ANOTHER APPROACH TO THE BRAID ORDERING

Patrick Dehornoy

Laboratoire de Mathematiques Nicolas Oresme, Caen

- There exists a distinguished order on B_n , with many equivalent approaches (self-distributive algebra, homeomorphisms of a puntured disk, hyperbolic geometry...)
 - → a new combinatorial approach, based on the connection between

- the order on B_n , - the Garside structure on B_n^+ .

- \rightsquigarrow leads to new questions/results about the combinatorics of $\mathsf{Div}\Delta_n^d$,
 - new construction of <,
 - new proof of the (not yet understood) well-ordering property
 completed for B₃ only.

• Definition: A braid word is σ -positive if the main generator (\rightsquigarrow the one with maximal index) occurs only positively.

 \leftrightarrow Example: $\sigma_1 \sigma_2 \sigma_1^{-1}$ is σ -positive, $\sigma_2^{-1} \sigma_1 \sigma_2$ is not (and not σ -negative either)

• Property A: (\rightsquigarrow Acyclicity) A braid with a σ -positive expression is not 1.

• Property C: (\rightsquigarrow Comparison) Each braid not equal to 1 admits a σ -positive expression, or a σ -negative expression.

• Definition: A braid word is σ -positive if the main generator (\rightsquigarrow the one with maximal index) occurs only positively.

 \leftrightarrow Example: $\sigma_1 \sigma_2 \sigma_1^{-1}$ is σ -positive, $\sigma_2^{-1} \sigma_1 \sigma_2$ is not (and not σ -negative either)

• Property A: (\rightsquigarrow Acyclicity) A braid with a σ -positive expression is not 1.

• Property C: (\rightsquigarrow Comparison) Each braid not equal to 1 admits a σ -positive expression, or a σ -negative expression.

• Proposition: For x, y in B_{∞} , say that x < y holds if $x^{-1}y$ admits a σ -positive expression. Then < is a linear ordering, compatible with multiplication on the left.

(Property A \Rightarrow no cycle; Property C \Rightarrow linear)

Handle reduction

→ a handle:

Handle reduction

↔ a handle:

→→ reduce the handle:

Handle reduction

• Proposition: Handle reduction always terminates.

→ Corollary: Property C.

For z a positive braid, let Divz := the left divisors of z.

```
\rightsquigarrow "the word w is drawn in Divz"
```

= is drawn in the restriction of the Cayley graph of B^+_{∞} to Divz.

• Lemma: Assume w is drawn in Divz and S be a sequence of handle reductions from w. Then there exists a σ -positive word \widetilde{S} ("witness-word") drawn in Divz s.t. # of main reductions in S = # of σ_m 's in \widetilde{S} .

• Definition: The complexity of *z*:

c(z) := maximal # of σ_m 's in a σ -positive word drawn in Divz.

The complexity of a braid (cont'd)

- Property A \Rightarrow $c(z) < \infty$.
- For w drawn in Div(z), at most c(z) main reductions in any reduction sequence from w.
- \bullet Every n strand braid word drawn in ${\rm Div}\Delta_n^d$ for some d

 \checkmark Main question : What is $c(\Delta_n^d)$?

- Property A \Rightarrow $c(z) < \infty$.
- For w drawn in Div(z), at most c(z) main reductions in any reduction sequence from w.
- Every n strand braid word is drawn in $\operatorname{Div}\Delta_n^d$ for some d

 \checkmark Main question : What is $c(\Delta_n^d)$?

The complexity of a braid (cont'd)

- Property A \Rightarrow $c(z) < \infty$.
- For w traced in Div(z), at most c(z) main reductions in any reduction sequence from w.
- Every n strand braid word traced in $\operatorname{Div}\Delta_n^d$ for some d

 \checkmark Main question : What is $c(\Delta_n^d)$?

Remark: $\Delta_3 = \sigma_2^{k+1} \sigma_1 \sigma_2 \sigma_1^{-k}$.

Computation of $c(\Delta_n^d)$, step 1

• Proposition: c(z) is the # of main jumps (\rightsquigarrow the main generator in the quotient of two successive entries is the maximal one) in the increasing enumeration of Divz.

Computation of $c(\Delta_n^d)$, step 2

• Proposition: c(z) + 1 is the # of B_m -classes (\rightsquigarrow w.r.t. $x^{-1}y \in B_m$) in Divz.

Examples:

 $1 \xrightarrow{\circ} \Delta_3$

 $3 B_2$ -classes $\Rightarrow c(\Delta_3) = 2$

• Proposition: $c(\Delta_n^d) + 1 = \#$ of elements in $\text{Div}\Delta_n^d$ whose dth factor (of the normal form) is right divisible by Δ_{n-1} .

