

Laboratoire de Mathématiques Nicolas Oresme, Caen

Laboratoire de Mathématiques Nicolas Oresme, Caen

• A problem of medium difficulty:

Laboratoire de Mathématiques Nicolas Oresme, Caen

 A problem of medium difficulty: many efficient solutions,

Laboratoire de Mathématiques Nicolas Oresme, Caen

A problem of medium difficulty:
 many efficient solutions,
 but all involving (requiring)
 some nontrivial theory behind.

ullet Artin's braid group $m{B_n}: \left<\sigma_1,...,\sigma_{n-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{for } |i-j| \geqslant 2 \ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \quad \text{for } |i-j| \geqslant 1 \
ight>$

ullet Artin's braid group $m{B_n}: \left<\sigma_1,...,\sigma_{n-1} \mid \sigma_i\sigma_j = \sigma_j\sigma_i & \text{for } |i-j| \geqslant 2 \ \sigma_i\sigma_j\sigma_i = \sigma_j\sigma_i\sigma_j & \text{for } |i-j| = 1 \end{array} \right>$ $\simeq \{ ext{ braid diagrams } \}/ ext{ isotopy}$

ullet Artin's braid group $m{B_n}: \left<\sigma_1,...,\sigma_{n-1} \mid \sigma_i\sigma_j = \sigma_j\sigma_i & ext{for } |i-j| \geqslant 2 \ \sigma_i\sigma_j\sigma_i = \sigma_j\sigma_i\sigma_j & ext{for } |i-j| = 1 \
ight> \ \simeq \{ ext{ braid diagrams } \}/ ext{ isotopy} \ \simeq \text{mapping class group } (D_n) \ \sigma_i & \longleftrightarrow \ \begin{pmatrix} 1 & 2 & \cdots & i & i+1 \ & 2 & \cdots & i & i+1 \ & 2 & \cdots & i & i+1 \ \end{pmatrix}$

ullet Artin's braid group $m{B_n}: \left<\sigma_1,...,\sigma_{n-1} \mid m{\sigma_i^{}}\sigma_j^{} = \sigma_j^{}\sigma_i^{} \quad \text{for } |i-j| \geqslant 2 \ \sigma_i^{}\sigma_j^{}\sigma_i^{} = \sigma_j^{}\sigma_i^{}\sigma_i^{}\sigma_j^{} \quad \text{for } |i-j| = 1 \ > 0 \ \sigma_i^{}\sigma_j^{}\sigma_j^{}\sigma_i^{} = \sigma_j^{}\sigma_i^{}\sigma_j^{}\sigma_j^{}\sigma_j^{} \quad \text{for } |i-j| = 1 \ > 0 \ \sigma_i^{}\sigma_j^{}\sigma_$ \simeq $\{$ braid diagrams $\}/$ isotopy \simeq mapping class group (D_n)

• Isotopy problem of braids = word problem of B_n = decide isotopy of 2 braid diagrams, *i.e.*, equivalence of 2 braid words

ullet Artin's braid group B_n : $\left\langle \sigma_1,...,\sigma_{n-1} \mid \sigma_i\sigma_j = \sigma_j\sigma_i \quad \text{for } |i-j|\geqslant 2 \ \right\rangle$ \simeq { braid diagrams }/ isotopy $\sigma_i \iff 1 \quad 2 \quad i \quad i+1 \quad n \quad \cdots$ \simeq mapping class group (D_n)

• Isotopy problem of braids = word problem of B_n = decide isotopy of 2 braid diagrams, *i.e.*, equivalence of 2 braid words decide triviality of 1 braid diagram, *i.e.*, equivalence of 1 braid word to ε

ullet Artin's braid group B_n : $\left\langle \sigma_1,...,\sigma_{n-1} \mid \sigma_i\sigma_j = \sigma_j\sigma_i \quad \text{for } |i-j|\geqslant 2 \ \right\rangle$ \simeq { braid diagrams }/ isotopy $\sigma_i \iff 1 \quad 2 \quad i \quad i+1 \quad n \quad \cdots$ \simeq mapping class group (D_n)

• Isotopy problem of braids = word problem of B_n = decide isotopy of 2 braid diagrams, *i.e.*, equivalence of 2 braid words decide triviality of 1 braid diagram, *i.e.*, equivalence of 1 braid word to ε

• Consider (pure) braids, and obtain a unique decomposition using combing:

• Consider (pure) braids, and obtain a unique decomposition using combing:

$$\uparrow \ 1 o PB_{m n} o B_{m n} o 1$$

Consider (pure) braids, and obtain a unique decomposition using combing:

"Remove the nth strand, comb, then reintroduce the nth strand".

Consider (pure) braids, and obtain a unique decomposition using combing:

"Remove the nth strand, comb, then reintroduce the nth strand".

• Behind: PB_n = semi-direct product of free groups:

$$PB_n \cong PB_{n-1} \rtimes \pi_1(D_{n-1})$$

Consider (pure) braids, and obtain a unique decomposition using combing:

"Remove the $m{n}$ th strand, comb, then reintroduce the $m{n}$ th strand".

• Behind: PB_n = semi-direct product of free groups:

$$PB_n \cong PB_{n-1} \rtimes \pi_1(D_{n-1})$$

a free group of rank n-1

SOLUTION 2: AUTOMORPHISMS OF A FREE GROUP

(E. Artin, \sim 1925)

SOLUTION 2: AUTOMORPHISMS OF A FREE GROUP

(E. Artin, \sim 1925)

ullet $B_n\cong \mathsf{mapping}$ class group of a disk with n punctures:

SOLUTION 2: AUTOMORPHISMS OF A FREE GROUP

(E. Artin, \sim 1925)

ullet $B_{m{n}}\cong$ mapping class group of a disk with $m{n}$ punctures:

ullet $B_n\cong \mathsf{mapping}$ class group of a disk with n punctures:

ullet $B_{m{n}}\cong$ mapping class group of a disk with $m{n}$ punctures:

ullet $B_n\cong \mathsf{mapping}$ class group of a disk with n punctures:

ullet $B_{m{n}}\cong$ mapping class group of a disk with $m{n}$ punctures:

ullet $B_{m{n}}\cong$ mapping class group of a disk with $m{n}$ punctures:

ullet $B_n\cong \mathsf{mapping}$ class group of a disk with n punctures:

an n strand braid = the movie of the dance of n points in a disk

 \Rightarrow = a homeomorphism of D_n fixing ∂D_n and {punctures}, up to homotopy.

ullet $B_n\cong \mathsf{mapping}$ class group of a disk with n punctures:

an n strand braid = the movie of the dance of n points in a disk

 \Longrightarrow = a homeomorphism of D_n fixing ∂D_n and $\{$ punctures $\}$, up to homotopy.

ullet Whence: action of B_n on $\pi_1(D_n)$, a free group of rank n.

ullet $B_n\cong \mathsf{mapping}$ class group of a disk with n punctures:

