- General principle (Brieskorn, Alexander): Colour the arcs of ^a braid or ^a link diagram
	- \rightarrow extract information about the braid or the link.
	- **→ Self-distributivity** $x * (y * z) = (x * y) * (x * z).$
		- **→** algebraic translation of Reidemeister move of type III.
	- ◆ Use various types of self-distributive operations (classical and non-classical)
		- \rightarrow various applications.
- Aim: To show how various colouring techniques can be used.

• Consider ^a standard braid or link diagram *D*:

- \bullet Attach colours from a set S to the arcs of $D,$ and propagate them along the arcs.
	- ◆ Not much to learn if colours never change;

- Want information about the braid or the link represented by the diagram, not about the diagram
	- **→ require invariance under isotopy.**
- Case of braids:
	- Standard generators:

- Standard presentation for

 \rightsquigarrow the braid group B_n , and \rightsquigarrow the braid monoid B_n^+ : $\begin{cases} \sigma_i, \sigma_j = \sigma_j \sigma_i & \text{for } |i - j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1 \end{cases}$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$
 $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for $|i - j| = 1$

 \rightarrow Then: invariance under isotopy = compatibility with braid relations.

 \bullet Def.– $(S,*)$ is an LD-system if $*$ satisfies (1).

• Fact.- Colouring is compatible with isotopy iff [∗] satisfies Identity LD, plus

$$
x * (x * y) = x * (x * y) = y.
$$
 (2)

Proof:

 $\rightarrow \ast$ $\overline{*}$ is a left inverse for \ast : left translations rel to \ast and $\overline{*}$ are bijections,

- \rightarrow left cancellation is allowed for $*$ and $\overline{*}$
- \rightarrow * determines $\overline{\ast}$: $x \overline{\ast} y$ = the unique z satisfying $x * z = y$.

• Def.– (*R,* [∗]*,* [∗]) is ^a rack if [∗] satisfies (1) plus (2).

Case of links

- Invariance under isotopy ⁼ compatibility with Reidemeister moves
- Fact.- Colouring is compatible with Reidemeister moves iff $*, \overline{*}$ satisfies the rack identities, plus

Case of links (cont'd)

• Def.– (*Q,* [∗]*,* [∗]) is ^a quandle if [∗] satisfies (1), (2), (3).

Braids are open, knots and links are closed \rightarrow different ways of using colourings.

• Braids: The Hurwitz action of braids on sequences of colours.

 \rightsquigarrow Fix one rack $(R,*)$, and use it to colour every braid $b\colon\!\blacktriangleleft\bullet\!\blacktriangleright$ defines a map of R^n to itself.

$$
x_1 \quad x_2 \quad x_3 \quad \dots \quad \in R^n
$$
\n
$$
b \qquad \dots \qquad \longrightarrow \qquad \rho_b: R^n \to R^n
$$
\n
$$
y_1 \quad y_2 \quad y_3 \qquad \dots \qquad \in R^n
$$

 \bullet Def.– For $(R,*,\overline{*})$ a rack, put $\boldsymbol{x} \bullet \varepsilon = \boldsymbol{x}$ (for ε = empty word), and

$$
\boldsymbol{x} \bullet (\sigma_i w) = (x_1, \ldots, x_{i-1}, x_i * x_{i+1}, x_i, x_{i+2} \ldots) \bullet w
$$

$$
\boldsymbol{x} \bullet (\sigma_i^{-1} w) = (x_1, \ldots, x_{i-1}, x_{i+1}, x_i * x_{i+1}, x_{i+2} \ldots) \bullet w.
$$

 \bullet Proposition.- (Brieskorn) For each LD-system $(S,*)$ one obtains an action of B_n^+ on $S^n.$ For each rack $(R, *, \overline*)$ one obtains an action of B_n on R^n .

• Links: pushing the colours leads to obstructions

→ quotient of the initial quandle (depending on the link) → invariant of that link

- \leftrightarrow the more general the quandle, the most powerful the invariant.
- \rightsquigarrow fundamental quandle: Q_L for Q free on n generators if L closure of an n strand braid.

