Unprovability results involving braids

Unprovability results involving braids

Patrick Dehornoy Laboratoire de Mathématiques Nicolas Oresme Université de Caen

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

joint work with A.Weiermann, L.Carlucci, A.Bovykin

• Aim: Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

joint work with A.Weiermann, L.Carlucci, A.Bovykin

(日) (日) (日) (日) (日) (日) (日) (日)

• Aim: Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic contrary to all usual algebraic and combinatorial properties.

 Interest: - Involves mainstream objects and (hopefully) natural properties;

• Aim: Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic contrary to all usual algebraic and combinatorial properties.

 Interest: - Involves mainstream objects and (hopefully) natural properties;
 Leads to new questions and results about braids, in particular: a new normal form. • Aim: Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic contrary to all usual algebraic and combinatorial properties.

 Interest: - Involves mainstream objects and (hopefully) natural properties;
 Leads to new questions and results about braids, in particular: a new normal form.

• Plan:

(日) (日) (日) (日) (日) (日) (日) (日)

- Interest: Involves mainstream objects and (hopefully) natural properties;
 Leads to new questions and results about braids, in particular: a new normal form.
- Plan: 1. Braids and their ordering

(日) (日) (日) (日) (日) (日) (日) (日)

- Interest: Involves mainstream objects and (hopefully) natural properties;
 Leads to new questions and results about braids, in particular: a new normal form.
- Plan: 1. Braids and their ordering
 - 2. Long sequences in B_3

(日) (日) (日) (日) (日) (日) (日) (日)

- Interest: Involves mainstream objects and (hopefully) natural properties;
 Leads to new questions and results about braids, in particular: a new normal form.
- Plan: 1. Braids and their ordering
 - 2. Long sequences in B_3
 - 3. Phase transition in B_3

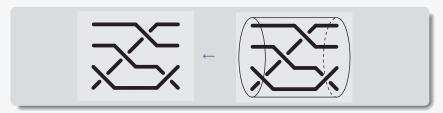
- Interest: Involves mainstream objects and (hopefully) natural properties;
 Leads to new questions and results about braids, in particular: a new normal form.
- Plan: 1. Braids and their ordering
 - 2. Long sequences in B_3
 - 3. Phase transition in B_3
 - 4. Long sequences in B_n

• A 4-strand braid diagram

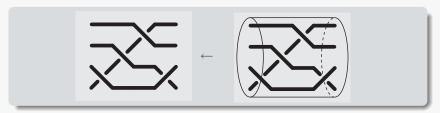
• A 4-strand braid diagram

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:



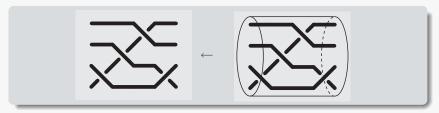
• A 4-strand braid diagram = 2D-projection of a 3D-figure:



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:



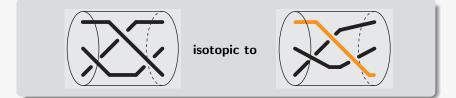


• A 4-strand braid diagram = 2D-projection of a 3D-figure:

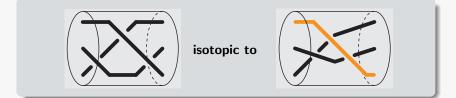
• A 4-strand braid diagram = 2D-projection of a 3D-figure:



• A 4-strand braid diagram = 2D-projection of a 3D-figure:



• A 4-strand braid diagram = 2D-projection of a 3D-figure:

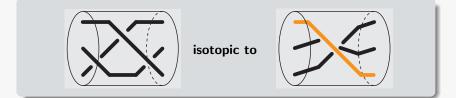


• A 4-strand braid diagram = 2D-projection of a 3D-figure:



• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:



• A 4-strand braid diagram = 2D-projection of a 3D-figure:



• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:



• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

• a braid := an isotopy class \rightsquigarrow represented by 2D-diagram,

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

 a braid := an isotopy class → represented by 2D-diagram, but different 2D-diagrams may give rise to the same braid.

• Product of two braids:

• Product of two braids:

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

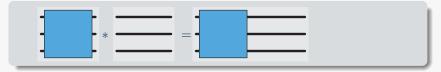
Braid groups

• Product of two braids:

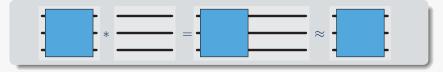
• Product of two braids:

• Then well-defined (w.r.t. isotopy), associative, admits a unit:

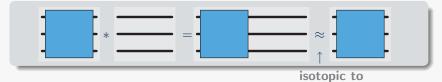
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



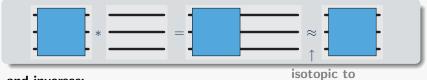
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



• Then well-defined (w.r.t. isotopy), associative, admits a unit:

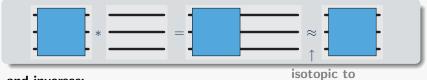


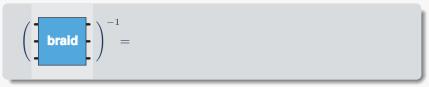
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



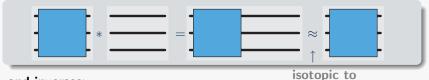


• Then well-defined (w.r.t. isotopy), associative, admits a unit:

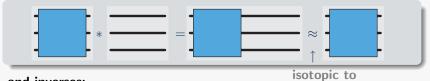


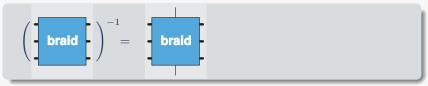


• Then well-defined (w.r.t. isotopy), associative, admits a unit:

