Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

• Garside groups = a family of biautomatic groups containing braid groups,

- not too simple (typically: not abelian),
- not too complicated (typically: word pb. solvable in quadratic time),

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

• Garside groups = a family of biautomatic groups containing braid groups,

- not too simple (typically: not abelian),
- not too complicated (typically: word pb. solvable in quadratic time),

 \leftrightarrow natural platforms for group-based cryptography.

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

• Garside groups = a family of biautomatic groups containing braid groups,

- not too simple (typically: not abelian),
- not too complicated (typically: word pb. solvable in quadratic time),

 \leftrightarrow natural platforms for group-based cryptography.

- Here, two problems:
	- recognizing a Garside group from a presentation;
	- working with a presented Garside group.

• Definition: A Garside system is a pair (\overline{M}, Δ) , s.t.

• Definition: A Garside system is a pair (M,Δ) , s.t.

 $-M$ is a cancellative monoid with no invertible and with lcm's and gcd's,

• Definition: A Garside system is a pair (M,Δ) , s.t.

- $\overline{}$ \overline{M} is a cancellative monoid with no invertible and with lcm's and gcd's,
- $\boldsymbol{\Delta}$ is a Garside element in $\boldsymbol{M}.$

|
|
| $\overline{\mathrm{Div}_L(\Delta)} = \overline{\mathrm{Div}_R(\Delta)}$, this set is finite, and generates \overline{M} • Definition: A Garside system is a pair $(M, \overline{\Delta})$, s.t.

- M is a cancellative monoid with no invertible and with lcm's and gcd's,
- $\boldsymbol{\Delta}$ is a Garside element in $\boldsymbol{M}.$

|
|
| $\tilde{\mathbf{Div}}_{L}(\Delta)=\mathbf{Div}_{R}(\Delta)$, this set is finite, and generates $M_{\rm{max}}$

• By Ore's conditions, a Garside monoid embeds in a group of fractions \leftrightarrow

• Definition: A Garside system is a pair (M, Δ) , s.t.

- \overline{M} is a cancellative monoid with no invertible and with lcm's and gcd's,
- Δ is a Garside element in $M.$

|
|
| $\overline{\mathrm{Div}_L(\Delta)} = \overline{\mathrm{Div}_R(\Delta)}$, this set is finite, and generates \overline{M}_L

- By Ore's conditions, a Garside monoid embeds in a group of fractions \leftrightarrow
- Definition: A Garside group is a group that is the group of fractions of (at least one) Garside monoid.

• Definition: A Garside system is a pair (M, Δ) , s.t.

- M is a cancellative monoid with no invertible and with lcm's and gcd's,
- Δ is a Garside element in M .

|
|
| $\tilde{\mathbf{Div}}_L(\Delta) = \mathbf{Div}_R(\Delta)$, this set is finite, and generates M

- By Ore's conditions, a Garside monoid embeds in a group of fractions \rightarrow
- Definition: A Garside group is a group that is the group of fractions of (at least one) Garside monoid.

• Principle: A Garside group is controlled by the finite lattice $\texttt{Div}(\Delta).$

• Artin's braid group B_n (Garside's original example):

$$
\langle \sigma_{\!\! 1},...,\sigma_{\!\! n-1};\sigma_{\!\! i}\sigma_{\!\! j}=\sigma_{\!\! j}\sigma_{\!\! i}\text{ for } |i-j|\geqslant 2, \sigma_{\!\! i}\sigma_{\!\! j}\sigma_{\!\! i}=\sigma_{\!\! j}\sigma_{\!\! i}\sigma_{\!\! j}\text{ for } |i-j|=1\rangle\text{;}
$$

• Artin's braid group B_n (Garside's original example):

- $\langle\sigma_{1},...,\sigma_{n-1};\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}$ for $|i-j|\geqslant 2,\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}$ for $|i-j|=1\rangle$; - monoid: $\dot{B}_n^+:=\langle...\rangle^+$,
	- Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 ...$;

• Artin's braid group B_n (Garside's original example):

- $\langle\sigma_{1},...,\sigma_{n-1};\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}$ for $|i-j|\geqslant 2,\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}$ for $|i-j|=1\rangle$; - monoid: $\dot{B}_n^+:=\langle...\rangle^+$, ∆4
	- Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 ...$;
		- \rightarrow lattice $\text{Div}(\Delta_n) \approx (S_n, K_n)$ weak order)

• $(\mathbb{Z}_{>0}, *)$ admits lcm's, but is not Garside: no Δ s.t. $Div(\Delta)$ generating.

• Artin's braid group B_n (Garside's original example):

- $\langle\sigma_{1},...,\sigma_{n-1};\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}$ for $|i-j|\geqslant 2,\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}$ for $|i-j|=1\rangle$; - monoid: $\dot{B}_n^+:=\langle...\rangle^+$, ∆⁴
	- Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 ...$; \rightarrow lattice $\text{Div}(\Delta_n) \approx (S_n, K_n)$ weak order)

• Free abelian group of finite type $\langle a_1, ..., a_n; a_i a_j = a_j a_i \rangle$;

1

• $(\mathbb{Z}_{>0}, *)$ admits lcm's, but is not Garside: no Δ s.t. $Div(\Delta)$ generating.

