
ALGORITHMS FOR GARSIDE GROUPS

ALGORITHMS FOR GARSIDE GROUPS

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

ALGORITHMS FOR GARSIDE GROUPS

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

• Garside groups = a family of biautomatic groups containing braid groups,

- not too simple (typically: not abelian),

- not too complicated (typically: word pb. solvable in quadratic time),

ALGORITHMS FOR GARSIDE GROUPS

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

• Garside groups = a family of biautomatic groups containing braid groups,

- not too simple (typically: not abelian),

- not too complicated (typically: word pb. solvable in quadratic time),

!!!!!!!!! natural platforms for group-based cryptography.

ALGORITHMS FOR GARSIDE GROUPS

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

• Garside groups = a family of biautomatic groups containing braid groups,

- not too simple (typically: not abelian),

- not too complicated (typically: word pb. solvable in quadratic time),

!!!!!!!!! natural platforms for group-based cryptography.

• Here, two problems:

- recognizing a Garside group from a presentation;

- working with a presented Garside group.

GARSIDE GROUPS

• Definition: A Garside system is a pair (M, ∆)(M, ∆)(M, ∆), s.t.

GARSIDE GROUPS

• Definition: A Garside system is a pair (M, ∆)(M, ∆)(M, ∆), s.t.

- MMM is a cancellative monoid with no invertible and with lcm's and gcd's,

GARSIDE GROUPS

• Definition: A Garside system is a pair (M, ∆)(M, ∆)(M, ∆), s.t.

- MMM is a cancellative monoid with no invertible and with lcm's and gcd's,

- ∆∆∆ is a Garside element in MMM .
↖

DivL(∆) = DivR(∆)DivL(∆) = DivR(∆)DivL(∆) = DivR(∆), this set is finite, and generates MMM

GARSIDE GROUPS

• Definition: A Garside system is a pair (M, ∆)(M, ∆)(M, ∆), s.t.

- MMM is a cancellative monoid with no invertible and with lcm's and gcd's,

- ∆∆∆ is a Garside element in MMM .
↖

DivL(∆) = DivR(∆)DivL(∆) = DivR(∆)DivL(∆) = DivR(∆), this set is finite, and generates MMM

• By Ore's conditions, a Garside monoid embeds in a group of fractions !!!!!!!!!

GARSIDE GROUPS

• Definition: A Garside system is a pair (M, ∆)(M, ∆)(M, ∆), s.t.

- MMM is a cancellative monoid with no invertible and with lcm's and gcd's,

- ∆∆∆ is a Garside element in MMM .
↖

DivL(∆) = DivR(∆)DivL(∆) = DivR(∆)DivL(∆) = DivR(∆), this set is finite, and generates MMM

• By Ore's conditions, a Garside monoid embeds in a group of fractions !!!!!!!!!

• Definition: A Garside group is a group that is the group of fractions of

(at least one) Garside monoid.

GARSIDE GROUPS

• Definition: A Garside system is a pair (M, ∆)(M, ∆)(M, ∆), s.t.

- MMM is a cancellative monoid with no invertible and with lcm's and gcd's,

- ∆∆∆ is a Garside element in MMM .
↖

DivL(∆) = DivR(∆)DivL(∆) = DivR(∆)DivL(∆) = DivR(∆), this set is finite, and generates MMM

• By Ore's conditions, a Garside monoid embeds in a group of fractions !!!!!!!!!

• Definition: A Garside group is a group that is the group of fractions of

(at least one) Garside monoid.

• Principle: A Garside group is controlled by the finite lattice Div(∆)Div(∆)Div(∆).

EXAMPLES (1)

• (Z>0, ∗)(Z>0, ∗)(Z>0, ∗) admits lcm's, but is not Garside: no ∆∆∆ s.t. Div(∆)Div(∆)Div(∆) generating.

EXAMPLES (1)

• (Z>0, ∗)(Z>0, ∗)(Z>0, ∗) admits lcm's, but is not Garside: no ∆∆∆ s.t. Div(∆)Div(∆)Div(∆) generating.

• Artin's braid group BnBnBn (Garside's original example):

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i〈σ1 , ..., σn−1 ; σ

i
σ
j

= σ
j
σ
i

for |i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j

|i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j|i − j| " 2, σ

i
σ
j
σ
i
= σ

j
σ
i
σ
j

for |i − j| = 1〉|i − j| = 1〉|i − j| = 1〉;

EXAMPLES (1)

• (Z>0, ∗)(Z>0, ∗)(Z>0, ∗) admits lcm's, but is not Garside: no ∆∆∆ s.t. Div(∆)Div(∆)Div(∆) generating.

• Artin's braid group BnBnBn (Garside's original example):

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i〈σ1 , ..., σn−1 ; σ

i
σ
j

= σ
j
σ
i

for |i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j

|i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j|i − j| " 2, σ

i
σ
j
σ
i
= σ

j
σ
i
σ
j

for |i − j| = 1〉|i − j| = 1〉|i − j| = 1〉;
- monoid: B+

n := 〈...〉+B+
n := 〈...〉+B+
n := 〈...〉+,

- Garside element: ∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...;

EXAMPLES (1)

• (Z>0, ∗)(Z>0, ∗)(Z>0, ∗) admits lcm's, but is not Garside: no ∆∆∆ s.t. Div(∆)Div(∆)Div(∆) generating.

• Artin's braid group BnBnBn (Garside's original example):

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i〈σ1 , ..., σn−1 ; σ

i
σ
j

= σ
j
σ
i

for |i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j

|i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j|i − j| " 2, σ

i
σ
j
σ
i
= σ

j
σ
i
σ
j

for |i − j| = 1〉|i − j| = 1〉|i − j| = 1〉;
- monoid: B+

n := 〈...〉+B+
n := 〈...〉+B+
n := 〈...〉+,

- Garside element: ∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...;
!!!!!!!!! lattice Div(∆n) ≈ (Sn,Div(∆n) ≈ (Sn,Div(∆n) ≈ (Sn,, weak order)))

111

∆4∆4∆4

EXAMPLES (1)

• (Z>0, ∗)(Z>0, ∗)(Z>0, ∗) admits lcm's, but is not Garside: no ∆∆∆ s.t. Div(∆)Div(∆)Div(∆) generating.

• Artin's braid group BnBnBn (Garside's original example):

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i〈σ1 , ..., σn−1 ; σ

i
σ
j

= σ
j
σ
i

for |i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j

|i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j|i − j| " 2, σ

i
σ
j
σ
i
= σ

j
σ
i
σ
j

for |i − j| = 1〉|i − j| = 1〉|i − j| = 1〉;
- monoid: B+

n := 〈...〉+B+
n := 〈...〉+B+
n := 〈...〉+,

- Garside element: ∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...;
!!!!!!!!! lattice Div(∆n) ≈ (Sn,Div(∆n) ≈ (Sn,Div(∆n) ≈ (Sn,, weak order)))

111

∆4∆4∆4

• Free abelian group of finite type

〈a1, ..., an; aiaj = ajai〉〈a1, ..., an; aiaj = ajai〉〈a1, ..., an; aiaj = ajai〉;

EXAMPLES (1)

• (Z>0, ∗)(Z>0, ∗)(Z>0, ∗) admits lcm's, but is not Garside: no ∆∆∆ s.t. Div(∆)Div(∆)Div(∆) generating.

• Artin's braid group BnBnBn (Garside's original example):

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i〈σ1 , ..., σn−1 ; σ

i
σ
j

= σ
j
σ
i

for |i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j

|i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j|i − j| " 2, σ

i
σ
j
σ
i
= σ

j
σ
i
σ
j

for |i − j| = 1〉|i − j| = 1〉|i − j| = 1〉;
- monoid: B+

n := 〈...〉+B+
n := 〈...〉+B+
n := 〈...〉+,

- Garside element: ∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...;
!!!!!!!!! lattice Div(∆n) ≈ (Sn,Div(∆n) ≈ (Sn,Div(∆n) ≈ (Sn,, weak order)))

111

∆4∆4∆4

• Free abelian group of finite type

〈a1, ..., an; aiaj = ajai〉〈a1, ..., an; aiaj = ajai〉〈a1, ..., an; aiaj = ajai〉;
- monoid: 〈a1, ..., an; aiaj = ajai〉+〈a1, ..., an; aiaj = ajai〉+〈a1, ..., an; aiaj = ajai〉+;

- Garside element: ∆ = a1...an∆ = a1...an∆ = a1...an;

EXAMPLES (1)

• (Z>0, ∗)(Z>0, ∗)(Z>0, ∗) admits lcm's, but is not Garside: no ∆∆∆ s.t. Div(∆)Div(∆)Div(∆) generating.

• Artin's braid group BnBnBn (Garside's original example):

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i〈σ1 , ..., σn−1 ; σ

i
σ
j

= σ
j
σ
i

for |i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j

|i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j|i − j| " 2, σ

i
σ
j
σ
i
= σ

j
σ
i
σ
j

for |i − j| = 1〉|i − j| = 1〉|i − j| = 1〉;
- monoid: B+

n := 〈...〉+B+
n := 〈...〉+B+
n := 〈...〉+,

- Garside element: ∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...;
!!!!!!!!! lattice Div(∆n) ≈ (Sn,Div(∆n) ≈ (Sn,Div(∆n) ≈ (Sn,, weak order)))

111

∆4∆4∆4

• Free abelian group of finite type

〈a1, ..., an; aiaj = ajai〉〈a1, ..., an; aiaj = ajai〉〈a1, ..., an; aiaj = ajai〉;
- monoid: 〈a1, ..., an; aiaj = ajai〉+〈a1, ..., an; aiaj = ajai〉+〈a1, ..., an; aiaj = ajai〉+;

- Garside element: ∆ = a1...an∆ = a1...an∆ = a1...an;

!!!!!!!!! lattice Div(∆) ≈Div(∆) ≈Div(∆) ≈ cube 111

∆∆∆

EXAMPLES (1)

• (Z>0, ∗)(Z>0, ∗)(Z>0, ∗) admits lcm's, but is not Garside: no ∆∆∆ s.t. Div(∆)Div(∆)Div(∆) generating.