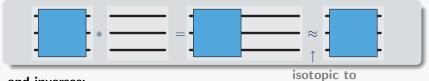


• Then well-defined (w.r.t. isotopy), associative, admits a unit:

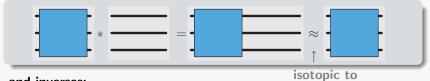




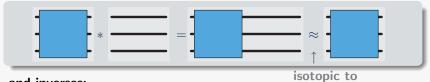
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



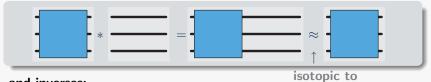
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



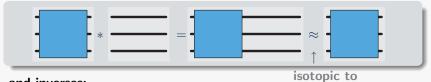
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



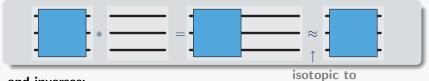
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



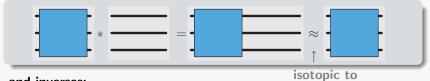
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



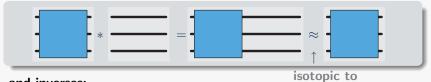
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



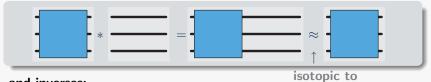
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



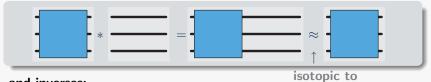
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



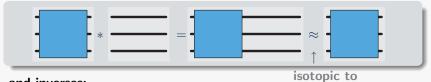
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



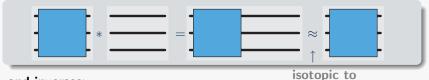
• Then well-defined (w.r.t. isotopy), associative, admits a unit:

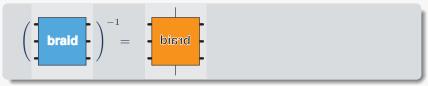


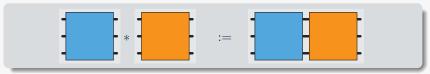
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



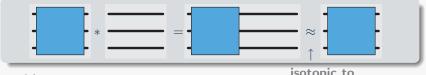
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



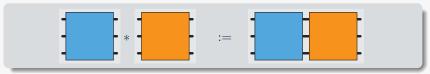




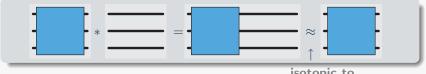
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



and inverses:

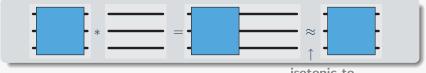


• Then well-defined (w.r.t. isotopy), associative, admits a unit:

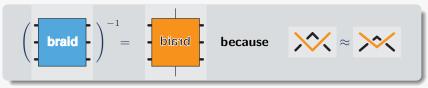


and inverses:

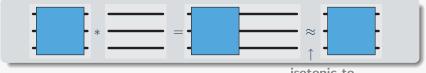
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



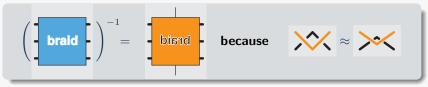
and inverses:



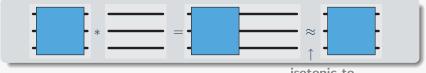
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



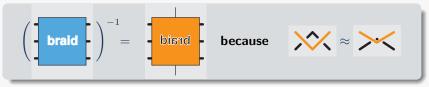
and inverses:



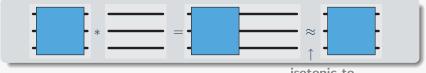
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



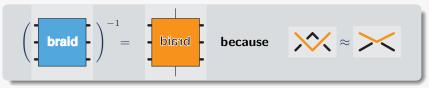
and inverses:



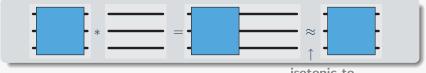
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



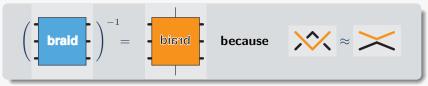
and inverses:



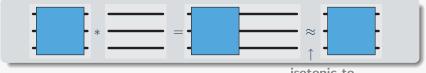
• Then well-defined (w.r.t. isotopy), associative, admits a unit:



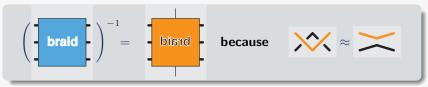
and inverses:

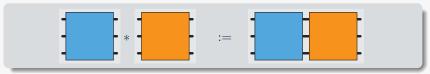


• Then well-defined (w.r.t. isotopy), associative, admits a unit:

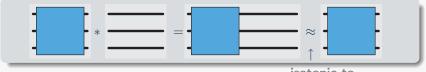


and inverses:

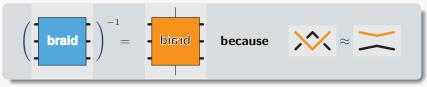


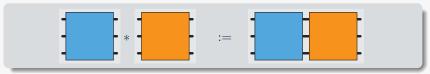


• Then well-defined (w.r.t. isotopy), associative, admits a unit:

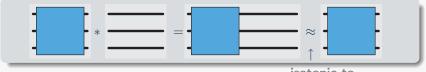


and inverses:

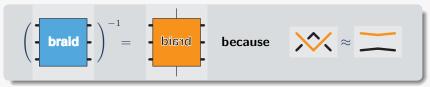


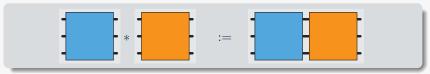


• Then well-defined (w.r.t. isotopy), associative, admits a unit:

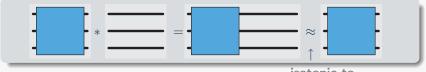


and inverses:

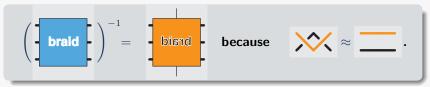




• Then well-defined (w.r.t. isotopy), associative, admits a unit:

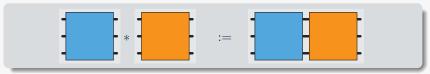


and inverses:

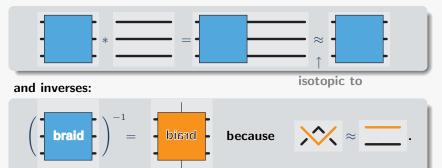


< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

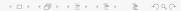
• Product of two braids:



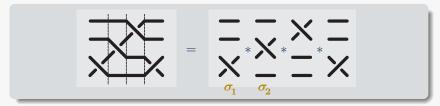
• Then well-defined (w.r.t. isotopy), associative, admits a unit:

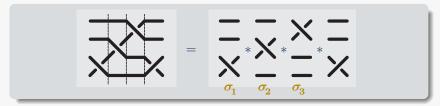


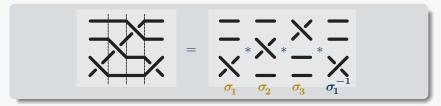
 \rightsquigarrow For each *n*, the group B_n of *n* strand braids (E.Artin, ~1925).



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ





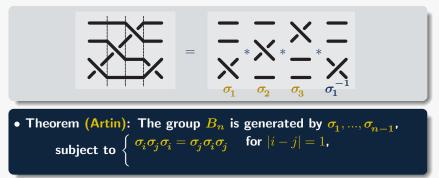


• Artin generators of B_n :

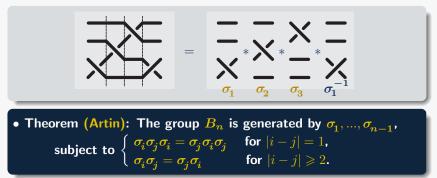
• Theorem (Artin): The group B_n is generated by $\sigma_1, ..., \sigma_{n-1}$

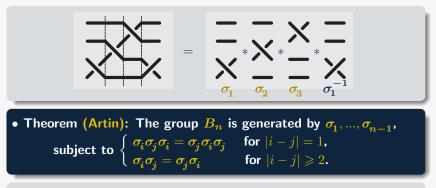
Artin presentation of B_n

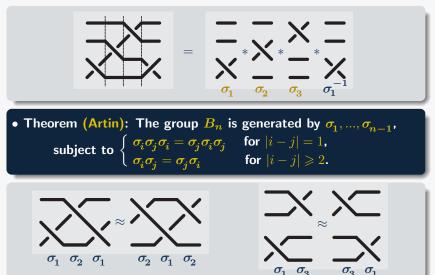
▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()



Artin presentation of B_n







・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

• Definition: For x, y in B_{∞} , say that x < y holds if, among all words representing $x^{-1}y$, at least one is such that the generator σ_i with highest index appears positively only (σ_i occurs, σ_i^{-1} does not).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

• Definition: For x, y in B_{∞} , say that x < y holds if, among all words representing $x^{-1}y$, at least one is such that the generator σ_i with highest index appears positively only (σ_i occurs, σ_i^{-1} does not).

ightarrow e.g., $\sigma_2 < \sigma_2 \sigma_1$ holds, because $\sigma_2^{-1} \sigma_1 \sigma_2$

• Definition: For x, y in B_{∞} , say that x < y holds if, among all words representing $x^{-1}y$, at least one is such that the generator σ_i with highest index appears positively only (σ_i occurs, σ_i^{-1} does not).

 $\stackrel{\bullet\bullet}{\twoheadrightarrow} \text{ e.g., } \sigma_2 < \sigma_2 \sigma_1 \text{ holds, because } \sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1}, \\ \text{ and, in the latter word, } \sigma_2 \text{ appears positively only.}$

A D > 4 回 > 4 □ > 4

• Definition: For x, y in B_{∞} , say that x < y holds if, among all words representing $x^{-1}y$, at least one is such that the generator σ_i with highest index appears positively only (σ_i occurs, σ_i^{-1} does not).

 $\stackrel{\bullet\bullet}{\twoheadrightarrow} \text{ e.g., } \sigma_2 < \sigma_2 \sigma_1 \text{ holds, because } \sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1}, \\ \text{ and, in the latter word, } \sigma_2 \text{ appears positively only.}$

• Theorem: (i) The relation < is a left-invariant total order on B_{∞} ;

A D > 4 回 > 4 □ > 4

• Definition: For x, y in B_{∞} , say that x < y holds if, among all words representing $x^{-1}y$, at least one is such that the generator σ_i with highest index appears positively only (σ_i occurs, σ_i^{-1} does not).