- $ightharpoonup = \operatorname{ahomeomorphism} \operatorname{of} \overline{D}_n$ fixing ∂D_n and $\{\operatorname{punctures}\}$, up to homotopy.
- ullet Whence: action of B_n on $\pi_1(D_n)$, a free group of rank n.

ullet $B_n\cong \mathsf{mapping}$ class group of a disk with n punctures:

an n strand braid = the movie of the dance of n points in a disk

 \Longrightarrow = a homeomorphism of D_n fixing ∂D_n and {punctures}, up to homotopy.

ullet Whence: action of B_n on $\pi_1(D_n)$, a free group of rank n.

ullet $B_n\cong \mathsf{mapping}$ class group of a disk with n punctures:

- ightharpoonup = a homeomorphism of D_n fixing ∂D_n and {punctures}, up to homotopy.
- ullet Whence: action of B_n on $\pi_1(D_n)$, a free group of rank n.
 - read on loops:

$$\sigma_{\!\!1}\colon x_i \mapsto \left\{egin{array}{ll} x_1x_2x_1^{-1} & ext{for } i=1, \ \end{array}
ight.$$

ullet $B_n\cong \mathsf{mapping}$ class group of a disk with n punctures:

- ightharpoonup = a homeomorphism of D_n fixing ∂D_n and {punctures}, up to homotopy.
- ullet Whence: action of B_n on $\pi_1(D_n)$, a free group of rank n.
 - read on loops:

$$\sigma_{\!\!1}\colon x_i \mapsto egin{cases} x_1x_2x_1^{-1} & ext{for } i=1, \ x_1 & ext{for } i=2, \end{cases}$$

ullet $B_n\cong \mathsf{mapping}$ class group of a disk with n punctures:

- ightharpoonup = a homeomorphism of D_n fixing ∂D_n and {punctures}, up to homotopy.
- ullet Whence: action of B_n on $\pi_1(D_n)$, a free group of rank n.
- → read on loops:

$$\sigma_{\!\!1}\colon x_i \mapsto egin{cases} x_1x_2x_1^{-1} & ext{for } i=1, \ x_1 & ext{for } i=2, \ x_i & ext{for } i\geqslant 3. \end{cases}$$

ullet $B_n\cong \mathsf{mapping}$ class group of a disk with n punctures:

an n strand braid = the movie of the dance of n points in a disk

- \implies = a homeomorphism of D_n fixing ∂D_n and {punctures}, up to homotopy.
- ullet Whence: action of B_n on $\pi_1(D_n)$, a free group of rank n.
- read on loops:

$$\sigma_{\!\!1}\colon x_i \mapsto egin{cases} x_1x_2x_1^{-1} & ext{for } i=1, \ x_1 & ext{for } i=2, \ x_i & ext{for } i\geqslant 3. \end{cases}$$

• Then: $B_n \hookrightarrow \operatorname{Aut}(F_n)$, hence solution to the braid isotopy problem.

SOLUTION 3: GREEDY NORMAL FORM

(Garside, 1967, Deligne, Adjan, Thurston, Morton-El Rifai...)

(Garside, 1967, Deligne, Adjan, Thurston, Morton-El Rifai...)

ullet The group B_n is a group of fractions for the monoid B_n^+ ($:=\langle\dots
angle^+$)

(Garside, 1967, Deligne, Adjan, Thurston, Morton-El Rifai...)

ullet The group B_n is a group of fractions for the monoid B_n^+ ($:=\langle \dots
angle^+$) + there exists some "universal" denominator Δ_n .

SOLUTION 3: GREEDY NORMAL FORM

(Garside, 1967, Deligne, Adjan, Thurston, Morton-El Rifai...)

- ullet The group B_n is a group of fractions for the monoid B_n^+ ($:=\langle \dots
 angle^+$) + there exists some "universal" denominator Δ_n .
 - \leadsto more precisely: (B_n^+, Δ_n) s.t.
 - B_n^+ is cancellative, has no invertible element, admits lcm's,
 - left divisors $(\Delta_n)=$ right divisors (Δ_n) , and generate B_n^+ .

- ullet The group B_n is a group of fractions for the monoid B_n^+ ($:=\langle\dots
 angle^+$) + there exists some "universal" denominator Δ_n .
 - \leadsto more precisely: (B_n^+, Δ_n) s.t.
 - B_n^+ is cancellative, has no invertible element, admits lcm's,
 - left divisors (Δ_n) =right divisors (Δ_n) , and generate B_n^+ . " Δ_n is a Garside element in B_n^+ "
 - \leadsto B_n is a Garside group.

- ullet The group B_n is a group of fractions for the monoid B_n^+ ($:= \langle \dots \rangle^+$) + there exists some "universal" denominator Δ_n .
 - \leadsto more precisely: (B_n^+, Δ_n) s.t.
 - $\boldsymbol{B_n^+}$ is cancellative, has no invertible element, admits lcm's,
 - left divisors (Δ_n) =right divisors (Δ_n) , and generate B_n^+ . " Δ_n is a Garside element in B_n^+ "
 - \leadsto B_n is a Garside group.
- ullet Then: Every element of B_n has a unique expression $x_p^{-1}...x_1^{-1}y_1...y_q$ with

- ullet The group B_n is a group of fractions for the monoid B_n^+ ($:=\langle\dots
 angle^+$) + there exists some "universal" denominator Δ_n .
 - \leadsto more precisely: (B_n^+, Δ_n) s.t.
 - B_n^+ is cancellative, has no invertible element, admits lcm's,
 - left divisors (Δ_n) =right divisors (Δ_n) , and generate B_n^+ . " Δ_n is a Garside element in B_n^+ "
 - \longrightarrow B_n is a Garside group.
- ullet Then: Every element of B_n has a unique expression $x_p^{-1}...x_1^{-1}y_1...y_q$ with $x_1,...,x_p,y_1,...,y_p$ divisors of Δ_n ,

- ullet The group B_n is a group of fractions for the monoid B_n^+ ($:=\langle\dots
 angle^+$) + there exists some "universal" denominator Δ_n .
 - \leadsto more precisely: (B_n^+, Δ_n) s.t.
 - B_n^+ is cancellative, has no invertible element, admits lcm's,
 - left divisors (Δ_n) =right divisors (Δ_n) , and generate B_n^+ . " Δ_n is a Garside element in B_n^+ "
 - \leadsto B_n is a Garside group.
- ullet Then: Every element of B_n has a unique expression $x_p^{-1}...x_1^{-1}y_1...y_q$ with
 - $x_1,...,x_p,y_1,...,y_p$ divisors of Δ_n ,
 - $x_i = \gcd(x_i x_{i+1}, \Delta_n)$ for each i, id. for y_j 's, and $\gcd(x_1, y_1) = 1$.