• Artin's braid group BnBnBn (Garside's original example):

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i

〈σ1 , ..., σn−1 ; σ
i
σ
j

= σ
j
σ
i〈σ1 , ..., σn−1 ; σ

i
σ
j

= σ
j
σ
i

for |i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j

|i − j| " 2, σ
i
σ
j
σ
i
= σ

j
σ
i
σ
j|i − j| " 2, σ

i
σ
j
σ
i
= σ

j
σ
i
σ
j

for |i − j| = 1〉|i − j| = 1〉|i − j| = 1〉;
- monoid: B+

n := 〈...〉+B+
n := 〈...〉+B+
n := 〈...〉+,

- Garside element: ∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...∆n = σ1σ2σ1σ3σ2σ1 ...;
!!!!!!!!! lattice Div(∆n) ≈ (Sn,Div(∆n) ≈ (Sn,Div(∆n) ≈ (Sn,, weak order)))

111

∆4∆4∆4

• Free abelian group of finite type

〈a1, ..., an; aiaj = ajai〉〈a1, ..., an; aiaj = ajai〉〈a1, ..., an; aiaj = ajai〉;
- monoid: 〈a1, ..., an; aiaj = ajai〉+〈a1, ..., an; aiaj = ajai〉+〈a1, ..., an; aiaj = ajai〉+;

- Garside element: ∆ = a1...an∆ = a1...an∆ = a1...an;

!!!!!!!!! lattice Div(∆) ≈Div(∆) ≈Div(∆) ≈ cube 111

∆∆∆

• More generally: spherical Artin–Tits groups

!!!!!!!!! lattice = weak order on the associated Coxeter group

EXAMPLES (2)

• Also: torus knots groups 〈a, b, c, ...; ap = bq = cr = ...〉〈a, b, c, ...; ap = bq = cr = ...〉〈a, b, c, ...; ap = bq = cr = ...〉...

EXAMPLES (2)

• Also: torus knots groups 〈a, b, c, ...; ap = bq = cr = ...〉〈a, b, c, ...; ap = bq = cr = ...〉〈a, b, c, ...; ap = bq = cr = ...〉...

• Dual Garside structure on BnBnBn (Birman-Ko-Lee, Bessis...):

!!!!!!!!! same group, different monoid;

EXAMPLES (2)

• Also: torus knots groups 〈a, b, c, ...; ap = bq = cr = ...〉〈a, b, c, ...; ap = bq = cr = ...〉〈a, b, c, ...; ap = bq = cr = ...〉...

• Dual Garside structure on BnBnBn (Birman-Ko-Lee, Bessis...):

!!!!!!!!! same group, different monoid;

!!!!!!!!! case of B3B3B3: 〈a, b, c; ab = bc = ca〉〈a, b, c; ab = bc = ca〉〈a, b, c; ab = bc = ca〉
111

∆∆∆=σ1σ2=σ1σ2=σ1σ2

EXAMPLES (2)

• Also: torus knots groups 〈a, b, c, ...; ap = bq = cr = ...〉〈a, b, c, ...; ap = bq = cr = ...〉〈a, b, c, ...; ap = bq = cr = ...〉...

• Dual Garside structure on BnBnBn (Birman-Ko-Lee, Bessis...):

!!!!!!!!! same group, different monoid;

!!!!!!!!! case of B3B3B3: 〈a, b, c; ab = bc = ca〉〈a, b, c; ab = bc = ca〉〈a, b, c; ab = bc = ca〉
111

∆∆∆=σ1σ2=σ1σ2=σ1σ2

• Also, always for B3B3B3: 〈a, b; aba = b2〉〈a, b; aba = b2〉〈a, b; aba = b2〉:

111

∆∆∆ =(σ1σ2)3=(σ1σ2)3=(σ1σ2)3

EXAMPLES (2)

• Also: torus knots groups 〈a, b, c, ...; ap = bq = cr = ...〉〈a, b, c, ...; ap = bq = cr = ...〉〈a, b, c, ...; ap = bq = cr = ...〉...

• Dual Garside structure on BnBnBn (Birman-Ko-Lee, Bessis...):

!!!!!!!!! same group, different monoid;

!!!!!!!!! case of B3B3B3: 〈a, b, c; ab = bc = ca〉〈a, b, c; ab = bc = ca〉〈a, b, c; ab = bc = ca〉
111

∆∆∆=σ1σ2=σ1σ2=σ1σ2

• Also, always for B3B3B3: 〈a, b; aba = b2〉〈a, b; aba = b2〉〈a, b; aba = b2〉:

111

∆∆∆ =(σ1σ2)3=(σ1σ2)3=(σ1σ2)3

like Garside but with Div(∆)Div(∆)Div(∆) finite height only (not necessarily finite)
↓

• Free groups are quasi-Garside (Bessis, Brady-Crisp-Kaul-McCammond)

F2F2F2: - monoid 〈...a−1, a0, a1, ...; aiai+1 = ai+1ai+2〉+〈...a−1, a0, a1, ...; aiai+1 = ai+1ai+2〉+〈...a−1, a0, a1, ...; aiai+1 = ai+1ai+2〉+,

- quasi-Garside element ∆ = aiai+1∆ = aiai+1∆ = aiai+1:

111

∆∆∆=a1a2=a1a2=a1a2

... ...

TWO PROBLEMS

• Problem #1: Recognize a Garside group from a presentation;

TWO PROBLEMS

• Problem #1: Recognize a Garside group from a presentation;

• Problem #2: Compute in a Garside group given by a presentation.

TWO PROBLEMS

• Problem #1: Recognize a Garside group from a presentation;

• Problem #2: Compute in a Garside group given by a presentation.

• Assume that MMM is a Garside monoid generated by XXX, and

RRR contains one relation sv = tusv = tusv = tu representing lcm(s, t)lcm(s, t)lcm(s, t) for all s, ts, ts, t in XXX.

Then (X, R)(X, R)(X, R) is a presentation of MMM (and of the group of fractions of MMM).

TWO PROBLEMS

• Problem #1: Recognize a Garside group from a presentation;

• Problem #2: Compute in a Garside group given by a presentation.

• Assume that MMM is a Garside monoid generated by XXX, and

RRR contains one relation sv = tusv = tusv = tu representing lcm(s, t)lcm(s, t)lcm(s, t) for all s, ts, ts, t in XXX.

Then (X, R)(X, R)(X, R) is a presentation of MMM (and of the group of fractions of MMM).

• For such a presentation by construction:

- all relations of the form u = vu = vu = v with u, vu, vu, v nonempty positive words (no s−1);

- no relation su = svsu = svsu = sv with u (= vu (= vu (= v;

- at most one relation su = tvsu = tvsu = tv for all s, ts, ts, t.

TWO PROBLEMS

• Problem #1: Recognize a Garside group from a presentation;

• Problem #2: Compute in a Garside group given by a presentation.

• Assume that MMM is a Garside monoid generated by XXX, and

RRR contains one relation sv = tusv = tusv = tu representing lcm(s, t)lcm(s, t)lcm(s, t) for all s, ts, ts, t in XXX.

Then (X, R)(X, R)(X, R) is a presentation of MMM (and of the group of fractions of MMM).

• For such a presentation by construction:

- all relations of the form u = vu = vu = v with u, vu, vu, v nonempty positive words (no s−1);

- no relation su = svsu = svsu = sv with u (= vu (= vu (= v;

- at most one relation su = tvsu = tvsu = tv for all s, ts, ts, t.
!!!!!!!!! a “complemented” presentation.

TWO PROBLEMS

• Problem #1: Recognize a Garside group from a presentation;

• Problem #2: Compute in a Garside group given by a presentation.

• Assume that MMM is a Garside monoid generated by XXX, and

RRR contains one relation sv = tusv = tusv = tu representing lcm(s, t)lcm(s, t)lcm(s, t) for all s, ts, ts, t in XXX.

Then (X, R)(X, R)(X, R) is a presentation of MMM (and of the group of fractions of MMM).

• For such a presentation by construction:

- all relations of the form u = vu = vu = v with u, vu, vu, v nonempty positive words (no s−1);

- no relation su = svsu = svsu = sv with u (= vu (= vu (= v;

- at most one relation su = tvsu = tvsu = tv for all s, ts, ts, t.
!!!!!!!!! a “complemented” presentation.

!!!!!!!!! wlog:

• Pb #1: Recognize a Garside monoid from a complemented presentation;

• Pb #2: Compute in a Garside group given by a complemented presentation.

WORD REVERSING

• Word reversing: a syntactic method relevant for semigroup presentations

that computes lcm's in good cases (?)

WORD REVERSING

• Word reversing: a syntactic method relevant for semigroup presentations

that computes lcm's in good cases (?)

words “for the group”
↓

• Defin.: For (S, R)(S, R)(S, R) a semigroup presentation, and w, w′w, w′w, w′ words on S ∪ S−1S ∪ S−1S ∪ S−1,

WORD REVERSING

• Word reversing: a syntactic method relevant for semigroup presentations

that computes lcm's in good cases (?)

words “for the group”
↓

• Defin.: For (S, R)(S, R)(S, R) a semigroup presentation, and w, w′w, w′w, w′ words on S ∪ S−1S ∪ S−1S ∪ S−1,

www !!! w′w′w′ (“www reverses to w′w′w′”), if w′w′w′ obtained from www by (iteratively)

- deleting some s−1ss−1ss−1s, or

WORD REVERSING

• Word reversing: a syntactic method relevant for semigroup presentations

that computes lcm's in good cases (?)

words “for the group”
↓

• Defin.: For (S, R)(S, R)(S, R) a semigroup presentation, and w, w′w, w′w, w′ words on S ∪ S−1S ∪ S−1S ∪ S−1,

www !!! w′w′w′ (“www reverses to w′w′w′”), if w′w′w′ obtained from www by (iteratively)

- deleting some s−1ss−1ss−1s, or

- replacing some s−1ts−1ts−1t with vu−1vu−1vu−1 s.t. sv = tu ∈ Rsv = tu ∈ Rsv = tu ∈ R.

