one use arbitrary LD-systems, in particular those that are not left cancellative, to

colour braid (or link) diagrams?



Thompson’s braid group

��������� A new (seemingly very interesting) group that extends

both Artin’s group B∞ and Richard Thompson’s group F .

F = 〈a1, a2, . . . ; aiaj = aj+1ai for j > i〉.
braid diagrams replaced with tree diagrams;

connected with associativity, and with piecewise linear diffeomorphisms of (0, 1);

• Def.– BT =

〈 {
σ1 , σ2 , . . .

a1, a2, . . .
;

{
Artin’s relations + σi σi+1ai = ai+1σi

Thompson’s relations + σi+1σi ai+1 = aiσi

〉
��������� includes B∞ and F ;

• Def.– For b1, b2 in BT , define b1 ∗ b2 = b1 · ∂b2 · σ1 · ∂b−1
1 .

• Fact.- (BT , ∗) is a left cancellative LD-system.

��������� Question.– What can one do with BT -colourings?

(prove that BT is orderable)



Thompson’s braid group as a mapping class group

∗

x1

x2

x2,1

x1,1

x1,1,1
x3

S2 \ Cantor set

��������� a Cantor river

with countably

many bridges



Artin representation of BT

σ1 : a1 :
x1

x1,1

x2

x2,1 x3

x1

x1,1

x1,1,1 x2x1,2

��������� faithful representation of BT :

• action of σ1 : x1 �→ x1x2x
−1
1 , x2 �→ x1, x3 �→ x3.. x1,1 �→ x1x2,1x

−1
1 , x2,1 �→ x1,1..

• action of a1: x1 �→ x1x2, x2 �→ x3, x3 �→ x4.. x1,1 �→ x1, x2,1 �→ x3,1..



The Laver tables

��������� A distinguished family of finite LD-systems.

��������� Construct a left self-distributive operation on{1, 2, . . . , N} from

1 . . . N

1 2

2 3

. . . . . .
N-1 N

N 1
��������� At most one solution,

��������� can be completed for N = 2n only

��������� An, the nth Laver table, a finite LD-system with 2n elements

A0 1

1 1

A1 1 2

1 2 2

2 1 2

A2 1 2 3 4

1 2 4 2 4

2 3 4 3 4

3 4 4 4 4

4 1 2 3 4

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8

2 3 4 7 8 3 4 7 8

3 4 8 4 8 4 8 4 8

4 5 6 7 8 5 6 7 8

5 6 8 6 8 6 8 6 8

6 7 8 7 8 7 8 7 8

7 8 8 8 8 8 8 8 8

8 1 2 3 4 5 6 7 8

��������� Question.– Can one use the Laver tables to colour diagrams? (enough complicated to be promising)
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