• Artin's braid group B_n (Garside's original example):

 $\langle\sigma_{1},...,\sigma_{n-1};\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}$ for $|i-j|\geqslant 2,\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}$ for $|i-j|=1\rangle$; - monoid: $\dot{B}_n^+:=\langle...\rangle^+$, ∆⁴

- Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 ...$; \rightarrow lattice $\text{Div}(\Delta_n) \approx (S_n, K_n)$ weak order)

• Free abelian group of finite type

$$
\langle a_1,...,a_n;a_ia_j=a_ja_i\rangle\;\! ;
$$

- monoid: $\langle a_1, ..., a_n; a_ia_j = a_ja_i \rangle^+$;
- Garside element: $\Delta = a_1...a_n$;

1

• $(\mathbb{Z}_{>0}, *)$ admits lcm's, but is not Garside: no Δ s.t. $Div(\Delta)$ generating.

• Artin's braid group B_n (Garside's original example):

 $\langle\sigma_{1},...,\sigma_{n-1};\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}$ for $|i-j|\geqslant 2,\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}$ for $|i-j|=1\rangle$; - monoid: $\dot{B}_n^+:=\langle...\rangle^+$, ∆⁴

- Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 ...$; \rightarrow lattice $\text{Div}(\Delta_n) \approx (S_n, K_n)$ weak order)

• Free abelian group of finite type

$$
\langle a_1,...,a_n;a_ia_j=a_ja_i\rangle\;\! ;
$$

- monoid: $\langle a_1, ..., a_n; a_ia_j = a_ja_i \rangle^+$;
- Garside element: $\Delta = a_1...a_n$; \leftrightarrow lattice $\text{Div}(\Delta) \approx$ cube

1

• $(\mathbb{Z}_{>0}, *)$ admits lcm's, but is not Garside: no Δ s.t. $Div(\Delta)$ generating.

• Artin's braid group B_n (Garside's original example):

 $\langle\sigma_{1},...,\sigma_{n-1};\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}$ for $|i-j|\geqslant 2,\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}$ for $|i-j|=1\rangle$; - monoid: $\dot{B}_n^+:=\langle...\rangle^+$, $\Delta_\textbf{4}$

- Garside element: $\Delta_n = \sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 ...$; \rightarrow lattice $\text{Div}(\Delta_n) \approx (S_n, K_n)$ weak order)

• Free abelian group of finite type

$$
\langle a_1,...,a_n;a_ia_j=a_ja_i\rangle\;\! ;
$$

- monoid: $\langle a_1, ..., a_n; a_ia_j = a_ja_i \rangle^+$;

- Garside element: $\Delta = a_1...a_n$; \leftrightarrow lattice $\text{Div}(\Delta) \approx$ cube

• More generally: spherical Artin–Tits groups $lattice = weak order on the associated Coxeter group$

 \bullet Also: torus knots groups $\langle a, b, c, ... ; a^p=b^q=c^r= ... \rangle ...$

- \bullet Also: torus knots groups $\langle a, b, c, ...; a^p=b^q=c^r= ... \rangle ...$
- Dual Garside structure on B_n (Birman-Ko-Lee, Bessis...):
	- \rightarrow same group, different monoid;

• Also: torus knots groups $\langle a, b, c, ...; a^p = b^q = c^r = ... \rangle ...$

• Dual Garside structure on B_n (Birman-Ko-Lee, Bessis...):

- \rightarrow same group, different monoid;
- \rightarrow case of B_3 : $\langle a, b, c; ab = bc = ca \rangle$

 \bullet Also: torus knots groups $\langle a, b, c, ...; a^p = b^q = c^r = ... \rangle ...$

• Dual Garside structure on B_n (Birman-Ko-Lee, Bessis...):

1

 $\Delta = (\sigma_1 \sigma_2)^3$

- \rightarrow same group, different monoid;
- \rightarrow case of B_3 : $\langle a, b, c; ab = bc = ca \rangle$

• Also, always for B_3 : $\langle a, b; aba=b^2 \rangle$:

1

 $\Delta = \sigma_1 \sigma_2$

 \bullet Also: torus knots groups $\langle a,b,c,...;a^p=b^q=c^r=... \rangle...$

• Dual Garside structure on B_n (Birman-Ko-Lee, Bessis...): \rightarrow same group, different monoid; \rightarrow case of B_3 : $\langle a, b, c; ab = bc = ca \rangle$ $\Delta = (\sigma_1 \sigma_2)^3$

• Also, always for B_3 : $\langle a, b; aba=b^2 \rangle$:

like Garside but with $\text{Div}(\Delta)$ finite height only (not necessarily finite))
-
-• Free groups are quasi-Garside (Bessis, Brady-Crisp-Kaul-McCammond) $F_2\colon$ - monoid $\langle...a_{-1},a_0,a_1,...;a_ia_{i+1}=a_{i+1}a_{i+2}\rangle^+.$ - quasi-Garside element $\Delta = a_i a_{i+1}$: $\Delta = a_1 a_2$... $\lt\qquad \qquad$

1

• Problem #2: Compute in ^a Garside group given by ^a presentation.

- Problem #2: Compute in ^a Garside group given by ^a presentation.
- \bullet Assume that \bm{M} is a Garside monoid generated by \bm{X} , and R contains one relation $sv = tu$ representing $\text{lcm}(s,t)$ for all s,t in X . Then (X, R) is a presentation of M (and of the group of fractions of M).