WORD REVERSING

• Word reversing: a syntactic method relevant for semigroup presentations

that computes lcm's in good cases (?)

words “for the group”
↓

• Defin.: For (S, R)(S, R)(S, R) a semigroup presentation, and w, w′w, w′w, w′ words on S ∪ S−1S ∪ S−1S ∪ S−1,

www !!! w′w′w′ (“www reverses to w′w′w′”), if w′w′w′ obtained from www by (iteratively)

- deleting some s−1ss−1ss−1s, or

- replacing some s−1ts−1ts−1t with vu−1vu−1vu−1 s.t. sv = tu ∈ Rsv = tu ∈ Rsv = tu ∈ R.

• Remark 1: Deleting s−1ss−1ss−1s is reversing w.r.t. s = ss = ss = s;

WORD REVERSING

• Word reversing: a syntactic method relevant for semigroup presentations

that computes lcm's in good cases (?)

words “for the group”
↓

• Defin.: For (S, R)(S, R)(S, R) a semigroup presentation, and w, w′w, w′w, w′ words on S ∪ S−1S ∪ S−1S ∪ S−1,

www !!! w′w′w′ (“www reverses to w′w′w′”), if w′w′w′ obtained from www by (iteratively)

- deleting some s−1ss−1ss−1s, or

- replacing some s−1ts−1ts−1t with vu−1vu−1vu−1 s.t. sv = tu ∈ Rsv = tu ∈ Rsv = tu ∈ R.

• Remark 1: Deleting s−1ss−1ss−1s is reversing w.r.t. s = ss = ss = s;

• Remark 2: Deleting ss−1ss−1ss−1 is not legal reversing.

WORD REVERSING

• Word reversing: a syntactic method relevant for semigroup presentations

that computes lcm's in good cases (?)

words “for the group”
↓

• Defin.: For (S, R)(S, R)(S, R) a semigroup presentation, and w, w′w, w′w, w′ words on S ∪ S−1S ∪ S−1S ∪ S−1,

www !!! w′w′w′ (“www reverses to w′w′w′”), if w′w′w′ obtained from www by (iteratively)

- deleting some s−1ss−1ss−1s, or

- replacing some s−1ts−1ts−1t with vu−1vu−1vu−1 s.t. sv = tu ∈ Rsv = tu ∈ Rsv = tu ∈ R.

• Remark 1: Deleting s−1ss−1ss−1s is reversing w.r.t. s = ss = ss = s;

• Remark 2: Deleting ss−1ss−1ss−1 is not legal reversing.

• Remark 3: w ! w′w ! w′w ! w′ implies w ≡ w′w ≡ w′w ≡ w′.
↑

represents the same element in the group 〈S; R〉〈S; R〉〈S; R〉

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa ! baba−1! baba−1! baba−1b−1ab−1ab−1a

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa ! baba−1! baba−1! baba−1b−1ab−1ab−1a ! bab! bab! bab a−1ba−1ba−1ba−1b−1a−1b−1a−1b−1

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa ! baba−1! baba−1! baba−1b−1ab−1ab−1a ! bab! bab! bab a−1ba−1ba−1ba−1b−1a−1b−1a−1b−1 !!! babbab−1a−1b−1babbab−1a−1b−1babbab−1a−1b−1

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa ! baba−1! baba−1! baba−1b−1ab−1ab−1a ! bab! bab! bab a−1ba−1ba−1ba−1b−1a−1b−1a−1b−1 !!! babbab−1a−1b−1babbab−1a−1b−1babbab−1a−1b−1

... a positive-negative word: cannot be reversed anymore.

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa ! baba−1! baba−1! baba−1b−1ab−1ab−1a ! bab! bab! bab a−1ba−1ba−1ba−1b−1a−1b−1a−1b−1 !!! babbab−1a−1b−1babbab−1a−1b−1babbab−1a−1b−1

... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices:

s−1t ! vu−1s−1t ! vu−1s−1t ! vu−1 !!!!!!!!! replacing sss

ttt

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa ! baba−1! baba−1! baba−1b−1ab−1ab−1a ! bab! bab! bab a−1ba−1ba−1ba−1b−1a−1b−1a−1b−1 !!! babbab−1a−1b−1babbab−1a−1b−1babbab−1a−1b−1

... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices:

s−1t ! vu−1s−1t ! vu−1s−1t ! vu−1 !!!!!!!!! replacing sss

ttt

with sss

ttt

vvv

uuu

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa ! baba−1! baba−1! baba−1b−1ab−1ab−1a ! bab! bab! bab a−1ba−1ba−1ba−1b−1a−1b−1a−1b−1 !!! babbab−1a−1b−1babbab−1a−1b−1babbab−1a−1b−1

... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices:

s−1t ! vu−1s−1t ! vu−1s−1t ! vu−1 !!!!!!!!! replacing sss

ttt

with sss

ttt

vvv

uuu

aaa

bbb aaa aaa

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa ! baba−1! baba−1! baba−1b−1ab−1ab−1a ! bab! bab! bab a−1ba−1ba−1ba−1b−1a−1b−1a−1b−1 !!! babbab−1a−1b−1babbab−1a−1b−1babbab−1a−1b−1

... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices:

s−1t ! vu−1s−1t ! vu−1s−1t ! vu−1 !!!!!!!!! replacing sss

ttt

with sss

ttt

vvv

uuu

aaa

bbb aaa aaa

bbb aaa

bbb

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa ! baba−1! baba−1! baba−1b−1ab−1ab−1a ! bab! bab! bab a−1ba−1ba−1ba−1b−1a−1b−1a−1b−1 !!! babbab−1a−1b−1babbab−1a−1b−1babbab−1a−1b−1

... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices:

s−1t ! vu−1s−1t ! vu−1s−1t ! vu−1 !!!!!!!!! replacing sss

ttt

with sss

ttt

vvv

uuu

aaa

bbb aaa aaa

bbb aaa

bbb

bbb

bbb

aaa

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa ! baba−1! baba−1! baba−1b−1ab−1ab−1a ! bab! bab! bab a−1ba−1ba−1ba−1b−1a−1b−1a−1b−1 !!! babbab−1a−1b−1babbab−1a−1b−1babbab−1a−1b−1

... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices:

s−1t ! vu−1s−1t ! vu−1s−1t ! vu−1 !!!!!!!!! replacing sss

ttt

with sss

ttt

vvv

uuu

aaa

bbb aaa aaa

bbb aaa

bbb

bbb

bbb

aaa

bbb

bbb
aaa

REVERSING DIAGRAM

• Reversing = replacing a −+−+−+ subword with a +−+−+− subword.

• Example: S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}S := {a, b}, R := {aba = bb}

a−1ba−1ba−1baaaaaa ! ba! ba! bab−1ab−1ab−1aaaa ! baba−1! baba−1! baba−1b−1ab−1ab−1a ! bab! bab! bab a−1ba−1ba−1ba−1b−1a−1b−1a−1b−1 !!! babbab−1a−1b−1babbab−1a−1b−1babbab−1a−1b−1

... a positive-negative word: cannot be reversed anymore.

• Reversing = constructing a van Kampen diagram from the source vertices:

s−1t ! vu−1s−1t ! vu−1s−1t ! vu−1 !!!!!!!!! replacing sss

ttt

with sss

ttt

vvv

uuu

aaa

bbb aaa aaa

bbb aaa

bbb

bbb

bbb

aaa

bbb

bbb
aaa

bbb

bbb aaa

COMPLETENESS OF REVERSING

• What can one deduce from w ! w′w ! w′w ! w′?

COMPLETENESS OF REVERSING

• What can one deduce from w ! w′w ! w′w ! w′?

the empty word
↓

• Not much: if u, vu, vu, v are positive, u−1v ! εu−1v ! εu−1v ! ε implies u ≡ vu ≡ vu ≡ v, and even uuu ≡+≡+≡+ vvv.
↑

represent the same element in the monoid

COMPLETENESS OF REVERSING

• What can one deduce from w ! w′w ! w′w ! w′?

the empty word
↓

• Not much: if u, vu, vu, v are positive, u−1v ! εu−1v ! εu−1v ! ε implies u ≡ vu ≡ vu ≡ v, and even uuu ≡+≡+≡+ vvv.
↑

represent the same element in the monoid

• The good case: when the converse holds (“reversing detects equivalence”).

COMPLETENESS OF REVERSING

• What can one deduce from w ! w′w ! w′w ! w′?

the empty word
↓

• Not much: if u, vu, vu, v are positive, u−1v ! εu−1v ! εu−1v ! ε implies u ≡ vu ≡ vu ≡ v, and even uuu ≡+≡+≡+ vvv.
↑

represent the same element in the monoid

• The good case: when the converse holds (“reversing detects equivalence”).

• Definition: The presentation (S, R)(S, R)(S, R) is complete for reversing

if u ≡+ vu ≡+ vu ≡+ v implies (hence, is equivalent to) u−1v ! εu−1v ! εu−1v ! ε.

COMPLETENESS OF REVERSING

• What can one deduce from w ! w′w ! w′w ! w′?

the empty word
↓

• Not much: if u, vu, vu, v are positive, u−1v ! εu−1v ! εu−1v ! ε implies u ≡ vu ≡ vu ≡ v, and even uuu ≡+≡+≡+ vvv.
↑

represent the same element in the monoid

• The good case: when the converse holds (“reversing detects equivalence”).

• Definition: The presentation (S, R)(S, R)(S, R) is complete for reversing

if u ≡+ vu ≡+ vu ≡+ v implies (hence, is equivalent to) u−1v ! εu−1v ! εu−1v ! ε.

!!!!!!!!! Criterion for recognizing completeness?

