COMBINATORICS OF NORMAL SEQUENCES OF BRAIDS



COMBINATORICS OF NORMAL SEQUENCES OF BRAIDS

Patrick Dehornoy
http://www.math.unicaen.fr/~dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen




COMBINATORICS OF NORMAL SEQUENCES OF BRAIDS

Patrick Dehornoy
http://www.math.unicaen.fr/~dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

e Counting normal sequences of positive braids leads to non-trivial
open questions about the symmetric group;



COMBINATORICS OF NORMAL SEQUENCES OF BRAIDS

Patrick Dehornoy
http://www.math.unicaen.fr/~dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Caen

e Counting normal sequences of positive braids leads to non-trivial

open questions about the symmetric group;
e Many different induction schemes occur.
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e Definition: A sequence of simple braids (31, ...,sd) is called (left) normal

if, for each 2, each simple left divisor of 8;8;+1 is a left divisor of s;.
(< 8; is the maximal simple left divisor of 8;8;4+1)

e Theorem (Deligne, Adjan, Thurston, El Rifai-Morton): Each positive braid
admits a unique expression $7...84 with (81, ..., 84) normal and sq # 1.

~~ degree of a positive braid := this d; (e.g., simple < degree < 1)
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GARSIDE GROUPS

e Corollary: Each braid admits a unique expression te_l...tl_lsl...sd with
(s1,...,84), (t1, ..., te) normal sequences s.t. 84,t. # 1 and ged(s1,t1) = 1.

e Proposition: The normal form defines a biautomatic structure for B,,.

~~ 1. The family of all normal sequences is recognized by a FSA;

~~ 2. For each generator s, the normal forms of £ and s remain at
bounded distance in the Cayley graph of B,, ("fellow traveler property").

e Remark: id. in every Garside group: group of fractions for a monoid M
with an element A s.t.
- the left and right divisors of A coincide (~ simple) and generate M ;
- the family of all simple elements is a finite lattice w.r.t. left divisibility;
- if 8, t are simple and divide x in M, then lem(s, t) divides x as well.
Normality condition:“each simple left divisor of s;8;4+1 is a left divisor of s;".
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A GENERALISATION

e Proposition: Let (M, A) be a Garside system, and (81, .., 84), (t1,---,te)
be normal. Then every diagonal-then-horizontal and diagonal-then-vertical

sequence in

r\ :J :J :J >
\ t1
] ’\\;J gn
] O ] gn| ’
Le
S1 Sy Sd

is normal as well.

~~ Computation of the normal form of a product, or of an Icm.
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e Definition: N,, 4 := # of normal sequences (81, - ..,84—-1,84) in B;;
= 4 of positive n braids of degree < d, = # of divisors of A% in B};

N,..4(8) := # of normal sequences (81, -..,84-1,8) in B;F;
= # of (positive) braids of degree < d whose dth factor is s.

e Motivation:
- (a natural question)
- A way of proving surjectivity results:
“If some result holds for Nn,d distinct positive braids of degree d,
then it holds for all positive braids in B;}.”
~~ e.g. hew proof of the linearity of the braid ordering.

e Question: Compute N, 4 and N, 4(s).

e Remark: Nn,d = Z and(s) = Nn,d+1(1)-

8 simple
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THE ADJACENCY MATRIX

~~ An easy question, because normality is local:

Proposition (Charney, folklore): Let M,, be the n! X n! matrix with entries
1 if(s,t) is normal,

indexed by simple n-braids s.t. (My)s: =
0 otherwise.

Then N, 4(s) is the s-entry in (1,...,1) - M3~1,

e Examples:

1 0
M, = (1), M2=(1 1), M3 =

e
O = O = O
-0 = O O
-0 = O O
O = O = O
- O O O O

e Hence: N34 =8-29—-3d—7 (~ 1,6,19,48, 109, ...).
e For fixed n, the generating series of Nn’d is rational.
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e Now: 1-1 corresp. { simple n-braids } s { permutations of 1,...,n }

~ (f1y..ey fa) normal iff D(f;) D D(fzq_ll).
descents of f := {k; f(k) > f(k+ 1)}
e Alternative defin. of the adjacency matrix: (M), = Liff D(f) 2 D(g™1).