• Proposition.- (Joyce, Matveev) The fundamental quandle is a complete invariant of the isotopy type up to ^a mirror symmetry.

(BUT problem: how to compute Q_L ?)

 \bullet Take S = any set, and

$$
x * y = y, \quad x \overline{*} y = y.
$$

- \rightarrow a rack, even a quandle;
- \rightarrow amounts to not changing colours.
- For braids: leads to

$$
\boldsymbol{x}\bullet b=\textsf{perm}(b)(\boldsymbol{x})
$$

- where perm(*b*) is the permutation associated with *b*.
	- **→ Here, the Hurwitz action leads to**

$$
\text{perm}: B_n {\,\rightarrow\,} \mathfrak{S}_n.
$$

• For links: identifying output colours with input colours yields ^a quotient with *k* elements for ^a link *L* with *k* components.

• Take **Z** ⁼ the integers, and

$$
x * y = y + 1, \quad x \overline{*} y = y - 1.
$$

$$
\rightarrow
$$
 a rock, not a quandle $(0 * 0 = 1)$.

• For braids: leads to

$$
\sum (\boldsymbol{x}\bullet b)=\sum \boldsymbol{x}+\operatorname{sum}(b)
$$

where sum(*b*) is the exponent sum of *b*.

◆ Here, the Hurwitz action leads to the augmentation homomorphism

 $sum: B_n \rightarrow (Z, +)$

mapping every σ_i to 1.

•Take for *^E* ^a **^Z**[*t, ^t*−¹]-module, and

$$
x * y = (1 - t)x + ty, \qquad x \overline{*} y = (1 - t^{-1})x + t^{-1}y
$$

 \rightarrow a rack, even a quandle.

• For braids: leads to

$$
\boldsymbol{x}\bullet b=\boldsymbol{x}\times r_B(b)
$$

where $r_B(b)$ is an $n \times n$ matrix associated with *b*)

→ Here, the Hurwitz action gives a linear representation

 $r_B: B_n \to GL_n(\mathbf{Z}[t, t^{-1}])$

◆ the (unreduced) Burau representation

 \bullet For links: quotienting under $x \bullet b = x$ gives the Alexander ideal

```
\rightarrow hence the Alexander polynomial.
```
 \bullet Take for F_n a the free group based on $\{x_1,\ldots,x_n\}$, and

$$
x * y = xyx^{-1}, \qquad x \overline{\ast} y = x^{-1}yx
$$

→ a rack, even a quandle.

- For braids: Define *y*1*,...,yⁿ* by $(x_1, \ldots, x_n) \cdot b = (y_1, \ldots, y_n).$ Then $\varphi(b) : x_i \mapsto y_i$ is an automorphism of F_n .
	- ◆ Here the Hurwitz action gives Artin's representation

 $\varphi: B_n \to Aut(F_n).$

 \bullet For links: quotienting under $\bm{x} \bullet b = \bm{x}$ defines a group associated with the closure of b \leftrightarrow the fundamental group of the complement of \hat{b} b , via its Wirtinger presentation.

- Are there many more different types of racks?
- ◆ NO: conjugacy racks are close to free racks, i.e., the most general possible racks.

Let *G* be a group and $X \subseteq G$; on $G \times X$ take

 $(a, x) * (b, y) = (axa^{-1}b, y), \quad (a, x) * (b, y) = (ax^{-1}a^{-1}b, y).$

- \bullet Fact.- This is a rack, and, for G free based on X , the rack is free.
	- \leftrightarrow close to conjugacy ('first half of conjugacy words'),
	- \rightarrow in particular, always nearly idempotent:

 $x * y = (x * x) * y.$

• Questions.– 1. Does there exist LD-systems of ^a different type?

(in particular where left division has no cycle)

2. (If so) Can one use them to colour braid or link diagrams?