- Problem #2: Compute in ^a Garside group given by ^a presentation.
- \bullet Assume that \bm{M} is a Garside monoid generated by \bm{X} , and R contains one relation $sv = tu$ representing $\text{lcm}(s,t)$ for all s,t in X . Then (X, R) is a presentation of M (and of the group of fractions of M).
- For such ^a presentation by construction:
- all relations of the form $u = v$ with u, v nonempty positive words (no s^{-1});
- no relation $su = sv$ with $u \neq v$;
- at most one relation $su = tv$ for all s,t .

- Problem #2: Compute in ^a Garside group given by ^a presentation.
- \bullet Assume that \bm{M} is a Garside monoid generated by \bm{X} , and R contains one relation $sv = tu$ representing $\text{lcm}(s,t)$ for all s,t in X . Then (X, R) is a presentation of M (and of the group of fractions of M).
- For such ^a presentation by construction:
- all relations of the form $u = v$ with u, v nonempty positive words (no s^{-1});
- no relation $su = sv$ with $u \neq v$;
- at most one relation $su = tv$ for all s,t .

 \rightarrow a "complemented" presentation.

- Problem #2: Compute in ^a Garside group given by ^a presentation.
- \bullet Assume that \bm{M} is a Garside monoid generated by \bm{X} , and R contains one relation $sv = tu$ representing $\text{lcm}(s,t)$ for all s,t in X . Then (X, R) is a presentation of M (and of the group of fractions of M).
- For such ^a presentation by construction:
- all relations of the form $u = v$ with u, v nonempty positive words (no s^{-1});
- no relation $su = sv$ with $u \neq v$;
- at most one relation $su = tv$ for all s,t .

 \rightsquigarrow a "complemented" presentation.

\rightsquigarrow wlog:

- Pb #1: Recognize a Garside monoid from a complemented presentation;
- Pb #2: Compute in a Garside group given by a complemented presentation.

WORD REVERSING

• Word reversing: ^a syntactic method relevant for semigroup presentations that computes lcm's in good cases (?)

words "for the group" ↓ \bullet Defin.: For (S,R) a semigroup presentation, and w,w' words on $S\cup S^{-1}$,

words "for the group" ↓ \bullet Defin.: For (S,R) a semigroup presentation, and w,w' words on $S\cup S^{-1}$, $w \curvearrowright w'$ (" w reverses to w' "), if w' obtained from w by (iteratively) - deleting some $s^{-1}s$, or

words "for the group"

↓ \bullet Defin.: For (S,R) a semigroup presentation, and w,w' words on $S\cup S^{-1}$, $w \curvearrowright w'$ (" w reverses to w' "), if w' obtained from w by (iteratively)

- deleting some $s^{-1}s$, or

- replacing some $s^{-1}t$ with vu^{-1} s.t. $sv = tu \in R$.

words "for the group"

↓ \bullet Defin.: For (S,R) a semigroup presentation, and w,w' words on $S\cup S^{-1}$, $w \curvearrowright w'$ (" w reverses to w' "), if w' obtained from w by (iteratively)

- deleting some $s^{-1}s$, or
- replacing some $s^{-1}t$ with vu^{-1} s.t. $sv = tu \in R$.

• Remark 1: Deleting $s^{-1}s$ is reversing w.r.t. $s=s$;

words "for the group"

↓ \bullet Defin.: For (S,R) a semigroup presentation, and w,w' words on $S\cup S^{-1}$, $w \curvearrowright w'$ (" w reverses to w' "), if w' obtained from w by (iteratively)

- deleting some $s^{-1}s$, or
- replacing some $s^{-1}t$ with vu^{-1} s.t. $sv = tu \in R$.

• Remark 1: Deleting $s^{-1}s$ is reversing w.r.t. $s=s;$ • Remark 2: Deleting ss^{-1} is not legal reversing.
• Word reversing: a syntactic method relevant for semigroup presentations that computes lcm's in good cases (?)

words "for the group"

↓ \bullet Defin.: For (S,R) a semigroup presentation, and w,w' words on $S\cup S^{-1}$, $w \curvearrowright w'$ (" w reverses to w' "), if w' obtained from w by (iteratively)

- deleting some $s^{-1}s$, or
- replacing some $s^{-1}t$ with vu^{-1} s.t. $sv = tu \in R$.

- Remark 1: Deleting $s^{-1}s$ is reversing w.r.t. $s=s;$
- Remark 2: Deleting ss^{-1} is not legal reversing.
- Remark 3: $w \curvearrowright w'$ implies $w \equiv w'$.

↑ represents the same element in the group $\langle S; R\rangle$

REVERSING DIAGRAM

• Reversing = replacing a $-+$ subword with a $+-$ subword.

- Reversing = replacing a $-+$ subword with a $+-$ subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$

 a^{-1} baa

- Reversing = replacing a $-+$ subword with a $+-$ subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$

 a^{-1} baa \curvearrowright bab $^{-1}$ aa

- Reversing = replacing a $-+$ subword with a $+-$ subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$
- a^{-1} baa \curvearrowright bab a^{-1} aa \curvearrowright baba $^{-1}b^{-1}a$
- Reversing = replacing a $-+$ subword with a $+-$ subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$
- a^{-1} baa \curvearrowright bab $^{-1}$ aa \curvearrowright bab $a^{-1}b^{-1}$ a \curvearrowright bab a $^{-1}$ ba $^{-1}b^{-1}$

• Reversing = replacing a $-+$ subword with a $+-$ subword.

