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Plan:
® | D-systems
® | D-systems from sets
® LD-systems from braids
® LD-systems from parenthesized braids
® The geometry monoid of an algebraic law
® The Laver tables



|.1. LRD-systems and loops

e A special case: L RD-systems ~» LD +RD: (zy)z = (z2)(y2)
~~ Typical examples: - lattice inf and sup:;
-mean: zxy = (1 —t)x + ty.
a~» All idempotent: 2 = .

e For S an LRD-system, every element of S(SS) and of (S§S)S is idempotent.
~» Proof: (x(xx))(x(zx)) =rp (zz)(zx) = p x(zx). O

e Proposition: If S is an LRD-system and at least one left (or right) translation of S is
surjective, then S is idempotent.
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e A special case: L RD-systems ~» LD +RD: (zy)z = (z2)(y2)
~~ Typical examples: - lattice inf and sup:;
-mean: zxy = (1 —t)x + ty.
a~» All idempotent: 2 = .

e For S an LRD-system, every element of S(SS) and of (S§S)S is idempotent.
~» Proof: (x(xx))(x(zx)) =rp (zz)(zx) = p x(zx). O

e Proposition: If S is an LRD-system and at least one left (or right) translation of S is
surjective, then S is idempotent.

® Proposition: (Belousov?, 1960’s) Assume that (L, —I—) IS acommutative Moufang loop and
f, g are surjective endomorphisms s.t. f(x) + g(x) = x andx + f(x) lies in the nucleus
of L, for each . Then L equipped with z*xy = f(x) 4+ g(y) is a divisible LRD-system.
Conversely, every divisible LRD-system is of this type.
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|.2. LD-systems vs. semigroups

e Typical example of an LD-system not RD: group equipped with Z*y = :vym_l.

A~ again idempotent;
a~» actually, LD-quasigroup: left translations are bijections
(~~ left multiplication group ).

e Lemma: Every LD-quasigroup satisfies (zx)y = xy.
~» Proof: Assume xz = y. Then (zx)y = (zx)(x2) = x(xz) = xy. O

e Philosophy: General LD-systems # LRD-systems and # LD-quasigroups
A~ more reminiscent of semigroups:
cf. LD: £(yz) = (xy)(x2) vs. associativity: 2(yz) = (zy)z.
~~ in particular free LD-system of rank n vs. free semigroup (Z>q, +)™:
- the (transitive closure of) (32)(y = xz) defines a linear ordering in rank 1;
- the rank n system is a lexicographical extension of the rank 1 system.



II.1. An example from Set Theory

® In Set Theory, most notions are definable from €.
a~ relevant notion of endomorphism = elementary embedding:

F : X — X s.t. for each formula ®(Z) and @ in X, one has ®(F'(a@)) < ®(a).

~~ An e.e. preserves
-= (i.e., is injective): F(a) = F(b) & a = b;
-€: F(a) € F(b) & a € b;
-C:F(a) CF(b)aCbasxz Cyis(V2)(z €x = 2 € y);
-U: F(aUb) =F(a)UF(b),asz=xUyis..
- “being the image under” : (*) F'(f(a)) = F(f)(F(a)),asy = f(x)is....
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II.1. An example from Set Theory

® In Set Theory, most notions are definable from €.
a~ relevant notion of endomorphism = elementary embedding:

F : X — X s.t. for each formula ®(Z) and @ in X, one has ®(F'(a@)) < ®(a).

~~ An e.e. preserves
-= (i.e., is injective): F(a) = F(b) & a = b;
-€: F(a) € F(b) & a € b;
-C:F(a) CF(b)aCbasxz Cyis(V2)(z €x = 2 € y);
-U: F(aUb) =F(a)UF(b),asz=xUyis..
- “being the image under” : (*) F'(f(a)) = F(f)(F(a)),asy = f(x)is....

e A rank is a set R with the strange property that f : R — R implies f € R.

o If Ris arank and F, G are e.e’s of R, we can apply F' to G (because G € R).
~» Then (*) becomes F(G(H)) = F(G)(F(H)):
~ EndR (all e.e’s of R ) equipped with —(—) is an LD-system.