 \bullet Take I_{∞} = the set of all injective, non-bijective mappings of N into itself, and

 $f * g(n) =$ $\begin{cases} \end{cases}$ $fgf^{-1}(n)$ for *n* in the image of *f*, *ⁿ* otherwise.

◆ An LD-system in which $x * y = (x * x) * y$ is false

(and whose presentation is unknown).

At the end of the 1980's: new, completely different LD-systems coming from Set Theory ◆ not directly useful here, but gave (strong) motivation for further study.

- ****** Arbitrary LD-systems are OK for positive braid diagrams, but
- **→ Problem for arbitrary diagrams**

(Can be coloured, but no uniqueness or invariance).

→ Technical detour: braid word reversing

Let σ = the sequence $\sigma_1, \sigma_2, \ldots$. Define $f : \sigma \times \sigma \to \sigma^*$ (the words on σ) by

$$
f(\sigma_i, \sigma_j) = \begin{cases} \sigma_j & \text{for } |i - j| \geq 2, \\ \sigma_j \sigma_i & \text{for } |i - j| = 1, \\ \varepsilon & \text{for } i = j. \end{cases}
$$

 \rightarrow the presentation of B_n consists of all relations

$$
\sigma_i f(\sigma_i, \sigma_j) = \sigma_j f(\sigma_j, \sigma_i). \tag{*}
$$

Now (*) also implies

$$
\sigma_i^{-1} \sigma_j = f(\sigma_i, \sigma_j) f(\sigma_j, \sigma_i)^{-1}.
$$

 \rightsquigarrow When we replace a subword of the form $\sigma_i^{-1}\sigma_j$ with the corresponding $f(\sigma_i^-, \sigma_j^-)f(\sigma_j^-, \sigma_i^-)^{-1}$ in ^a braid word, we obtain an equivalent word.

 \bullet Def.– Say that a braid word w is right reversible to w' if one can transform w into w' in this way (i.e., by iteratively pushing the negative letters to the right and the positive to the left).

 \rightarrow If w is right reversible to w , then w and w' are equivalent, but no converse (of course).

... nevertheless, partial converse implication:

 \bullet Proposition.- If u,v are positive braid words, then u and v are equivalent (i.e., represent the same braid) if and only if $u^{-1}v$ is right reversible to the empty word.

 $\bullet{\rightarrow\!\!\!\!\rightarrow} \,$ Let (S,\ast) be a left cancellative LD-system;

for each sequence of input colours *^x* and each braid word *^w*,

- there exists at most one colouring of (the diagram coded by) w starting with $\boldsymbol{x},$
- if so, there exists exactly one colouring with the same input and output colours

for each word w' such that w is right reversible to w' .

 \rightsquigarrow A partial action of B_n on S^n : for x a sequence of colours and b a braid,

- *^x b* need not exist, but
- there always exists at least one sequence *^x* s.t. *^x b* exists, and
- *^x b* is uniquely determined when it exists.

• Def.- \mathbf{D} = the free LD-system on one generator.

 ^D consists of all expressions *g, ^g*[∗]*g, ^g*[∗](*g*[∗]*g*), ... with LD-equivalent expressions identified; $\blacktriangleright\blacktriangleright\blacktriangleright\blacktriangleright$ similar to \mathbf{Z}_{+} when self-distributivity $x(yz)=(xy)(xz)$ replaces associativity $x(yz)=(xy)z.$ $(Z_+$ is the free semigroup on one generator)

 \bullet In the case of $\mathbf{Z}_{+}\text{: } (\exists z)(y=x+z)$ defines a linear ordering;

 \rightarrow similar in the case of $\mathbf D$ (but more difficult to prove...):

 \bullet Proposition.- The transitive closure \sqsubset of the relation $(\exists z)(y=x*z)$ is a linear ordering on $\mathbf D.$

- \rightarrow **D** is left cancellative
- ◆ Use **D** to colour braids, and its ordering to order them:

 \bullet Proposition.- For b_1,b_2 in B_n , say that $b_1 < b_2$ is true if $x\bullet b_1 \sqsubset^{Lex} x\bullet b_2$ holds for some x in \mathbf{D}^n . Then \lt is a linear ordering on B_n compatible with multiplication on the left.