(can be computed in quadratic time, for each fixed n)

- ullet The group B_n is a group of fractions for the monoid B_n^+ ($:=\langle\dots
 angle^+$) + there exists some "universal" denominator Δ_n .
 - \leadsto more precisely: (B_n^+, Δ_n) s.t.
 - B_n^+ is cancellative, has no invertible element, admits lcm's,
 - left divisors (Δ_n) =right divisors (Δ_n) , and generate B_n^+ . " Δ_n is a Garside element in B_n^+ "
 - \longrightarrow B_n is a Garside group.
- ullet Then: Every element of B_n has a unique expression $x_p^{-1}...x_1^{-1}y_1...y_q$ with
 - $x_1,...,x_p,y_1,...,y_p$ divisors of Δ_n ,
 - $x_i=\gcd(x_ix_{i+1},\Delta_n)$ for each i, id. for y_j 's, and $\gcd(x_1,y_1)=1$. (can be computed in quadratic time, for each fixed n)
- ullet Behind: automatic structure of B_n (Cannon, Thurston)

ullet Say that $w \curvearrowright w'$ holds if w' obtained from w by (iteratively)

- ullet Say that $w \curvearrowright w'$ holds if w' obtained from w by (iteratively)
 - deleting some $\sigma_i^{-1}\sigma_i^{}$, or

- ullet Say that $w \curvearrowright w'$ holds if w' obtained from w by (iteratively)
 - deleting some $\sigma_i^{-1}\sigma_i$, or
 - replacing some $\sigma_i^{-1}\sigma_j^-$ with $\sigma_j^-\sigma_i^{-1}$ \uparrow case $|i-j|\geqslant 2$

- ullet Say that $w \curvearrowright w'$ holds if w' obtained from w by (iteratively)
 - deleting some $\sigma_i^{-1}\sigma_i$, or

- ullet Say that $w \curvearrowright w'$ holds if w' obtained from w by (iteratively)
 - deleting some $\sigma_i^{-1}\sigma_i$, or
- ullet Then: Every braid word redresses to a unique word of the form uv^{-1} with u,v positive (= no σ_i^{-1});

- ullet Say that $w \curvearrowright w'$ holds if w' obtained from w by (iteratively)
 - deleting some $\sigma_i^{-1}\sigma_i$, or
- Then: Every braid word redresses to a unique word of the form uv^{-1} with u,v positive (= no σ_i^{-1});
 - The braid word w represents 1 in B_n iff, for some positive u,v, $w \curvearrowright uv^{-1}$ and $v^{-1}u \curvearrowright \varepsilon$ (= empty word).

- ullet Say that $w \curvearrowright w'$ holds if w' obtained from w by (iteratively)
 - deleting some $\sigma_i^{-1}\sigma_i$, or
- ullet Then: Every braid word redresses to a unique word of the form uv^{-1} with u,v positive (= no σ_i^{-1});
 - The braid word w represents 1 in B_n iff, for some positive u,v, $w \curvearrowright uv^{-1}$ and $v^{-1}u \curvearrowright \varepsilon$ (= empty word).
- Behind: Garside theory again.

- Free group reduction: delete $\sigma_i \sigma_i^{-1}$ or $\sigma_i^{-1} \sigma_i$;
 - \leadsto if w reduces to ε , then w represents 1; no converse, as B_n not free.

- Free group reduction: delete $\sigma_i \sigma_i^{-1}$ or $\sigma_i^{-1} \sigma_i$;
 - \leadsto if w reduces to ε , then w represents 1; no converse, as B_n not free.
- Nevertheless:

- Free group reduction: delete $\sigma_i \sigma_i^{-1}$ or $\sigma_i^{-1} \sigma_i$;
 - \leadsto if w reduces to ε , then w represents 1; no converse, as B_n not free.
- Nevertheless:

- ullet Free group reduction: delete $\sigma_i \sigma_i^{-1}$ or $\sigma_i^{-1} \sigma_i$;
 - \leadsto if w reduces to ε , then w represents 1; no converse, as B_n not free.
- Nevertheless:

ullet Then: A braid word represents ${f 1}$ iff it reduces to ${m arepsilon}.$

- ullet Free group reduction: delete $\sigma_i \sigma_i^{-1}$ or $\sigma_i^{-1} \sigma_i$;
 - \leadsto if w reduces to ε , then w represents 1; no converse, as B_n not free.
- Nevertheless:

ullet Then: A braid word represents 1 iff it reduces to arepsilon.

(extremely efficient in practice)

- ullet Free group reduction: delete $\sigma_i \sigma_i^{-1}$ or $\sigma_i^{-1} \sigma_i$;
 - \leadsto if w reduces to ε , then w represents 1; no converse, as B_n not free.
- Nevertheless:

ullet Then: A braid word represents ${f 1}$ iff it reduces to ${m arepsilon}$.

(extremely efficient in practice)

• Behind: Garside theory + order properties.

ullet Cayley graph of B_n : vertices = braids; edges: $x_{ullet} \xrightarrow{\sigma_i} y$ for $y = x\sigma_i$.

- ullet Cayley graph of B_n : vertices = braids; edges: $x_{ullet} \xrightarrow{\sigma_i} y$ for $y = x\sigma_i$.
- ightharpoonup extstyle extstyle

- ullet Cayley graph of B_n : vertices = braids; edges: $x_{ullet} \xrightarrow{\sigma_i} y$ for $y = x \sigma_i$.
- ightharpoonup extstyle extstyle

(in the sense of the monoid B_n^+)

Example: Cayley
$$(\Delta_3)=1$$
 σ_1 σ_2 Δ_3 σ_2 σ_2

- ullet Cayley graph of B_n : vertices = braids; edges: $x_{ullet} \xrightarrow{\sigma_i} y$ for $y = x\sigma_i$.
- \hookrightarrow Cayley (Δ_n^d) := restriction of the Cayley graph of B_n to divisors of Δ_n^d

(in the sense of the monoid B_n^+)

Example: Cayley
$$(\Delta_3)=1$$
 σ_1 σ_2 Δ_3 σ_2 σ_2

ullet Word drawn from x in $\mathsf{Cayley}(\Delta_n^d)$:

- ullet Cayley graph of B_n : vertices = braids; edges: $x_ullet o_i o_i o_j$ for $y=x\sigma_i$.
- ightharpoonup Cayley (Δ_n^d) := restriction of the Cayley graph of $\overline{B_n}$ to divisors of $\overline{\Delta_n^d}$

(in the sense of the monoid B_n^+)

Example: Cayley
$$(\Delta_3)=1$$
 σ_1 σ_1 σ_2 σ_3 σ_2 σ_3 σ_2 σ_3 σ_3

ullet Word drawn from x in $\mathsf{Cayley}(\Delta_n^d)\colon extbf{e.g.,}\ \Big\{egin{array}{c} \sigma_1\sigma_2\sigma_2^{-1} & \mathsf{drawn} \ \mathsf{from}\ 1, \ \mathsf{drawn}\ \mathsf{drawn}\ \mathsf{from}\ 1, \ \mathsf{drawn}\ \mathsf{dr$

- ullet Cayley graph of B_n : vertices = braids; edges: $x ullet \overline{\sigma_i} ullet y$ for $y = x \sigma_i$.
- ightharpoonup extstyle extstyle