THE CUBE CONDITION

• Definition: For (S, R)(S, R)(S, R) a semigroup presentation, and XXX set of words on SSS,

say that the cube condition holds on XXX if, for all u, v, wu, v, wu, v, w in XXX,

THE CUBE CONDITION

• Definition: For (S, R)(S, R)(S, R) a semigroup presentation, and XXX set of words on SSS,

say that the cube condition holds on XXX if, for all u, v, wu, v, wu, v, w in XXX,

u−1vv−1w ! v′u′−1u−1vv−1w ! v′u′−1
u−1vv−1w ! v′u′−1

implies (uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε.

THE CUBE CONDITION

• Definition: For (S, R)(S, R)(S, R) a semigroup presentation, and XXX set of words on SSS,

say that the cube condition holds on XXX if, for all u, v, wu, v, wu, v, w in XXX,

u−1vv−1w ! v′u′−1u−1vv−1w ! v′u′−1
u−1vv−1w ! v′u′−1

implies (uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε.

uuu
vvv

www

THE CUBE CONDITION

• Definition: For (S, R)(S, R)(S, R) a semigroup presentation, and XXX set of words on SSS,

say that the cube condition holds on XXX if, for all u, v, wu, v, wu, v, w in XXX,

u−1vv−1w ! v′u′−1u−1vv−1w ! v′u′−1
u−1vv−1w ! v′u′−1

implies (uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε.

uuu
vvv

www

THE CUBE CONDITION

• Definition: For (S, R)(S, R)(S, R) a semigroup presentation, and XXX set of words on SSS,

say that the cube condition holds on XXX if, for all u, v, wu, v, wu, v, w in XXX,

u−1vv−1w ! v′u′−1u−1vv−1w ! v′u′−1
u−1vv−1w ! v′u′−1

implies (uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε.

uuu
vvv

www

THE CUBE CONDITION

• Definition: For (S, R)(S, R)(S, R) a semigroup presentation, and XXX set of words on SSS,

say that the cube condition holds on XXX if, for all u, v, wu, v, wu, v, w in XXX,

u−1vv−1w ! v′u′−1u−1vv−1w ! v′u′−1
u−1vv−1w ! v′u′−1

implies (uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε.

uuu
vvv

www

THE CUBE CONDITION

• Definition: For (S, R)(S, R)(S, R) a semigroup presentation, and XXX set of words on SSS,

say that the cube condition holds on XXX if, for all u, v, wu, v, wu, v, w in XXX,

u−1vv−1w ! v′u′−1u−1vv−1w ! v′u′−1
u−1vv−1w ! v′u′−1

implies (uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε.

uuu
vvv

www

THE CUBE CONDITION

• Definition: For (S, R)(S, R)(S, R) a semigroup presentation, and XXX set of words on SSS,

say that the cube condition holds on XXX if, for all u, v, wu, v, wu, v, w in XXX,

u−1vv−1w ! v′u′−1u−1vv−1w ! v′u′−1
u−1vv−1w ! v′u′−1

implies (uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε.

uuu
vvv

www

THE CUBE CONDITION

• Definition: For (S, R)(S, R)(S, R) a semigroup presentation, and XXX set of words on SSS,

say that the cube condition holds on XXX if, for all u, v, wu, v, wu, v, w in XXX,

u−1vv−1w ! v′u′−1u−1vv−1w ! v′u′−1
u−1vv−1w ! v′u′−1

implies (uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε.

uuu
vvv

www

THE CUBE CONDITION

• Definition: For (S, R)(S, R)(S, R) a semigroup presentation, and XXX set of words on SSS,

say that the cube condition holds on XXX if, for all u, v, wu, v, wu, v, w in XXX,

u−1vv−1w ! v′u′−1u−1vv−1w ! v′u′−1
u−1vv−1w ! v′u′−1

implies (uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε.

uuu
vvv

www

εεε
εεε εεε

THE CUBE CONDITION

• Definition: For (S, R)(S, R)(S, R) a semigroup presentation, and XXX set of words on SSS,

say that the cube condition holds on XXX if, for all u, v, wu, v, wu, v, w in XXX,

u−1vv−1w ! v′u′−1u−1vv−1w ! v′u′−1
u−1vv−1w ! v′u′−1

implies (uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε(uv′)−1(vu′) ! ε.

uuu
vvv

www

εεε
εεε εεε

• Fact: A semigroup presentation (S, R)(S, R)(S, R) is complete for reversing

iff the cube condition holds on S∗S∗S∗ (i.e., for all words).

TWO CRITERIA

• Let (S; R)(S; R)(S; R) be a semigroup presentation:

TWO CRITERIA

• Let (S; R)(S; R)(S; R) be a semigroup presentation:

Criterion 1: If the relations of RRR preserve some pseudo-length,
↑

λ : S∗ → Nλ : S∗ → Nλ : S∗ → N s.t. λ(uv) " λ(u) + λ(v)λ(uv) " λ(u) + λ(v)λ(uv) " λ(u) + λ(v) and λ(s) " 1λ(s) " 1λ(s) " 1 for s ∈ Ss ∈ Ss ∈ S
and the cube condition holds on SSS, then (S, R)(S, R)(S, R) is complete for reversing.

TWO CRITERIA

• Let (S; R)(S; R)(S; R) be a semigroup presentation:

Criterion 1: If the relations of RRR preserve some pseudo-length,
↑

λ : S∗ → Nλ : S∗ → Nλ : S∗ → N s.t. λ(uv) " λ(u) + λ(v)λ(uv) " λ(u) + λ(v)λ(uv) " λ(u) + λ(v) and λ(s) " 1λ(s) " 1λ(s) " 1 for s ∈ Ss ∈ Ss ∈ S
and the cube condition holds on SSS, then (S, R)(S, R)(S, R) is complete for reversing.

Criterion 2: If there exists Ŝ ⊇ SŜ ⊇ SŜ ⊇ S closed under reversing,
↑

if u, v ∈ Ŝu, v ∈ Ŝu, v ∈ Ŝ and u−1v ! v′u′−1u−1v ! v′u′−1
u−1v ! v′u′−1

, then u′, v′ ∈ Ŝu′, v′ ∈ Ŝu′, v′ ∈ Ŝ
and the cube condition holds on Ŝ̂ŜS, then (S, R)(S, R)(S, R) is complete for reversing.

TWO CRITERIA

• Let (S; R)(S; R)(S; R) be a semigroup presentation:

Criterion 1: If the relations of RRR preserve some pseudo-length,
↑

λ : S∗ → Nλ : S∗ → Nλ : S∗ → N s.t. λ(uv) " λ(u) + λ(v)λ(uv) " λ(u) + λ(v)λ(uv) " λ(u) + λ(v) and λ(s) " 1λ(s) " 1λ(s) " 1 for s ∈ Ss ∈ Ss ∈ S
and the cube condition holds on SSS, then (S, R)(S, R)(S, R) is complete for reversing.

Criterion 2: If there exists Ŝ ⊇ SŜ ⊇ SŜ ⊇ S closed under reversing,
↑

if u, v ∈ Ŝu, v ∈ Ŝu, v ∈ Ŝ and u−1v ! v′u′−1u−1v ! v′u′−1
u−1v ! v′u′−1

, then u′, v′ ∈ Ŝu′, v′ ∈ Ŝu′, v′ ∈ Ŝ
and the cube condition holds on Ŝ̂ŜS, then (S, R)(S, R)(S, R) is complete for reversing.

• Example: S := {a, b}S := {a, b}S := {a, b}, R := {aba = bb}R := {aba = bb}R := {aba = bb}.

TWO CRITERIA

• Let (S; R)(S; R)(S; R) be a semigroup presentation:

Criterion 1: If the relations of RRR preserve some pseudo-length,
↑

λ : S∗ → Nλ : S∗ → Nλ : S∗ → N s.t. λ(uv) " λ(u) + λ(v)λ(uv) " λ(u) + λ(v)λ(uv) " λ(u) + λ(v) and λ(s) " 1λ(s) " 1λ(s) " 1 for s ∈ Ss ∈ Ss ∈ S
and the cube condition holds on SSS, then (S, R)(S, R)(S, R) is complete for reversing.

Criterion 2: If there exists Ŝ ⊇ SŜ ⊇ SŜ ⊇ S closed under reversing,
↑

if u, v ∈ Ŝu, v ∈ Ŝu, v ∈ Ŝ and u−1v ! v′u′−1u−1v ! v′u′−1
u−1v ! v′u′−1

, then u′, v′ ∈ Ŝu′, v′ ∈ Ŝu′, v′ ∈ Ŝ
and the cube condition holds on Ŝ̂ŜS, then (S, R)(S, R)(S, R) is complete for reversing.

• Example: S := {a, b}S := {a, b}S := {a, b}, R := {aba = bb}R := {aba = bb}R := {aba = bb}.

For Criterion 1: λ(a) := 1λ(a) := 1λ(a) := 1, λ(b) := 2λ(b) := 2λ(b) := 2;

TWO CRITERIA

• Let (S; R)(S; R)(S; R) be a semigroup presentation:

Criterion 1: If the relations of RRR preserve some pseudo-length,
↑

λ : S∗ → Nλ : S∗ → Nλ : S∗ → N s.t. λ(uv) " λ(u) + λ(v)λ(uv) " λ(u) + λ(v)λ(uv) " λ(u) + λ(v) and λ(s) " 1λ(s) " 1λ(s) " 1 for s ∈ Ss ∈ Ss ∈ S
and the cube condition holds on SSS, then (S, R)(S, R)(S, R) is complete for reversing.

Criterion 2: If there exists Ŝ ⊇ SŜ ⊇ SŜ ⊇ S closed under reversing,
↑

if u, v ∈ Ŝu, v ∈ Ŝu, v ∈ Ŝ and u−1v ! v′u′−1u−1v ! v′u′−1
u−1v ! v′u′−1

, then u′, v′ ∈ Ŝu′, v′ ∈ Ŝu′, v′ ∈ Ŝ
and the cube condition holds on Ŝ̂ŜS, then (S, R)(S, R)(S, R) is complete for reversing.

