

THE SELF-DISTRIBUTIVE STRUCTURE OF (PARENTHESIZED) BRAIDS

Patrick Dehornoy

Laboratoire de Mathematiques Nicolas Oresme, Caen

Connections between:

- ullet the left self-distributive law LD: x(yz)=(xy)(xz), and
- Artin's braid groups and related groups—e.g., the group of parenthesized braids.

THE SELF-DISTRIBUTIVE STRUCTURE OF (PARENTHESIZED) BRAIDS

Patrick Dehornoy

Laboratoire de Mathematiques Nicolas Oresme, Caen

Connections between:

- ullet the left self-distributive law LD: x(yz)=(xy)(xz), and
- Artin's braid groups and related groups—e.g., the group of parenthesized braids.

Plan:

- LD-systems
 - LD-systems from sets
 - LD-systems from braids
 - LD-systems from parenthesized braids
 - The geometry monoid of an algebraic law
 - The Laver tables

- A special case: LRD-systems \leadsto LD + RD: (xy)z = (xz)(yz)
 - **→** Typical examples: lattice inf and sup;

- mean:
$$x*y = (1-t)x + ty$$
.

- \rightsquigarrow All idempotent: xx = x.
- ullet For S an LRD-system, every element of S(SS) and of (SS)S is idempotent.

$$ightharpoonup \operatorname{Proof:}\ (x(xx))(x(xx)) =_{\operatorname{RD}} (xx)(xx) =_{\operatorname{LD}} x(xx). \quad \Box$$

ullet Proposition: If S is an LRD-system and at least one left (or right) translation of S is surjective, then S is idempotent.

- A special case: LRD-systems \leadsto LD + RD: (xy)z = (xz)(yz)
 - **→** Typical examples: lattice inf and sup;

- mean:
$$x*y = (1-t)x + ty$$
.

- \rightsquigarrow All idempotent: xx = x.
- ullet For S an LRD-system, every element of S(SS) and of (SS)S is idempotent.

$$ightharpoonup \operatorname{Proof:}\ (x(xx))(x(xx)) =_{\operatorname{RD}} (xx)(xx) =_{\operatorname{LD}} x(xx). \quad \Box$$

- ullet Proposition: If S is an LRD-system and at least one left (or right) translation of S is surjective, then S is idempotent.
- Proposition: (Belousov?, 1960's) Assume that (L, +) is a commutative Moufang loop and f, g are surjective endomorphisms s.t. f(x) + g(x) = x and x + f(x) lies in the nucleus of L, for each x. Then L equipped with x*y = f(x) + g(y) is a divisible LRD-system. Conversely, every divisible LRD-system is of this type.

• Typical example of an LD-system not RD: group equipped with $x*y = xyx^{-1}$.

- Typical example of an LD-system not RD: group equipped with $x*y = xyx^{-1}$.
 - → again idempotent;
 - **→→** actually, LD-quasigroup: left translations are bijections
 - (→ left multiplication group).

- Typical example of an LD-system not RD: group equipped with $x*y = xyx^{-1}$.
 - → again idempotent;
 - → actually, LD-quasigroup: left translations are bijections
 (→ left multiplication group).
- Lemma: Every LD-quasigroup satisfies (xx)y = xy.
 - ightharpoonup Proof: Assume xz=y. Then (xx)y=(xx)(xz)=x(xz)=xy. \square

- Typical example of an LD-system not RD: group equipped with $x*y = xyx^{-1}$.
 - → again idempotent;
 - → actually, LD-quasigroup: left translations are bijections
 (→ left multiplication group).
- Lemma: Every LD-quasigroup satisfies (xx)y = xy.
 - ightharpoonup Proof: Assume xz=y. Then (xx)y=(xx)(xz)=x(xz)=xy.
- Philosophy: General LD-systems ≠ LRD-systems and ≠ LD-quasigroups
 - → more reminiscent of semigroups:

cf. LD:
$$x(yz) = (xy)(xz)$$
 vs. associativity: $x(yz) = (xy)z$.

- \longrightarrow in particular free LD-system of rank n vs. free semigroup $(\mathbb{Z}_{>0},+)^n$:
 - the (transitive closure of) $(\exists z)(y=xz)$ defines a linear ordering in rank 1;
 - the rank n system is a lexicographical extension of the rank 1 system.