Example: Cayley $(\Delta_3)=1$ σ_1 σ_2 σ_1 σ_2 σ_3 σ_2 σ_3 σ_2 σ_3 σ_2 σ_3 σ_2 σ_3 σ_3 σ_2 σ_3 σ_3

ullet Word drawn from x in $\mathsf{Cayley}(\Delta^d_n)$: e.g., $\left\{egin{array}{l} \sigma_1 \sigma_2 \sigma_2^{-1} & \mathsf{drawn from } 1, \\ \sigma_1^2 & \mathsf{not drawn from } 1. \end{array}
ight.$

- ullet Cayley graph of B_n : vertices = braids; edges: $x_ullet \overline{Q_i}$ for $y=x_{\overline{Q_i}}$.
- ightharpoonup extstyle extstyle

Example: Cayley $(\Delta_3)=1$ σ_2 (in the sense of the monoid B_n^+)

• Word drawn from x in $\mathsf{Cayley}(\Delta_n^d)$: e.g., $\left\{ \begin{array}{l} \sigma_1 \sigma_2 \sigma_2^{-1} & \mathsf{drawn from } 1, \\ \sigma_1^2 & \mathsf{not drawn from } 1. \end{array} \right.$

• Lemma: (i) Every n strand braid word is drawn in $Cayley(\Delta_n^d)$ for $d\gg 0$;

- ullet Cayley graph of B_n : vertices = braids; edges: $x_{ullet} \overline{\bullet}_i$ for $y = x\sigma_i$.
- ightharpoonup extstyle extstyle

Example: Cayley $(\Delta_3)=1$ σ_2 (in the sense of the monoid B_n^+)

ullet Word drawn from x in $\mathsf{Cayley}(\Delta_n^d)$: e.g., $\left\{egin{array}{c} \sigma_1 \sigma_2 \sigma_2^{-1} \ \sigma_1^2 \end{array} \right\}$ not drawn from 1.

• Lemma: (i) Every n strand braid word is drawn in $Cayley(\Delta_n^d)$ for $d\gg 0$; (ii) The set of words drawn in $Cayley(\Delta_n^d)$ is closed under handle reduction.

- ullet Cayley graph of B_n : vertices = braids; edges: $x_{ullet} \overline{\bullet}_i$ for $y = x\sigma_i$.
- ightharpoonup extstyle extstyle

Example: Cayley $(\Delta_3)=1$ σ_2 (in the sense of the monoid B_n^+)

- ullet Word drawn from x in $\mathsf{Cayley}(\Delta_n^d)$: e.g., $\left\{egin{array}{c} \sigma_1 \sigma_2 \sigma_2^{-1} \ \sigma_1^2 \end{array} \right\}$ not drawn from 1.
- Lemma: (i) Every n strand braid word is drawn in $Cayley(\Delta_n^d)$ for $d\gg 0$; (ii) The set of words drawn in $Cayley(\Delta_n^d)$ is closed under handle reduction.
- → a boundedness result:

- ullet Cayley graph of B_n : vertices = braids; edges: $x_{ullet} \xrightarrow{\sigma_i} y$ for $y = x \sigma_i$.
- ightharpoonup extstyle extstyle

Cayley
$$(\Delta_n^d)$$
 := restriction of the Cayley graph of B_n to divisors of Δ_n^d (in the sense of the monoid B_n^+) Example: Cayley $(\Delta_3)=1$ σ_2 σ_2 σ_3

- Word drawn from x in $\mathsf{Cayley}(\Delta_n^d)$: e.g., $\left\{ egin{array}{l} \sigma_1 \sigma_2 \sigma_2^{-1} & \text{drawn from } 1, \\ \sigma_1^2 & \text{not drawn from } 1. \end{array} \right.$
- Lemma: (i) Every n strand braid word is drawn in $Cayley(\Delta_n^d)$ for $d\gg 0$; (ii) The set of words drawn in $Cayley(\Delta_n^d)$ is closed under handle reduction.
- → a boundedness result: when reduction is performed, all words are drawn in some fixed finite subgraph of the Cayley graph.

ullet Let $w_0,w_1,...$ be a reduction sequence, all words drawn in $\mathsf{Cayley}(\Delta_n^d)$;

ullet For an induction on n, enough to prove: $\#\sigma_{\!\! 1}$ -handles eventually \searrow .

- ullet For an induction on n, enough to prove: $\#\sigma_1$ -handles eventually \searrow .
- ullet When a $\sigma_{\!\scriptscriptstyle 1}$ -handle is reduced, new handles may appear, but

- ullet For an induction on n, enough to prove: $\#\sigma_1$ -handles eventually \searrow .
- ullet When a $\sigma_{\!\scriptscriptstyle 1}$ -handle is reduced, new handles may appear, but
 - at most 1 new σ_1 -handle (\leadsto # σ_1 -handles non-increasing)

- ullet For an induction on n, enough to prove: $\#\sigma_1$ -handles eventually \searrow .
- ullet When a $\sigma_{\!\scriptscriptstyle 1}$ -handle is reduced, new handles may appear, but
 - at most 1 new σ_1 -handle (\leadsto # σ_1 -handles non-increasing)
 - there exists a "transversal witness word" u drawn in $\mathsf{Cayley}(\Delta_n^d)$

ullet Let $w_0, w_1, ...$ be a reduction sequence, all words drawn in $\mathsf{Cayley}(\Delta_n^d)$;

- ullet For an induction on n, enough to prove: $\#\sigma_1$ -handles eventually \searrow .
- ullet When a $\sigma_{\!\scriptscriptstyle 1}$ -handle is reduced, new handles may appear, but
 - at most 1 new $\sigma_{\!\scriptscriptstyle 1}$ -handle (\leadsto # $\sigma_{\!\scriptscriptstyle 1}$ -handles non-increasing)
 - there exists a "transversal witness word" u drawn in $\mathsf{Cayley}(\Delta_n^d)$ containing no letter σ_1^{-1} , and exactly N ($\leqslant \infty$) letters σ_1 's, where N = number of reductions of the (first) σ_1 -handle in w_0, w_1, \ldots

• Let $w_0, w_1, ...$ be a reduction sequence, all words drawn in $\mathsf{Cayley}(\Delta_n^d)$;

- ullet For an induction on n, enough to prove: $\#\sigma_1$ -handles eventually \searrow .
- \bullet When a σ_1 -handle is reduced, new handles may appear, but
 - at most 1 new σ_1 -handle (\leadsto # σ_1 -handles non-increasing)
 - there exists a "transversal witness word" u drawn in $\mathsf{Cayley}(\Delta_n^d)$ containing no letter σ_1^{-1} , and exactly N ($\leqslant \infty$) letters σ_1 's, where N = number of reductions of the (first) σ_1 -handle in w_0, w_1, \ldots
- Theorem ("Property A"). A path with no σ_1^{-1} crosses each σ_1 at most once.