• Example: $S := \{a, b\}, R := \{aba = bb\}$

 a^{-1} baa \curvearrowright bab $^{-1}$ aa \curvearrowright baba $a^{-1}b^{-1}a$ \curvearrowright bab $a^{-1}b^{-1}$ \curvearrowright babbab $^{-1}a^{-1}b^{-1}$

• Reversing = replacing a $-+$ subword with a $+-$ subword.

• Example: $S := \{a, b\}, R := \{aba = bb\}$

 ${\sf a}^{-1}$ baa \curvearrowright bab $^{-1}$ aa \curvearrowright baba ${\sf a}^{-1}$ b $^{-1}$ a \curvearrowright ba ${\sf a}$ ba $^{-1}$ b $^{-1}$ b $^{-1}$ b $^{-1}$ b $^{-1}$... a positive-negative word: cannot be reversed anymore.

- Reversing = replacing a $-+$ subword with a $+-$ subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$

 ${\sf a}^{-1}$ baa \curvearrowright bab $^{-1}$ aa \curvearrowright baba ${\sf a}^{-1}$ b $^{-1}$ a \curvearrowright ba ${\sf a}$ ba $^{-1}$ b $^{-1}$ a ${\sf a}^{-1}$ b $^{-1}$... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices: $s^{-1}t \curvearrowright vu^{-1}$ \leadsto replacing s t

- Reversing = replacing a $-+$ subword with a $+-$ subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$

 ${\sf a}^{-1}$ baa \curvearrowright bab $^{-1}$ aa \curvearrowright baba ${\sf a}^{-1}$ b $^{-1}$ a \curvearrowright ba ${\sf a}$ ba $^{-1}$ b $^{-1}$ a ${\sf a}^{-1}$ b $^{-1}$... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices: $s^{-1}t \curvearrowright vu^{-1}$ \leadsto replacing s t with \bm{s} t 11 \boldsymbol{u}

- Reversing ⁼ replacing ^a −+ subword with ^a +− subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$

 ${\sf a}^{-1}$ baa \curvearrowright bab $^{-1}$ aa \curvearrowright baba ${\sf a}^{-1}$ b $^{-1}$ a \curvearrowright ba ${\sf a}$ ba $^{-1}$ b $^{-1}$ a ${\sf a}^{-1}$ b $^{-1}$... a positive-negative word: cannot be reversed anymore.

- Reversing = replacing a $-+$ subword with a $+-$ subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$

 a^{-1} baa \curvearrowright bab $^{-1}$ aa \curvearrowright baba a^{-1} b $^{-1}$ a \curvearrowright ba a^{-1} b $^{-1}$ b $^{-1}$ a $^{-1}$ b $^{-1}$ b $^{-1}$... a positive-negative word: cannot be reversed anymore.

$$
s^{-1}t \wedge vu^{-1} \rightsquigarrow \text{ replacing } s \downarrow \text{ with } s \downarrow \downarrow \downarrow u
$$
\n
$$
b \qquad a \qquad a \qquad v
$$
\n
$$
a \qquad b
$$
\n
$$
b \qquad a \qquad b
$$

- Reversing = replacing a $-+$ subword with a $+-$ subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$

 a^{-1} baa \curvearrowright bab $^{-1}$ aa \curvearrowright baba a^{-1} b $^{-1}$ a \curvearrowright ba a^{-1} b $^{-1}$ b $^{-1}$ a $^{-1}$ b $^{-1}$ a $^{-1}$ b $^{-1}$... a positive-negative word: cannot be reversed anymore.

- Reversing = replacing a $-+$ subword with a $+-$ subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$

 ${\bf a}^{-1}$ baa \curvearrowright bab $^{-1}$ aa \curvearrowright baba ${\bf a}^{-1}$ b $^{-1}$ a \curvearrowright ba ${\bf a}$ ba $^{-1}$ b $^{-1}$ b $^{-1}$ a $^{-1}$ b $^{-1}$... a positive-negative word: cannot be reversed anymore.

- Reversing = replacing a $-+$ subword with a $+-$ subword.
- Example: $S := \{a, b\}, R := \{aba = bb\}$

 ${\bf a}^{-1}$ baa \curvearrowright bab $^{-1}$ aa \curvearrowright baba ${\bf a}^{-1}$ b $^{-1}$ a \curvearrowright ba ${\bf a}$ ba $^{-1}$ b $^{-1}$ b $^{-1}$ a $^{-1}$ b $^{-1}$... a positive-negative word: cannot be reversed anymore.

COMPLETENESS OF REVERSING

• What can one deduce from $w \curvearrowright w'$?

the empty word ↓ • Not much: if u,v are positive, $u^{-1}v\curvearrowright\check{\varepsilon}$ implies $u\equiv v$, and even $u\equiv^+ v.$ ↑ represent the same element in the monoid

the empty word ↓ • Not much: if u,v are positive, $u^{-1}v\curvearrowright\check{\varepsilon}$ implies $u\equiv v$, and even $u\equiv^+ v.$ ↑ represent the same element in the monoid

• The good case: when the converse holds ("reversing detects equivalence").

the empty word ↓ • Not much: if u,v are positive, $u^{-1}v\curvearrowright\check{\varepsilon}$ implies $u\equiv v$, and even $u\equiv^+ v.$ ↑ represent the same element in the monoid

• The good case: when the converse holds ("reversing detects equivalence").