- In Set Theory, most notions are definable from €.
 - **→→** relevant notion of endomorphism = elementary embedding:

 $F: X \to X$ s.t. for each formula $\Phi(\vec{x})$ and \vec{a} in X, one has $\Phi(F(\vec{a})) \Leftrightarrow \Phi(\vec{a})$.

- → An e.e. preserves
 - -= (i.e., is injective): $F(a) = F(b) \Leftrightarrow a = b$;
 - $-\in : F(a) \in F(b) \Leftrightarrow a \in b;$
 - $-\subseteq:F(a)\subseteq F(b)\Leftrightarrow a\subseteq b$, as $x\subseteq y$ is $(\forall z)(z\in x\Rightarrow z\in y)$;
 - -U: $F(a \cup b) = F(a) \cup F(b)$, as $z = x \cup y$ is...
 - "being the image under" : (*) F(f(a)) = F(f)(F(a)), as y = f(x) is....

- In Set Theory, most notions are definable from €.
 - **→→** relevant notion of endomorphism = elementary embedding:

```
F: X \to X s.t. for each formula \Phi(\vec{x}) and \vec{a} in X, one has \Phi(F(\vec{a})) \Leftrightarrow \Phi(\vec{a}).
```

- **→** An e.e. preserves
 - -= (i.e., is injective): $F(a) = F(b) \Leftrightarrow a = b$;
 - $-\in : F(a) \in F(b) \Leftrightarrow a \in b;$
 - $-\subseteq:F(a)\subseteq F(b)\Leftrightarrow a\subseteq b$, as $x\subseteq y$ is $(\forall z)(z\in x\Rightarrow z\in y)$;
 - -U: $F(a \cup b) = F(a) \cup F(b)$, as $z = x \cup y$ is...
 - "being the image under" : (*) F(f(a)) = F(f)(F(a)), as y = f(x) is....
- A rank is a set R with the strange property that $f: R \to R$ implies $f \in R$.

- In Set Theory, most notions are definable from €.
 - **→** relevant notion of endomorphism = elementary embedding:

```
F: X \to X s.t. for each formula \Phi(\vec{x}) and \vec{a} in X, one has \Phi(F(\vec{a})) \Leftrightarrow \Phi(\vec{a}).
```

- → An e.e. preserves
 - -= (i.e., is injective): $F(a)=F(b)\Leftrightarrow a=b$;
 - $-\in : F(a) \in F(b) \Leftrightarrow a \in b;$
 - $-\subseteq: F(a)\subseteq F(b) \Leftrightarrow a\subseteq b$, as $x\subseteq y$ is $(\forall z)(z\in x\Rightarrow z\in y)$;
 - -U: $F(a \cup b) = F(a) \cup F(b)$, as $z = x \cup y$ is...
 - "being the image under": (*) F(f(a)) = F(f)(F(a)), as y = f(x) is....
- ullet A rank is a set R with the strange property that $f:R \to R$ implies $f \in R$.
- ullet If $m{R}$ is a rank and $m{F}, m{G}$ are e.e.'s of $m{R}$, we can apply $m{F}$ to $m{G}$ (because $G \in R$).
 - \leadsto Then (*) becomes F(G(H)) = F(G)(F(H)):
 - \longrightarrow EndR (all e.e.'s of R) equipped with -(-) is an LD-system.

• An LD-system is called acyclic if left divisibility has no cycle, i.e., $x \neq (\dots ((xy_1)y_2)\dots)y_r$. (\leadsto an idempotent LD-system is never acyclic: x = xx)

Proposition: (D., 1989) If there exists an acyclic LD-system, then the word problem of LD is decidable (→→ there is an algorithm that detects LD-equivalence).

• Proposition: (Laver, 1989) If not reduced to $\{id\}$, the LD-system EndR is acyclic.

- An LD-system is called acyclic if left divisibility has no cycle, i.e., $x \neq (\dots((xy_1)y_2)\dots)y_r$. (\leadsto an idempotent LD-system is never acyclic: x = xx)
 - Proposition: (D., 1989) If there exists an acyclic LD-system, then the word problem of LD is decidable (→→ there is an algorithm that detects LD-equivalence).

