- General principle (Brieskorn, Alexander): Colour the arcs of a braid or a link diagram
 - ↔ extract information about the braid or the link.
 - → Self-distributivity x * (y * z) = (x * y) * (x * z).
 - ↔ algebraic translation of Reidemeister move of type III.
 - ↔ Use various types of self-distributive operations (classical and non-classical)
 - \rightsquigarrow various applications.
- Aim: To show how various colouring techniques can be used.

• Consider a standard braid or link diagram D:

- Attach colours from a set S to the arcs of D, and propagate them along the arcs.
 - ↔ Not much to learn if colours never change;

 \checkmark Fix rules for crossings:

- Want information about the braid or the link represented by the diagram, not about the diagram
 - ↔ require invariance under isotopy.
- Case of braids:
 - Standard generators:

- Standard presentation for

 $\stackrel{\text{\tiny \scaledargerightarrow}}{\left\langle \sigma_1, \dots, \sigma_{n-1} \right\rangle} \stackrel{\text{\tiny \scaledargerightarrow}}{\left\langle \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \right\rangle}$

↔ Then: invariance under isotopy = compatibility with braid relations.

• Def.- (S, *) is an LD-system if * satisfies (1).

• Fact.- Colouring is compatible with isotopy iff * satisfies Identity LD, plus

$$x * (x \overline{*} y) = x \overline{*} (x * y) = y.$$
⁽²⁾

Proof:

- \leftrightarrow $\overline{*}$ is a left inverse for *: left translations rel to * and $\overline{*}$ are bijections,
- \rightsquigarrow left cancellation is allowed for * and $\overline{*}$
- \leftrightarrow * determines $\overline{*}$: $x \overline{*} y$ = the unique z satisfying x * z = y.

• Def.- $(R, *, \overline{*})$ is a rack if * satisfies (1) plus (2).

Case of links

- Invariance under isotopy = compatibility with Reidemeister moves
- Fact.- Colouring is compatible with Reidemeister moves iff $*, \overline{*}$ satisfies the rack identities, plus

Case of links (cont'd)

• Def.- $(Q, *, \overline{*})$ is a quandle if * satisfies (1), (2), (3).

Braids are open, knots and links are closed \checkmark different ways of using colourings.

• Braids: The Hurwitz action of braids on sequences of colours.

↔ Fix one rack (R, *), and use it to colour every braid b: ↔ b defines a map of R^n to itself. $x_1 \quad x_2 \quad x_3 \quad \ldots \quad \in R^n$

• Def.- For $(R, *, \overline{*})$ a rack, put $x \cdot \varepsilon = x$ (for ε = empty word), and

$$\boldsymbol{x} \bullet (\sigma_i w) = (x_1, \dots, x_{i-1}, x_i * x_{i+1}, x_i, x_{i+2} \dots) \bullet w$$
$$\boldsymbol{x} \bullet (\sigma_i^{-1} w) = (x_1, \dots, x_{i-1}, x_{i+1}, x_i * x_{i+1}, x_{i+2} \dots) \bullet w.$$

• Proposition.- (Brieskorn) For each LD-system (S, *) one obtains an action of B_n^+ on S^n . For each rack $(R, *, \overline{*})$ one obtains an action of B_n on R^n . • Links: pushing the colours leads to obstructions

↔ quotient of the initial quandle (depending on the link) → invariant of that link

↔ the more general the quandle, the most powerful the invariant.

 \checkmark fundamental quandle: Q_L for Q free on n generators if L closure of an n strand braid.

• Proposition.- (Joyce, Matveev) The fundamental quandle is a complete invariant of the isotopy type up to a mirror symmetry.

(BUT problem: how to compute Q_L ?)

• Take S = any set, and

$$x * y = y, \quad x \overline{*} y = y,$$

- \rightsquigarrow a rack, even a quandle;
- ↔ amounts to not changing colours.
- For braids: leads to

$$\boldsymbol{x} \bullet \boldsymbol{b} = \operatorname{perm}(\boldsymbol{b})(\boldsymbol{x})$$

- where perm(b) is the permutation associated with b.
 - \rightsquigarrow Here, the Hurwitz action leads to

perm :
$$B_n \rightarrow \mathfrak{S}_n$$
.

• For links: identifying output colours with input colours yields a quotient with k elements for a link L with k components.

• Take \mathbf{Z} = the integers, and

$$x * y = y + 1, \quad x \overline{*} y = y - 1.$$

$$\leftrightarrow$$
 a rack, not a quandle ($0 * 0 = 1$).

• For braids: leads to

$$\sum (\boldsymbol{x} \bullet b) = \sum \boldsymbol{x} + \operatorname{sum}(b)$$

where sum(b) is the exponent sum of b.