→ Compute $N_{n,d}(s) := \#$ of (positive) braids of degree $\leq d$ whose dth factor is s = # of normal sequences $(s_1, \ldots, s_{d-1}, s)$.

• Proposition: $c(\Delta_n^d) = \#$ of elements in $\text{Div}\Delta_n^d$ whose dth factor (of the normal form) is right divisible by Δ_{n-1} , minus 1.

→ Compute $N_{n,d}(s) := \#$ of (positive) braids of degree $\leq d$ whose dth factor is s = # of normal sequences $(s_1, \ldots, s_{d-1}, s)$.

↔ Easy, because normality is local:

• Proposition: (Charney, folklore) Let M_n be the $n! \times n!$ matrix with entries indexed by divisors of Δ_n (or permutations of $\{1, ..., n\}$) s.t. $(M_n)_{s,t} = \begin{cases} 1 & \text{if } (s,t) \text{ is normal}, \\ 0 & \text{otherwise}. \end{cases}$ Then $N_{n,d}(s)$ is the *s*-entry in $(1, ..., 1) \cdot M_n^{d-1}$. ↔ (new) questions / results about braid combinatorics:

 \rightsquigarrow (Solomon) $N_{n,d}(s)$ only depends on the partition associated with the descents of s \rightsquigarrow reduces the size of the adjacence matrix from n! to p(n).

• Proposition:
$$c(\Delta_3^d) = 2^{d+1} - 2$$
, $c(\Delta_4^d) = \dots \sim (3 + \sqrt{6})^d$, etc.
 $c(\Delta_n) = n - 1$, $c(\Delta_n^2) = 2^n - 2$, $c(\Delta_n^3) = \sum_{k=1}^{n-1} \frac{n!}{k!} - 1$.

Proof: Let $I, J \subseteq \{1, ..., n-1\}$, with $(p_1, ..., p_k)$, $(q_1, ..., q_\ell)$ the block compositions of Iand J. Then the # of divisors of Δ_n that are left divisible by all σ_i 's with $i \in I$ and right divisible by all σ_j 's with $j \in J$ is the # of $k \times \ell$ -matrices with \mathbb{N} -entries s.t. $\sum i$ th row $= p_i$ and $\sum j$ th column $= q_j$. Then $c(\Delta_n^3) + 1 = \sum_{p_1 + \dots + p_k = n} \frac{n!}{p_1! \dots p_k!} p_1(p_2 - 1) \dots (p_{k-1} - 1)p_k$.

More counting

• Proposition: (Carlitz, Scoville, Vaughan) Let a_n be the # of n-braids of degree ≤ 2 . Then $1 + \sum a_n \frac{z^n}{(n!)^2} = \frac{1}{J_0(\sqrt{z})}$ with $J_0(x)$ the Bessel function.

• Conjecture: The characteristic polynomial of M_{n-1} divides that of M_n .

• Proposition: $(\text{Div}\Delta_n^d, <)$ is the concatenation of $c(\Delta_n^d) + 1$ intervals, each of which is a lattice for divisibility, isomorphic to some initial subinterval of $(\text{Div}\Delta_{n-1}^d, <)$.

 $\nleftrightarrow \text{ Inductive construction of } (\operatorname{Div}\Delta_n^d, <) \text{ from } (\operatorname{Div}\Delta_{n-1}^d, <) - \text{ and } (\operatorname{Div}\Delta_n^{d-1}, <) \text{ ?}$

→ Method: look at the successive quotients in the increasing enumeration of $(Div\Delta_n^d, <)$:

- degree 1: a Ab a bA a (with a = σ_1 , A = σ_1^{-1} , b = σ_2 , etc.)
- degree 2: a a AAb a a AAb a bAA a a AAb a bAA a a bAA a a
- degree 3: a a a AAAb a a a AAAb a a AAb a bAAA a a a AAAb a a AAb a bAAA a a ...

• Proposition: The increasing enumeration of $({
m Div}\Delta_3^d,<)$ is given by ...

(Proof: Property A \Rightarrow injectivity; cardinalities \Rightarrow surjectivity.)

Applications

- \rightsquigarrow Corollary: New and easy proof of Property C for B_3 ;
 - New and easy proof of the existence of the Burckel normal form for 3-braids;
 - New and easy proof of the fact that $(B_3^+, <)$ is a well-ordering of ordinal type ω^{ω} .
- → Can this be done for $n \ge 4$? → Replace the induction $u_d = 2u_{d-1} + 3d + 1$ with $u_d = 6u_{d-1} - 3u_{d-2} + 32 \cdot 2^d - 12d - 34$.