 $\stackrel{\bullet\bullet}{\twoheadrightarrow} \text{ e.g., } \sigma_2 < \sigma_2 \sigma_1 \text{ holds, because } \sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1}, \\ \text{ and, in the latter word, } \sigma_2 \text{ appears positively only.}$

• Theorem: (i) The relation < is a left-invariant total order on B_{∞} ; (ii) (Laver) The restriction of < to B_{∞}^+ is a well-order;

A D M A

• Definition: For x, y in B_{∞} , say that x < y holds if, among all words representing $x^{-1}y$, at least one is such that the generator σ_i with highest index appears positively only (σ_i occurs, σ_i^{-1} does not).

ightarrow e.g., $\sigma_2 < \sigma_2 \sigma_1$ holds, because $\sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1}$, and, in the latter word, σ_2 appears positively only.

• Theorem: (i) The relation < is a left-invariant total order on B_{∞} ; (ii) (Laver) The restriction of < to B_{∞}^+ is a well-order; (iii) (Burckel) The restriction of < to B_n^+ has length $\omega^{\omega^{n-2}}$.

• Construct (very) long descending sequences of braids using a simple inductive rule.

• Construct (very) long descending sequences of braids using a simple inductive rule.

 → Reminiscent of Goodstein's sequences and Hydra battles:
 "battle against a malevolent braid": get rid of all crossings; at step t, chop off 1 crossing,

but t new crossings reappear in general.

• Construct (very) long descending sequences of braids using a simple inductive rule.

 Reminiscent of Goodstein's sequences and Hydra battles:
 "battle against a malevolent braid": get rid of all crossings; at step t, chop off 1 crossing, but t new crossings reappear in general.

• Here in the 3 strand version—but exists for each n.

・ロト ・ 日 ・ モ ト ・ モ ト ・ 日 ・ つへぐ

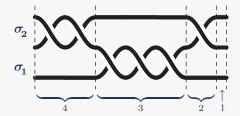
- (Burckel) The alternating normal form of a positive 3-braid:
 - $\sigma_{[p]}^{e_p} \dots \sigma_2^{e_2} \sigma_1^{e_1} \text{ with } e_p \ge 1, e_k \ge 2 \text{ for } p > k \ge 3, e_2 \ge 1, e_1 \ge 0,$ $1 \text{ or } 2 \text{ according to } p \pmod{2}$

- (Burckel) The alternating normal form of a positive 3-braid: $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$ with $e_p \ge 1$, $e_k \ge 2$ for $p > k \ge 3$, $e_2 \ge 1$, $e_1 \ge 0$, 1 or 2 according to $p \pmod{2}$
- The critical position: smallest (= rightmost) k s.t. e_k does not have the minimal legal value, if it exists, p otherwise.

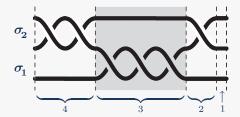
- (Burckel) The alternating normal form of a positive 3-braid: $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$ with $e_p \ge 1$, $e_k \ge 2$ for $p > k \ge 3$, $e_2 \ge 1$, $e_1 \ge 0$, 1 or 2 according to $p \pmod{2}$
- The critical position: smallest (= rightmost) k s.t. e_k does not have the minimal legal value, if it exists, p otherwise.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

- (Burckel) The alternating normal form of a positive 3-braid: $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$ with $e_p \ge 1$, $e_k \ge 2$ for $p > k \ge 3$, $e_2 \ge 1$, $e_1 \ge 0$, 1 or 2 according to $p \pmod{2}$
- The critical position: smallest (= rightmost) k s.t. e_k does not have the minimal legal value, if it exists, p otherwise.



- (Burckel) The alternating normal form of a positive 3-braid: $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$ with $e_p \ge 1$, $e_k \ge 2$ for $p > k \ge 3$, $e_2 \ge 1$, $e_1 \ge 0$, 1 or 2 according to $p \pmod{2}$
- The critical position: smallest (= rightmost) k s.t. e_k does not have the minimal legal value, if it exists, p otherwise.



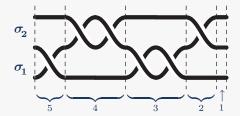
・ロト ・ 日 ・ モ ト ・ モ ト ・ 日 ・ つへぐ

- (Burckel) The alternating normal form of a positive 3-braid:
 - $\sigma_{[p]}^{e_p} \dots \sigma_2^{e_2} \sigma_1^{e_1} \text{ with } e_p \ge 1, e_k \ge 2 \text{ for } p > k \ge 3, e_2 \ge 1, e_1 \ge 0,$ $1 \text{ or } 2 \text{ according to } p \pmod{2}$

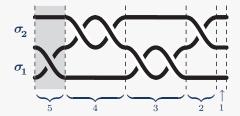
- (Burckel) The alternating normal form of a positive 3-braid: $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$ with $e_p \ge 1$, $e_k \ge 2$ for $p > k \ge 3$, $e_2 \ge 1$, $e_1 \ge 0$, 1 or 2 according to $p \pmod{2}$
- The critical position: smallest (= rightmost) k s.t. e_k does not have the minimal legal value, if it exists, p otherwise.

- (Burckel) The alternating normal form of a positive 3-braid: $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$ with $e_p \ge 1$, $e_k \ge 2$ for $p > k \ge 3$, $e_2 \ge 1$, $e_1 \ge 0$, 1 or 2 according to $p \pmod{2}$
- The critical position: smallest (= rightmost) k s.t. e_k does not have the minimal legal value, if it exists, p otherwise.

- (Burckel) The alternating normal form of a positive 3-braid: $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$ with $e_p \ge 1$, $e_k \ge 2$ for $p > k \ge 3$, $e_2 \ge 1$, $e_1 \ge 0$, 1 or 2 according to $p \pmod{2}$
- The critical position: smallest (= rightmost) k s.t. e_k does not have the minimal legal value, if it exists, p otherwise.