- ◆ Intrinsic construction of the previous braid ordering? (not appealing to D)
- \bullet ∂ = shift endomorphism of B_{∞} , i.e., $\partial : \sigma_i \, \mapsto \sigma_{i+1}$ for each $i.$

 \bullet Def.– $\,$ A braid b is σ_1 -positive if, among all possible expressions of b , there is at least one in which σ_1 occurs, but σ_1^{-1} does not. A braid b is σ -positive if it is $\partial^k b_0$ for some σ_1 -positive braid $b_0.$

 \rightsquigarrow Example: $\sigma_1 \sigma_2 \sigma_1^{-1}$ is σ_1 -positive: $\sigma_1 \sigma_2 \sigma_1^{-1}$ $\sigma_1^{-1}=\sigma_2^{-1}$ $\frac{-1}{2}\sigma_1\sigma_2$: one σ_1 , no σ_1^{-1} 1 .

• Proposition.- The relation $"b_1^{-1}$ $^{-1}_{1}b_{2}$ is σ -positive" is a linear ordering on B_{n} , and it coincides with the ordering coming from **D**.

 \rightsquigarrow Two points to prove (and we shall do it using colourings):

- \bullet Property \boldsymbol{A} : A σ_1 -positive braid is not trivial;
- Property C : Every braid is σ_1 -positive, or σ_1 -negative, or σ_1 -free.

 $(b$ is σ_1 -negative = b^{-1} is σ_1 -positive; b is σ_1 -free= b belongs to the image of ∂)

Consider a σ_1 -positive diagram (want to prove it does not represents 1)

put colours from **D**:

By construction: $z_0 \rvert z_1 \rvert z_2 \rvert z_3 \ldots$, hence $z_p \neq z_0$. (Recall: $z \sqsubset z'$ is the transitive closure of $(\exists y)(z' = z * y)$)

 \bullet Def.– For b_1,b_2 in B_{∞} , define $b_1*b_2=b_1\cdot\partial b_2\cdot\sigma_1\cdot\partial b_1^{-1}$ 1 *.*

← Example: $1 * 1 = σ_1$, $1 * (1 * 1) = σ_2 σ_1$, $(1 * 1) * 1 = σ_1^2$ $\frac{2}{1}\sigma_2^{-1}$ $_{2}$, ...

 \bullet Fact.- $\ (B_\infty, \ast)$ is a left cancellative LD-system. ◆ One can use B_{∞} , $*$ to colour braids.

- Def.– ^A braid *b* is called special if it belongs to the closure of {1} under [∗].
- \bullet Fact.- For b special, $(1,1,\dots)$ \bullet $b=(b,1,1,\dots)$ ("special braids are self-colouring").

(Property C: every braid is σ_1 -positive, σ_1 -negative or σ_1 -free)

$$
b = \partial^{n-1}b_n^{-1} \cdot \ldots \cdot \partial b_2^{-1} \cdot b_1^{-1} \cdot b_1' \cdot \partial b_2' \cdot \ldots \cdot \partial^{n-1}b_n'
$$

where $b_1, \ldots, b_n, b_1', \ldots, b_n'$ are special.

 \bullet Fact.- If b,b' are special braids, then $b^{-1}b'$ is either σ_1 -positive, or σ_1 -negative, or equal to $1.$ (easy from properties of \bf{D} and $*$: $b' = b * x$ implies $b^{-1}b' = \partial(x) \cdot \sigma_1 \cdot \partial(b^{-1})$.)

 \rightsquigarrow Property C (other proofs known, but none much easier).

• Property *S*

A non-trivial property of the braid ordering: For every braid *b*, one has $b\sigma_i > b$ for each *i*.

Question.– Is there ^a natural proof of Property *S* based on diagram colourings?

