

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

• Garside groups = a family of biautomatic groups containing braid groups,

- not too simple (typically: not abelian),
- not too complicated (typically: word pb. solvable in quadratic time),

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

• Garside groups = a family of biautomatic groups containing braid groups,

- not too simple (typically: not abelian),
- not too complicated (typically: word pb. solvable in quadratic time),

→ natural platforms for group-based cryptography.

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

• Garside groups = a family of biautomatic groups containing braid groups,

- not too simple (typically: not abelian),
- not too complicated (typically: word pb. solvable in quadratic time),

natural platforms for group-based cryptography.

- Here, two problems:
 - recognizing a Garside group from a presentation;
 - working with a presented Garside group.

• Definition: A Garside system is a pair (M, Δ) , s.t.

- Definition: A Garside system is a pair (M, Δ) , s.t.
 - M is a cancellative monoid with no invertible and with lcm's and gcd's,

• Definition: A Garside system is a pair (M, Δ) , s.t.

- $oldsymbol{M}$ is a cancellative monoid with no invertible and with lcm's and gcd's,
- Δ is a Garside element in M .

 $\widetilde{\mathsf{Div}_L}(\Delta) = \mathtt{Div}_R(\Delta)$, this set is finite, and generates M

• Definition: A Garside system is a pair (M, Δ) , s.t.

- M is a cancellative monoid with no invertible and with lcm's and gcd's,
- Δ is a Garside element in M .

 $\operatorname{\mathtt{Div}}_L(\Delta) = \operatorname{\mathtt{Div}}_R(\Delta)$, this set is finite, and generates \overline{M}

- Definition: A Garside system is a pair (M, Δ) , s.t.
 - M is a cancellative monoid with no invertible and with lcm's and gcd's,
 - Δ is a Garside element in M .

 $\operatorname{\mathtt{Div}}_L(\Delta) = \operatorname{\mathtt{Div}}_R(\Delta)$, this set is finite, and generates M

- Definition: A Garside group is a group that is the group of fractions of (at least one) Garside monoid.

- Definition: A Garside system is a pair (M, Δ) , s.t.
 - M is a cancellative monoid with no invertible and with lcm's and gcd's,
 - Δ is a Garside element in M .

 $\operatorname{Div}_L(\Delta) = \operatorname{Div}_R(\Delta)$, this set is finite, and generates M

- Definition: A Garside group is a group that is the group of fractions of (at least one) Garside monoid.

• Principle: A Garside group is controlled by the finite lattice $Div(\Delta)$.

• Artin's braid group B_n (Garside's original example):

 $\langle \sigma_1,...,\sigma_{n-1};\sigma_i\sigma_j=\sigma_j\sigma_i \text{ for } |i-j| \geqslant 2, \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j \text{ for } |i-j|=1\rangle;$

• Artin's braid group B_n (Garside's original example):

- $$\begin{split} \langle \sigma_1,...,\sigma_{n-1};\sigma_i\sigma_j &= \sigma_j\sigma_i \text{ for } |i-j| \geqslant 2, \sigma_i\sigma_j\sigma_i = \sigma_j\sigma_i\sigma_j \text{ for } |i-j| = 1 \rangle; \\ \text{- monoid: } B_n^+ &:= \langle ... \rangle^+, \end{split}$$
 - Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 ...;$

• Artin's braid group B_n (Garside's original example):

- $$\begin{split} \langle \sigma_1,...,\sigma_{n-1};\sigma_i\sigma_j &= \sigma_j\sigma_i \text{ for } |i-j| \geqslant 2, \sigma_i\sigma_j\sigma_i = \sigma_j\sigma_i\sigma_j \text{ for } |i-j| = 1 \rangle; \\ \text{- monoid: } B_n^+ &:= \langle ... \rangle^+, \end{split}$$
 - Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 \dots;$
 - \rightsquigarrow lattice $\operatorname{Div}(\Delta_n) \approx (S_n,, \text{ weak order})$

• Artin's braid group B_n (Garside's original example):

$$\begin{split} \langle \sigma_1,...,\sigma_{n-1};\sigma_i\sigma_j = \sigma_j\sigma_i \text{ for } |i-j| \geqslant 2, \sigma_i\sigma_j\sigma_i = \sigma_j\sigma_i\sigma_j \text{ for } |i-j| = 1 \rangle; \\ \text{- monoid: } B_n^+ := \langle ... \rangle^+, \end{split}$$

- Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \overline{\sigma_3 \sigma_2 \sigma_1} \dots;$ \rightsquigarrow lattice $\text{Div}(\Delta_n) \approx (S_n, , \text{ weak order})$

• Free abelian group of finite type $\langle a_1,...,a_n;a_ia_j=a_ja_i
angle;$

• Artin's braid group B_n (Garside's original example):

$$\begin{split} \langle \sigma_1,...,\sigma_{n-1};\sigma_i\sigma_j &= \sigma_j\sigma_i \text{ for } |i-j| \geqslant 2, \sigma_i\sigma_j\sigma_i = \sigma_j\sigma_i\sigma_j \text{ for } |i-j| = 1 \rangle; \\ & - \text{ monoid: } B_n^+ := \langle ... \rangle^+, \end{split}$$

- Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 \dots;$ \rightsquigarrow lattice $\text{Div}(\Delta_n) \approx (S_n, , \text{ weak order})$

• Free abelian group of finite type

$$\langle a_1,...,a_n;a_ia_j=a_ja_i
angle;$$
 ;

- monoid: $\langle a_1,...,a_n;a_ia_j=a_ja_i
 angle^+;$
- Garside element: $\Delta = a_1 \dots a_n$;

• Artin's braid group B_n (Garside's original example):

 $\begin{array}{l} \langle \sigma_1,...,\sigma_{n-1};\sigma_i\sigma_j=\sigma_j\sigma_i \text{ for } |i-j| \geqslant 2, \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j \text{ for } |i-j|=1\rangle; \\ \text{- monoid: } B_n^+:=\langle...\rangle^+, \end{array}$

- Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 \dots;$ \rightsquigarrow lattice $\text{Div}(\Delta_n) \approx (S_n, \text{, weak order})$

• Free abelian group of finite type

$$\langle a_1,...,a_n;a_ia_j=a_ja_i
angle;$$

- monoid: $\langle a_1, ..., a_n; a_i a_j = a_j a_i \rangle^+;$
- Garside element: $\Delta = a_1 \dots a_n$; \rightsquigarrow lattice $\operatorname{Div}(\Delta) \approx$ cube

• Artin's braid group B_n (Garside's original example):

 $\begin{array}{l} \langle \sigma_1,...,\sigma_{n-1};\sigma_i\sigma_j=\sigma_j\sigma_i \text{ for } |i-j| \geqslant 2, \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j \text{ for } |i-j|=1 \rangle; \\ \text{- monoid: } B_n^+:=\langle ... \rangle^+, \end{array}$

- Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 \dots;$ \rightsquigarrow lattice $\text{Div}(\Delta_n) \approx (S_n, , \text{ weak order})$

• Free abelian group of finite type

$$\langle a_1,...,a_{m{n}};a_{m{i}}a_{m{j}}=a_{m{j}}a_{m{i}}
angle;$$
 ;

- monoid: $\langle a_1, ..., a_n; a_i a_j = a_j a_i \rangle^+;$

- Garside element:
$$\Delta = a_1 ... a_n$$
;
 \rightsquigarrow lattice $\operatorname{Div}(\Delta) \approx$ cube

More generally: spherical Artin–Tits groups

→ lattice = weak order on the associated Coxeter group

ullet Also: torus knots groups $\langle a,b,c,...;a^p=b^q=c^r=...
angle$...

- Also: torus knots groups $\langle a,b,c,...;a^p=b^q=c^r=...
 angle...$
- Dual Garside structure on B_n (Birman-Ko-Lee, Bessis...): $\xrightarrow{} \rightarrow$ same group, different monoid;

ullet Also: torus knots groups $\langle a,b,c,...;a^p=b^q=c^r=...
angle...$

• Dual Garside structure on B_n (Birman-Ko-Lee, Bessis...):

- ↔ same group, different monoid;
- \rightsquigarrow case of B_3 : $\langle a, b, c; ab = bc = ca \rangle$

 $\Delta = \sigma_1 \sigma_2$

• Also: torus knots groups $\langle a,b,c,...;a^p=b^q=c^r=...
angle...$

Dual Garside structure on B_n (Birman-Ko-Lee, Bessis...):
→ same group, different monoid;
→ case of B₃: ⟨a, b, c; ab = bc = ca⟩
Δ = (σ₁σ₂)³
Also, always for B₃: ⟨a, b; aba = b²⟩:

• Also: torus knots groups $\langle a,b,c,...;a^p=b^q=c^r=...
angle$...

• Dual Garside structure on B_n (Birman-Ko-Lee, Bessis...): \leftrightarrow same group, different monoid; \leftrightarrow case of B_3 : $\langle a, b, c; ab = bc = ca \rangle$ • Also, always for B_3 : $\langle a, b; aba = b^2 \rangle$:

like Garside but with $\operatorname{Div}(\Delta)$ finite height only (not necessarily finite) \downarrow • Free groups are quasi-Garside (Bessis, Brady-Crisp-Kaul-McCammond) F_2 : - monoid $\langle \dots a_{-1}, a_0, a_1, \dots; a_i a_{i+1} = a_{i+1} a_{i+2} \rangle^+$, $\Delta = a_1 a_2$ - quasi-Garside element $\Delta = a_i a_{i+1}$:

• Problem #2: Compute in a Garside group given by a presentation.

- Problem #2: Compute in a Garside group given by a presentation.
- Assume that M is a Garside monoid generated by X, and R contains one relation sv = tu representing lcm(s,t) for all s,t in X. Then (X,R) is a presentation of M (and of the group of fractions of M).