↔ Here, the Hurwitz action leads to the augmentation homomorphism

sum : $B_n \rightarrow (\mathbf{Z}, +)$

mapping every σ_i to 1.

•Take for E a $\mathbf{Z}[t,t^{-1}]$ -module, and

$$x * y = (1 - t)x + ty, \qquad x \overline{*} y = (1 - t^{-1})x + t^{-1}y$$

 \leftrightarrow a rack, even a quandle.

• For braids: leads to

$$oldsymbol{x}ullet b = oldsymbol{x} imes r_B(b)$$

where $r_B(b)$ is an $n \times n$ matrix associated with b)

↔ Here, the Hurwitz action gives a linear representation

 $r_B: B_n \to GL_n(\mathbf{Z}[t, t^{-1}])$

↔ the (unreduced) Burau representation

• For links: quotienting under $x \cdot b = x$ gives the Alexander ideal

```
\rightsquigarrow hence the Alexander polynomial.
```

• Take for F_n a the free group based on $\{x_1,\ldots,x_n\}$, and

$$x \ast y = xyx^{-1}, \qquad x \,\overline{\ast}\, y = x^{-1}yx$$

 \rightsquigarrow a rack, even a quandle.

ullet For braids: Define y_1,\ldots,y_n by $(x_1,\ldots,x_n)ullet b=(y_1,\ldots,y_n).$

Then $\varphi(b): x_i \mapsto y_i$ is an automorphism of F_n .

↔ Here the Hurwitz action gives Artin's representation

 $\varphi: B_n \to Aut(F_n).$

• For links: quotienting under $x \cdot b = x$ defines a group associated with the closure of $b \rightarrow b$ the fundamental group of the complement of \hat{b} , via its Wirtinger presentation.

- ↔ Are there many more different types of racks?
- ↔ NO: conjugacy racks are close to free racks, i.e., the most general possible racks.

Let G be a group and $X \subseteq G$; on $G \times X$ take $(a, x) * (b, y) = (axa^{-1}b, y)$

 $(a,x) * (b,y) = (axa^{-1}b,y), \qquad (a,x) \overline{*} (b,y) = (ax^{-1}a^{-1}b,y).$

- \bullet Fact.- This is a rack, and, for G free based on X, the rack is free.
 - close to conjugacy ('first half of conjugacy words'),
 in particular, always nearly idempotent:
 - $x \ast y = (x \ast x) \ast y.$
- Questions.- 1. Does there exist LD-systems of a different type?

(in particular where left division has no cycle)

2. (If so) Can one use them to colour braid or link diagrams?

• Take I_{∞} = the set of all injective, non-bijective mappings of N into itself, and

 $f * g(n) = \begin{cases} fgf^{-1}(n) & \text{for } n \text{ in the image of } f, \\ n & \text{otherwise.} \end{cases}$

↔ An LD-system in which x * y = (x * x) * y is false

(and whose presentation is unknown).

- ↔ Arbitrary LD-systems are OK for positive braid diagrams, but
- ↔ Problem for arbitrary diagrams

(Can be coloured, but no uniqueness or invariance).

↔ Technical detour: braid word reversing

Let σ = the sequence $\sigma_1, \sigma_2, \ldots$ Define $f : \sigma \times \sigma \to \sigma^*$ (the words on σ) by

$$f(\sigma_i\,,\sigma_j\,) = \begin{cases} \sigma_j & \text{ for } |i-j| \geqslant 2, \\ \sigma_j \sigma_i & \text{ for } |i-j| = 1, \\ \varepsilon & \text{ for } i = j. \end{cases}$$

 \leftrightarrow the presentation of B_n consists of all relations

$$\sigma_i \ f(\sigma_i, \sigma_j) = \sigma_j \ f(\sigma_j, \sigma_i). \tag{*}$$

Now (*) also implies

$$\sigma_i^{-1} \sigma_j = f(\sigma_i, \sigma_j) f(\sigma_j, \sigma_i)^{-1}.$$

↔ When we replace a subword of the form $\sigma_i^{-1}\sigma_j$ with the corresponding $f(\sigma_i, \sigma_j)f(\sigma_j, \sigma_i)^{-1}$ in a braid word, we obtain an equivalent word.

• Def.– Say that a braid word w is right reversible to w' if one can transform w into w' in this way (i.e., by iteratively pushing the negative letters to the right and the positive to the left).

 $[\]leftrightarrow$ If w is right reversible to w, then w and w' are equivalent, but no converse (of course).