• Handle reduction

An efficient solution to the isotopy problem of braids: A σ_i -handle is a braid word of the form $\sigma_i^e w \sigma_i^{-e}$ with $e = \pm 1$ and w containing no $\sigma_j^{\pm 1}$ with $j \leq i$ and, in addition, not containing both σ_{i+1} and σ_{i+1}^{-1} . Reducing a handle means deleting the initial and final σ_i^e and substituting each σ_{i+1}^d with $\sigma_{i+1}^{-e}\sigma_i^d\sigma_{i+1}^e$. The braid ordering forces convergence (and practical efficiency), but ◆ Question. What is the complexity of handle reduction?

 \bullet Special braids (those that can be obtained from 1 using $x*y=x\cdot\partial(y)\cdot\sigma_1\cdot\partial(x^{-1}))$ \rightarrow Question.– How many special braids lie in B_n ?

• Twisted conjugacy

The self-distributive operation $*$ on B_{∞} is a twisted version of conjugacy.

◆ Question.– Can one replace the standard conjugacy operation with its twisted version involving $*$ in the design of braid-based cryptosystems?

- \leftrightarrow Question.– Is there an algorithm deciding whether two braids b, b' are twisted-conjugate?
- Question.– Is there ^a constructive way to recover *b* from *b* [∗] 1?
- Arbitrary LD-systems

◆ Question.– Can one use arbitrary left cancellative LD-systems, in particular those that are not racks, to colour links diagrams?

 Question.– Can one use arbitrary LD-systems, in particular those that are not left cancellative, to colour braid (or link) diagrams?

 \leftrightarrow A new (seemingly very interesting) group that extends

both Artin's group *B*[∞] and Richard Thompson's group *F*.

$$
F = \langle a_1, a_2, \dots; a_i a_j = a_{j+1} a_i \text{ for } j > i \rangle.
$$

braid diagrams replaced with tree diagrams;

connected with associativity, and with piecewise linear diffeomorphisms of (0*,* 1);

• **Def.**
$$
B_T = \left\langle \begin{cases} \sigma_1, \sigma_2, \dots \\ a_1, a_2, \dots \end{cases}; \begin{cases} \text{Artin's relations} + \sigma_i \sigma_{i+1} a_i = a_{i+1} \sigma_i \\ \text{Thompson's relations} + \sigma_{i+1} \sigma_i a_{i+1} = a_i \sigma_i \end{cases} \right\rangle
$$

includes *B*[∞] and *F*;

- \bullet Def.– For b_1,b_2 in B_T , define $b_1*b_2=b_1\cdot\partial b_2\cdot \sigma_1\cdot\partial b_1^{-1}.$
- Fact.- (*^B^T ,* [∗]) is ^a left cancellative LD-system.
- \rightarrow Question.– What can one do with B_T -colourings? (prove that B_T is orderable)

Thompson's braid group as ^a mapping class group

Artin representation of *B^T*

- \rightarrow faithful representation of B_T :
- \bullet action of $\sigma_1\colon\thinspace x_1\mapsto x_1x_2x_1^{-1}$ $x_1, x_2 \mapsto x_1, x_3 \mapsto x_3, x_1, x_2 \mapsto x_1x_2, x_3$ [−]1 x_1^- , $x_{2,1} \mapsto x_{1,1}$.
- \bullet action of $a_1: \ x_1 \mapsto x_1x_2, \quad x_2 \mapsto x_3, \quad x_3 \mapsto x_4. \quad x_{1,1} \mapsto x_1, \quad x_{2,1} \mapsto x_{3,1}...$

The Laver tables

◆ Question.– Can one use the Laver tables to colour diagrams? (enough complicated to be promising)

P. D., Braids and Self-Distributivity; Progress in Math. vol. 192, Birkhauser, (2000).

P. D., I. Dynnikov, D. Rolfsen, B. Wiest; Why are braids orderable?; Panoramas & Syntheses vol. 14, Soc. Math. France (2002).