- Problem #2: Compute in a Garside group given by a presentation.
- Assume that M is a Garside monoid generated by X, and R contains one relation sv = tu representing lcm(s,t) for all s,t in X. Then (X,R) is a presentation of M (and of the group of fractions of M).
- For such a presentation by construction:
- all relations of the form u = v with u, v nonempty positive words (no s^{-1});
- no relation su = sv with $u \neq v$;
- at most one relation su = tv for all s, t.

- Problem #2: Compute in a Garside group given by a presentation.
- Assume that M is a Garside monoid generated by X, and R contains one relation sv = tu representing lcm(s,t) for all s,t in X. Then (X,R) is a presentation of M (and of the group of fractions of M).
- For such a presentation by construction:
- all relations of the form u = v with u, v nonempty positive words (no s^{-1});
- no relation su = sv with $u \neq v$;
- at most one relation su = tv for all s, t.

a "complemented" presentation.

- Problem #2: Compute in a Garside group given by a presentation.
- Assume that M is a Garside monoid generated by X, and R contains one relation sv = tu representing lcm(s,t) for all s,t in X. Then (X,R) is a presentation of M (and of the group of fractions of M).
- For such a presentation by construction:
- all relations of the form u = v with u, v nonempty positive words (no s^{-1});
- no relation su = sv with $u \neq v$;
- at most one relation su = tv for all s, t.

→ a "complemented" presentation.

↔ wlog:

- Pb #1: Recognize a Garside monoid from a complemented presentation;
- Pb #2: Compute in a Garside group given by a complemented presentation.

words "for the group" \downarrow \downarrow \downarrow \downarrow \downarrow

• Defin.: For (S, R) a semigroup presentation, and w, w' words on $S \cup S^{-1}$, $w \frown w'$ ("w reverses to w'"), if w' obtained from w by (iteratively) - deleting some $s^{-1}s$, or

words "for the group"

• Defin.: For (S, R) a semigroup presentation, and w, w' words on $S \cup S^{-1}$, $w \land w'$ ("w reverses to w'"), if w' obtained from w by (iteratively)

- deleting some $s^{-1}s$, or

- replacing some $s^{-1}t$ with vu^{-1} s.t. $sv = tu \in R$.

words "for the group"

• Defin.: For (S, R) a semigroup presentation, and w, w' words on $S \cup S^{-1}$, $w \curvearrowright w'$ ("w reverses to w'"), if w' obtained from w by (iteratively)

- deleting some $s^{-1}s$, or

- replacing some $s^{-1}t$ with vu^{-1} s.t. $sv = tu \in R$.

• Remark 1: Deleting $s^{-1}s$ is reversing w.r.t. s = s;

words "for the group"

• Defin.: For (S, R) a semigroup presentation, and w, w' words on $S \cup S^{-1}$, $w \land w'$ ("w reverses to w'"), if w' obtained from w by (iteratively)

- deleting some $s^{-1}s$, or
- replacing some $s^{-1}t$ with vu^{-1} s.t. $sv = tu \in R$.

Remark 1: Deleting s⁻¹s is reversing w.r.t. s = s;
Remark 2: Deleting ss⁻¹ is not legal reversing.

 Word reversing: a syntactic method relevant for semigroup presentations that computes lcm's in good cases (?)

words "for the group"

• Defin.: For (S, R) a semigroup presentation, and w, w' words on $S \cup S^{-1}$, $w \land w'$ ("w reverses to w'"), if w' obtained from w by (iteratively)

- deleting some $s^{-1}s$, or
- replacing some $s^{-1}t$ with vu^{-1} s.t. $sv = tu \in R$.

- Remark 1: Deleting $s^{-1}s$ is reversing w.r.t. s = s;
- Remark 2: Deleting ss^{-1} is not legal reversing.
- Remark 3: $w \curvearrowright w'$ implies $w \equiv w'$.

represents the same element in the group $\langle S;R
angle$

- Reversing = replacing a -+ subword with a +- subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$

 $a^{-1}baa$

- Reversing = replacing a -+ subword with a +- subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$

 a^{-1} baa \frown bab $^{-1}$ aa

- Reversing = replacing a -+ subword with a +- subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$
- $a^{-1}baa \frown bab^{-1}aa \frown baba^{-1}b^{-1}a$

• Example: $S := \{a, b\}, R := \{aba = bb\}$

 $a^{-1}baa \land bab^{-1}aa \land baba^{-1}b^{-1}a \land bab a^{-1}b^{-1}b^{-1}a$

• Example: $S := \{a, b\}, R := \{aba = bb\}$

 $a^{-1}baa \wedge bab^{-1}aa \wedge baba^{-1}b^{-1}a \wedge bab a^{-1}ba^{-1}b^{-1} \wedge babbab^{-1}a^{-1}b^{-1}$

• Example: $S := \{a, b\}, R := \{aba = bb\}$

 $a^{-1}baa \land bab^{-1}aa \land baba^{-1}b^{-1}a \land bab a^{-1}ba^{-1}b^{-1} \land babbab^{-1}a^{-1}b^{-1}$... a positive-negative word: cannot be reversed anymore.