• Definition: The presentation (S, R) is complete for reversing if $u \equiv^+ v$ implies (hence, is equivalent to) $u^{-1}v \curvearrowright \varepsilon$.

the empty word ↓ • Not much: if u,v are positive, $u^{-1}v\curvearrowright\check{\varepsilon}$ implies $u\equiv v$, and even $u\equiv^+ v.$ ↑ represent the same element in the monoid

• The good case: when the converse holds ("reversing detects equivalence").

• Definition: The presentation (S, R) is complete for reversing if $u \equiv^+ v$ implies (hence, is equivalent to) $u^{-1}v \curvearrowright \varepsilon$.

! Criterion for recognizing completeness?

• Definition: For (S, R) a semigroup presentation, and X set of words on S , say that the cube condition holds on X if, for all u, v, w in X ,

• Fact: A semigroup presentation (S, R) is complete for reversing iff the cube condition holds on S^* (*i.e.*, for all words).

Criterion 1: If the relations of R preserve some pseudo-length, ↑ $\lambda: S^* \to \mathbb{N}$ s.t. $\lambda(uv) \geqslant \lambda(u) + \lambda(v)$ and $\lambda(s) \geqslant 1$ for $s \in S$ and the cube condition holds on S , then (S, R) is complete for reversing.

Criterion 1: If the relations of R preserve some pseudo-length, ↑ $\lambda: S^* \to \mathbb{N}$ s.t. $\lambda(uv) \geqslant \lambda(u) + \lambda(v)$ and $\lambda(s) \geqslant 1$ for $s \in S$ and the cube condition holds on S , then (S, R) is complete for reversing.

Criterion 2: If there exists $S \supseteq S$ closed under reversing, ↑ if $u, v \in \widehat{S}$ and $u^{-1}v \curvearrowright v' {u'}^{-1}$, then $u', v' \in \widehat{S}$ and the cube condition holds on S , then (S,R) is complete for reversing.

Criterion 1: If the relations of R preserve some pseudo-length, ↑ $\lambda: S^* \to \mathbb{N}$ s.t. $\lambda(uv) \geqslant \lambda(u) + \lambda(v)$ and $\lambda(s) \geqslant 1$ for $s \in S$ and the cube condition holds on S , then (S, R) is complete for reversing.

Criterion 2: If there exists $S \supseteq S$ closed under reversing, ↑ if $u, v \in \widehat{S}$ and $u^{-1}v \curvearrowright v' {u'}^{-1}$, then $u', v' \in \widehat{S}$ and the cube condition holds on S , then (S,R) is complete for reversing.

• Example: $S := \{a, b\}$, $R := \{aba = bb\}$.

Criterion 1: If the relations of R preserve some pseudo-length, ↑ $\lambda: S^* \to \mathbb{N}$ s.t. $\lambda(uv) \geqslant \lambda(u) + \lambda(v)$ and $\lambda(s) \geqslant 1$ for $s \in S$ and the cube condition holds on S , then (S, R) is complete for reversing.

Criterion 2: If there exists $S \supseteq S$ closed under reversing, ↑ if $u, v \in \widehat{S}$ and $u^{-1}v \curvearrowright v' {u'}^{-1}$, then $u', v' \in \widehat{S}$ and the cube condition holds on S , then (S,R) is complete for reversing.

• Example: $S := \{a, b\}$, $R := \{aba = bb\}$. For Criterion 1: λ (a) := 1, λ (b) := 2;
• Let $(S;R)$ be a semigroup presentation:

Criterion 1: If the relations of R preserve some pseudo-length, ↑ $\lambda: S^* \to \mathbb{N}$ s.t. $\lambda(uv) \geqslant \lambda(u) + \lambda(v)$ and $\lambda(s) \geqslant 1$ for $s \in S$ and the cube condition holds on S , then (S, R) is complete for reversing.

Criterion 2: If there exists $S \supseteq S$ closed under reversing, ↑ if $u, v \in \widehat{S}$ and $u^{-1}v \curvearrowright v' {u'}^{-1}$, then $u', v' \in \widehat{S}$ and the cube condition holds on S , then (S,R) is complete for reversing.

\n- Example:
$$
S := \{a, b\}
$$
, $R := \{aba = bb\}$.
\n- For Criterion 1: $\lambda(a) := 1$, $\lambda(b) := 2$;
\n- For Criterion 2: $\widehat{S} := \{\varepsilon, a, b, ab, bb, ba, bba\}$; \rightsquigarrow (in both cases) OK.
\n

- Principle: When (S,R) is complete for reversing, the properties of the monoid $\langle S,R \rangle^+$ and of the group $\langle S,R \rangle$ can be read from R easily.
- Proposition: Assume that (S, R) is complete for reversing, and R contains no relation $su = sv$ with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

• Proposition: Assume that (S, R) is complete for reversing, and R contains no relation $su = sv$ with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

Proof: Assume $su \equiv^+ sv$.