... nevertheless, partial converse implication:

• Proposition.- If u, v are positive braid words, then u and v are equivalent (i.e., represent the same braid) if and only if $u^{-1}v$ is right reversible to the empty word.

• \rightsquigarrow Let (S, *) be a left cancellative LD-system;

for each sequence of input colours $oldsymbol{x}$ and each braid word $oldsymbol{w}$,

- there exists at most one colouring of (the diagram coded by) w starting with $m{x}$,
- if so, there exists exactly one colouring with the same input and output colours

for each word w' such that w is right reversible to w'.

 \checkmark A partial action of B_n on S^n : for \boldsymbol{x} a sequence of colours and b a braid,

- $oldsymbol{x}$ b need not exist, but
- there always exists at least one sequence $oldsymbol{x}$ s.t. $oldsymbol{x}$ $oldsymbol{\bullet}$ exists, and
- $\boldsymbol{x} \bullet \boldsymbol{b}$ is uniquely determined when it exists.

• Def.- \mathbf{D} = the free LD-system on one generator.

→ D consists of all expressions g, g*g, g*(g*g), ... with LD-equivalent expressions identified; → similar to \mathbb{Z}_+ when self-distributivity x(yz) = (xy)(xz) replaces associativity x(yz) = (xy)z. (\mathbb{Z}_+ is the free semigroup on one generator)

• In the case of \mathbf{Z}_+ : $(\exists z)(y = x + z)$ defines a linear ordering;

 \leftrightarrow similar in the case of **D** (but more difficult to prove...):

• Proposition.- The transitive closure \Box of the relation $(\exists z)(y = x * z)$ is a linear ordering on **D**.

- \rightsquigarrow D is left cancellative
- \leftrightarrow Use **D** to colour braids, and its ordering to order them:

• Proposition.- For b_1, b_2 in B_n , say that $b_1 < b_2$ is true if $\boldsymbol{x} \cdot b_1 \sqsubset^{Lex} \boldsymbol{x} \cdot b_2$ holds for some \boldsymbol{x} in \mathbf{D}^n . Then < is a linear ordering on B_n compatible with multiplication on the left.

- \leftrightarrow Intrinsic construction of the previous braid ordering? (not appealing to D)
- ∂ = shift endomorphism of B_{∞} , i.e., $\partial : \sigma_i \mapsto \sigma_{i+1}$ for each *i*.

• Def.- A braid b is σ_1 -positive if, among all possible expressions of b, there is at least one in which σ_1 occurs, but σ_1^{-1} does not. A braid b is σ -positive if it is $\partial^k b_0$ for some σ_1 -positive braid b_0 .

 $\nleftrightarrow \text{ Example: } \sigma_1 \sigma_2 \sigma_1^{-1} \text{ is } \sigma_1 \text{ -positive: } \sigma_1 \sigma_2 \sigma_1^{-1} = \sigma_2^{-1} \sigma_1 \sigma_2 \text{ : one } \sigma_1 \text{, no } \sigma_1^{-1} \text{.}$

• Proposition.- The relation " $b_1^{-1}b_2$ is σ -positive" is a linear ordering on B_n , and it coincides with the ordering coming from **D**.

→ Two points to prove (and we shall do it using colourings):

- Property A: A σ_1 -positive braid is not trivial;
- Property C: Every braid is σ_1 -positive, or σ_1 -negative, or σ_1 -free.

(*b* is σ_1 -negative = b^{-1} is σ_1 -positive; *b* is σ_1 -free= *b* belongs to the image of ∂)

Consider a σ_1 -positive diagram (want to prove it does not represents 1)

 \rightsquigarrow put colours from **D**:

By construction: $z_0 \sqsubset z_1 \sqsubset z_2 \sqsubset \ldots$, hence $z_p \neq z_0$. (Recall: $z \sqsubset z'$ is the transitive closure of $(\exists y)(z' = z * y)$)

↔ Example: $1 * 1 = \sigma_1$, $1 * (1 * 1) = \sigma_2 \sigma_1$, $(1 * 1) * 1 = \sigma_1^2 \sigma_2^{-1}$, ...

Fact.- (B_∞, *) is a left cancellative LD-system.
↔ One can use B_∞, * to colour braids.

- Def.– A braid b is called special if it belongs to the closure of $\{1\}$ under *.
- Fact.- For *b* special, $(1, 1, ...) \bullet b = (b, 1, 1, ...)$ ("special braids are self-colouring").

(Property *C*: every braid is σ_1 -positive, σ_1 -negative or σ_1 -free)

↔ Every braid *b* in B_n admits a decomposition $b = \partial^{n-1}b_n^{-1} \cdot \ldots \cdot \partial b_2^{-1} \cdot b_1^{-1} \cdot b_1' \cdot \partial b_2' \cdot \ldots \cdot \partial^{n-1}b_n'$ where $b_1, \ldots, b_n, b_1', \ldots, b_n'$ are special.