• Example: $S := \{a, b\}, R := \{aba = bb\}$

 $a^{-1}baa \land bab^{-1}aa \land baba^{-1}b^{-1}a \land bab a^{-1}ba^{-1}b^{-1} \land babbab^{-1}a^{-1}b^{-1}$... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices: $s^{-1}t \sim vu^{-1} \leftrightarrow$ replacing s

• Example: $S := \{a, b\}, R := \{aba = bb\}$

 $a^{-1}baa \land bab^{-1}aa \land baba^{-1}b^{-1}a \land bab a^{-1}ba^{-1}b^{-1} \land babbab^{-1}a^{-1}b^{-1}$... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices: $s^{-1}t \sim vu^{-1} \leftrightarrow$ replacing s with s with s v

• Example: $S := \{a, b\}, R := \{aba = bb\}$

 $a^{-1}baa \land bab^{-1}aa \land baba^{-1}b^{-1}a \land bab a^{-1}ba^{-1}b^{-1} \land babbab^{-1}a^{-1}b^{-1}$... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices:

• Example: $S := \{a, b\}, R := \{aba = bb\}$

 $a^{-1}baa \land bab^{-1}aa \land baba^{-1}b^{-1}a \land bab a^{-1}ba^{-1}b^{-1} \land babbab^{-1}a^{-1}b^{-1}$... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices: with s $s^{-1}t \frown vu^{-1} \rightsquigarrow$ replacing S 1) b a a b a b

a

• Example: $S := \{a, b\}, R := \{aba = bb\}$

 $a^{-1}baa \land bab^{-1}aa \land baba^{-1}b^{-1}a \land bab a^{-1}ba^{-1}b^{-1} \land babbab^{-1}a^{-1}b^{-1}$... a positive-negative word: cannot be reversed anymore.

a

b

a

• Reversing = replacing a -+ subword with a +- subword.

• Example: $S := \{a, b\}, R := \{aba = bb\}$

a

b

a

 $a^{-1}baa \land bab^{-1}aa \land baba^{-1}b^{-1}a \land bab a^{-1}ba^{-1}b^{-1} \land babbab^{-1}a^{-1}b^{-1}$... a positive-negative word: cannot be reversed anymore.

b

b

• Example: $S := \{a, b\}, R := \{aba = bb\}$

 $a^{-1}baa \land bab^{-1}aa \land baba^{-1}b^{-1}a \land bab a^{-1}ba^{-1}b^{-1} \land babbab^{-1}a^{-1}b^{-1}$... a positive-negative word: cannot be reversed anymore.

Reversing = constructing a van Kampen diagram from the source vertices:
 t

$$\begin{array}{c} -^{1}t \frown vu^{-1} \nleftrightarrow \text{ replacing } s & \text{ with } s & \text{ } v \\ & & & & \\ & & & \\ & & & \\ & & & \\ a & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

COMPLETENESS OF REVERSING

• What can one deduce from $w \curvearrowright w'$?

• Not much: if u, v are positive, $u^{-1}v \curvearrowright \varepsilon$ implies $u \equiv v$, and even $u \equiv^+ v$.

• Not much: if u, v are positive, $u^{-1}v \curvearrowright \varepsilon$ implies $u \equiv v$, and even $u \equiv^+ v$.

• The good case: when the converse holds ("reversing detects equivalence").

• Not much: if u, v are positive, $u^{-1}v \curvearrowright \varepsilon$ implies $u \equiv v$, and even $u \equiv^+ v$.

• The good case: when the converse holds ("reversing detects equivalence").

• Definition: The presentation (S, R) is complete for reversing if $u \equiv^+ v$ implies (hence, is equivalent to) $u^{-1}v \curvearrowright \varepsilon$.

• Not much: if u, v are positive, $u^{-1}v \curvearrowright \varepsilon$ implies $u \equiv v$, and even $u \equiv v$. represent the same element in the monoid

• The good case: when the converse holds ("reversing detects equivalence").

• Definition: The presentation (S, R) is complete for reversing if $u \equiv^+ v$ implies (hence, is equivalent to) $u^{-1}v \curvearrowright \varepsilon$.

↔ Criterion for recognizing completeness?

• Definition: For (S, R) a semigroup presentation, and X set of words on S, say that the cube condition holds on X if, for all u, v, w in X,

• Fact: A semigroup presentation (S, R) is complete for reversing iff the cube condition holds on S^* (*i.e.*, for all words).