• Example: S := {a, b}S := {a, b}S := {a, b}, R := {aba = bb}R := {aba = bb}R := {aba = bb}.

For Criterion 1: λ(a) := 1λ(a) := 1λ(a) := 1, λ(b) := 2λ(b) := 2λ(b) := 2;

For Criterion 2: Ŝ := {ε, a, b, ab, bb, ba, bba}Ŝ := {ε, a, b, ab, bb, ba, bba}Ŝ := {ε, a, b, ab, bb, ba, bba}; !!!!!!!!! (in both cases) OK.

READING PROPERTIES

• Principle: When (S, R)(S, R)(S, R) is complete for reversing, the properties of

the monoid 〈S, R〉+〈S, R〉+〈S, R〉+ and of the group 〈S, R〉〈S, R〉〈S, R〉 can be read from RRR easily.

READING PROPERTIES

• Principle: When (S, R)(S, R)(S, R) is complete for reversing, the properties of

the monoid 〈S, R〉+〈S, R〉+〈S, R〉+ and of the group 〈S, R〉〈S, R〉〈S, R〉 can be read from RRR easily.

• Proposition: Assume that (S, R)(S, R)(S, R) is complete for reversing, and RRR contains

no relation su = svsu = svsu = sv with u (= vu (= vu (= v. Then 〈S, R〉+〈S, R〉+〈S, R〉+ is left cancellative.

READING PROPERTIES

• Principle: When (S, R)(S, R)(S, R) is complete for reversing, the properties of

the monoid 〈S, R〉+〈S, R〉+〈S, R〉+ and of the group 〈S, R〉〈S, R〉〈S, R〉 can be read from RRR easily.

• Proposition: Assume that (S, R)(S, R)(S, R) is complete for reversing, and RRR contains

no relation su = svsu = svsu = sv with u (= vu (= vu (= v. Then 〈S, R〉+〈S, R〉+〈S, R〉+ is left cancellative.

Proof: Assume su ≡+ svsu ≡+ svsu ≡+ sv.

READING PROPERTIES

• Principle: When (S, R)(S, R)(S, R) is complete for reversing, the properties of

the monoid 〈S, R〉+〈S, R〉+〈S, R〉+ and of the group 〈S, R〉〈S, R〉〈S, R〉 can be read from RRR easily.

• Proposition: Assume that (S, R)(S, R)(S, R) is complete for reversing, and RRR contains

no relation su = svsu = svsu = sv with u (= vu (= vu (= v. Then 〈S, R〉+〈S, R〉+〈S, R〉+ is left cancellative.

Proof: Assume su ≡+ svsu ≡+ svsu ≡+ sv.

Then (su)−1(sv) ! ε(su)−1(sv) ! ε(su)−1(sv) ! ε:

READING PROPERTIES

• Principle: When (S, R)(S, R)(S, R) is complete for reversing, the properties of

the monoid 〈S, R〉+〈S, R〉+〈S, R〉+ and of the group 〈S, R〉〈S, R〉〈S, R〉 can be read from RRR easily.

• Proposition: Assume that (S, R)(S, R)(S, R) is complete for reversing, and RRR contains

no relation su = svsu = svsu = sv with u (= vu (= vu (= v. Then 〈S, R〉+〈S, R〉+〈S, R〉+ is left cancellative.

Proof: Assume su ≡+ svsu ≡+ svsu ≡+ sv.

Then (su)−1(sv) ! ε(su)−1(sv) ! ε(su)−1(sv) ! ε: sss

uuu

sss vvv

READING PROPERTIES

• Principle: When (S, R)(S, R)(S, R) is complete for reversing, the properties of

the monoid 〈S, R〉+〈S, R〉+〈S, R〉+ and of the group 〈S, R〉〈S, R〉〈S, R〉 can be read from RRR easily.

• Proposition: Assume that (S, R)(S, R)(S, R) is complete for reversing, and RRR contains

no relation su = svsu = svsu = sv with u (= vu (= vu (= v. Then 〈S, R〉+〈S, R〉+〈S, R〉+ is left cancellative.

Proof: Assume su ≡+ svsu ≡+ svsu ≡+ sv.

Then (su)−1(sv) ! ε(su)−1(sv) ! ε(su)−1(sv) ! ε: sss

uuu

sss vvv

εεε

εεε

εεε εεε

READING PROPERTIES

• Principle: When (S, R)(S, R)(S, R) is complete for reversing, the properties of

the monoid 〈S, R〉+〈S, R〉+〈S, R〉+ and of the group 〈S, R〉〈S, R〉〈S, R〉 can be read from RRR easily.

• Proposition: Assume that (S, R)(S, R)(S, R) is complete for reversing, and RRR contains

no relation su = svsu = svsu = sv with u (= vu (= vu (= v. Then 〈S, R〉+〈S, R〉+〈S, R〉+ is left cancellative.

Proof: Assume su ≡+ svsu ≡+ svsu ≡+ sv.

Then (su)−1(sv) ! ε(su)−1(sv) ! ε(su)−1(sv) ! ε: sss

uuu

sss vvv

εεε

εεε

εεε εεε

READING PROPERTIES

• Principle: When (S, R)(S, R)(S, R) is complete for reversing, the properties of

the monoid 〈S, R〉+〈S, R〉+〈S, R〉+ and of the group 〈S, R〉〈S, R〉〈S, R〉 can be read from RRR easily.

• Proposition: Assume that (S, R)(S, R)(S, R) is complete for reversing, and RRR contains

no relation su = svsu = svsu = sv with u (= vu (= vu (= v. Then 〈S, R〉+〈S, R〉+〈S, R〉+ is left cancellative.

Proof: Assume su ≡+ svsu ≡+ svsu ≡+ sv.

Then (su)−1(sv) ! ε(su)−1(sv) ! ε(su)−1(sv) ! ε: sss

uuu

sss vvv

εεε

εεε

εεε εεε

εεε
εεε

READING PROPERTIES

• Principle: When (S, R)(S, R)(S, R) is complete for reversing, the properties of

the monoid 〈S, R〉+〈S, R〉+〈S, R〉+ and of the group 〈S, R〉〈S, R〉〈S, R〉 can be read from RRR easily.

• Proposition: Assume that (S, R)(S, R)(S, R) is complete for reversing, and RRR contains

no relation su = svsu = svsu = sv with u (= vu (= vu (= v. Then 〈S, R〉+〈S, R〉+〈S, R〉+ is left cancellative.

Proof: Assume su ≡+ svsu ≡+ svsu ≡+ sv.

Then (su)−1(sv) ! ε(su)−1(sv) ! ε(su)−1(sv) ! ε: sss

uuu

sss vvv

εεε

εεε

εεε εεε

εεε
εεε

Hence u−1v ! εu−1v ! εu−1v ! ε.

READING PROPERTIES

• Principle: When (S, R)(S, R)(S, R) is complete for reversing, the properties of

the monoid 〈S, R〉+〈S, R〉+〈S, R〉+ and of the group 〈S, R〉〈S, R〉〈S, R〉 can be read from RRR easily.

• Proposition: Assume that (S, R)(S, R)(S, R) is complete for reversing, and RRR contains

no relation su = svsu = svsu = sv with u (= vu (= vu (= v. Then 〈S, R〉+〈S, R〉+〈S, R〉+ is left cancellative.

Proof: Assume su ≡+ svsu ≡+ svsu ≡+ sv.

Then (su)−1(sv) ! ε(su)−1(sv) ! ε(su)−1(sv) ! ε: sss

uuu

sss vvv

εεε

εεε

εεε εεε

εεε
εεε

Hence u−1v ! εu−1v ! εu−1v ! ε.

Hence u ≡+ vu ≡+ vu ≡+ v. #

READING PROPERTIES

• Principle: When (S, R)(S, R)(S, R) is complete for reversing, the properties of

the monoid 〈S, R〉+〈S, R〉+〈S, R〉+ and of the group 〈S, R〉〈S, R〉〈S, R〉 can be read from RRR easily.

• Proposition: Assume that (S, R)(S, R)(S, R) is complete for reversing, and RRR contains

no relation su = svsu = svsu = sv with u (= vu (= vu (= v. Then 〈S, R〉+〈S, R〉+〈S, R〉+ is left cancellative.

Proof: Assume su ≡+ svsu ≡+ svsu ≡+ sv.

Then (su)−1(sv) ! ε(su)−1(sv) ! ε(su)−1(sv) ! ε: sss

uuu

sss vvv

εεε

εεε

εεε εεε

εεε
εεε

Hence u−1v ! εu−1v ! εu−1v ! ε.

Hence u ≡+ vu ≡+ vu ≡+ v. #

• Prop.: Assume that (S, R)(S, R)(S, R) is complete for reversing, and RRR contains $ 1
relation su = tvsu = tvsu = tv for each pair s, ts, ts, t in SSS. Then 〈S, R〉+〈S, R〉+〈S, R〉+ admits local right lcm's.

↗two elements with a common multiple admit a lcm

RECIPE

• For uuu u′u′u′

vvv

v′v′v′

!!! , write ccc(u, v) := v′(u, v) := v′(u, v) := v′ and δδδ(u, v) := uv′(u, v) := uv′(u, v) := uv′.

RECIPE

• For uuu u′u′u′

vvv

v′v′v′

!!! , write ccc(u, v) := v′(u, v) := v′(u, v) := v′ and δδδ(u, v) := uv′(u, v) := uv′(u, v) := uv′.

• Algorithm: Input: A complemented presentation (S; R)(S; R)(S; R);

RECIPE

• For uuu u′u′u′

vvv

v′v′v′

!!! , write ccc(u, v) := v′(u, v) := v′(u, v) := v′ and δδδ(u, v) := uv′(u, v) := uv′(u, v) := uv′.