- (Burckel) The alternating normal form of a positive 3-braid: $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$ with $e_p \ge 1$, $e_k \ge 2$ for $p > k \ge 3$, $e_2 \ge 1$, $e_1 \ge 0$, 1 or 2 according to $p \pmod{2}$
- The critical position: smallest (= rightmost) k s.t. e_k does not have the minimal legal value, if it exists, p otherwise.



• The \mathcal{G}_3 -sequence from a positive 3-braid b:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

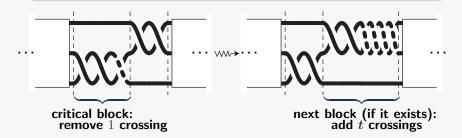
- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of *b*;

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of *b*;
 - At step *t*: remove 1 crossing in the critical block;

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;

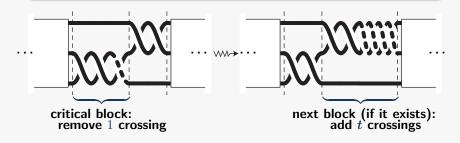
- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of *b*;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



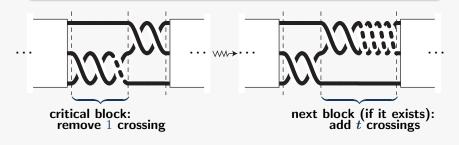
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



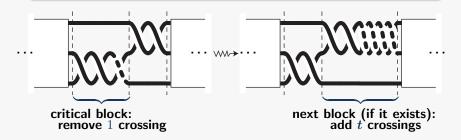
• Example: $\sigma_2^2\sigma_1^2$,

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



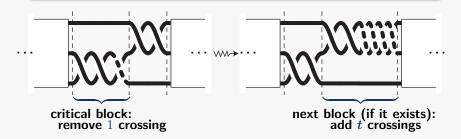
• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$,

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



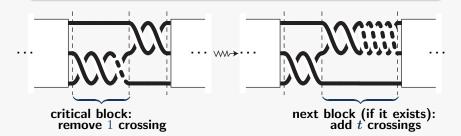
• Example: $\sigma_2^2\sigma_1^2$, $\sigma_2^2\sigma_1$, σ_2^2 ,

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of *b*;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



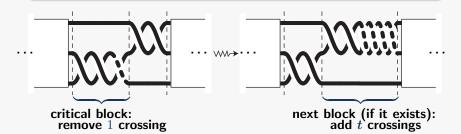
• Example: $\sigma_2^2\sigma_1^2$, $\sigma_2^2\sigma_1$, σ_2^2 , $\sigma_2\sigma_1^3$,

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of *b*;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



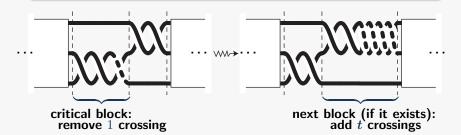
• Example: $\sigma_2^2\sigma_1^2$, $\sigma_2^2\sigma_1$, σ_2^2 , $\sigma_2\sigma_1^3$, $\sigma_2\sigma_1^2$,

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



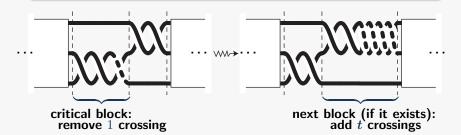
• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$,

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



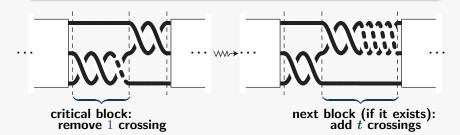
• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 ,

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



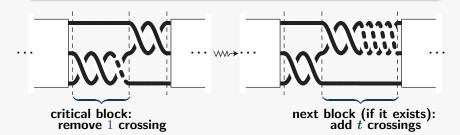
• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 , σ_1^7 ,

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



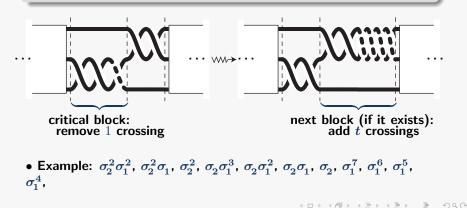
• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 , σ_1^7 , σ_1^6 ,

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.

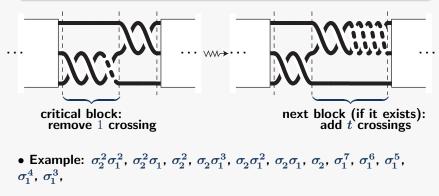


• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 , σ_1^7 , σ_1^6 , σ_1^5 ,

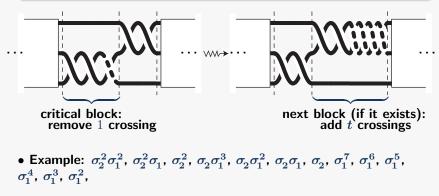
- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.

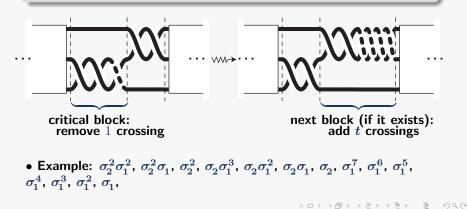


- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.

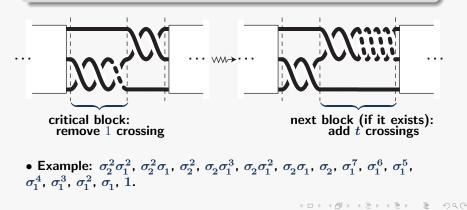


シック・ 川 ・ 山 ・ 山 ・ 小山 ・ ト ・ 山 ・

- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



- The \mathcal{G}_3 -sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step *t*: remove 1 crossing in the critical block; add *t* new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.