• Let $w_0, w_1, ...$ be a reduction sequence, all words drawn in $\mathsf{Cayley}(\Delta_n^d)$;

- ullet For an induction on n, enough to prove: $\#\sigma_1$ -handles eventually \searrow .
- ullet When a σ_1 -handle is reduced, new handles may appear, but
 - at most 1 new σ_1 -handle (\leadsto # σ_1 -handles non-increasing)
 - there exists a "transversal witness word" u drawn in $\mathsf{Cayley}(\Delta_n^d)$ containing no letter σ_1^{-1} , and exactly N ($\leqslant \infty$) letters σ_1 's, where N = number of reductions of the (first) σ_1 -handle in w_0, w_1, \ldots
- ullet Theorem ("Property A"). A path with no σ_1^{-1} crosses each σ_1 at most once.
 - convergence of reduction

ullet $a_{n,d}$:= maximal # of σ_1 's in a word with no σ_1^{-1} drawn in $Cayley(\Delta_n^d)$.

ullet $a_{n,d}$:= maximal # of σ_1 's in a word with no σ_1^{-1} drawn in $\mathsf{Cayley}(\Delta_n^d)$.

 \bullet $a_{n,d}$:= maximal # of σ_1 's in a word with no σ_1^{-1} drawn in $\mathsf{Cayley}(\Delta_n^d)$.

 \bullet $a_{n,d}$:= maximal # of σ_1 's in a word with no σ_1^{-1} drawn in $\mathsf{Cayley}(\Delta_n^d)$.

ullet $a_{n,d}$:= maximal # of σ_1 's in a word with no σ_1^{-1} drawn in $Cayley(\Delta_n^d)$.

ullet ullet ullet ullet ullet of $oldsymbol{\sigma_1}$'s in a word with no $oldsymbol{\sigma_1}^{-1}$ drawn in $oldsymbol{\mathsf{Cayley}}(\Delta_n^d)$.

• Theorem: $a_{n,d} = \#$ normal sequences of the form $(x_1,...,x_{d-1},\Delta_{n-1})$. (in the sense of Solution 2: greedy normal form)

 \bullet $a_{n,d}$:= maximal # of σ_1 's in a word with no σ_1^{-1} drawn in $Cayley(\Delta_n^d)$.

- Theorem: $a_{n,d} = \#$ normal sequences of the form $(x_1,...,x_{d-1},\Delta_{n-1})$. (in the sense of Solution 2: greedy normal form)
- Now: divisors of $\Delta_n \leftrightsquigarrow$ permutations of $\{1,...,n\}$,

ullet $a_{n,d}$:= maximal # of σ_1 's in a word with no σ_1^{-1} drawn in $\mathsf{Cayley}(\Delta_n^d)$.

- Theorem: $a_{n,d}$ = # normal sequences of the form $(x_1,...,x_{d-1},\Delta_{n-1})$. (in the sense of Solution 2: greedy normal form)
- Now: divisors of $\Delta_n \leftrightsquigarrow$ permutations of $\{1,...,n\}$, and (f,g) normal \leftrightsquigarrow $\{$ descents of $f^{-1}\}\supseteq \{$ descents of $g\}$, i.e., $f^{-1}(i+1) < f^{-1}(i) \Rightarrow g(i+1) < g(i)$

ullet $a_{n,d}$:= maximal # of σ_1 's in a word with no σ_1^{-1} drawn in $\mathsf{Cayley}(\Delta_n^d)$.

- Theorem: $a_{n,d} = \#$ normal sequences of the form $(x_1,...,x_{d-1},\Delta_{n-1})$. (in the sense of Solution 2: greedy normal form)
- Now: divisors of $\Delta_n \leftrightsquigarrow$ permutations of $\{1,...,n\}$, and (f,g) normal \leftrightsquigarrow $\{$ descents of $f^{-1}\}\supseteq \{$ descents of $g\}$, i.e., $f^{-1}(i+1) < f^{-1}(i) \Rightarrow g(i+1) < g(i)$
- ullet Corollary: $a_{n,d}$ expressed from M_n^d , where M_n is the n! imes n! matrix $(M_n)_{f,g} := \left\{egin{array}{c} 1 & ext{if } \{ ext{ descents of } f^{-1} \} \supseteq \{ ext{ descents of } g \}, \ 0 & ext{ otherwise.} \end{array}
 ight.$

of partitions of $\{1,...,n\}$ • Theorem: M_n can be replaced with a p(n) imes p(n) matrix.

of partitions of $\{1,...,n\}$

ullet Theorem: M_n can be replaced with a p(n) imes p(n) matrix.

(connected with the Solomon descent algebra and the theory of combinatorial Hopf algebras)

```
\# of partitions of \{1,...,n\}
```

ullet Theorem: M_n can be replaced with a p(n) imes p(n) matrix.

(connected with the Solomon descent algebra and the theory of combinatorial Hopf algebras)

• Conjecture: $\mathsf{CharPol}(M_n)$ divides $\mathsf{CharPol}(M_{n+1})$.

```
\# of partitions of \{1,...,n\}
```

ullet Theorem: M_n can be replaced with a p(n) imes p(n) matrix.

(connected with the Solomon descent algebra and the theory of combinatorial Hopf algebras)

ullet Conjecture: CharPol (M_n) divides CharPol (M_{n+1}) .

```
\begin{aligned} \mathsf{CharPol}(M_1) &= x - 1 \\ \mathsf{CharPol}(M_2) &= \mathsf{CharPol}(M_1) \cdot (x - 1) \\ \mathsf{CharPol}(M_3) &= \mathsf{CharPol}(M_2) \cdot (x - 2) \\ \mathsf{CharPol}(M_4) &= \mathsf{CharPol}(M_3) \cdot (x^2 - 6x + 3) \\ \mathsf{CharPol}(M_5) &= \mathsf{CharPol}(M_4) \cdot (x^2 - 20x + 24) \\ \mathsf{CharPol}(M_6) &= \mathsf{CharPol}(M_5) \cdot (x^4 - 82x^3 + 359x^2 - 260x + 60) \dots \end{aligned}
```

```
\# of partitions of \{1,...,n\}
```

ullet Theorem: M_n can be replaced with a p(n) imes p(n) matrix.

(connected with the Solomon descent algebra and the theory of combinatorial Hopf algebras)

• Conjecture: $\mathsf{CharPol}(M_n)$ divides $\mathsf{CharPol}(M_{n+1})$.

```
\begin{array}{l} \mathsf{CharPol}(M_1) = x - 1 \\ \mathsf{CharPol}(M_2) = \mathsf{CharPol}(M_1) \cdot (x - 1) \\ \mathsf{CharPol}(M_3) = \mathsf{CharPol}(M_2) \cdot (x - 2) \\ \mathsf{CharPol}(M_4) = \mathsf{CharPol}(M_3) \cdot (x^2 - 6x + 3) \\ \mathsf{CharPol}(M_5) = \mathsf{CharPol}(M_4) \cdot (x^2 - 20x + 24) \\ \mathsf{CharPol}(M_6) = \mathsf{CharPol}(M_5) \cdot (x^4 - 82x^3 + 359x^2 - 260x + 60) \ \ldots \end{array}
```

ullet Question: What is the asymptotic behaviour of $\lambda_{max}(M_n)$?