Criterion 1: If the relations of R preserve some pseudo-length, \uparrow^{\uparrow} $\lambda: S^* \to \mathbb{N} \text{ s.t. } \lambda(uv) \geqslant \lambda(u) + \lambda(v) \text{ and } \lambda(s) \geqslant 1 \text{ for } s \in S$ and the cube condition holds on S, then (S, R) is complete for reversing.

Criterion 1: If the relations of R preserve some pseudo-length, $\widehat{\lambda}: S^* \to \mathbb{N} \text{ s.t. } \lambda(uv) \geqslant \lambda(u) + \lambda(v) \text{ and } \lambda(s) \geqslant 1 \text{ for } s \in S$ and the cube condition holds on S, then (S, R) is complete for reversing.

Criterion 2: If there exists $\widehat{S} \supseteq S$ closed under reversing, if $u, v \in \widehat{S}$ and $u^{-1}v \curvearrowright v'u'^{-1}$, then $u', v' \in \widehat{S}$ and the cube condition holds on \widehat{S} , then (S, R) is complete for reversing.

Criterion 1: If the relations of R preserve some pseudo-length, \uparrow^{\uparrow} $\lambda: S^* \to \mathbb{N} \text{ s.t. } \lambda(uv) \geqslant \lambda(u) + \lambda(v) \text{ and } \lambda(s) \geqslant 1 \text{ for } s \in S$ and the cube condition holds on S, then (S, R) is complete for reversing.

Criterion 2: If there exists $\widehat{S} \supseteq S$ closed under reversing, if $u, v \in \widehat{S}$ and $u^{-1}v \curvearrowright v'u'^{-1}$, then $u', v' \in \widehat{S}$ and the cube condition holds on \widehat{S} , then (S, R) is complete for reversing.

• Example: $S := \{a, b\}, R := \{aba = bb\}.$

Criterion 1: If the relations of R preserve some pseudo-length, \uparrow^{\uparrow} $\lambda: S^* \to \mathbb{N} \text{ s.t. } \lambda(uv) \geqslant \lambda(u) + \lambda(v) \text{ and } \lambda(s) \geqslant 1 \text{ for } s \in S$ and the cube condition holds on S, then (S, R) is complete for reversing.

Criterion 2: If there exists $\widehat{S} \supseteq S$ closed under reversing, if $u, v \in \widehat{S}$ and $u^{-1}v \frown v'u'^{-1}$, then $u', v' \in \widehat{S}$ and the cube condition holds on \widehat{S} , then (S, R) is complete for reversing.

• Example: $S := \{a, b\}, R := \{aba = bb\}$. For Criterion 1: $\lambda(a) := 1, \lambda(b) := 2;$ • Let (S; R) be a semigroup presentation:

Criterion 1: If the relations of R preserve some pseudo-length, \uparrow^{\uparrow} $\lambda: S^* \to \mathbb{N} \text{ s.t. } \lambda(uv) \geqslant \lambda(u) + \lambda(v) \text{ and } \lambda(s) \geqslant 1 \text{ for } s \in S$ and the cube condition holds on S, then (S, R) is complete for reversing.

Criterion 2: If there exists $\widehat{S} \supseteq S$ closed under reversing, if $u, v \in \widehat{S}$ and $u^{-1}v \curvearrowright v'u'^{-1}$, then $u', v' \in \widehat{S}$ and the cube condition holds on \widehat{S} , then (S, R) is complete for reversing.

• Example:
$$S := \{a, b\}, R := \{aba = bb\}$$
.
For Criterion 1: $\lambda(a) := 1, \lambda(b) := 2$;
For Criterion 2: $\widehat{S} := \{\varepsilon, a, b, ab, bb, ba, bba\}$; \rightsquigarrow (in both cases) OK.

• Principle: When (S, R) is complete for reversing, the properties of the monoid $\langle S, R \rangle^+$ and of the group $\langle S, R \rangle$ can be read from R easily.

• Principle: When (S, R) is complete for reversing, the properties of the monoid $\langle S, R \rangle^+$ and of the group $\langle S, R \rangle$ can be read from R easily.

• Proposition: Assume that (S, R) is complete for reversing, and R contains no relation su = sv with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

• Principle: When (S,R) is complete for reversing, the properties of the monoid $\langle S,R
angle^+$ and of the group $\langle S,R
angle$ can be read from R easily.

• Proposition: Assume that (S, R) is complete for reversing, and R contains no relation su = sv with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

Proof: Assume $su \equiv^+ sv$.

• Principle: When (S,R) is complete for reversing, the properties of the monoid $\langle S,R
angle^+$ and of the group $\langle S,R
angle$ can be read from R easily.

• Proposition: Assume that (S, R) is complete for reversing, and R contains no relation su = sv with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

Proof: Assume $su \equiv^+ sv$.

Then $(su)^{-1}(sv) \curvearrowright \varepsilon$:

• Principle: When (S, R) is complete for reversing, the properties of the monoid $\langle S, R \rangle^+$ and of the group $\langle S, R \rangle$ can be read from R easily.