An unprovability statement

• More examples:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 9

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,1

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,15

- More examples:

 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159

- More examples:

 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,9

- More examples:

 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,95

- More examples:

 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953

- More examples:

 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,4

- More examples:

 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,47

- More examples:

 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477

- More examples:

 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,6

- More examples:

 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,63

- More examples:

 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps; starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,630 steps...

(日) (日) (日) (日) (日) (日) (日) (日)

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every G_3 -sequence is finite.

(日) (日) (日) (日) (日) (日) (日) (日)

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every \mathcal{G}_{3} -sequence is finite.

Proof: G_3 -sequences are descending sequences in a well-order.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every G_3 -sequence is finite.

Proof: G_3 -sequences are descending sequences in a well-order.

But:

(日) (日) (日) (日) (日) (日) (日) (日)

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every G_3 -sequence is finite.

Proof: G_3 -sequences are descending sequences in a well-order.

But:

• Theorem: Proposition A cannot be proved in $I\Sigma_1$.

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every \mathcal{G}_3 -sequence is finite.

Proof: G_3 -sequences are descending sequences in a well-order.

But:

• Theorem: Proposition A cannot be proved in $I\Sigma_1$.

the subsystem of Peano arithmetic in which induction is restricted to formulas with one ∃ quantifier

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every \mathcal{G}_3 -sequence is finite.

Proof: G_3 -sequences are descending sequences in a well-order.

But:

• Theorem: Proposition A cannot be proved in $I\Sigma_1$.

the subsystem of Peano arithmetic in which induction is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in $I\Sigma_1$.

• Unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:

- Unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
 - assign ordinals to braids, and

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

- Unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

• Definition: For b a 3-braid with normal form $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$, put

- Unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

• Definition: For b a 3-braid with normal form $\sigma^{e_p}_{[p]}...\sigma^{e_2}_2\sigma^{e_1}_1$, put

$$\operatorname{ord}(b) := \omega^{p-1} \cdot e_p + \sum_{p > k \geqslant 1} \omega^{k-1} \cdot (e_k - e_k^{min})$$

- Unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

 \bullet Definition: For b a 3-braid with normal form $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$, put

$$\operatorname{ord}(b) := \omega^{p-1} \cdot e_p + \sum_{p > k \geqslant 1} \omega^{k-1} \cdot (e_k - e_k^{min})$$

where $e_k^{min} = 2$ for $k \ge 3$, $e_2^{min} = 1$, $e_1^{min} = 0$.

- Unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

 \bullet Definition: For b a 3-braid with normal form $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1},$ put

$$\operatorname{ord}(b) := \omega^{p-1} \cdot e_p + \sum_{p > k \geqslant 1} \omega^{k-1} \cdot (e_k - e_k^{min})$$

where $e_k^{min} = 2$ for $k \ge 3$, $e_2^{min} = 1$, $e_1^{min} = 0$.

• Lemma: For every 3-braid b and every number t: $ord(b\{t\}) = ord(b)[t].$

- Unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

 \bullet Definition: For b a 3-braid with normal form $\sigma^{e_p}_{[p]}...\sigma^{e_2}_2\sigma^{e_1}_1$, put

$$\operatorname{ord}(b) := \omega^{p-1} \cdot e_p + \sum_{p > k \ge 1} \omega^{k-1} \cdot (e_k - e_k^{\min})$$

where $e_k^{min} = 2$ for $k \ge 3$, $e_2^{min} = 1$, $e_1^{min} = 0$.

• Lemma: For every 3-braid **b** and every number **t**:

 $\operatorname{ord}(b\{t\}) = \operatorname{ord}(b)[t].$

the braid obtained from b at step t

- Unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

• Definition: For b a 3-braid with normal form $\sigma_{[p]}^{e_p} \dots \sigma_2^{e_2} \sigma_1^{e_1}$, put

$$\operatorname{ord}(b) := \omega^{p-1} \cdot e_p + \sum_{p > k \geqslant 1} \omega^{k-1} \cdot (e_k - e_k^{min})$$

where $e_k^{min} = 2$ for $k \ge 3$, $e_2^{min} = 1$, $e_1^{min} = 0$.

• Lemma: For every 3-braid **b** and every number **t**:

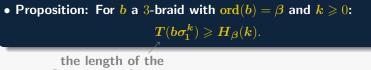
 $\operatorname{ord}(b\{t\}) = \operatorname{ord}(b)[t].$

the braid obtained from b "fundamental sequence" of ordinals: at step t $\lambda[x] := \gamma + \omega^{r-1} \cdot x$ for $\lambda = \gamma + \omega^r$

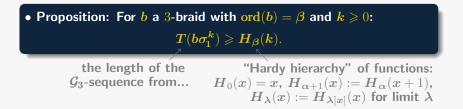
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

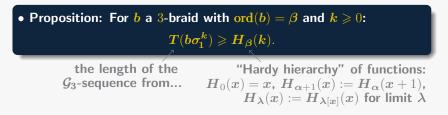
• Proposition: For
$$b$$
 a 3-braid with $ord(b) = \beta$ and $k \ge 0$:
 $T(b\sigma_1^k) \ge H_\beta(k).$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

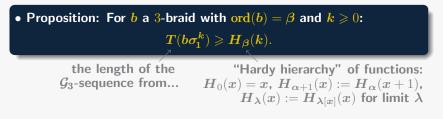


 \mathcal{G}_3 -sequence from...