- Braid diagram colourings:
 - 1. Put colours at input ends of strands
 - 2. Propagate colours
 - 3. Look at output strands

- Braid diagram colourings:
 - 1. Put colours at input ends of strands
 - 2. Propagate colours
 - 3. Look at output strands

- Braid diagram colourings:
 - 1. Put colours at input ends of strands
 - 2. Propagate colours
 - 3. Look at output strands

- Braid diagram colourings:
 - 1. Put colours at input ends of strands
 - 2. Propagate colours
 - 3. Look at output strands

Now: compatible with braid relations iff * satisfies

(LD):
$$x*(y*z) = (x*y)*(x*z)$$
: the (left) self-distributivity law.

- Braid diagram colourings:
 - 1. Put colours at input ends of strands
 - 2. Propagate colours
 - 3. Look at output strands

Now: compatible with braid relations iff * satisfies

(LD):
$$x*(y*z) = (x*y)*(x*z)$$
: the (left) self-distributivity law.

$$- x * y = y (!!)$$

- Braid diagram colourings:
 - 1. Put colours at input ends of strands
 - 2. Propagate colours
 - 3. Look at output strands

Now: compatible with braid relations iff * satisfies

(LD):
$$x * (y * z) = (x * y) * (x * z)$$
: the (left) self-distributivity law.

-
$$x * y = y$$
 (!!) leads to $B_n oup S_n$;

- Braid diagram colourings:
 - 1. Put colours at input ends of strands
 - 2. Propagate colours
 - 3. Look at output strands

Now: compatible with braid relations iff * satisfies

(LD):
$$x*(y*z) = (x*y)*(x*z)$$
: the (left) self-distributivity law.

-
$$x*y=y$$
 (!!) leads to $B_n oup S_n$;

$$- x * y = xyx^{-1}$$

- Braid diagram colourings:
 - 1. Put colours at input ends of strands
 - 2. Propagate colours
 - 3. Look at output strands

Now: compatible with braid relations iff * satisfies

(LD):
$$x*(y*z) = (x*y)*(x*z)$$
: the (left) self-distributivity law.

-
$$x*y=y$$
 (!!) leads to $B_n oup S_n$;
- $x*y=xyx^{-1}$ leads to $B_n \hookrightarrow \operatorname{Aut}(F_n)$;

- Braid diagram colourings:
 - 1. Put colours at input ends of strands
 - 2. Propagate colours
 - 3. Look at output strands

Now: compatible with braid relations iff * satisfies

(LD):
$$x*(y*z) = (x*y)*(x*z)$$
: the (left) self-distributivity law.

-
$$x*y=y$$
 (!!) leads to $B_n oup S_n$;
- $x*y=xyx^{-1}$ leads to $B_n \hookrightarrow \operatorname{Aut}(F_n)$;

$$-x*y=(1-t)x+ty$$

- Braid diagram colourings:
 - 1. Put colours at input ends of strands
 - 2. Propagate colours
 - 3. Look at output strands

Now: compatible with braid relations iff * satisfies

(LD):
$$x*(y*z) = (x*y)*(x*z)$$
: the (left) self-distributivity law.

-
$$x*y=y$$
 (!!) leads to $B_n oup S_n$;
- $x*y=xyx^{-1}$ leads to $B_n \hookrightarrow \operatorname{Aut}(F_n)$;
- $x*y=(1-t)x+ty$ leads to $B_n \to GL_n(\mathbb{Z}[t,t^{-1}])$.

- Braid diagram colourings:
 - 1. Put colours at input ends of strands
 - 2. Propagate colours
 - 3. Look at output strands

some binary operation on colours

Now: compatible with braid relations iff * satisfies

(LD):
$$x*(y*z) = (x*y)*(x*z)$$
: the (left) self-distributivity law.

-
$$x*y=y$$
 (!!) leads to $B_n oup S_n$;
- $x*y=xyx^{-1}$ leads to $B_n \hookrightarrow \operatorname{Aut}(F_n)$;
- $x*y=(1-t)x+ty$ leads to $B_n \to GL_n(\mathbb{Z}[t,t^{-1}])$. (all satisfy $x*x=x$)

• Definition: Say that an LD-system (S, *) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

• Definition: Say that an LD-system (S, *) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

- Definition: Say that an LD-system (S,*) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.
- Proposition: If there exists an orderable LD-system, then Property A is true.

• Definition: Say that an LD-system (S, *) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

 Proposition: If there exists an orderable LD-system, then Property A is true.

• Definition: Say that an LD-system (S, *) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

 Proposition: If there exists an orderable LD-system, then Property A is true.

• Definition: Say that an LD-system (S, *) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

 Proposition: If there exists an orderable LD-system, then Property A is true.

• Definition: Say that an LD-system (S,*) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

• Definition: Say that an LD-system (S, *) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

• Definition: Say that an LD-system (S, *) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

• Definition: Say that an LD-system (S, *) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

• Definition: Say that an LD-system (S, *) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

• Definition: Say that an LD-system (S, *) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

• Definition: Say that an LD-system (S,*) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

 Proposition: If there exists an orderable LD-system, then Property A is true.

• Theorem (Laver, 1989) If there exists a self-similar rank, then there exists an orderable LD-system.

• Definition: Say that an LD-system (S, *) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

 Proposition: If there exists an orderable LD-system, then Property A is true.

by Gödel's incompleteness thrm, an unprovable logical assumption

• Theorem (Laver, 1989) If there exists a self-similar rank, then there exists an orderable LD-system.

• Definition: Say that an LD-system (S,*) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

 Proposition: If there exists an orderable LD-system, then Property A is true.

by Gödel's incompleteness thrm, an unprovable logical assumption

• Theorem (Laver, 1989) If there exists a self-similar rank, then there exists an orderable LD-system.

• Theorem (D., 1992) Free LD-systems are orderable.

• Definition: Say that an LD-system (S,*) is orderable if there exists a strict linear ordering < on S s.t. x < x * y always holds.

 Proposition: If there exists an orderable LD-system, then Property A is true.

by Gödel's incompleteness thrm, an unprovable logical assumption

- Theorem (Laver, 1989) If there exists a self-similar rank, then there exists an orderable LD-system.
- Theorem (D., 1992) Free LD-systems are orderable.
 - → Handle reduction is an application of Set Theory (?)