- Proposition: (Laver, 1989) If not reduced to $\{id\}$, the LD-system EndR is acyclic.
 - \leadsto Provided there exists a self-similar rank (\leadsto one s.t. $\mathrm{End}R \neq \{\mathrm{id}\}$), ...the word problem of LD is decidable.
 - → Do self-similar ranks exist? NO: an unprovable logical axiom ("large cardinal")
 → Find new examples...

• A 4-strand braid diagram:

• Braid diagram as a projection of a 3D braid:

• Projection: Isotopy of braid diagrams:

• Up to isotopy, n strand braids form a group: \leadsto Artin's braid group B_n

• Up to isotopy, n strand braids form a group: \leadsto Artin's braid group B_n

• Proposition: (Artin, 1925) The braid group B_n admits the presentation $\langle \sigma_1, \ldots, \sigma_{n-1} ; \sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i-j| \ge 2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for $|i-j| = 1 \rangle$.

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

 \leadsto Cf. Coxeter presentation of S_n : idem + $\sigma_i^2 = 1$.

- ullet The shift endomorphism of B_{∞} : $\partial: \sigma_i \mapsto \sigma_{i+1}$
- Definition: For x, y in B_{∞} , put $x * y := x \cdot \partial y \cdot \sigma_1 \cdot \partial y^{-1}$.

- ullet The shift endomorphism of B_{∞} : $\partial: \sigma_i \mapsto \sigma_{i+1}$
- Definition: For x, y in B_{∞} , put $x * y := x \cdot \partial y \cdot \sigma_1 \cdot \partial y^{-1}$.
 - Proposition: $(B_{\infty}, *)$ is an acyclic LD-system; under *, every braid (for instance 1) generates a free LD-subsystem.

- ullet The shift endomorphism of B_{∞} : $\partial: \sigma_i \mapsto \sigma_{i+1}$
- ullet Definition: For x,y in B_{∞} , put $x*y:=x\cdot\partial y\cdot\sigma_1\cdot\partial y^{-1}$.
 - Proposition: $(B_{\infty}, *)$ is an acyclic LD-system; under *, every braid (for instance 1) generates a free LD-subsystem.

- ullet Remark: For G a group, ∂ in $\operatorname{End} G$ and $x*y=x\cdot\partial y\cdot\sigma\cdot\partial x^{-1}$, then (G,*) is an LD-system iff $\sigma,\partial\sigma,\partial^2\sigma,\ldots$ generate an image of B_∞ .
- Question: Does $(B_{\infty}, *)$ include free LD-systems of rank ≥ 2 ?

- Many LD-systems admit a second operation o satisfying
 - $(x\circ y)*z=x*(y*z),\quad$ —i.e., $L_{x\circ y}=L_x\circ L_y,$ $x*(y\circ z)=(x*y)\circ (x*z)$ —i.e., L_x is a \circ -homomorphism
- If, in addition, is associative and one has $(x*y) \circ x = x \circ y$:
 - \leadsto Call this an LD-semigroup (an LD-monoid if 1 unit for \circ with x*1=1 and 1*x=x).

- Many LD-systems admit a second operation o satisfying
 - $(x \circ \overline{y})*z = x*(\overline{y}*z)$, —i.e., $L_{x \circ y} = L_x \circ L_y$,
 - $x*(y \circ z) = (x*y) \circ (x*z)$ —i.e., L_x is a \circ -homomorphism
- If, in addition, is associative and one has $(x*y) \circ x = x \circ y$:
 - \leadsto Call this an LD-semigroup (an LD-monoid if 1 unit for \circ with x*1=1 and 1*x=x).
 - ullet Proposition: For each LD-system S, there exists an LD-monoid \widehat{S} extending S and universal for this property.
 - ightharpoonup Proof: \widehat{S} := finite sequences from S, quotiented under $(x*y) \circ x = x \circ y$.