• Proposition: Assume that (S, R) is complete for reversing, and R contains no relation $su = sv$ with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

Proof: Assume $su \equiv^+ sv$.

Then $(su)^{-1}(sv) \curvearrowright \varepsilon$:

- Principle: When (S, R) is complete for reversing, the properties of the monoid $\langle S,R \rangle^+$ and of the group $\langle S,R \rangle$ can be read from \overline{R} easily.
- Proposition: Assume that (S, R) is complete for reversing, and R contains no relation $su = sv$ with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

Proof: Assume
$$
su \equiv^+ sv
$$
.
\nThen $(su)^{-1}(sv) \curvearrowright \varepsilon$:
\n u

- Principle: When (S,R) is complete for reversing, the properties of the monoid $\langle S, R \rangle^+$ and of the group $\langle S, R \rangle$ can be read from R easily.
- Proposition: Assume that (S, R) is complete for reversing, and R contains no relation $su = sv$ with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

- Principle: When (S,R) is complete for reversing, the properties of the monoid $\langle S, R \rangle^+$ and of the group $\langle S, R \rangle$ can be read from R easily.
- Proposition: Assume that (S, R) is complete for reversing, and R contains no relation $su = sv$ with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

- Principle: When (S,R) is complete for reversing, the properties of the monoid $\langle S, R \rangle^+$ and of the group $\langle S, R \rangle$ can be read from R easily.
- Proposition: Assume that (S, R) is complete for reversing, and R contains no relation $su = sv$ with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

• Proposition: Assume that (S, R) is complete for reversing, and R contains no relation $su = sv$ with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

• Proposition: Assume that (S, R) is complete for reversing, and R contains no relation $su = sv$ with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

• Proposition: Assume that (S, R) is complete for reversing, and R contains no relation $su = sv$ with $u \neq v$. Then $\langle S, R \rangle^+$ is left cancellative.

• Prop.: Assume that (S, R) is complete for reversing, and R contains $\leqslant 1$ relation $su = tv$ for each pair s,t in S . Then $\langle S,R \rangle^+$ admits local right lcm's. two elements with a common multiple admit a lcm

RECIPE

$$
\bullet\text{ For }\;u\overset{\textstyle v}{\underset{\textstyle v^{\prime}}{\frown}}\Big|u^{\prime}\text{ , write }{\bf c}(u,v):=v^{\prime}\text{ and }\delta(u,v):=uv^{\prime}.
$$

• For u u" v v" ! , write c(u, v) := v" (v := " (u, v) := v" and δ(u, v) := uv" (u,) := uv" (u, v) := uv"

• Algorithm: Input: A complemented presentation $(S;R)$; 1- Find the closure S of S under c ;

$$
\bullet\text{ For }\ u\overset{\text{v}}{\underset{\text{v'}}{\frown}}\Big|u'\,\,,\,\text{write}\ c(u,v):=v'\ \text{and}\ \delta(u,v):=uv'.
$$

- Algorithm: Input: A complemented presentation $(S;R)$;
	- 1- Find the closure S of S under c ;
	- 2- Check the cube condition on S ;

$$
\bullet\text{ For }\;u\underset{\boldsymbol{v'}}{\fbox{$\displaystyle\bigcap_{\boldsymbol{v'}}\quad \ \ }}\Big|u'\;\text{ , write } \mathbf{c}(u,v):=v'\text{ and }\boldsymbol{\delta}(u,v):=uv'.
$$

- Algorithm: Input: A complemented presentation $(S;R)$;
	- 1- Find the closure S of S under c ;
	- 2- Check the cube condition on S ;
	- 3- Find the closure S of S under δ , and the maximal element w_0 of S ;

• For u u" v v" ! , write c(u, v) := v" (v := " (u, v) := v" and δ(u, v) := uv" (u,) := uv" (u, v) := uv"

- Algorithm: Input: A complemented presentation $(S;R)$;
	- 1- Find the closure S of S under c ;
	- 2- Check the cube condition on S ;
	- 3- Find the closure S of S under δ , and the maximal element w_0 of S ;
	- 4- Check the injectivity of $u \mapsto c(u, w_0)$ on \widetilde{S} up to equivalence.

$$
\bullet\text{ For }\;u\underset{\boldsymbol{v'}}{\fbox{$\displaystyle\bigcap_{\boldsymbol{v'}}\quad \ \ }}\Big|u'\;\text{ , write } \mathbf{c}(u,v):=v'\text{ and }\boldsymbol{\delta}(u,v):=uv'.
$$

- 1- Find the closure S of S under c ;
- 2- Check the cube condition on S ;
- 3- Find the closure S of S under δ , and the maximal element w_0 of S ;

4- Check the injectivity of $u \mapsto c(u, w_0)$ on \widetilde{S} up to equivalence.

Then $\langle S;R \rangle^+$ is a Garside monoid with w_0 representing a Garside element.

$$
\bullet\text{ For }\;u\overset{\textstyle v}{\underset{\textstyle v^{\prime}}{\frown}}\Big|u^{\prime}\text{ , write }\mathbf{c}(u,v):=v^{\prime}\text{ and }\delta(u,v):=uv^{\prime}.
$$

- 1- Find the closure S of S under c ;
- 2- Check the cube condition on S ;
- 3- Find the closure S of S under δ , and the maximal element w_0 of S ;

4- Check the injectivity of $u \mapsto c(u, w_0)$ on \widetilde{S} up to equivalence. Then $\langle S;R \rangle^+$ is a Garside monoid with w_0 representing a Garside element.