• Proposition: Assume that (S, R) is complete for reversing, and R contains no relation su = sv with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

Proof: Assume
$$su \equiv^+ sv$$
.
Then $(su)^{-1}(sv) \frown \varepsilon$: s
 u

- Principle: When (S,R) is complete for reversing, the properties of the monoid $\langle S,R
 angle^+$ and of the group $\langle S,R
 angle$ can be read from R easily.
- Proposition: Assume that (S, R) is complete for reversing, and R contains no relation su = sv with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

- Principle: When (S,R) is complete for reversing, the properties of the monoid $\langle S,R
 angle^+$ and of the group $\langle S,R
 angle$ can be read from R easily.
- Proposition: Assume that (S, R) is complete for reversing, and R contains no relation su = sv with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

- Principle: When (S,R) is complete for reversing, the properties of the monoid $\langle S,R
 angle^+$ and of the group $\langle S,R
 angle$ can be read from R easily.
- Proposition: Assume that (S, R) is complete for reversing, and R contains no relation su = sv with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

- Principle: When (S,R) is complete for reversing, the properties of the monoid $\langle S,R
 angle^+$ and of the group $\langle S,R
 angle$ can be read from R easily.
- Proposition: Assume that (S, R) is complete for reversing, and R contains no relation su = sv with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

- Principle: When (S,R) is complete for reversing, the properties of the monoid $\langle S,R
 angle^+$ and of the group $\langle S,R
 angle$ can be read from R easily.
- Proposition: Assume that (S, R) is complete for reversing, and R contains no relation su = sv with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

- Principle: When (S, R) is complete for reversing, the properties of the monoid $\langle S, R \rangle^+$ and of the group $\langle S, R \rangle$ can be read from R easily.
- Proposition: Assume that (S, R) is complete for reversing, and R contains no relation su = sv with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

• Prop.: Assume that (S, R) is complete for reversing, and R contains ≤ 1 relation su = tv for each pair s, t in S. Then $\langle S, R \rangle^+$ admits local right lcm's. two elements with a common multiple admit a lcm \checkmark

RECIPE

• For
$$u \overbrace{\overbrace{v'}}^v u'$$
 , write $\mathbf{c}(u,v) := v'$ and $\delta(u,v) := uv'$.

• For
$$u \overbrace{\overbrace{v'}}^{v} u'$$
 , write $\mathbf{c}(u,v) := v'$ and $\delta(u,v) := uv'$.

• For
$$u [\overbrace{\sim} v'] u'$$
 , write $\mathbf{c}(u,v) := v'$ and $\delta(u,v) := uv'$.

• Algorithm: Input: A complemented presentation (S; R); 1- Find the closure \widehat{S} of S under c;

• For
$$u \overbrace{\overbrace{v'}}^v u'$$
 , write $\mathbf{c}(u,v) := v'$ and $\delta(u,v) := uv'$.

- Algorithm: Input: A complemented presentation (S; R);
 - 1- Find the closure \widehat{S} of S under c;
 - 2- Check the cube condition on \widehat{S} ;

• For
$$u \overbrace{\overbrace{v'}}^{v} u'$$
 , write $\mathbf{c}(u,v) := v'$ and $\delta(u,v) := uv'$.

- Algorithm: Input: A complemented presentation (S; R);
 - 1- Find the closure \widehat{S} of S under ${f c};$
 - 2- Check the cube condition on \widehat{S} ;
 - 3- Find the closure \widetilde{S} of \widehat{S} under δ , and the maximal element w_0 of \widetilde{S} ;

• For
$$u \overbrace{\overbrace{v'}}^{v} u'$$
 , write $\mathbf{c}(u,v) := v'$ and $\delta(u,v) := uv'$.

- Algorithm: Input: A complemented presentation (S; R);
 - 1- Find the closure \widehat{S} of S under ${f c};$
 - 2- Check the cube condition on \widehat{S} ;
 - 3- Find the closure \widetilde{S} of \widehat{S} under $\delta,$ and the maximal element w_0 of $\widetilde{S};$
 - 4- Check the injectivity of $u\mapsto \mathrm{c}(u,w_0)$ on \widetilde{S} up to equivalence.

• For
$$u \overbrace{\overbrace{v'}}^{v} u'$$
 , write $\mathbf{c}(u,v) := v'$ and $\delta(u,v) := uv'$.

- 1- Find the closure \widehat{S} of S under ${f c};$
- 2- Check the cube condition on \widehat{S} ;
- 3- Find the closure \widetilde{S} of \widehat{S} under $\delta,$ and the maximal element w_0 of $\widetilde{S};$

• For
$$u \overbrace{\overbrace{v'}}^{v} u'$$
 , write $\mathbf{c}(u,v) := v'$ and $\delta(u,v) := uv'$.