- Many LD-systems admit a second operation o satisfying
 - $(x \circ y)*z = x*(y*z)$, —i.e., $L_{x \circ y} = L_x \circ L_y$,
 - $x*(y \circ z) = (x*y) \circ (x*z)$ —i.e., L_x is a \circ -homomorphism
 - Call this an augmented LD-system (ALD-system).
- If, in addition, is associative and one has $(x*y) \circ x = x \circ y$:
 - \leadsto Call this an LD-semigroup (an LD-monoid if 1 unit for \circ with x*1=1 and 1*x=x).
 - ullet Proposition: For each LD-system S, there exists an LD-monoid \widehat{S} extending S and universal for this property.
 - ightharpoonup Proof: \widehat{S} := finite sequences from S, quotiented under $(x*y) \circ x = x \circ y$. \square
- "Real" question: For (S, *) an LD-system, is there \circ on S so that $(S, *, \circ)$ is an ALD-system (or an LD-monoid)?
 - **→** Case of group conjugation: OK with **○** = group product.
 - ightharpoonup Case of B_{∞} : impossible to have x*(y*z)=t*z.

- Ordinary braid diagrams: equidistant strands indexed by positive integers;
- Parenthesized braid diagrams: non-uniform (infinitesimal) distances:

- Ordinary braid diagrams: equidistant strands indexed by positive integers;
- Parenthesized braid diagrams: non-uniform (infinitesimal) distances:

→ Two types of elementary diagrams:

 \rightsquigarrow A new group, the group of parenthesized braids B_{\bullet} .

• Commutation relations:

• Commutation relations:

• Thompson's relations:

• Commutation relations:

• Thompson's relations:

• Braid relations:

$$a_i\sigma_i = \sigma_{i+1}\sigma_i a_i$$

$$\sum_{a_{i+1}\sigma_i = \sigma_i\sigma_{i+1}a_i}$$

- ullet shift endomorphism ∂ of B_ullet : $\sigma_i \mapsto \sigma_{i+1}, \quad a_i \mapsto a_{i+1}$
- Def: For x, y in B_{\bullet} , put $x * y := x \cdot \partial y \cdot \sigma_1 \cdot \partial x^{-1}$, and $x \circ y := x \cdot \partial y \cdot a_1$.

- ullet shift endomorphism $egin{aligned} ullet$ of B_ullet : $\sigma_i \mapsto \sigma_{i+1}, \quad a_i \mapsto \overline{a_{i+1}} \end{aligned}$
- Def: For x, y in B_{\bullet} , put $x * y := x \cdot \partial y \cdot \sigma_1 \cdot \partial x^{-1}$, and $x \circ y := x \cdot \partial y \cdot a_1$.

- ullet shift endomorphism $lack{\partial}$ of B_ullet : $\sigma_i \mapsto \sigma_{i+1}, \quad a_i \mapsto a_{i+1}$
- Def: For x, y in B_{\bullet} , put $x * y := x \cdot \partial y \cdot \sigma_1 \cdot \partial x^{-1}$, and $x \circ y := x \cdot \partial y \cdot a_1$.

• Proposition: $(B_{ullet}, *, \circ)$ is an acyclic ALD-system; under * and \circ , every element of B_{ullet} (for instance 1) generates a free ALD-subsystem.

→ OK, but where do these definitions come from ???

• Associate with LD a certain monoid that captures its geometry

→→ What means applying LD to a term (= expression)?

◆ Associate with LD a certain monoid that captures its geometry
 → What means applying LD to a term (= expression) ?

→ → Depends on the position and the orientation

◆ Associate with LD a certain monoid that captures its geometry
 → What means applying LD to a term (= expression) ?

→ → Depends on the position and the orientation

• Def: Σ_{α} := the (partial) operator "apply LD at address α in the \rightarrow direction";

◆ Associate with LD a certain monoid that captures its geometry
 → What means applying LD to a term (= expression) ?

- **→ → Depends on the position and the orientation**
- Def: Σ_{α} := the (partial) operator "apply LD at address α in the \rightarrow direction";
- Def: \mathcal{G}_{LD} ("the geometry monoid of LD") := monoid generated by all $\Sigma_{\alpha}^{\pm 1}$.
- ullet Fact: Two terms t,t' are LD-equivalent iff some element of ${f g}_{ t LD}$ maps t to t' .

• Same approach for each algebraic law (or family of algebraic laws):

→ Example: associativity

- Same approach for each algebraic law (or family of algebraic laws):
 - **→ Example: associativity**

• Here, the geometry monoid acts transitively and the orbits are finite;

 $\leadsto \mathcal{G}_{\mathsf{A}}$ is nearly a group: $\mathcal{G}_{\mathsf{A}}/\!\!\approx$ is R.Thompson's group F (\leadsto dyadic homeo's of [0,1]).