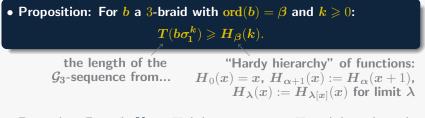




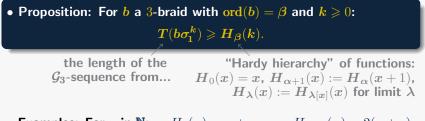
• Examples: For r in \mathbb{N} : $H_r(x) = x + r$,



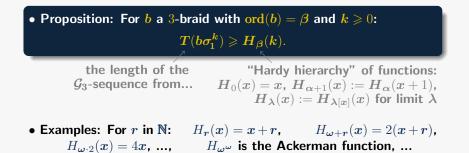
• Examples: For r in \mathbb{N} : $H_r(x) = x + r$, $H_{\omega+r}(x) = 2(x+r)$,



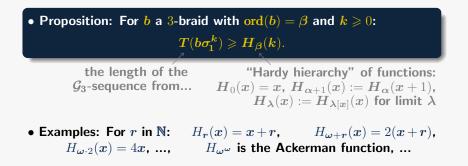
• Examples: For r in \mathbb{N} : $H_r(x) = x + r$, $H_{\omega+r}(x) = 2(x+r)$, $H_{\omega\cdot 2}(x) = 4x$, ...,



• Examples: For r in \mathbb{N} : $H_r(x) = x + r$, $H_{\omega+r}(x) = 2(x+r)$, $H_{\omega \cdot 2}(x) = 4x$, ..., $H_{\omega^{\omega}}$ is the Ackerman function, ...



• Corollary: $T(\sigma_{[k]}\sigma_{[k-1]}^2 \dots \sigma_1^2 \sigma_2 \sigma_1^k) \geqslant H_{\omega^\omega}(k).$



• Corollary:
$$T(\sigma_{[k]}\sigma_{[k-1]}^2 \dots \sigma_1^2 \sigma_2 \sigma_1^k) \geqslant H_{\omega^{\omega}}(k)$$
.

 \rightsquigarrow $I\Sigma_1$ does not prove the totality of the Ackermann function, hence it cannot prove the finiteness of \mathcal{G}_3 -sequences of braids. • So far: \mathcal{G}_3 -sequences = particular descending sequences of braids.

- So far: \mathcal{G}_3 -sequences = particular descending sequences of braids.
- → Now: arbitrary descending sequences of braids.

- So far: G₃-sequences = particular descending sequences of braids.
 → Now: arbitrary descending sequences of braids.
- Standard notion of complexity for a braid: the canonical length.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- So far: G₃-sequences = particular descending sequences of braids.
 → Now: arbitrary descending sequences of braids.
- Standard notion of complexity for a braid: the canonical length. Definition: $||b|| \leq k$ if b is a divisor of Δ_3^k , where $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$.

- So far: G₃-sequences = particular descending sequences of braids.
 → Now: arbitrary descending sequences of braids.
- Standard notion of complexity for a braid: the canonical length. Definition: $||b|| \leq k$ if b is a divisor of Δ_3^k , where $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$.
- Fact: For each k, there exists m s.t. there exists no descending sequence $(b_0, ..., b_m)$ in B_3 satisfying $||b_i|| \leq k$ for each i.

- So far: G₃-sequences = particular descending sequences of braids.
 → Now: arbitrary descending sequences of braids.
- Standard notion of complexity for a braid: the canonical length. Definition: $||b|| \leq k$ if b is a divisor of Δ_3^k , where $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$.

• Fact: For each k, there exists m s.t. there exists no descending sequence $(b_0, ..., b_m)$ in B_3 satisfying $||b_i|| \leq k$ for each i.

Trivial: finitely many braids with bounded complexity.

- So far: G₃-sequences = particular descending sequences of braids.
 → Now: arbitrary descending sequences of braids.
- Standard notion of complexity for a braid: the canonical length. Definition: $||b|| \leq k$ if b is a divisor of Δ_3^k , where $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$.

• Fact: For each k, there exists m s.t. there exists no descending sequence $(b_0, ..., b_m)$ in B_3 satisfying $||b_i|| \leq k$ for each i.

Trivial: finitely many braids with bounded complexity.

• Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle:

- So far: G₃-sequences = particular descending sequences of braids.
 → Now: arbitrary descending sequences of braids.
- Standard notion of complexity for a braid: the canonical length. Definition: $||b|| \leq k$ if b is a divisor of Δ_3^k , where $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$.

• Fact: For each k, there exists m s.t. there exists no descending sequence $(b_0, ..., b_m)$ in B_3 satisfying $||b_i|| \leq k$ for each i.

Trivial: finitely many braids with bounded complexity.

• Definition: For $f: \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: For each k, there exists m s.t. there exists no descending sequence $(b_0, ..., b_m)$ in B_3 satisfying $||b_i|| \leq k + f(i)$ for each i.

- So far: G₃-sequences = particular descending sequences of braids.
 → Now: arbitrary descending sequences of braids.
- Standard notion of complexity for a braid: the canonical length. Definition: $||b|| \leq k$ if b is a divisor of Δ_3^k , where $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$.

• Fact: For each k, there exists m s.t. there exists no descending sequence $(b_0, ..., b_m)$ in B_3 satisfying $||b_i|| \leq k$ for each i.

Trivial: finitely many braids with bounded complexity.