II.2. A paradoxical result

e An LD-system is called acyclic if left divisibility has no cycle,i.e., z # (... ((zy1)y2) - - - )Yr.
(~~ an idempotent LD-system is never acyclic: * = xx)

® Proposition: (D., 1989) If there exists an acyclic LD-system, then the word problem of LD
Is decidable (~ there is an algorithm that detects LD-equivalence).

® Proposition: (Laver, 1989) If not reduced to {id}, the LD-system End R is acyclic.




II.2. A paradoxical result

e An LD-system is called acyclic if left divisibility has no cycle,i.e., z # (... ((zy1)y2) - - - )Yr.
(~~ an idempotent LD-system is never acyclic: * = xx)

® Proposition: (D., 1989) If there exists an acyclic LD-system, then the word problem of LD
Is decidable (~ there is an algorithm that detects LD-equivalence).

® Proposition: (Laver, 1989) If not reduced to {id}, the LD-system End R is acyclic.

~~ Provided there exists a self-similar rank (~+ one s.t. EndR # {id} ),
...the word problem of LD is decidable.

a~ Do self-similar ranks exist? NO: an unprovable logical axiom (“large cardinal™)
~~ Find new examples...



[11.1. Braids

® A 4-strand braid diagram:

V4 N\

® Braid diagram as a projection of a 3D braid:
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I1I.2. Isotopy of 3D-braids
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® Projection: Isotopy of braid diagrams:
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e Up to isotopy, n strand braids form a group: ~» Artin’s braid group By,
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111.3. Product of braid diagrams

= B> fmet P P P>
el d g dumml 2 2 2
el d g dumml 2 2 2
ol d g Aol 2 o o

- PP =
- P PP
- P PP b
=

-l PP =
- PP P
- P PP
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e Up to isotopy, n strand braids form a group: ~
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11l.4. Presentation of B,,

® Decomposition into elementary diagrams

: aE— / — —
_ *\/* ) i
s N i N\ / N1

01 (o)) 03 04

® Proposition: (Artin, 1925) The braid group B,, admits the presentation
(O1y...,0n-1; 0i05 = gj0; for |[i — j| = 2, 0y040; = 0j0;0; for |i — j| = 1).

X X Y.
a8 ¢ /_/\ _I/

V4 —
0i0j = 00; 0i0i+10; = 0i+10i0i+1

~+ Cf. Coxeter presentation of Sy,: idem + (7% =1.
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e The shift endomorphism of Byy: 0 : 0 — 041

e Definition: For &,y in Beo, putx %y :=2 - dy - 01 - Oy~ .
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Il.5. The LD-operation on Bsg

e The shift endomorphism of Byy: 0 : 0 — 041

e Definition: Forx,yin B, putx *y:=x -0y -0, - &y_l.

® Proposition: (Boo,*) is an acyclic LD-system; under *, every braid (for instance 1)
generates a free LD-subsystem.

e Remark: For G agroup, din EndGandzxy =2 -0y -0 -0z~ !,
then (G, *) is an LD-system iff a, 0, 8?0, . . . generate an image of By.

e Question: Does (B, *) include free LD-systems of rank > 2 ?



IV.1. Augmented LD-systems and LD-monoids

e Many LD-systems admit a second operation o satisfying
-(z oy)xz = xx(yx2z), —i.e., Lyoy = LyoL,,
-zx(y 0 2) = (z*xy) o (x*xz) —i.e., Ly is ao-homomorphism
a~ Call this an augmented LD-system (ALD-system).

e If, in addition, o is associative and one has (z*y) o x = x o ¥:
a~ Call this an LD-semigroup (an LD-monoid if 1 unit for o with x*1 = 1 and 1xx = x).
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e Many LD-systems admit a second operation o satisfying
-(z oy)xz = xx(yx2z), —i.e., Lyoy = LyoL,,
-zx(y 0 2) = (z*xy) o (x*xz) —i.e., Ly is ao-homomorphism
a~ Call this an augmented LD-system (ALD-system).

e If, in addition, o is associative and one has (z*y) o x = x o ¥:
a~ Call this an LD-semigroup (an LD-monoid if 1 unit for o with x*1 = 1 and 1xx = x).

e Proposition: For each LD-system .S, there exists an LD-monoid S extending S and
universal for this property.

P

~» Proof: S :=finite sequences from S, quotiented under (z*y)ox =z oy. [

~~ "Real” question: For (S, *) an LD-system, is there o on S so that (.S, *, 0) is an ALD-system
(or an LD-monoid) ?
a~» Case of group conjugation: OK with o = group product.
~~ Case of Byo: impossible to have x * (y % 2) =t * 2.