• Example: $S = \{a, b\}$, $R = \{aba = bb\}$.

$$
\bullet\text{ For }\ u\overset{\text{v}}{\underset{\text{v'}}{\frown}}\Big|u'\,\,,\,\text{write}\ c(u,v):=v'\ \text{and}\ \delta(u,v):=uv'.
$$

- 1- Find the closure S of S under c ;
- 2- Check the cube condition on S ;
- 3- Find the closure S of S under δ , and the maximal element w_0 of S ;

4- Check the injectivity of $u \mapsto c(u, w_0)$ on \widetilde{S} up to equivalence. Then $\langle S;R \rangle^+$ is a Garside monoid with w_0 representing a Garside element.

\n- Example:
$$
S = \{a, b\}
$$
, $R = \{aba = bb\}$.
\n- 1- $\widehat{S} = \{\varepsilon, a, b, ab, ba, bab\}$; 2- ... OK;
\n

$$
\bullet\text{ For }\ u\overset{\text{v}}{\underset{\text{v'}}{\frown}}\Big|u'\,\,,\,\text{write}\ c(u,v):=v'\ \text{and}\ \delta(u,v):=uv'.
$$

- 1- Find the closure S of S under c ;
- 2- Check the cube condition on S ;
- 3- Find the closure S of S under δ , and the maximal element w_0 of S ;

4- Check the injectivity of $u \mapsto c(u, w_0)$ on \widetilde{S} up to equivalence. Then $\langle S;R \rangle^+$ is a Garside monoid with w_0 representing a Garside element.

• Example:
$$
S = \{a, b\}
$$
, $R = \{aba = bb\}$.
1- $\hat{S} = \{\varepsilon, a, b, ab, ba, bab\}$; 2- ... OK;
3- $\tilde{S} = \hat{S} \cup \{bb, bbb\}$, $w_0 = bbb$; 4- $c(\varepsilon, w_0) = w_0$, $c(a, w_0) = bab$... OK

$$
\bullet\text{ For }\;u\underset{\boldsymbol{v'}}{\fbox{$\displaystyle\bigcap_{\boldsymbol{v'}}\quad \ \ }}\Big|u'\;\text{ , write } \mathbf{c}(u,v):=v'\text{ and }\boldsymbol{\delta}(u,v):=uv'.
$$

- 1- Find the closure S of S under c ;
- 2- Check the cube condition on S ;
- 3- Find the closure S of S under δ , and the maximal element w_0 of S ;

4- Check the injectivity of $u \mapsto c(u, w_0)$ on \widetilde{S} up to equivalence. Then $\langle S;R \rangle^+$ is a Garside monoid with w_0 representing a Garside element.

\n- Example:
$$
S = \{a, b\}, R = \{aba = bb\}.
$$
\n- 1- $\widehat{S} = \{\varepsilon, a, b, ab, ba, bab\};$
\n- 2- ... OK;
\n- 3- $\widetilde{S} = \widehat{S} \cup \{bb, bbb\}, w_0 = bbb; 4 - c(\varepsilon, w_0) = w_0, c(a, w_0) = bab...$ OK
\n- 4- $\langle a, b; aba = bb \rangle^+$ is a Garside monoid with $\Delta = b^3$ and 8 divisors of Δ .
\n

• Algorithm: Input: A word w ;

• Algorithm: Input: A word w ;

```
1- Left reverse w into u^{-1}v,
       │<br>~
symmetric to (right) reversing: +- \rightarrow -+
```
• Algorithm: Input: A word w ;

1- Left reverse w into $u^{-1}v$, │
~ symmetric to (right) reversing: $+-\rightarrow-+$ 2- (right) reverse $u^{-1}v$ into $v' {u'}^{-1}$.

• Algorithm: Input: A word w ;

1- Left reverse w into $u^{-1}v$, │
~ symmetric to (right) reversing: $+-\rightarrow-+$ 2- (right) reverse $u^{-1}v$ into $v' {u'}^{-1}$.

• Algorithm: Input: A word w ;

 $\overline{11}$ - Left reverse w into $u^{-1}v$, │
~ symmetric to (right) reversing: $+-\rightarrow-+$ 2- (right) reverse $u^{-1}v$ into $v' {u'}^{-1}$.

• Algorithm: Input: A word w ;

1- Left reverse w into $u^{-1}v$, │
~ symmetric to (right) reversing: $+-\rightarrow-+$ 2- (right) reverse $u^{-1}v$ into $v' {u'}^{-1}$.

• Algorithm: Input: A word w ;

1- Left reverse w into $u^{-1}v$, │
~ symmetric to (right) reversing: $+-\rightarrow-+$ 2- (right) reverse $u^{-1}v$ into $v' {u'}^{-1}$.

• Algorithm: Input: A word w ;

1- Left reverse w into $u^{-1}v$, │
~ symmetric to (right) reversing: $+-\rightarrow-+$ 2- (right) reverse $u^{-1}v$ into $v' {u'}^{-1}$.