(I. Dynnikov, 1999)

ullet View B_n as $\mathsf{MCG}(D_n)$, and let the homeo act on a fixed lamination L:

(I. Dynnikov, 1999)

ullet View B_n as $\mathsf{MCG}(D_n)$, and let the homeo act on a fixed lamination L:

(I. Dynnikov, 1999)

ullet View B_n as $\mathsf{MCG}(D_n)$, and let the homeo act on a fixed lamination L:

• Count the intersections with some fixed triangulation:

(I. Dynnikov, 1999)

ullet View B_n as $\mathsf{MCG}(D_n)$, and let the homeo act on a fixed lamination L:

$$eta$$
 (here $oldsymbol{\sigma_{\!2}}$)

• Count the intersections with some fixed triangulation:

$$eta$$
 (here $oldsymbol{\sigma_2}$)

(I. Dynnikov, 1999)

ullet View B_n as $\mathsf{MCG}(D_n)$, and let the homeo act on a fixed lamination L:

$$eta$$
 (here $oldsymbol{\sigma_{\!2}}$)

• Count the intersections with some fixed triangulation:

$$eta$$
 (here $oldsymbol{\sigma_2}$)

ullet View B_n as $\mathsf{MCG}(D_n)$, and let the homeo act on a fixed lamination L:

$$eta$$
 (here $oldsymbol{\sigma_{\!2}}$)

Count the intersections with some fixed triangulation:

$$eta$$
 (here $\sigma_{\!\!\!2}$)

$$8\frac{4}{4}6\frac{4}{2}6\frac{2}{2}2\frac{1}{1}$$

ullet View B_n as $\mathsf{MCG}(D_n)$, and let the homeo act on a fixed lamination L:

$$eta$$
 (here $oldsymbol{\sigma_{\!\!2}}$)

Count the intersections with some fixed triangulation:

$$eta$$
 (here $\sigma_{\!\!oldsymbol{2}}$)

$$8\frac{4}{4}6\frac{3}{3}4\frac{2}{2}2\frac{1}{1}... \longrightarrow (0,1,0,1,0,1,0,...) 8\frac{4}{4}6\frac{4}{2}6\frac{2}{2}2\frac{1}{1}... \longrightarrow (0,1,1,0,0,2,0,...)$$

ullet View B_n as $\mathsf{MCG}(D_n)$, and let the homeo act on a fixed lamination L:

$$eta$$
 (here $oldsymbol{\sigma_{\!\!2}}$) \mapsto

• Count the intersections with some fixed triangulation:

$$eta$$
 (here $oldsymbol{\sigma_{\!\!2}}$

$$8\frac{4}{4}6\frac{3}{3}4\frac{2}{2}2\frac{1}{1}... \longrightarrow (0,1,0,1,0,1,0,...)$$
 $8\frac{4}{4}6\frac{4}{2}6\frac{2}{2}2\frac{1}{1}... \longrightarrow (0,1,1,0,0,2,0,...)$

ightharpoonup Explicit injection $B_n \hookrightarrow \mathbb{Z}^{2n}\colon$ coordinates for $L\cdot eta$.

ullet View B_n as $\mathsf{MCG}(D_n)$, and let the homeo act on a fixed lamination L:

$$eta$$
 (here $oldsymbol{\sigma_2}$)

Count the intersections with some fixed triangulation:

$$eta$$
 (here $oldsymbol{\sigma_{\!\!2}}$) \mapsto

$$8\frac{4}{4}6\frac{3}{3}4\frac{2}{2}2\frac{1}{1}... \longrightarrow (0,1,0,1,0,1,0,...) \ 8\frac{4}{4}6\frac{4}{2}6\frac{2}{2}2\frac{1}{1}... \longrightarrow (0,1,1,0,0,2,0,...)$$

- ightharpoonup Explicit injection $B_n \hookrightarrow \mathbb{Z}^{2n}$: coordinates for $L \cdot \beta$.
- Behind: automatic structure for mapping class groups (Mosher)

SOLUTION 7: ALTERNATING DECOMPOSITION

(D., 2007)

Another unique normal form for (positive) braids.

ullet Then: Every braid in B_n^+ admits a unique decomposition

$$x = \phi_n^{p-1} x_p \cdot \ldots \cdot \phi_n^2 x_3 \cdot \phi_n x_2 \cdot x_1$$

such that $x_{m p},...,x_1$ lie in $B_{m n-1}^+$

Another unique normal form for (positive) braids.

ullet Then: Every braid in B_n^+ admits a unique decomposition

$$x = \phi_n^{p-1} x_p \cdot \ldots \cdot \phi_n^2 x_3 \cdot \phi_n x_2 \cdot x_1$$

such that $x_p,...,x_1$ lie in B_{n-1}^+ and the only σ_k that is a right divisor of $\phi_n^{p-k}x_p\cdot...\cdot\phi_nx_{k+1}\cdot x_k$ is σ_1 .

• By iterating: flip normal form

• By iterating: flip normal form

quadratic time solution to the braid isotopy problem.

- By iterating: flip normal form
 - quadratic time solution to the braid isotopy problem.

• Behind: Standard braid order ("Dehornoy order"), Burckel's approach

- By iterating: flip normal form
 - quadratic time solution to the braid isotopy problem.
- Behind: Standard braid order ("Dehornoy order"), Burckel's approach
- Definition: For x, y braids, say that x < y holds if, among all word expressions of $x^{-1}y$, there is at least one where the generator σ_i with higher index occurs only positively (σ_i occurs, σ_i^{-1} does not).

- By iterating: flip normal form
 - quadratic time solution to the braid isotopy problem.
- Behind: Standard braid order ("Dehornoy order"), Burckel's approach
- Definition: For x, y braids, say that x < y holds if, among all word expressions of $x^{-1}y$, there is at least one where the generator σ_i with higher index occurs only positively (σ_i occurs, σ_i^{-1} does not).
- ullet Assume $x,y\in B_n^+$, and let $(x_p,...,x_1)$, $(y_q,...,y_1)$ be the flip-decompositions of x and y. Then x< y holds iff

- By iterating: flip normal form
 - quadratic time solution to the braid isotopy problem.
- Behind: Standard braid order ("Dehornoy order"), Burckel's approach
- Definition: For x, y braids, say that x < y holds if, among all word expressions of $x^{-1}y$, there is at least one where the generator σ_i with higher index occurs only positively (σ_i occurs, σ_i^{-1} does not).
- ullet Assume $x,y\in B_n^+$, and let $(x_p,...,x_1)$, $(y_q,...,y_1)$ be the flip-decompositions of x and y. Then x< y holds iff -either p< q,

- By iterating: flip normal form
 - quadratic time solution to the braid isotopy problem.
- Behind: Standard braid order ("Dehornoy order"), Burckel's approach
- Definition: For x, y braids, say that x < y holds if, among all word expressions of $x^{-1}y$, there is at least one where the generator σ_i with higher index occurs only positively (σ_i occurs, σ_i^{-1} does not).
- ullet Assume $x,y\in B_n^+$, and let $(x_p,...,x_1)$, $(y_q,...,y_1)$ be the flip-decompositions of x and y. Then x< y holds iff
 - -either p < q,
 - -or p=q and $(x_p,...,x_1)$ is lexicographically smaller than $(y_q,...,y_1)$.