~s For D(g~') = D(g'~1), the columns of g and g’ in M,, are equal.
~» Can gather the columns: reduces size from n! to 2" 1:

Proposition: Let (M})7.7:=# fin &, s.t. D(f) =Iand D(f~1) D J.
Then Ny, 4(8) is the D(s~1)-entry in (1,...,1) - M 41,

e Example: M3 = ( ~ size 4 instead of 6)

— DN DN =
= = O
ot ©
-0 O O
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~+ (M) )1, only depends on the partition of J ~+ gather columns again:

Proposition: Let M,/ be the p(n) X p(n) matrixs.t. (M) .:= >, (M])r1...

part(I)=A
Then N, 4(s) is the A-entry in (1,...,1) - M”41,
where ) is the partition of D(s™1).

e Example: M3 = (~» size 3 instead of 4)
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THREE REMARKS

e Going from M, to M,,f: = reducing the size of the automata involved in the
automatic structure of B,, from n! to p(n).

I

" 1 _m\/2n/3
# partitions of n, 4n\/§e

e (Hohlweg) Property that ay j only depends on the partition of J : another
form of Solomon's result about the algebra of descents.
~~ similar result for all Coxeter types.

e (Hivert—Novelli) Mg interprets in the context of quasi-symmetric functions
(Malvenuto—-Reutenauer).
~» LU decomposition of M,/
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EIGENVALUES

e Back to the counting problem: all numbers N, 4(s) express in terms of
the powers of the eigenvalues of M,,, hence of M.

1 0 O
e Example: MY =14 2 0 ~~ eigenvalues: 1 (double), 2.

1 1 1
1 0 0 0 O
11 4 1 0 O

M!=]5 3 2 1 0 ~+ eigenvalues: 1 (double), 2, 3 + /6.

6 4 2 2 0
1 1 1 1 1

~ Nyg=c1(3+ V6)e + c2(3 — v6)?% + ¢32% + c4d + c5 with ¢, = ...
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TWO OPEN QUESTIONS

e A few experimental data:

CharPol(M7{') =2 — 1
CharPol(MJ/) = CharPol(M7') - (z — 1)
CharPoI(M") = CharPoI(M") (:1: —2)

CharPoI(M") = CharPoI(M") (:1: — 6x + 3)

CharPoI(M") = CharPoI(M") (a: — 20z —|- 24)
CharPoI(M") = CharPoI(M") (z*

— 8223 + 35922 — 260z + 60)...

e Conjecture: The characteristic polynomial of M,,_1 divides that of M,,.

e A few more experiments:

n 2 3 4 5 6 v 8
Amaz (M) | 2 5.5 18.7 | 77.4 | 373.9 | 2066.6
Amaz(Mn) | 05| 0667 | 0.681 | 0.687 | 0.689 | 0.690 | 0.691

N:Amazx (Mn—l)

e Question: What is the asymptotic behaviour of Apaz(My)?
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e Recall: N,, 4=#pos.n-braids of degree< d; N,, 4(s)=id.with last factor s.
Instead of leaving n fixed and letting d vary, leave d fixed and let n vary:
for instance, N, 1 = n!, and N,, 1(s) = 1.

e Claim: Many different induction schemes appear.

zn

e (Carlitz-Scoville-Vaughan) 1 + z Np,2 —
n

1
(n)?  Jo(v2)

n—1
1 (n
function), corresponding to z,, = E (—1)r il ( ,)293@.
)
0

(Jo(x) the Bessel

® n,3(An—1) — 2n—1’ ang(An_z) =2-3" — (’I’L + 6) .on—1 4 1, ...

e N, 4(Ap—1) = |nle] — 1, corresponding to £, = nxp—1 +2n — 1.
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