Output: Two positive words u',v' s.t. $\overline{u}'\overline{v}'^{-1}$ is the above expression of $\overline{w}.$ $\vert \ \vert$ the element of the group represented by... \boldsymbol{u} \boldsymbol{v} $\curvearrowright \qquad |$ u' $\boldsymbol{\eta}$

 \bullet Corollary (solution to the word problem): w represents 1 iff $u'=v'=\varepsilon.$

• Algorithm: Input: Two positive words u, v ;

• Algorithm: Input: Two positive words u, v ;

1- Right reverse $u^{-1}v$ into $v' {u'}^{-1}$,

• Algorithm: Input: Two positive words u, v ;

1- Right reverse $u^{-1}v$ into $v' {u'}^{-1}$, 2- Left reverse $v' {u'}^{-1}$ into $u'' v''^{-1}$,
• Algorithm: Input: Two positive words u, v ;

1- Right reverse $u^{-1}v$ into $v' {u'}^{-1}$, 2- Left reverse $v' {u'}^{-1}$ into $u'' v''^{-1}$, 3- Left reverse uu''^{-1} into $w.$

• Algorithm: Input: Two positive words u, v ;

1- Right reverse $u^{-1}v$ into $v' {u'}^{-1}$, 2- Left reverse $v' {u'}^{-1}$ into $u'' v''^{-1}$, 3- Left reverse uu''^{-1} into $w.$

• Algorithm: Input: Two positive words u, v ;

1- Right reverse $u^{-1}v$ into $v' {u'}^{-1}$, 2- Left reverse $v' {u'}^{-1}$ into $u'' v''^{-1}$, 3- Left reverse uu''^{-1} into $w.$

• Algorithm: Input: Two positive words u, v ;

1- Right reverse $u^{-1}v$ into $v' {u'}^{-1}$, 2- Left reverse $v' {u'}^{-1}$ into $u'' v''^{-1}$, 3- Left reverse uu''^{-1} into $w.$

• Algorithm: Input: Two positive words u, v ;

1- Right reverse $u^{-1}v$ into $v' {u'}^{-1}$, 2- Left reverse $v' {u'}^{-1}$ into $u'' v''^{-1}$, 3- Left reverse uu''^{-1} into $w.$

• Algorithm: Input: Two positive words u, v ;

1- Right reverse $u^{-1}v$ into $v' {u'}^{-1}$, 2- Left reverse $v' {u'}^{-1}$ into $u'' v''^{-1}$, 3- Left reverse uu''^{-1} into $w.$

• Algorithm: Input: Two positive words u, v ;

1- Right reverse $u^{-1}v$ into $v' {u'}^{-1}$, 2- Left reverse $v' {u'}^{-1}$ into $u'' v''^{-1}$, 3- Left reverse uu''^{-1} into $w.$

↑ divisor of $\boldsymbol{\Delta}$

↑ divisor of $\boldsymbol{\Delta}$

• "Reversing is compatible with the normal form":

↑ divisor of $\boldsymbol{\Delta}$

• "Reversing is compatible with the normal form":

↑ divisor of $\boldsymbol{\Delta}$

• "Reversing is compatible with the normal form":

↑ divisor of $\boldsymbol{\Delta}$

• "Reversing is compatible with the normal form":

↑ divisor of $\boldsymbol{\Delta}$

• "Reversing is compatible with the normal form":

↑ divisor of $\boldsymbol{\Delta}$

• "Reversing is compatible with the normal form":

↑ divisor of $\boldsymbol{\Delta}$

• "Reversing is compatible with the normal form":

↑ divisor of $\boldsymbol{\Delta}$

• "Reversing is compatible with the normal form":

• Proposition: Let (M, Δ) be a Garside system, and $(x_1, ..., x_p)$, $(y_1, ..., y_q)$ be normal. Then so is every horizontal– or vertical–diagonal sequence in

Computation of the normal form of a product, or of an lcm.

- for recognizing a Garside group from a (complemented) presentation,
- for computing inside a Garside group using a (complemented) presen-

tation for (one of the possible) Garside structure(s).

- for recognizing a Garside group from a (complemented) presentation,
- for computing inside a Garside group using a (complemented) presentation for (one of the possible) Garside structure(s).

• Once completeness is granted, reversing \approx computing lcm, but not a priori \rightarrow crucial to distinguish between words and the elements they represent.

- for recognizing a Garside group from a (complemented) presentation,
- for computing inside a Garside group using a (complemented) presentation for (one of the possible) Garside structure(s).

• Once completeness is granted, reversing \approx computing lcm, but not a priori \rightarrow crucial to distinguish between words and the elements they represent.

• References:

- Groupes de Garside; Ann. Scient. Ec. Norm. Sup. 35 (2002) 267–306.
- Complete positive group presentations; J. of Algebra 268 (2003) 156–197.

- for recognizing a Garside group from a (complemented) presentation,
- for computing inside a Garside group using a (complemented) presentation for (one of the possible) Garside structure(s).

• Once completeness is granted, reversing \approx computing lcm, but not a priori **We crucial to distinguish between words and the elements they represent.**

• References:

- Groupes de Garside; Ann. Scient. Ec. Norm. Sup. 35 (2002) 267–306.
- Complete positive group presentations; J. of Algebra 268 (2003) 156–197.

www.math.unicaen.fr/∼dehornoy