- By iterating: flip normal form
 - quadratic time solution to the braid isotopy problem.
- Behind: Standard braid order ("Dehornoy order"), Burckel's approach
- Definition: For x, y braids, say that x < y holds if, among all word expressions of $x^{-1}y$, there is at least one where the generator σ_i with higher index occurs only positively (σ_i occurs, σ_i^{-1} does not).
- ullet Assume $x,y\in B_n^+$, and let $(x_p,...,x_1)$, $(y_q,...,y_1)$ be the flip-decompositions of x and y. Then x< y holds iff
 - -either p < q,
 - -or p=q and $(x_p,...,x_1)$ is lexicographically smaller than $(y_q,...,y_1)$.
 - \leadsto completely defines the order on B_n^+ from the order on B_{n-1}^+

(Birman-Ko-Lee, 1997)

(Birman-Ko-Lee, 1997)

(Birman-Ko-Lee, 1997)

$$a_{i,j} = \cdots$$

(Birman-Ko-Lee, 1997)

$$a_{i,j} = \cdots$$

$$a_{i,j} = \cdots$$

- ullet Def: $B\!K\!L_{m n}^+=$ submonoid of $B_{m n}$ generated by all $a_{m i,m j}$'s.
 - ightharpoonup Another Garside structure, with Garside element $\delta_n = \sigma_{n-1} ... \sigma_2 \sigma_1$:

$$a_{i,j} = \cdots$$

- ullet Def: $B\!K\!L_{m n}^+=$ submonoid of $B_{m n}$ generated by all $a_{m i,m j}$'s.
 - Another Garside structure, with Garside element $\delta_n = \sigma_{n-1}...\sigma_2\sigma_1$: the dual Garside structure on B_n (same group, different monoids) \leadsto Greedy normal form

$$a_{i,j} = \cdots$$

- ullet Def: $\overline{BKL_{m n}^+}=$ submonoid of $B_{m n}$ generated by all $a_{m i,m j}$'s.
 - Another Garside structure, with Garside element $\delta_n = \sigma_{n-1}...\sigma_2\sigma_1$: the dual Garside structure on B_n (same group, different monoids) \leadsto Greedy normal form
 - new quadratic solution to the braid isotopy problem

$$a_{i,j} = \cdots$$

- ullet Def: $B\!K\!L_{m n}^+=$ submonoid of $B_{m n}$ generated by all $a_{m i,m j}$'s.
 - Another Garside structure, with Garside element $\delta_n = \sigma_{n-1}...\sigma_2\sigma_1$: the dual Garside structure on B_n (same group, different monoids) \leadsto Greedy normal form
 - new quadratic solution to the braid isotopy problem
 - → Automatic structure, etc.

SOLUTION 9: THE CYCLING NORMAL FORM

(Fromentin, 2007)

SOLUTION 9: THE CYCLING NORMAL FORM

(Fromentin, 2007)

• Mix the ideas of the flip normal form and the Birman-Ko-Lee monoids

- Mix the ideas of the flip normal form and the Birman-Ko-Lee monoids
 - Generators $a_{i,j}$ of $\overrightarrow{BKL_n^+}$ = chords of a circle

- Mix the ideas of the flip normal form and the Birman-Ko-Lee monoids
 - Generators $a_{i,j}$ of BKL_n^+ = chords of a circle

• Mix the ideas of the flip normal form and the Birman-Ko-Lee monoids

- Generators $a_{i,j}$ of BKL_n^+ = chords of a circle
- $ightharpoonup ext{Conjugation by } \delta_n = ext{rotation by } 2\pi/n$

Mix the ideas of the flip normal form and the Birman-Ko-Lee monoids

- Generators $a_{i,j}$ of BKL_n^+ = chords of a circle
- $ightharpoonup Conjugation by <math>\delta_n$ = rotation by $2\pi/n$
- Submonoid BKL_{n-1}^+ = remove a $2\pi/n$ -sector

• Mix the ideas of the flip normal form and the Birman-Ko-Lee monoids

- Generators $a_{i,j}$ of BKL_n^+ = chords of a circle
- ightharpoonup Conjugation by δ_n = rotation by $2\pi/n$
- Submonoid BKL_{n-1}^+ = remove a $2\pi/n$ -sector

ullet Then: Every braid in $B\!K\!L_n^+$ admits a unique decomposition

$$x = \phi_n^{p-1} x_p \cdot \ldots \cdot \phi_n^2 x_3 \cdot \phi_n x_2 \cdot x_1$$

s.t. $x_p,...,x_1$ lie in BKL_{n-1}^+ and the only $a_{i,j}$'s that is are right divisors of $\phi_n^{p-k}x_p\cdot...\cdot\phi_nx_{k+1}\cdot x_k$ are $a_{i,n-1}$'s.

One more quadratic time solution to the braid isotopy problem,

- One more quadratic time solution to the braid isotopy problem, but also, mainly:
- ullet Theorem (Fromentin, 2007) Assume $x,y\in BKL_n^+$, and let $(x_p,...,x_1)$, $(y_q,...,y_1)$ be the cycling decompositions of x and y. Then x< y holds iff
 - either p < q,
 - or $p=\overline{q}$ and $\overline{(x_p,...,x_1)}$ is lexicographically smaller than $\overline{(y_q,...,y_1)}$.

- One more quadratic time solution to the braid isotopy problem, but also, mainly:
- Theorem (Fromentin, 2007) Assume $x,y\in BKL_n^+$, and let $(x_p,...,x_1)$, $(y_q,...,y_1)$ be the cycling decompositions of x and y. Then x< y holds iff either p< q,
 - or p=q and $(x_p,...,x_1)$ is lexicographically smaller than $(y_q,...,y_1)$.
 - New simple existence proof for the braid order;

- One more quadratic time solution to the braid isotopy problem, but also, mainly:
- Theorem (Fromentin, 2007) Assume $x,y\in BKL_n^+$, and let $(x_p,...,x_1)$, $(y_q,...,y_1)$ be the cycling decompositions of x and y. Then x< y holds iff either p< q,
 - or p=q and $(x_p,...,x_1)$ is lexicographically smaller than $(y_q,...,y_1)$.
 - New simple existence proof for the braid order;
 - The restriction of the braid order to BKL_n^+ is a well-order of ordinal type $\omega^{\omega^{n-2}}$

- One more quadratic time solution to the braid isotopy problem, but also, mainly:
- Theorem (Fromentin, 2007) Assume $x,y\in BKL_n^+$, and let $(x_p,...,x_1)$, $(y_q,...,y_1)$ be the cycling decompositions of x and y. Then x< y holds iff either p< q,
 - or p=q and $(x_p,...,x_1)$ is lexicographically smaller than $(y_q,...,y_1)$.
 - New simple existence proof for the braid order;
 - The restriction of the braid order to BKL_n^+ is a well-order of ordinal type $\omega^{\omega^{n-2}}$
 - → a distinguished element in each nonempty subset,

- One more quadratic time solution to the braid isotopy problem, but also, mainly:
- Theorem (Fromentin, 2007) Assume $x,y\in BKL_n^+$, and let $(x_p,...,x_1)$, $(y_q,...,y_1)$ be the cycling decompositions of x and y. Then x< y holds iff either p< q,
 - or p=q and $(x_p,...,x_1)$ is lexicographically smaller than $(y_q,...,y_1)$.
 - New simple existence proof for the braid order;
 - The restriction of the braid order to BKL_n^+ is a well-order of ordinal type $\omega^{\omega^{n-2}}$
 - → a distinguished element in each nonempty subset, typically in each conjugacy class.