• Algorithm: Input: A complemented presentation (S; R)(S; R)(S; R);
1- Find the closure Ŝ̂ŜS of SSS under ccc;

RECIPE

• For uuu u′u′u′

vvv

v′v′v′

!!! , write ccc(u, v) := v′(u, v) := v′(u, v) := v′ and δδδ(u, v) := uv′(u, v) := uv′(u, v) := uv′.

• Algorithm: Input: A complemented presentation (S; R)(S; R)(S; R);
1- Find the closure Ŝ̂ŜS of SSS under ccc;

2- Check the cube condition on Ŝ̂ŜS;

RECIPE

• For uuu u′u′u′

vvv

v′v′v′

!!! , write ccc(u, v) := v′(u, v) := v′(u, v) := v′ and δδδ(u, v) := uv′(u, v) := uv′(u, v) := uv′.

• Algorithm: Input: A complemented presentation (S; R)(S; R)(S; R);
1- Find the closure Ŝ̂ŜS of SSS under ccc;

2- Check the cube condition on Ŝ̂ŜS;

3- Find the closure S̃̃S̃S of Ŝ̂ŜS under δδδ, and the maximal element w0w0w0 of S̃̃S̃S;

RECIPE

• For uuu u′u′u′

vvv

v′v′v′

!!! , write ccc(u, v) := v′(u, v) := v′(u, v) := v′ and δδδ(u, v) := uv′(u, v) := uv′(u, v) := uv′.

• Algorithm: Input: A complemented presentation (S; R)(S; R)(S; R);
1- Find the closure Ŝ̂ŜS of SSS under ccc;

2- Check the cube condition on Ŝ̂ŜS;

3- Find the closure S̃̃S̃S of Ŝ̂ŜS under δδδ, and the maximal element w0w0w0 of S̃̃S̃S;

4- Check the injectivity of u 0→ c(u, w0)u 0→ c(u, w0)u 0→ c(u, w0) on S̃̃S̃S up to equivalence.

RECIPE

• For uuu u′u′u′

vvv

v′v′v′

!!! , write ccc(u, v) := v′(u, v) := v′(u, v) := v′ and δδδ(u, v) := uv′(u, v) := uv′(u, v) := uv′.

• Algorithm: Input: A complemented presentation (S; R)(S; R)(S; R);
1- Find the closure Ŝ̂ŜS of SSS under ccc;

2- Check the cube condition on Ŝ̂ŜS;

3- Find the closure S̃̃S̃S of Ŝ̂ŜS under δδδ, and the maximal element w0w0w0 of S̃̃S̃S;

4- Check the injectivity of u 0→ c(u, w0)u 0→ c(u, w0)u 0→ c(u, w0) on S̃̃S̃S up to equivalence.

Then 〈S; R〉+〈S; R〉+〈S; R〉+ is a Garside monoid with w0w0w0 representing a Garside element.

RECIPE

• For uuu u′u′u′

vvv

v′v′v′

!!! , write ccc(u, v) := v′(u, v) := v′(u, v) := v′ and δδδ(u, v) := uv′(u, v) := uv′(u, v) := uv′.

• Algorithm: Input: A complemented presentation (S; R)(S; R)(S; R);
1- Find the closure Ŝ̂ŜS of SSS under ccc;

2- Check the cube condition on Ŝ̂ŜS;

3- Find the closure S̃̃S̃S of Ŝ̂ŜS under δδδ, and the maximal element w0w0w0 of S̃̃S̃S;

4- Check the injectivity of u 0→ c(u, w0)u 0→ c(u, w0)u 0→ c(u, w0) on S̃̃S̃S up to equivalence.

Then 〈S; R〉+〈S; R〉+〈S; R〉+ is a Garside monoid with w0w0w0 representing a Garside element.

• Example: S = {a, b}S = {a, b}S = {a, b}, R = {aba = bb}R = {aba = bb}R = {aba = bb}.

RECIPE

• For uuu u′u′u′

vvv

v′v′v′

!!! , write ccc(u, v) := v′(u, v) := v′(u, v) := v′ and δδδ(u, v) := uv′(u, v) := uv′(u, v) := uv′.

• Algorithm: Input: A complemented presentation (S; R)(S; R)(S; R);
1- Find the closure Ŝ̂ŜS of SSS under ccc;

2- Check the cube condition on Ŝ̂ŜS;

3- Find the closure S̃̃S̃S of Ŝ̂ŜS under δδδ, and the maximal element w0w0w0 of S̃̃S̃S;

4- Check the injectivity of u 0→ c(u, w0)u 0→ c(u, w0)u 0→ c(u, w0) on S̃̃S̃S up to equivalence.

Then 〈S; R〉+〈S; R〉+〈S; R〉+ is a Garside monoid with w0w0w0 representing a Garside element.

• Example: S = {a, b}S = {a, b}S = {a, b}, R = {aba = bb}R = {aba = bb}R = {aba = bb}.

1- Ŝ = {ε, a, b, ab, ba, bab}Ŝ = {ε, a, b, ab, ba, bab}Ŝ = {ε, a, b, ab, ba, bab}; 2- ... OK;

RECIPE

• For uuu u′u′u′

vvv

v′v′v′

!!! , write ccc(u, v) := v′(u, v) := v′(u, v) := v′ and δδδ(u, v) := uv′(u, v) := uv′(u, v) := uv′.

• Algorithm: Input: A complemented presentation (S; R)(S; R)(S; R);
1- Find the closure Ŝ̂ŜS of SSS under ccc;

2- Check the cube condition on Ŝ̂ŜS;

3- Find the closure S̃̃S̃S of Ŝ̂ŜS under δδδ, and the maximal element w0w0w0 of S̃̃S̃S;

4- Check the injectivity of u 0→ c(u, w0)u 0→ c(u, w0)u 0→ c(u, w0) on S̃̃S̃S up to equivalence.

Then 〈S; R〉+〈S; R〉+〈S; R〉+ is a Garside monoid with w0w0w0 representing a Garside element.

• Example: S = {a, b}S = {a, b}S = {a, b}, R = {aba = bb}R = {aba = bb}R = {aba = bb}.

1- Ŝ = {ε, a, b, ab, ba, bab}Ŝ = {ε, a, b, ab, ba, bab}Ŝ = {ε, a, b, ab, ba, bab}; 2- ... OK;

3- S̃ = Ŝ ∪ {bb, bbb}S̃ = Ŝ ∪ {bb, bbb}S̃ = Ŝ ∪ {bb, bbb}, w0 = bbbw0 = bbbw0 = bbb; 4- c(ε, w0)=w0c(ε, w0)=w0c(ε, w0)=w0, c(a, w0)=babc(a, w0)=babc(a, w0)=bab... OK

RECIPE

• For uuu u′u′u′

vvv

v′v′v′

!!! , write ccc(u, v) := v′(u, v) := v′(u, v) := v′ and δδδ(u, v) := uv′(u, v) := uv′(u, v) := uv′.

• Algorithm: Input: A complemented presentation (S; R)(S; R)(S; R);
1- Find the closure Ŝ̂ŜS of SSS under ccc;

2- Check the cube condition on Ŝ̂ŜS;

3- Find the closure S̃̃S̃S of Ŝ̂ŜS under δδδ, and the maximal element w0w0w0 of S̃̃S̃S;

4- Check the injectivity of u 0→ c(u, w0)u 0→ c(u, w0)u 0→ c(u, w0) on S̃̃S̃S up to equivalence.

Then 〈S; R〉+〈S; R〉+〈S; R〉+ is a Garside monoid with w0w0w0 representing a Garside element.

• Example: S = {a, b}S = {a, b}S = {a, b}, R = {aba = bb}R = {aba = bb}R = {aba = bb}.

1- Ŝ = {ε, a, b, ab, ba, bab}Ŝ = {ε, a, b, ab, ba, bab}Ŝ = {ε, a, b, ab, ba, bab}; 2- ... OK;

3- S̃ = Ŝ ∪ {bb, bbb}S̃ = Ŝ ∪ {bb, bbb}S̃ = Ŝ ∪ {bb, bbb}, w0 = bbbw0 = bbbw0 = bbb; 4- c(ε, w0)=w0c(ε, w0)=w0c(ε, w0)=w0, c(a, w0)=babc(a, w0)=babc(a, w0)=bab... OK

!!!!!!!!! 〈a, b; aba = bb〉+〈a, b; aba = bb〉+〈a, b; aba = bb〉+ is a Garside monoid with ∆ = b3∆ = b3∆ = b3 and 8 divisors of ∆∆∆.

COMPUTING (1): REDUCING TO THE MONOID

• Proposition: Let GGG be a Garside group associated with (M, ∆)(M, ∆)(M, ∆). Then each

element ofGGG is uniquely expressed asgh−1gh−1gh−1 with g, h ∈ Mg, h ∈ Mg, h ∈ M andgcdR(g, h) = 1gcdR(g, h) = 1gcdR(g, h) = 1.

COMPUTING (1): REDUCING TO THE MONOID

• Proposition: Let GGG be a Garside group associated with (M, ∆)(M, ∆)(M, ∆). Then each

element ofGGG is uniquely expressed asgh−1gh−1gh−1 with g, h ∈ Mg, h ∈ Mg, h ∈ M andgcdR(g, h) = 1gcdR(g, h) = 1gcdR(g, h) = 1.

• Algorithm: Input: A word www;

COMPUTING (1): REDUCING TO THE MONOID

• Proposition: Let GGG be a Garside group associated with (M, ∆)(M, ∆)(M, ∆). Then each

element ofGGG is uniquely expressed asgh−1gh−1gh−1 with g, h ∈ Mg, h ∈ Mg, h ∈ M andgcdR(g, h) = 1gcdR(g, h) = 1gcdR(g, h) = 1.