I\V.2. Parenthesized braids

e Ordinary braid diagrams: equidistant strands indexed by positive integers;
e Parenthesized braid diagrams: non-uniform (infinitesimal) distances:
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I\V.2. Parenthesized braids

e Ordinary braid diagrams: equidistant strands indexed by positive integers;
e Parenthesized braid diagrams: non-uniform (infinitesimal) distances:

N

2 — — %
14€ -
1 — |
initial positions: (ee)e final positions e(ee)

a~ Two types of elementary diagrams:
1+1— / 1+1—
crossing o; . grouping a;

72 — 7 — o < )

~ A new group, the group of parenthesized braids B.
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IV.3. Presentation of B,

e Commutation relations:

0i05 = 0404 oid; = A;0;

® Thompson’s relations:

A\ N\

a;a; = a;410a; ;0 — 054104

® Braid relations:

AN XX XA

0i0i+10; = 0;410;0;+1 a;0; = 0;410;Q4; a;4+10; = 0;0;4+10;



IV.4. The LD-structure of B,

e shift endomorphism 0 of Be: 0; — 041, @i — Q41

o Def: Forz,yin Be,putz*y:=2-0y-01-0x 1, andz oy :=x-0y-a;.



IV.4. The LD-structure of B,

e shift endomorphism 0 of B,: 0; — 041, @; — Q41

o Def: Forz,yin Be,putz*y:=2-0y-01-0x 1, andz oy :=x-0y-a;.

x Oy
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IV.4. The LD-structure of B,

e shift endomorphism 0 of B,: 0; — 041, @; — Q41

o Def: Forz,yin Be,putz*y:=2-0y-01-0x 1, andz oy :=x-0y-a;.

x Oy
> >
el d g
el d g
el d g

ﬁ—
x*y xoy

® Proposition: (B., *, o) is an acyclic ALD-system; under * and o, every element of B
(for instance 1) generates a free ALD-subsystem.

~ OK, but where do these definitions come from ??7?



V.1. The geometry monoid of the LD law

® Associate with LD a certain monoid that captures its geometry
~~ What means applying LD to aterm ( = expression ) ?



V.1. The geometry monoid of the LD law

® Associate with LD a certain monoid that captures its geometry
~~ What means applying LD to a term ( = expression ) ?

a~» Depends on the and the



V.1. The geometry monoid of the LD law

® Associate with LD a certain monoid that captures its geometry
~~ What means applying LD to a term ( = expression ) ?

~~ Depends on the position and the orientation

® Def: :=the (partial) operator “apply LD at address « in the — direction”;



V.1. The geometry monoid of the LD law

® Associate with LD a certain monoid that captures its geometry
~~ What means applying LD to a term ( = expression ) ?

AN

~~ Depends on the position and the orientation

e Def: X, :=the (partial) operator “apply LD at address & in the — direction”;

® Def: ("the of LD”) := monoid generated by all 2;'?1.

e Fact: Two terms t,t’ are LD-equivalent iff some element of G, p maps t to t’.



V.2. The geometry monoid of associativity

® Same approach for each algebraic law (or family of algebraic laws):
a~ Example:

/i



V.2. The geometry monoid of associativity

® Same approach for each algebraic law (or family of algebraic laws):
a~ Example: associativity

/i

® Here, the geometry monoid acts transitively and the orbits are finite;

~~» G, is nearly a group: Ga/~ is R.Thompson’s group F' (~» dyadic homeo’s of [0, 1] ).

,

"to agree on at least one term”



V.3. The blueprint of a term

e How to use G, p to construct an LD operation ?

~~ Main idea: Associate with each term t an element t of G, p so that
t =1p t < some relation connects t and # ~» typically: t 1 - € some sub(group).
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V.3. The blueprint of a term

e How to use G, p to construct an LD operation ?