- 1- Find the closure \widehat{S} of S under ${f c};$
- 2- Check the cube condition on \widehat{S} ;
- 3- Find the closure \widetilde{S} of \widehat{S} under δ , and the maximal element w_0 of \widetilde{S} ;

4- Check the injectivity of $u \mapsto c(u, w_0)$ on \widetilde{S} up to equivalence. Then $\langle S; R \rangle^+$ is a Garside monoid with w_0 representing a Garside element.

• Example: $S = \{a, b\}, R = \{aba = bb\}.$

• For
$$u \overbrace{\overbrace{v'}}^{v} u'$$
 , write $\mathbf{c}(u,v) := v'$ and $\delta(u,v) := uv'$.

- 1- Find the closure \widehat{S} of S under ${f c};$
- 2- Check the cube condition on \widehat{S} ;
- 3- Find the closure \widetilde{S} of \widehat{S} under δ , and the maximal element w_0 of \widetilde{S} ;

• Example:
$$S = \{a, b\}, R = \{aba = bb\}.$$

1- $\hat{S} = \{\varepsilon, a, b, ab, ba, bab\};$ 2- ... OK;

• For
$$u \overbrace{\overbrace{v'}}^v u'$$
 , write $\mathbf{c}(u,v) := v'$ and $\delta(u,v) := uv'$.

- 1- Find the closure \widehat{S} of S under ${f c};$
- 2- Check the cube condition on \widehat{S} ;
- <u>3- Find the closure \widetilde{S} of \widehat{S} under δ , and the maximal element w_0 of \widetilde{S} ;</u>

• Example:
$$S = \{a, b\}, R = \{aba = bb\}$$
.
1- $\hat{S} = \{\varepsilon, a, b, ab, ba, bab\};$ 2- ... OK;
3- $\tilde{S} = \hat{S} \cup \{bb, bbb\}, w_0 = bbb; 4-c(\varepsilon, w_0) = w_0, c(a, w_0) = bab...$ OK

• For
$$u \overbrace{\overbrace{v'}}^v u'$$
 , write $\mathbf{c}(u,v) := v'$ and $\delta(u,v) := uv'$.

- 1- Find the closure \widehat{S} of S under ${f c};$
- 2- Check the cube condition on \widehat{S} ;
- 3- Find the closure \widetilde{S} of \widehat{S} under δ , and the maximal element w_0 of \widetilde{S} ;

• Example:
$$S = \{a, b\}, R = \{aba = bb\}$$
.
1- $\widehat{S} = \{\varepsilon, a, b, ab, ba, bab\};$ 2- ... OK;
3- $\widetilde{S} = \widehat{S} \cup \{bb, bbb\}, w_0 = bbb; 4- c(\varepsilon, w_0) = w_0, c(a, w_0) = bab...$ OK
 $\rightsquigarrow \langle a, b; aba = bb \rangle^+$ is a Garside monoid with $\Delta = b^3$ and 8 divisors of Δ .

• Algorithm: Input: A word *w*;

• Algorithm: Input: A word w;

```
1- Left reverse w into u^{-1}v, \uparrow symmetric to (right) reversing: +- \rightarrow -+
```

• Algorithm: Input: A word w;

1- Left reverse w into $u^{-1}v$, \uparrow symmetric to (right) reversing: $+- \rightarrow -+$ 2- (right) reverse $u^{-1}v$ into $v'u'^{-1}$.

Algorithm: Input: A word w;

1- Left reverse w into $u^{-1}v$, \uparrow symmetric to (right) reversing: $+- \rightarrow -+$ 2- (right) reverse $u^{-1}v$ into $v'u'^{-1}$.

Output: Two positive words u', v's.t. $\overline{u'v'}^{-1}$ is the above expression of \overline{w} . $\uparrow \uparrow$ the element of the group represented by...

Algorithm: Input: A word w;

1- Left reverse w into $u^{-1}v$, \uparrow symmetric to (right) reversing: $+- \rightarrow -+$ 2- (right) reverse $u^{-1}v$ into $v'u'^{-1}$.

Output: Two positive words u', v's.t. $\overline{u'v'}^{-1}$ is the above expression of \overline{w} . $\uparrow \uparrow$ the element of the group represented by...

Algorithm: Input: A word w;

1- Left reverse w into $u^{-1}v$, \uparrow symmetric to (right) reversing: $+- \rightarrow -+$ 2- (right) reverse $u^{-1}v$ into $v'u'^{-1}$.

Output: Two positive words u', v's.t. $\overline{u'}\overline{v'}^{-1}$ is the above expression of \overline{w} . $\uparrow \uparrow$ the element of the group represented by...

Algorithm: Input: A word w;

1- Left reverse w into $u^{-1}v$, \uparrow symmetric to (right) reversing: $+- \rightarrow -+$ 2- (right) reverse $u^{-1}v$ into $v'u'^{-1}$.

Output: Two positive words u', v's.t. $\overline{u'v'}^{-1}$ is the above expression of \overline{w} . $\uparrow \uparrow$ the element of the group represented by...

