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e A problem of medium difficulty:
many efficient solutions,
but all involving (requiring)

some nontrivial theory behind.
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e Consider (pure) braids, and obtain a unique decomposition using combing:

1
1—-PB,—B,—S,—1

e i

“"Remove the nth strand, comb, then reintroduce the nth strand”.

e Behind: PB,, = semi-direct product of free groups:
PBn = PBn_l A T (Dn—l)

a free group of rankn — 1
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SOLUTION 2: AUTOMORPHISMS OF A FREE GROUP
(E. Artin, ~ 1925)

e B,, = mapping class group of a disk with n punctures:
an n strand braid \
= the movie of the dance /]
of n points in a disk
ad /

~~» = a homeomorphism of D,, fixing D,, and {punctures}, up to homotopy.

e Whence: action of B,, on m1(D,,),
a free group of rank n.
~~ read on loops:

’xlmgml_l forz =1,
0, Zi— X for1 = 2,

e Then: B,, — Aut(F,,), hence solution to the braid isotopy problem.
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e The group B,, is a group of fractions for the monoid B;f (:= (...)™)
+ there exists some “universal” denominator A,,.

~» more precisely: (B, A,) s.t.
- B,;',: is cancellative, has no invertible element, admits Icm's,
- left divisors (A,,) =right divisors (A,,), and generate B!
“A,, is a Garside element in B”
~~ b, is a Garside group.

1

e Then: Every element of B,, has a unique expression x_ ...ml_lyl...yq with

g~

- Z1y ey Tpy Y1, -oey Yp divisors of Ay,
- x; = ged(x;x;41,Ay) for each 4, id. for y;'s, and ged(z1,91) = 1.

(can be computed in quadratic time, for each fixed n)

e Behind: automatic structure of B,, (Cannon, Thurston)
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“redresses to”

|
e Say that w ~ w’ holds if w’ obtained from w by (iteratively)
- deleting some 0{10;;, or
: —1 : —1 . P |
- replacing some o; cfj with (fjai , resp. O'j%aj o; .
T [
case |[i — j| = 2 case |[i — j| =1

e Then: - Every braid word redresses to a unique word of the form uv ™1

with u, v positive (= no 0{1);

- The braid word w represents 1 in B,, iff, for some positive u, v,

1 1

wNNUY - and v "u N € (= empty word).

e Behind: Garside theory again.
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e Free group reduction: delete o.0;

—1 -1
oro; 0.;

~~ if w reduces to &, then w represents 1; no converse, as B,, not free.

® Nevertheless:

Define
a o;;-handle
to be:

e Then: A braid word represents 1 iff it reduces to €.

) z—l—l

IT1

|ts reductlon

to be:

3 | |
Tl

(extremely efficient in practice)

e Behind: Garside theory + order properties.
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0.
e Cayley graph of B,,: vertices = braids; edges: o—t.0J for Yy =xo,.

~+ Cayley(A%) := restriction of the Cayley graph of B,, to divisors of A
%2 (in the sense of the monoid B;})

1
Example: Cayley(As) = 14 pYAL

0-2 P .'o' 0-2
o

0, 0,0, " drawn from 1,
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e Word drawn from z in Cayley(A%): eg., { 2 not drawn from 1
A .

e Lemma: (i) Every n strand braid word is drawn in Cayley(A2) for d > 0;
(i) The set of words drawn in Cayley(A2) is closed under handle reduction.

~~ a boundedness result: when reduction is performed,
all words are drawn in some fixed finite subgraph of the Cayley graph.
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1

, and exactly IV (< 00) letters g, 's, where

N = number of reductions of the (first) g, -handle in wo, wy, ...

containing no letter o;

® Theorem (“Property A”). A path with no 01_1 crosses each 0, at most once.
~~ convergence of reduction []
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CONNECTION WITH PERMUTATIONS

® apq := maximal # of g, 's in a word with no o7 ' drawn in Cayley(AZ).

X

1 As 1 A2

~agq = 2 ~ azo = 6

e Theorem: a, 4 = # normal sequences of the form (21, ...,Z4—1,Ap—1).
(in the sense of Solution 2: greedy normal form)

e Now:  divisors of A,, &~ permutations of {1,...,n},
and (f,g) normal e~ { descents of f~1} D { descents of g},

e, f7E+1) < f716) = g(i+ 1) < g(2)

e Corollary: a,, 4 expressed from Mg, where M,, is the n! x n! matrix
LAY 1 if { descents of f~1} D { descents of g},
n)f:9 7 10 otherwise.
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A CONJECTURE

# of partitions of {1, ...,n}

l

e Theorem: M, can be replaced with a p(n) X p(n) matrix.
(connected with the Solomon descent algebra
and the theory of combinatorial Hopf algebras)

e Conjecture: CharPol(M,,) divides CharPol(M,, ;).