"to agree on at least one term"

- How to use \mathcal{G}_{LD} to construct an LD operation ?
 - Main idea: Associate with each term t an element \hat{t} of \mathcal{G}_{LD} so that $t \equiv_{LD} t \Leftrightarrow$ some relation connects \hat{t} and $\hat{t'} \leadsto$ typically: $\hat{t}^{-1} \cdot \hat{t'} \in$ some sub(group).

- How to use \mathcal{G}_{LD} to construct an LD operation ?
 - Main idea: Associate with each term t an element \hat{t} of g_{LD} so that $t \equiv_{LD} t \Leftrightarrow$ some relation connects \hat{t} and $\hat{t'} \leadsto$ typically: $\hat{t}^{-1} \cdot \hat{t'} \in$ some sub(group).
- Lemma: For every term t in one variable x, we have $x^n \equiv_{LD} t * x^{n-1}$ for n large enough.
 - \leadsto Use induction on t: OK for t=x; assume $t=t_1*t_2$. Then

- How to use \mathcal{G}_{LD} to construct an LD operation ?
 - $ightharpoonup ext{Main idea}$: Associate with each term t an element \hat{t} of \mathcal{G}_{LD} so that $t \equiv_{LD} t \Leftrightarrow$ some relation connects \hat{t} and $\hat{t'} \leadsto$ typically: $\hat{t}^{-1} \cdot \hat{t'} \in$ some sub(group).
- Lemma: For every term t in one variable x, we have $x^n \equiv_{LD} t * x^{n-1}$ for n large enough.
 - \leadsto Use induction on t: OK for t=x; assume $t=t_1*t_2$. Then

An operator \widehat{t} of \mathcal{G}_{LD} that maps x^n to $t*x^{n-1}$: then $\widehat{x}=\operatorname{id}$, and $\widehat{t_1*t_2}=\widehat{t_1}*\widehat{t_2}$ with $f*g=f\cdot\partial_r g\cdot\Sigma_1\cdot\partial_r f^{-1}$.

"shift to the right subterm"

ullet Assume $t \equiv_{\mathrm{LD}} t'$. Hence there exists f in $\mathcal{G}_{\mathrm{LD}}$ s.t.

ullet Assume $t\equiv_{
m LD} t'$. Hence there exists f in ${\cal G}_{
m LD}$ s.t.

ullet Assume $t\equiv_{ extsf{LD}} t'$. Hence there exists f in ${rac{ extsf{S}_{ extsf{LD}}}{ extsf{LD}}}$ s.t.

$$\longrightarrow \widehat{t}^{-1}\widehat{t'} \in \partial_{\ell}(\mathcal{G}_{LD}).$$

• Proposition: * induces an LD-operation on $\frac{\mathcal{G}_{LD}}{\partial_{\ell}(\mathcal{G}_{LD})}$.

 \rightsquigarrow What is $\mathcal{G}_{LD}/\partial_{\ell}(\mathcal{G}_{LD})$?

ullet Relations between the operators Σ_{α} ? Lattice relations $\Sigma_{\alpha} \cdots = \Sigma_{\beta} \cdots$

ullet Relations between the operators Σ_{α} ? Lattice relations $\Sigma_{\alpha} \cdots = \Sigma_{\beta} \cdots$

ullet Relations between the operators Σ_{α} ? Lattice relations $\Sigma_{\alpha} \cdots = \Sigma_{\beta} \cdots$

 \bullet Relations between the operators Σ_{α} ? Lattice relations $\Sigma_{\alpha} \cdots = \Sigma_{\beta} \cdots$

• Relations between the operators Σ_{α} ? Lattice relations $\Sigma_{\alpha} \cdots = \Sigma_{\beta} \cdots$

$$\longrightarrow \Sigma_1 \cdot \Sigma_2 \cdot \Sigma_1 = \Sigma_2 \cdot \Sigma_1 \cdot \Sigma_2 \cdot \partial_{\ell}(\Sigma_1)$$