Algorithm: Input: A word w;

1- Left reverse w into $u^{-1}v$, \uparrow symmetric to (right) reversing: $+- \rightarrow -+$ 2- (right) reverse $u^{-1}v$ into $v'u'^{-1}$.

Output: Two positive words u', v's.t. $\overline{u'v'}^{-1}$ is the above expression of \overline{w} . $\uparrow \uparrow$ the element of the group represented by...

• Corollary (solution to the word problem): w represents 1 iff u' = v' = arepsilon.

• Algorithm: Input: Two positive words u, v;

• Algorithm: Input: Two positive words *u*, *v*;

1- Right reverse $u^{-1}v$ into $v'u'^{-1}$,

• Algorithm: Input: Two positive words u, v;

1- Right reverse $u^{-1}v$ into $v'u'^{-1}$, 2- Left reverse $v'u'^{-1}$ into $u''v''^{-1}$,

• Algorithm: Input: Two positive words u, v;

1- Right reverse
$$u^{-1}v$$
 into $v'u'^{-1}$,
2- Left reverse $v'u'^{-1}$ into $u''v''^{-1}$,
3- Left reverse uu''^{-1} into w .

• Algorithm: Input: Two positive words u, v;

1- Right reverse
$$u^{-1}v$$
 into $v'u'^{-1}$,
2- Left reverse $v'u'^{-1}$ into $u''v''^{-1}$,
3- Left reverse uu''^{-1} into w .

• Algorithm: Input: Two positive words u, v;

1- Right reverse $u^{-1}v$ into $v'u'^{-1}$, 2- Left reverse $v'u'^{-1}$ into $u''v''^{-1}$, 3- Left reverse uu''^{-1} into w.

• Algorithm: Input: Two positive words u, v;

1- Right reverse $u^{-1}v$ into $v'u'^{-1}$, 2- Left reverse $v'u'^{-1}$ into $u''v''^{-1}$, 3- Left reverse uu''^{-1} into w.

• Algorithm: Input: Two positive words u, v;

1- Right reverse $u^{-1}v$ into $v'u'^{-1}$, 2- Left reverse $v'u'^{-1}$ into $u''v''^{-1}$, 3- Left reverse uu''^{-1} into w.

• Algorithm: Input: Two positive words u, v;

1- Right reverse $u^{-1}v$ into $v'u'^{-1}$, 2- Left reverse $v'u'^{-1}$ into $u''v''^{-1}$, 3- Left reverse uu''^{-1} into w.

• Algorithm: Input: Two positive words u, v;

1- Right reverse $u^{-1}v$ into $v'u'^{-1}$, 2- Left reverse $v'u'^{-1}$ into $u''v''^{-1}$, 3- Left reverse uu''^{-1} into w.

divisor of Δ

divisor of Δ

• "Reversing is compatible with the normal form":

divisor of Δ

• "Reversing is compatible with the normal form":

divisor of Δ

• "Reversing is compatible with the normal form":

divisor of Δ

• "Reversing is compatible with the normal form":

divisor of Δ

• "Reversing is compatible with the normal form":

divisor of Δ

• "Reversing is compatible with the normal form":

divisor of Δ

• "Reversing is compatible with the normal form":

divisor of Δ

• "Reversing is compatible with the normal form":

• Proposition: Let (M, Δ) be a Garside system, and $(x_1, ..., x_p)$, $(y_1, ..., y_q)$ be normal. Then so is every horizontal– or vertical–diagonal sequence in

↔ Computation of the normal form of a product, or of an lcm.

- for recognizing a Garside group from a (complemented) presentation,
- for computing inside a Garside group using a (complemented) presen-

tation for (one of the possible) Garside structure(s).

- for recognizing a Garside group from a (complemented) presentation,
- for computing inside a Garside group using a (complemented) presentation for (one of the possible) Garside structure(s).

Once completeness is granted, reversing ≈ computing lcm, but not a priori
 ↔ crucial to distinguish between words and the elements they represent.

- for recognizing a Garside group from a (complemented) presentation,
- for computing inside a Garside group using a (complemented) presentation for (one of the possible) Garside structure(s).

Once completeness is granted, reversing ≈ computing lcm, but not a priori
 ↔ crucial to distinguish between words and the elements they represent.

• References:

- Groupes de Garside; Ann. Scient. Ec. Norm. Sup. 35 (2002) 267–306.
- Complete positive group presentations; J. of Algebra 268 (2003) 156–197.

- for recognizing a Garside group from a (complemented) presentation,
- for computing inside a Garside group using a (complemented) presentation for (one of the possible) Garside structure(s).

Once completeness is granted, reversing ≈ computing lcm, but not a priori
 ↔ crucial to distinguish between words and the elements they represent.

• References:

- Groupes de Garside; Ann. Scient. Ec. Norm. Sup. 35 (2002) 267–306.
- Complete positive group presentations; J. of Algebra 268 (2003) 156–197.

www.math.unicaen.fr/~dehornoy