• Algorithm: Input: A word www;

1- Left reverse www into u−1vu−1vu−1v,
↑

symmetric to (right) reversing: +− → −+

COMPUTING (1): REDUCING TO THE MONOID

• Proposition: Let GGG be a Garside group associated with (M, ∆)(M, ∆)(M, ∆). Then each

element ofGGG is uniquely expressed asgh−1gh−1gh−1 with g, h ∈ Mg, h ∈ Mg, h ∈ M andgcdR(g, h) = 1gcdR(g, h) = 1gcdR(g, h) = 1.

• Algorithm: Input: A word www;

1- Left reverse www into u−1vu−1vu−1v,
↑

symmetric to (right) reversing: +− → −+
2- (right) reverse u−1vu−1vu−1v into v′u′−1v′u′−1

v′u′−1
.

COMPUTING (1): REDUCING TO THE MONOID

• Proposition: Let GGG be a Garside group associated with (M, ∆)(M, ∆)(M, ∆). Then each

element ofGGG is uniquely expressed asgh−1gh−1gh−1 with g, h ∈ Mg, h ∈ Mg, h ∈ M andgcdR(g, h) = 1gcdR(g, h) = 1gcdR(g, h) = 1.

• Algorithm: Input: A word www;

1- Left reverse www into u−1vu−1vu−1v,
↑

symmetric to (right) reversing: +− → −+
2- (right) reverse u−1vu−1vu−1v into v′u′−1v′u′−1

v′u′−1
.

Output: Two positive words u′, v′u′, v′u′, v′

s.t. u′v′−1u′v′−1
u′v′−1

is the above expression of www.
↑ ↑ ↑

the element of the group represented by...

COMPUTING (1): REDUCING TO THE MONOID

• Proposition: Let GGG be a Garside group associated with (M, ∆)(M, ∆)(M, ∆). Then each

element ofGGG is uniquely expressed asgh−1gh−1gh−1 with g, h ∈ Mg, h ∈ Mg, h ∈ M andgcdR(g, h) = 1gcdR(g, h) = 1gcdR(g, h) = 1.

• Algorithm: Input: A word www;

1- Left reverse www into u−1vu−1vu−1v,
↑

symmetric to (right) reversing: +− → −+
2- (right) reverse u−1vu−1vu−1v into v′u′−1v′u′−1

v′u′−1
.

Output: Two positive words u′, v′u′, v′u′, v′

s.t. u′v′−1u′v′−1
u′v′−1

is the above expression of www.
↑ ↑ ↑

the element of the group represented by...

www

COMPUTING (1): REDUCING TO THE MONOID

• Proposition: Let GGG be a Garside group associated with (M, ∆)(M, ∆)(M, ∆). Then each

element ofGGG is uniquely expressed asgh−1gh−1gh−1 with g, h ∈ Mg, h ∈ Mg, h ∈ M andgcdR(g, h) = 1gcdR(g, h) = 1gcdR(g, h) = 1.

• Algorithm: Input: A word www;

1- Left reverse www into u−1vu−1vu−1v,
↑

symmetric to (right) reversing: +− → −+
2- (right) reverse u−1vu−1vu−1v into v′u′−1v′u′−1

v′u′−1
.

Output: Two positive words u′, v′u′, v′u′, v′

s.t. u′v′−1u′v′−1
u′v′−1

is the above expression of www.
↑ ↑ ↑

the element of the group represented by...

www

!!!

uuu

vvv

COMPUTING (1): REDUCING TO THE MONOID

• Proposition: Let GGG be a Garside group associated with (M, ∆)(M, ∆)(M, ∆). Then each

element ofGGG is uniquely expressed asgh−1gh−1gh−1 with g, h ∈ Mg, h ∈ Mg, h ∈ M andgcdR(g, h) = 1gcdR(g, h) = 1gcdR(g, h) = 1.

• Algorithm: Input: A word www;

1- Left reverse www into u−1vu−1vu−1v,
↑

symmetric to (right) reversing: +− → −+
2- (right) reverse u−1vu−1vu−1v into v′u′−1v′u′−1

v′u′−1
.

Output: Two positive words u′, v′u′, v′u′, v′

s.t. u′v′−1u′v′−1
u′v′−1

is the above expression of www.
↑ ↑ ↑

the element of the group represented by...

uuu

vvv

!!! u′u′u′

v′v′v′

COMPUTING (1): REDUCING TO THE MONOID

• Proposition: Let GGG be a Garside group associated with (M, ∆)(M, ∆)(M, ∆). Then each

element ofGGG is uniquely expressed asgh−1gh−1gh−1 with g, h ∈ Mg, h ∈ Mg, h ∈ M andgcdR(g, h) = 1gcdR(g, h) = 1gcdR(g, h) = 1.

• Algorithm: Input: A word www;

1- Left reverse www into u−1vu−1vu−1v,
↑

symmetric to (right) reversing: +− → −+
2- (right) reverse u−1vu−1vu−1v into v′u′−1v′u′−1

v′u′−1
.

Output: Two positive words u′, v′u′, v′u′, v′

s.t. u′v′−1u′v′−1
u′v′−1

is the above expression of www.
↑ ↑ ↑

the element of the group represented by...

uuu

vvv

!!! u′u′u′

v′v′v′

• Corollary (solution to the word problem): www represents 111 iff u′ = v′ = εu′ = v′ = εu′ = v′ = ε.

COMPUTING (2): LATTICE OPERATIONS

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then any two elements

admit a right (and a left) lcm and a left (and a right) gcd.

COMPUTING (2): LATTICE OPERATIONS

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then any two elements

admit a right (and a left) lcm and a left (and a right) gcd.

• Algorithm: Input: Two positive words u, vu, vu, v;

COMPUTING (2): LATTICE OPERATIONS

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then any two elements

admit a right (and a left) lcm and a left (and a right) gcd.

• Algorithm: Input: Two positive words u, vu, vu, v;

1- Right reverse u−1vu−1vu−1v into v′u′−1v′u′−1
v′u′−1

,

COMPUTING (2): LATTICE OPERATIONS

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then any two elements

admit a right (and a left) lcm and a left (and a right) gcd.

• Algorithm: Input: Two positive words u, vu, vu, v;

1- Right reverse u−1vu−1vu−1v into v′u′−1v′u′−1
v′u′−1

,

2- Left reverse v′u′−1v′u′−1
v′u′−1

into u′′v′′−1u′′v′′−1
u′′v′′−1

,

COMPUTING (2): LATTICE OPERATIONS

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then any two elements

admit a right (and a left) lcm and a left (and a right) gcd.

• Algorithm: Input: Two positive words u, vu, vu, v;

1- Right reverse u−1vu−1vu−1v into v′u′−1v′u′−1
v′u′−1

,

2- Left reverse v′u′−1v′u′−1
v′u′−1

into u′′v′′−1u′′v′′−1
u′′v′′−1

,

3- Left reverse uu′′−1uu′′−1
uu′′−1

into www.

COMPUTING (2): LATTICE OPERATIONS

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then any two elements

admit a right (and a left) lcm and a left (and a right) gcd.

• Algorithm: Input: Two positive words u, vu, vu, v;

1- Right reverse u−1vu−1vu−1v into v′u′−1v′u′−1
v′u′−1

,

2- Left reverse v′u′−1v′u′−1
v′u′−1

into u′′v′′−1u′′v′′−1
u′′v′′−1

,

3- Left reverse uu′′−1uu′′−1
uu′′−1

into www.

Output: uv′uv′uv′ (= δ(u, v)= δ(u, v)= δ(u, v)) and www,

representing lcmR(u, v)lcmR(u, v)lcmR(u, v) and gcdL(u, v)gcdL(u, v)gcdL(u, v) respectively.

COMPUTING (2): LATTICE OPERATIONS

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then any two elements

admit a right (and a left) lcm and a left (and a right) gcd.

• Algorithm: Input: Two positive words u, vu, vu, v;

1- Right reverse u−1vu−1vu−1v into v′u′−1v′u′−1
v′u′−1

,

2- Left reverse v′u′−1v′u′−1
v′u′−1

into u′′v′′−1u′′v′′−1
u′′v′′−1

,

3- Left reverse uu′′−1uu′′−1
uu′′−1

into www.

Output: uv′uv′uv′ (= δ(u, v)= δ(u, v)= δ(u, v)) and www,

representing lcmR(u, v)lcmR(u, v)lcmR(u, v) and gcdL(u, v)gcdL(u, v)gcdL(u, v) respectively.

uuu

vvv

COMPUTING (2): LATTICE OPERATIONS

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then any two elements

admit a right (and a left) lcm and a left (and a right) gcd.

• Algorithm: Input: Two positive words u, vu, vu, v;

1- Right reverse u−1vu−1vu−1v into v′u′−1v′u′−1
v′u′−1

,

2- Left reverse v′u′−1v′u′−1
v′u′−1

into u′′v′′−1u′′v′′−1
u′′v′′−1

,

3- Left reverse uu′′−1uu′′−1
uu′′−1

into www.

Output: uv′uv′uv′ (= δ(u, v)= δ(u, v)= δ(u, v)) and www,

representing lcmR(u, v)lcmR(u, v)lcmR(u, v) and gcdL(u, v)gcdL(u, v)gcdL(u, v) respectively.

uuu

vvv

!!! u′u′u′

v′v′v′

COMPUTING (2): LATTICE OPERATIONS

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then any two elements

admit a right (and a left) lcm and a left (and a right) gcd.

• Algorithm: Input: Two positive words u, vu, vu, v;

1- Right reverse u−1vu−1vu−1v into v′u′−1v′u′−1
v′u′−1

,

2- Left reverse v′u′−1v′u′−1
v′u′−1

into u′′v′′−1u′′v′′−1
u′′v′′−1

,

3- Left reverse uu′′−1uu′′−1
uu′′−1

into www.

Output: uv′uv′uv′ (= δ(u, v)= δ(u, v)= δ(u, v)) and www,

representing lcmR(u, v)lcmR(u, v)lcmR(u, v) and gcdL(u, v)gcdL(u, v)gcdL(u, v) respectively.

uuu

vvv

u′u′u′

v′v′v′

!!!

u′′u′′u′′
v′′v′′v′′

COMPUTING (2): LATTICE OPERATIONS

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then any two elements

admit a right (and a left) lcm and a left (and a right) gcd.