• When $\partial_{\ell}(\mathcal{G}_{LD})$ is collapsed: $\sigma_1 \cdot \sigma_2 \cdot \sigma_1 = \sigma_2 \cdot \sigma_1 \cdot \sigma_2 \leadsto$ the braid relation

$$ightharpoonup \mathcal{G}_{LD}/\partial_{\ell}(\mathcal{G}_{LD})=B_{\infty}$$

ullet Relations between the operators $A_{oldsymbol{lpha}}$? Lattice relations $A_{oldsymbol{lpha}} \cdots = A_{oldsymbol{eta}} \cdots$

ullet Relations between the operators $A_{oldsymbol{lpha}}$? Lattice relations $A_{oldsymbol{lpha}} \cdots = A_{oldsymbol{eta}} \cdots$

 $\leadsto A_1 \cdot A_1 = A_2 \cdot A_1 \cdot \partial_{\ell}(A_1)$: "geometric presentation" of R. Thompson's group F.

		1	2	 N	
	1	2			
	2	3			
h					and try to construct an LD-table

• Start with

$$egin{array}{c|c} \vdots & N-1 & N \\ N & 1 \end{array}$$

		1	2	 N	
	1	2			
4	2	3			
h	_				and try to construct an LD-ta

• Start with

$$egin{array}{c|c} \vdots & & & \\ N-1 & N & & \\ N & & 1 & \\ \end{array}$$

		1	2	 N	
	1	2			
	2	3			
h					and try to construct an LD-table.

Start with

$$egin{array}{c|c} \vdots & N-1 & N \ N & 1 \ \end{array}$$

		1	2	 N	
	1	2			
	2	3			
h					and try to construct an LD-table

Start with

$$egin{array}{c|c} \vdots & N-1 & N \ N & 1 \ \end{array}$$

		1	2	 N	
	1	2			
4	2	3			
h	_				and try to construct an LD-ta

Start with

$$egin{array}{c|c} dots & & & & & \\ N-1 & N & & 1 & & & \\ N & & 1 & & & & \end{array}$$

		1	2	 N	
	1	2			
	2	3			
h					and try to construct an LD-table

• Start with

$$egin{array}{c|c} dots & & & & & \\ N-1 & N & & 1 & & & \\ N & & 1 & & & & \end{array}$$

→→ Example:

1	2	3	4
2			
3	4	3	4
4	4	4	4
1	2	3	4
	1 2 3 4 1		2 3 4 3

	1	2	 N	
1	2			
2	3			
h <mark>.</mark>				and try to construct an LD-ta

Start with

$$egin{array}{c|c} \vdots & & & & \\ N-1 & N & & 1 \\ \hline N & & 1 & \end{array}$$

→→ Example:

	T	4	3	4
1	2		2	4
2	3	4	3	4
3	4	4	4	4
4	1	2	3	4

		1	2	 N					
	1	2							
	2	3							
Start with	:				a	nd 1	ry to	o co	nstruct an LD-table
	:								
	N-1 N	N							
	N	1							
				1		2	3	4	

 \longrightarrow at most one solution for each N;

 \rightarrow actually an LD-table iff N is a power of 2.

• Def: The n-th Laver table A_n = the table with 2^n elements.

- Each row in A_n is periodic, with period a power of 2;
 - A_n is the projection of A_{n+1} mod. 2^n .
 - \rightsquigarrow period of the first row in $A_{n+1} \geqslant$ period of the first row in A_n .

- Each row in A_n is periodic, with period a power of 2;
 - A_n is the projection of A_{n+1} mod. 2^n .
 - \longrightarrow period of the first row in $A_{n+1} \ge$ period of the first row in A_n .

• Proposition: (Laver 1995) Assume that there exists a self-similar rank. Then the period of the first row in A_n goes to ∞ with n.

- Each row in A_n is periodic, with period a power of 2;
 - A_n is the projection of A_{n+1} mod. 2^n .
 - \longrightarrow period of the first row in $A_{n+1} \geqslant$ period of the first row in A_n .

• Proposition: (Laver 1995) Assume that there exists a self-similar rank. Then the period of the first row in A_n goes to ∞ with n.

 \leadsto Open problem: Prove that the period of the first row in A_n goes to ∞ with n!

- P.D., Braids and self-distributivity, PM 192, Birkhauser (1999)
- P.D., I.Dynnikov, D.Rolfsen, B.Wiest, Why are braids orderable?, PS 22, Soc. Math. France (2002)
- ◆ http://www.math.unicaen.fr/~dehornoy