CharPol(M;) = z — 1

CharPol(M3) = CharPol(M;) - (z — 1)

CharPol(M3) = CharPol(M3) - (z — 2)

CharPol(M4) = CharPol(M3) - (z2 — 6z + 3)

CharPol(Ms) = CharPol(My) - (22 — 20z + 24)

CharPol(Mpg) = CharPol(Ms5) - (x* — 8223 + 3592 — 260z + 60) . ..

e Question: What is the asymptotic behaviour of Apqz (M,,)?
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(Recall) “Property A”: A braid word containing a o, and no o, ~ is not trivial.

1
~~ Where does this come from?

e Braid diagram colourings: L Yy

1. Put colours at input ends of strands y
2. Propagate colours \

3. Look at output strands
T *xY x

I

some binary operation on colours

e Now: compatible with braid relations iff * satisfies
(LD): x*x(y*x2z)= (x*y)* (x*2): the (left) self-distributivity law.

e Classical examples:
- xxy=1y () leads to B,, —» S5y;
- TxY = a';ym_l leads to Bn — A'l.lt(Fn);
- TxYy = (l = t)m + 1ty leads to B, — GLn(Z[t» t_l])-

(all satisfy x *x x = x)
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e Proposition: If there exists an orderable

a set with a binary operation satisfying... . »
m l
is orderable if there exists a strict linear N
X *xYq ) *
LD-system, then Property A is true. ( yl) Y2

l
yll I
ordering < on S s.t. £ < z *y always holds. g4,
: £

x
e Definition: Say that an LD-system (.S, *)
A E"”I |
by Godel's incompleteness thrm, an unprovable logical assumption

e Theorem (Laver, 1989) If there exists a self-similar rank,
then there exists an orderable LD-system.

® Theorem (D., 1992) Free LD-systems are orderable.
~~ Handle reduction is an application of Set Theory (?)
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SOLUTION 6: SINGULAR TRIANGULATIONS

(I. Dynnikov, 1999)
e View B,, as MCG(D,,), and let the homeo act on a fixed lamination L:

/
e Count the intersections with some fixed triangulation: ((- °©|o o -
T e \\
‘2 SRR B (Ere o, ) 5
<\i§) /o)/o)/ 5
4 3 2 1 4 4 2 1
8 6 4.2 ..~ (0,1,0,1,0,1,0,...) 8 .6 _6_2_ ...~ (0,1,1,0,0,2,0,...)

43 21 4 2 21

~» Explicit injection B,, < Z>": coordinates for L - 3.

e Behind: automatic structure for mapping class groups (Mosher)
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SOLUTION 7: ALTERNATING DECOMPOSITION

(D., 2007)
e Another unique normal form for (positive) braids.

max. right divisor lying in ¢, B, 1
/" max. right divisor lying in B,;f_l

the flip automorphism o, — o _ .

= conjugation by Garside's element A,,

e Then: Every braid in B,;,ﬂF admits a unique decomposition
r=¢2 1z, ... p223 - Ppa - 11
such that x,, ..., lie in B,;,b"_l and the only g, thatis a right divisor of

ﬁ_k% “eeet PpTry - Tk IS oy .



SOLUTION 6: FLIP NORMAL FORM VS. ORDER

e By iterating: flip normal form



SOLUTION 6: FLIP NORMAL FORM VS. ORDER

e By iterating: flip normal form

~~ quadratic time solution to the braid isotopy problem.



SOLUTION 6: FLIP NORMAL FORM VS. ORDER

e By iterating: flip normal form

~~ quadratic time solution to the braid isotopy problem.

e Behind: Standard braid order ("Dehornoy order"), Burckel's approach



SOLUTION 6: FLIP NORMAL FORM VS. ORDER

e By iterating: flip normal form

~~ quadratic time solution to the braid isotopy problem.
e Behind: Standard braid order ("Dehornoy order"), Burckel's approach

e Definition: For x,y braids, say that x < ¥ holds if, among all word expres-
sions of m_ly, there is at least one where the generator g, with higher index

occurs only positively (0. occurs, 07;_1 does not).