~~ Main idea: Associate with each term t an element t of G, p so that
t =1p t < some relation connects t and # ~» typically: t 1 - € some sub(group).

e Lemma: For every term t in one variable , we have ™ = p t*z™ ! for n large enough.

a~ Use induction on t: OK fort = x; assume t = t1%*t9. Then
/>>>>\t1 Mtz mZI m m
tyxax™ 1 tix(toxx™2)  (tyxta)x((E1xxz™ 1))  (tyxte)xa™ 1)

~~ An operatorfof G, p that maps ™ to txx™ 1 then Z = id, and tl/*?z = ﬁ * t/; with
f*g:f°ar'g'21‘arf_l-
T

"shift to the right subterm”
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V.4. Constructing an LD operation

e Assumet =pp t’. Hence there exists f in §p s.t. A —_ A Then:
m t t

tl
o~ S
t O f

ki txgxn—1 1 txxm—1
"shift to the left subterm”



V.4. Constructing an LD operation

s

tl

o~ S
t Ocf

x™ txz™ 1 1 t/xa"?!
"shift to the left subterm” ~ 14 € 8(Sip).

e Assumet =pp t’. Hence there exists f in §p s.t. — A Then:
t t

e Proposition: * induces an LD-operation on G, p/3(G.p).

a~ What is SLD/Bg(SLD) ?
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\.5. Presentation of G, p

e Relations between the operators X, ?  Lattice relations g =+ = Xg - - -

QT A
%*@szmém

> 21°22'21=22°21-22-Bg(21)




\.5. Presentation of G, p

e Relations between the operators X, ?  Lattice relations g =+ = Xg - - -

: T 4

0e(X1)
~ 3 - X =Yg By - Yo 0p(21)

e When 9¢(Gy.p) is collapsed: o7 - 09 - 01 = 09 - 01 - 09~ the braid relation

> 9LD/B£(9LD) =B
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e Relations between the operators A, ?  Lattice relations Ay -+ = Ag---
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V.6. Presentation of G

e Relations between the operators A, ?  Lattice relations Ay -+ = Ag---

oVe

Asy MacLane—-Stasheff pentagon Aq

Ay

Ay 0¢(A1)
L4 Sad

~> Ay - Ay = Ag - A; - 0¢(A1) : "geometric presentation” of R. Thompson’s group F'.



V.1. The Laver tables

N
2

N =
N

e Start with : and try to construct an LD-table...

a~ Example:

s QO DN =

> DN =



VI.1. The Laver tables

1 2 N
| 2
2 3

e Start with : and try to construct an LD-table...
N—-1| N
N |
1 2 3 4

1|2

~~» Example: 2|3

3|4

411 2




VI.1. The Laver tables

1 2 N
| 2
2 3

e Start with : and try to construct an LD-table...
N—-1| N
N |
1 2 3 4

1|2

~~» Example: 2|3

3|4

411 2 3




VI.1. The Laver tables

1 2 N
| 2
2 3
e Start with : and try to construct an LD-table...
N—-1| N
N |
1 2 3 4
1|2
~~» Example: 2|3
3|4
411 2 3 4




VI.1. The Laver tables

1 2 N
| 2
2 3
e Start with ' and try to construct an LD-table...
N—-1| N
N |
1 2 3 4
1|2
~~» Example: 2|3
3(4 4 4 4
411 2 3 4




VI.1. The Laver tables

1 2 N
| 2
2 3
e Start with ' and try to construct an LD-table...
N—-1| N
N |
1 2 3 4
1|2
~~» Example: 2|13 4 3 4
34 4 4 4
411 2 3 4




VI.1. The Laver tables

1 2 N
| 2
2 3
e Start with ' and try to construct an LD-table...

N—-1| N
N |

1 2 3 4

12 4 2 4

~~» Example: 213 4 3 4

34 4 4 4

411 2 3 4




VI.1. The Laver tables

1 2 N
| 2
2 3
e Start with : and try to construct an LD-table...

N—-1| N
N |

1 2 3 4

112 4 2 4

~~» Example: 213 4 3 4

34 4 4 4

411 2 3 4

a~ at most one solution for each INV:

~~ actually an LD-table iff N is a power of 2.

e Def: The n-th Laver table A,, = the table with 2™ elements.
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VI1.2. Periods in Laver tables

e Each row in A,, is periodic, with period a power of 2:
e A, is the projection of A, +1 mod. 2™,
~~ period of the first row in A, 41 = period of the first row in A,,.

® Proposition: Assume that there exists a self-similar rank. Then the period
of the first row in A,, goes to 0o with n.

a~» Open problem: that the period of the first row in A,, goes to 0o with 1 !
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