• Fact.- If b, b' are special braids, then $b^{-1}b'$ is either σ_1 -positive, or σ_1 -negative, or equal to 1. (easy from properties of **D** and *: b' = b * x implies $b^{-1}b' = \partial(x) \cdot \sigma_1 \cdot \partial(b^{-1})$.)

 \rightsquigarrow Property C (other proofs known, but none much easier).

ullet Property S

A non-trivial property of the braid ordering: For every braid b, one has $b\sigma_i > b$ for each i.

 \rightsquigarrow Question.- Is there a natural proof of Property S based on diagram colourings?

Handle reduction

An efficient solution to the isotopy problem of braids: A σ_i -handle is a braid word of the form $\sigma_i^e w \sigma_i^{-e}$ with $e = \pm 1$ and w containing no $\sigma_j^{\pm 1}$ with $j \leq i$ and, in addition, not containing both σ_{i+1} and σ_{i+1}^{-1} . Reducing a handle means deleting the initial and final σ_i^e and substituting each σ_{i+1}^d with $\sigma_{i+1}^{-e} \sigma_i^d \sigma_{i+1}^e$. The braid ordering forces convergence (and practical efficiency), but \rightsquigarrow Question.- What is the complexity of handle reduction?

• Special braids (those that can be obtained from 1 using $x * y = x \cdot \partial(y) \cdot \sigma_1 \cdot \partial(x^{-1})$) • Question.– How many special braids lie in B_n ?

• Twisted conjugacy

The self-distributive operation * on B_{∞} is a twisted version of conjugacy.

↔ Question.- Can one replace the standard conjugacy operation with its twisted version involving * in the design of braid-based cryptosystems?

- \leftrightarrow Question.- Is there an algorithm deciding whether two braids b, b' are twisted-conjugate?
- ↔ Question.- Is there a constructive way to recover b from b * 1?
- Arbitrary LD-systems

↔ Question.- Can one use arbitrary left cancellative LD-systems, in particular those that are not racks, to colour links diagrams?

↔ Question.- Can one use arbitrary LD-systems, in particular those that are not left cancellative, to colour braid (or link) diagrams?

↔ A new (seemingly very interesting) group that extends

both Artin's group B_{∞} and Richard Thompson's group F.

$$F = \langle a_1, a_2, \dots; a_i a_j = a_{j+1} a_i \quad \text{for } j > i \rangle.$$

braid diagrams replaced with tree diagrams;

connected with associativity, and with piecewise linear diffeomorphisms of (0, 1);

• Def.-
$$B_T = \left\langle \begin{cases} \sigma_1, \sigma_2, \dots \\ a_1, a_2, \dots \end{cases}; \begin{cases} \text{Artin's relations} + \sigma_i \sigma_{i+1} a_i = a_{i+1} \sigma_i \\ \text{Thompson's relations} + \sigma_{i+1} \sigma_i a_{i+1} = a_i \sigma_i \end{cases} \right\rangle$$

 \rightsquigarrow includes B_{∞} and F;

• Def.– For
$$b_1, b_2$$
 in B_T , define $b_1 * b_2 = b_1 \cdot \partial b_2 \cdot \sigma_1 \cdot \partial b_1^{-1}$.

- Fact.- $(B_T, *)$ is a left cancellative LD-system.
- ↔ Question.- What can one do with B_T -colourings? (prove that B_T is orderable)

Thompson's braid group as a mapping class group

Artin representation of B_T

- \leftrightarrow faithful representation of B_T :
- action of σ_1 : $x_1 \mapsto x_1 x_2 x_1^{-1}$, $x_2 \mapsto x_1$, $x_3 \mapsto x_3$.. $x_{1,1} \mapsto x_1 x_{2,1} x_1^{-1}$, $x_{2,1} \mapsto x_{1,1}$..
- action of a_1 : $x_1 \mapsto x_1 x_2$, $x_2 \mapsto x_3$, $x_3 \mapsto x_4$.. $x_{1,1} \mapsto x_1$, $x_{2,1} \mapsto x_{3,1}$..

↔ Question.- Can one use the Laver tables to colour diagrams? (enough complicated to be promising)

P. D., Braids and Self-Distributivity; Progress in Math. vol. 192, Birkhauser, (2000).

P. D., I. Dynnikov, D. Rolfsen, B. Wiest; Why are braids orderable?; Panoramas & Syntheses vol. 14, Soc. Math. France (2002).