• Algorithm: Input: Two positive words u, vu, vu, v;

1- Right reverse u−1vu−1vu−1v into v′u′−1v′u′−1
v′u′−1

,

2- Left reverse v′u′−1v′u′−1
v′u′−1

into u′′v′′−1u′′v′′−1
u′′v′′−1

,

3- Left reverse uu′′−1uu′′−1
uu′′−1

into www.

Output: uv′uv′uv′ (= δ(u, v)= δ(u, v)= δ(u, v)) and www,

representing lcmR(u, v)lcmR(u, v)lcmR(u, v) and gcdL(u, v)gcdL(u, v)gcdL(u, v) respectively.

uuu

vvv

u′u′u′

v′v′v′

!!!

u′′u′′u′′
v′′v′′v′′!!!www

COMPUTING (2): LATTICE OPERATIONS

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then any two elements

admit a right (and a left) lcm and a left (and a right) gcd.

• Algorithm: Input: Two positive words u, vu, vu, v;

1- Right reverse u−1vu−1vu−1v into v′u′−1v′u′−1
v′u′−1

,

2- Left reverse v′u′−1v′u′−1
v′u′−1

into u′′v′′−1u′′v′′−1
u′′v′′−1

,

3- Left reverse uu′′−1uu′′−1
uu′′−1

into www.

Output: uv′uv′uv′ (= δ(u, v)= δ(u, v)= δ(u, v)) and www,

representing lcmR(u, v)lcmR(u, v)lcmR(u, v) and gcdL(u, v)gcdL(u, v)gcdL(u, v) respectively.

uuu

vvv

u′u′u′

v′v′v′

!!!

u′′u′′u′′
v′′v′′v′′!!!www

COMPUTING (3): NORMAL FORM

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then every element of MMM
admits a unique expression x1...xpx1...xpx1...xp with x1x1x1, ..., xpxpxp simple and, for each iii,
every simple right divisor of xi−1xixi−1xixi−1xi is a right divisor of xixixi.

↑
divisor of ∆∆∆

COMPUTING (3): NORMAL FORM

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then every element of MMM
admits a unique expression x1...xpx1...xpx1...xp with x1x1x1, ..., xpxpxp simple and, for each iii,
every simple right divisor of xi−1xixi−1xixi−1xi is a right divisor of xixixi.

↑
divisor of ∆∆∆

• "Reversing is compatible with the normal form":

COMPUTING (3): NORMAL FORM

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then every element of MMM
admits a unique expression x1...xpx1...xpx1...xp with x1x1x1, ..., xpxpxp simple and, for each iii,
every simple right divisor of xi−1xixi−1xixi−1xi is a right divisor of xixixi.

↑
divisor of ∆∆∆

• "Reversing is compatible with the normal form":

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system, and (x1, ..., xp)(x1, ..., xp)(x1, ..., xp), (y1, ..., yq)(y1, ..., yq)(y1, ..., yq)
be normal. Then so is every horizontal– or vertical–diagonal sequence in

x1x1x1

......

...

xpxpxp

y1y1y1 y2y2y2 yqyqyq

!!! !!! !!! !!!
!!! !!! !!! !!!
!!! !!! !!! !!!

.

COMPUTING (3): NORMAL FORM

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then every element of MMM
admits a unique expression x1...xpx1...xpx1...xp with x1x1x1, ..., xpxpxp simple and, for each iii,
every simple right divisor of xi−1xixi−1xixi−1xi is a right divisor of xixixi.

↑
divisor of ∆∆∆

• "Reversing is compatible with the normal form":

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system, and (x1, ..., xp)(x1, ..., xp)(x1, ..., xp), (y1, ..., yq)(y1, ..., yq)(y1, ..., yq)
be normal. Then so is every horizontal– or vertical–diagonal sequence in

x1x1x1

......

...

xpxpxp

y1y1y1 y2y2y2 yqyqyq

!!! !!! !!! !!!
!!! !!! !!! !!!
!!! !!! !!! !!!

.

COMPUTING (3): NORMAL FORM

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then every element of MMM
admits a unique expression x1...xpx1...xpx1...xp with x1x1x1, ..., xpxpxp simple and, for each iii,
every simple right divisor of xi−1xixi−1xixi−1xi is a right divisor of xixixi.

↑
divisor of ∆∆∆

• "Reversing is compatible with the normal form":

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system, and (x1, ..., xp)(x1, ..., xp)(x1, ..., xp), (y1, ..., yq)(y1, ..., yq)(y1, ..., yq)
be normal. Then so is every horizontal– or vertical–diagonal sequence in

x1x1x1

......

...

xpxpxp

y1y1y1 y2y2y2 yqyqyq

!!! !!! !!! !!!
!!! !!! !!! !!!
!!! !!! !!! !!!

.

COMPUTING (3): NORMAL FORM

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then every element of MMM
admits a unique expression x1...xpx1...xpx1...xp with x1x1x1, ..., xpxpxp simple and, for each iii,
every simple right divisor of xi−1xixi−1xixi−1xi is a right divisor of xixixi.

↑
divisor of ∆∆∆

• "Reversing is compatible with the normal form":

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system, and (x1, ..., xp)(x1, ..., xp)(x1, ..., xp), (y1, ..., yq)(y1, ..., yq)(y1, ..., yq)
be normal. Then so is every horizontal– or vertical–diagonal sequence in

x1x1x1

......

...

xpxpxp

y1y1y1 y2y2y2 yqyqyq

!!! !!! !!! !!!
!!! !!! !!! !!!
!!! !!! !!! !!!

.

COMPUTING (3): NORMAL FORM

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then every element of MMM
admits a unique expression x1...xpx1...xpx1...xp with x1x1x1, ..., xpxpxp simple and, for each iii,
every simple right divisor of xi−1xixi−1xixi−1xi is a right divisor of xixixi.

↑
divisor of ∆∆∆

• "Reversing is compatible with the normal form":

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system, and (x1, ..., xp)(x1, ..., xp)(x1, ..., xp), (y1, ..., yq)(y1, ..., yq)(y1, ..., yq)
be normal. Then so is every horizontal– or vertical–diagonal sequence in

x1x1x1

......

...

xpxpxp

y1y1y1 y2y2y2 yqyqyq

!!! !!! !!! !!!
!!! !!! !!! !!!
!!! !!! !!! !!!

.

COMPUTING (3): NORMAL FORM

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then every element of MMM
admits a unique expression x1...xpx1...xpx1...xp with x1x1x1, ..., xpxpxp simple and, for each iii,
every simple right divisor of xi−1xixi−1xixi−1xi is a right divisor of xixixi.

↑
divisor of ∆∆∆

• "Reversing is compatible with the normal form":

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system, and (x1, ..., xp)(x1, ..., xp)(x1, ..., xp), (y1, ..., yq)(y1, ..., yq)(y1, ..., yq)
be normal. Then so is every horizontal– or vertical–diagonal sequence in

x1x1x1

......

...

xpxpxp

y1y1y1 y2y2y2 yqyqyq

!!! !!! !!! !!!
!!! !!! !!! !!!
!!! !!! !!! !!!

.

COMPUTING (3): NORMAL FORM

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system. Then every element of MMM
admits a unique expression x1...xpx1...xpx1...xp with x1x1x1, ..., xpxpxp simple and, for each iii,
every simple right divisor of xi−1xixi−1xixi−1xi is a right divisor of xixixi.

↑
divisor of ∆∆∆

• "Reversing is compatible with the normal form":

• Proposition: Let (M, ∆)(M, ∆)(M, ∆) be a Garside system, and (x1, ..., xp)(x1, ..., xp)(x1, ..., xp), (y1, ..., yq)(y1, ..., yq)(y1, ..., yq)
be normal. Then so is every horizontal– or vertical–diagonal sequence in

x1x1x1

......

...

xpxpxp

y1y1y1 y2y2y2 yqyqyq

!!! !!! !!! !!!
!!! !!! !!! !!!
!!! !!! !!! !!!

.

!!!!!!!!! Computation of the normal form of a product, or of an lcm.

CONCLUSION

• Word reversing is a convenient tool

- for recognizing a Garside group from a (complemented) presentation,

- for computing inside a Garside group using a (complemented) presen-

tation for (one of the possible) Garside structure(s).

CONCLUSION

• Word reversing is a convenient tool

- for recognizing a Garside group from a (complemented) presentation,

- for computing inside a Garside group using a (complemented) presen-

tation for (one of the possible) Garside structure(s).

• Once completeness is granted, reversing ≈ computing lcm, but not a priori

!!!!!!!!! crucial to distinguish between words and the elements they represent.

CONCLUSION

• Word reversing is a convenient tool

- for recognizing a Garside group from a (complemented) presentation,

- for computing inside a Garside group using a (complemented) presen-

tation for (one of the possible) Garside structure(s).

• Once completeness is granted, reversing ≈ computing lcm, but not a priori

!!!!!!!!! crucial to distinguish between words and the elements they represent.

• References:

- Groupes de Garside; Ann. Scient. Ec. Norm. Sup. 35 (2002) 267–306.

- Complete positive group presentations; J. of Algebra 268 (2003) 156–197.

CONCLUSION

• Word reversing is a convenient tool

- for recognizing a Garside group from a (complemented) presentation,

- for computing inside a Garside group using a (complemented) presen-

tation for (one of the possible) Garside structure(s).

• Once completeness is granted, reversing ≈ computing lcm, but not a priori

!!!!!!!!! crucial to distinguish between words and the elements they represent.

• References:

- Groupes de Garside; Ann. Scient. Ec. Norm. Sup. 35 (2002) 267–306.

- Complete positive group presentations; J. of Algebra 268 (2003) 156–197.

www.math.unicaen.fr/∼dehornoy