SOLUTION 6: FLIP NORMAL FORM VS. ORDER

e By iterating: flip normal form

~~ quadratic time solution to the braid isotopy problem.
e Behind: Standard braid order ("Dehornoy order"), Burckel's approach

e Definition: For x,y braids, say that x < ¥ holds if, among all word expres-
sions of m_ly, there is at least one where the generator g, with higher index

occurs only positively (0. occurs, 07;_1 does not).

e Assumex,y € B, andlet(zp,...,21), (Y4, -.-, ¥1) be the flip-decompositions
of x and y. Then x < y holds iff



SOLUTION 6: FLIP NORMAL FORM VS. ORDER

e By iterating: flip normal form

~~ quadratic time solution to the braid isotopy problem.
e Behind: Standard braid order ("Dehornoy order"), Burckel's approach

e Definition: For x,y braids, say that x < ¥ holds if, among all word expres-
sions of m_ly, there is at least one where the generator g, with higher index

occurs only positively (0. occurs, 07;_1 does not).

e Assumex,y € B, andlet(zp,...,21), (Y4, -.-, ¥1) be the flip-decompositions
of x and y. Then x < y holds iff
-either p < q,



SOLUTION 6: FLIP NORMAL FORM VS. ORDER

e By iterating: flip normal form

~~ quadratic time solution to the braid isotopy problem.
e Behind: Standard braid order ("Dehornoy order"), Burckel's approach

e Definition: For x,y braids, say that x < ¥ holds if, among all word expres-
sions of m_ly, there is at least one where the generator g, with higher index

occurs only positively (0. occurs, 07;_1 does not).

e Assumex,y € B, andlet(zp,...,21), (Y4, -.-, ¥1) be the flip-decompositions
of x and y. Then x < y holds iff

-either p < q,

-or p = q and (Zp, ..., 1) is lexicographically smaller than (Yg, .., ¥1)-



SOLUTION 6: FLIP NORMAL FORM VS. ORDER

e By iterating: flip normal form

~~ quadratic time solution to the braid isotopy problem.
e Behind: Standard braid order ("Dehornoy order"), Burckel's approach

e Definition: For x,y braids, say that x < ¥ holds if, among all word expres-
sions of m_ly, there is at least one where the generator g, with higher index

occurs only positively (0. occurs, 07;_1 does not).

e Assumex,y € B, andlet(zp,...,21), (Y4, -.-, ¥1) be the flip-decompositions
of x and y. Then x < y holds iff

-either p < q,

-or p = q and (Zp, ..., 1) is lexicographically smaller than (Yg, .., ¥1)-

~~+ completely defines the order on B,;,': from the order on B,;L'_l
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SOLUTION 8: THE DUAL BRAID MONOID
(Birman-Ko-Lee, 1997)

e New (redundant) family of generators: forl <1 < 7 < n, put

. -1 -1
Qij =0; 1.0, 10,0, 11...0;_.

1 J
L N\
a;j = - L&,]

e Def: BKL} = submonoid of B,, generated by all a;,;'s.

~~ Another Garside structure, with Garside element §,, = O, _1::050;:

the dual Garside structure on B,, (same group, different monoids)
~~ Greedy normal form
~~ new quadratic solution to the braid isotopy problem
~~ Automatic structure, etc.
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(Fromentin, 2007)

e Mix the ideas of the flip normal form and the Birman-Ko-Lee monoids

~+ Generators a; ; of BKL}
= chords of a circle

~~ Conjugation by 0,,
= rotation by 27 /n

~» Submonoid BKL!
= remove a 27 /n-sector

e Then: Every braid in BKL;" admits a unique decomposition
T = ¢g—1mp S ¢§x3 + PnTo - I
s.t. Tp, ..., liein BKL] | and the only a; ;'s that is are right divisors of

—k 1
PPy - . PpTR41 - Tk Are Gip—1's.
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~~ One more quadratic time solution to the braid isotopy problem,
but also, mainly:

e Theorem (Fromentin, 2007) Assume z,y € BKLT, and let (zp, ..., 1),
(yq, ---, Y1) be the cycling decompositions of  and y. Then & < y holds iff
- either p < q,
- or p = q and (z,, ..., x1) is lexicographically smaller than (yg, ..., Y1)

~~+ New simple existence proof for the braid order;

~ The restriction of the braid order to BKL is
a well-order of ordinal type w*

n—2

~~ a distinguished element in each nonempty subset,
typically in each conjugacy class.



