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• Garside groups = a family of biautomatic groups containing braid groups,

- not too simple (typically: not abelian),

- not too complicated (typically: word pb. solvable in quadratic time),

!!!!!!!!! natural platforms for group-based cryptography.

• Here, two problems:

- recognizing a Garside group from a presentation;

- working with a presented Garside group.
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• By Ore's conditions, a Garside monoid embeds in a group of fractions !!!!!!!!!

• Definition: A Garside group is a group that is the group of fractions of

(at least one) Garside monoid.

• Principle: A Garside group is controlled by the finite lattice Div(∆)Div(∆)Div(∆).
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• More generally: spherical Artin–Tits groups

!!!!!!!!! lattice = weak order on the associated Coxeter group
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like Garside but with Div(∆)Div(∆)Div(∆) finite height only (not necessarily finite)
↓

• Free groups are quasi-Garside (Bessis, Brady-Crisp-Kaul-McCammond)

F2F2F2: - monoid 〈...a−1, a0, a1, ...; aiai+1 = ai+1ai+2〉+〈...a−1, a0, a1, ...; aiai+1 = ai+1ai+2〉+〈...a−1, a0, a1, ...; aiai+1 = ai+1ai+2〉+,

- quasi-Garside element ∆ = aiai+1∆ = aiai+1∆ = aiai+1:
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... ...
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!!!!!!!!!  wlog:

• Pb #1: Recognize a Garside monoid from a complemented presentation;

• Pb #2: Compute in a Garside group given by a complemented presentation.
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• What can one deduce from w ! w′w ! w′w ! w′?

the empty word
↓

• Not much: if u, vu, vu, v are positive, u−1v ! εu−1v ! εu−1v ! ε implies u ≡ vu ≡ vu ≡ v, and even uuu ≡+≡+≡+ vvv.
↑

represent the same element in the monoid

• The good case: when the converse holds (“reversing detects equivalence”).

• Definition: The presentation (S, R)(S, R)(S, R) is complete for reversing

if u ≡+ vu ≡+ vu ≡+ v implies (hence, is equivalent to) u−1v ! εu−1v ! εu−1v ! ε.

!!!!!!!!! Criterion for recognizing completeness?
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• Fact: A semigroup presentation (S, R)(S, R)(S, R) is complete for reversing

iff the cube condition holds on S∗S∗S∗ (i.e., for all words).
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• Let (S; R)(S; R)(S; R) be a semigroup presentation:
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!!!!!!!!! Computation of the normal form of a product, or of an lcm.
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