• Definition: For $f: \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: For each k, there exists m s.t. there exists no descending sequence $(b_0, ..., b_m)$ in B_3 satisfying $||b_i|| \leq k + f(i)$ for each i.

 \rightsquigarrow Trivial: *WO*_{constant} is true.

• Proposition: For each f, the principle WO_f is true.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension; - This tree is finitely branching because ∃ finitely many braids with given canonical length;

• Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension; - This tree is finitely branching because ∃ finitely many braids with given canonical length;

- Apply König's lemma.

• Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension;
- This tree is finitely branching because ∃ finitely many braids with given canonical length;

- Apply König's lemma.
- Two easy remarks:
 - $WO_{constant}$ is provable in $I\Sigma_1$

• Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension;
 This tree is finitely branching because ∃ finitely many braids with given canonical length;

- Apply König's lemma.
- Two easy remarks:
 - $WO_{constant}$ is provable in $I\Sigma_1 \leftarrow$ counting argument valid;

• Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension;
- This tree is finitely branching because ∃ finitely many braids with given canonical length;

- Apply König's lemma.
- Two easy remarks:
 - $WO_{constant}$ is provable in $I\Sigma_1 \leftarrow$ counting argument valid;
 - WO_{square} is unprovable in $I\Sigma_1$

• Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension;
 This tree is finitely branching because ∃ finitely many braids with given canonical length;

- Apply König's lemma.
- Two easy remarks:
 - $WO_{constant}$ is provable in $I\Sigma_1 \leftarrow$ counting argument valid;
 - WO_{square} is unprovable in $I\Sigma_1 \leftarrow \mathcal{G}_3$ -sequences would witness.

• Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension;
- This tree is finitely branching because ∃ finitely many braids with given canonical length;

- Apply König's lemma.
- Two easy remarks:
 - $WO_{constant}$ is provable in $I\Sigma_1 \leftarrow$ counting argument valid;
 - WO_{square} is unprovable in $I\Sigma_1 \leftarrow \mathcal{G}_3$ -sequences would witness.
- \rightsquigarrow Question: Where is the transition between $I\Sigma_1$ -provability and $I\Sigma_1$ -unprovability?

• Notation: - Ack_{ω} for the Ackermann function;

- Notation: Ack_{ω} for the Ackermann function;
 - Ack_r for the *r*th approximation to Ack_ω ;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Notation: Ack_{ω} for the Ackermann function;
 - Ack_r for the *r*th approximation to Ack_ω ;
 - Ack^{-1} for the functional inverse of Ack:

 $Ack^{-1}(n) = p$ if $Ack(p) \leq n < Ack(p+1)$;

- Notation: Ack_{ω} for the Ackermann function;
 - Ack_r for the *r*th approximation to Ack_ω ;
 - Ack^{-1} for the functional inverse of Ack:

 $Ack^{-1}(n) = p$ if $Ack(p) \leqslant n < Ack(p+1)$;

↔ a very slow growing function

- Notation: Ack_{ω} for the Ackermann function;
 - Ack_r for the *r*th approximation to Ack_ω ;
 - Ack^{-1} for the functional inverse of Ack:

$$Ack^{-1}(n) = p$$
 if $Ack(p) \leqslant n < Ack(p+1)$;

(日) (日) (日) (日) (日) (日) (日) (日)

• Theorem: For $r \leqslant \omega$ put $f_r(x) := \lfloor Ack_r^{-1}(x) / x \rfloor$. Then:

- Notation: Ack_{ω} for the Ackermann function;
 - Ack_r for the *r*th approximation to Ack_ω ;
 - Ack^{-1} for the functional inverse of Ack:

$$Ack^{-1}(n) = p$$
 if $Ack(p) \leqslant n < Ack(p+1)$;

• Theorem: For $r \leqslant \omega$ put $f_r(x) := \lfloor Ack_r^{-1}(x) \\ \overline{x} \rfloor$. Then: (i) WO_{f_r} is provable from $I\Sigma_1$ for each finite r.

- Notation: Ack_{ω} for the Ackermann function;
 - Ack_r for the *r*th approximation to Ack_ω ;
 - Ack^{-1} for the functional inverse of Ack:

$$Ack^{-1}(n) = p$$
 if $Ack(p) \leqslant n < Ack(p+1)$;

• Theorem: For $r \leq \omega$ put $f_r(x) := \lfloor Ack_r^{-1}(x) \\ \hline x \rfloor$. Then: (i) WO_{f_r} is provable from $I\Sigma_1$ for each finite r. (ii) $WO_{f_{\omega}}$ is not provable from $I\Sigma_1$.

- Notation: Ack_{ω} for the Ackermann function;
 - Ack_r for the *r*th approximation to Ack_ω ;
 - Ack^{-1} for the functional inverse of Ack:

$$Ack^{-1}(n) = p$$
 if $Ack(p) \leqslant n < Ack(p+1)$;

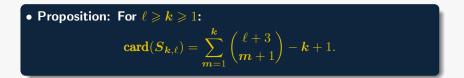
(日) (日) (日) (日) (日) (日) (日) (日)

• Theorem: For $r \leq \omega$ put $f_r(x) := \lfloor Ack_r^{-1}(x) \sqrt{x} \rfloor$. Then: (i) WO_{f_r} is provable from $I\Sigma_1$ for each finite r. (ii) $WO_{f_{\omega}}$ is not provable from $I\Sigma_1$.

• Key point: Fine counting arguments in B_3 , namely evaluating $\operatorname{card}\{b \in B_3 \mid \|b\| \leq \ell \& b < \Delta_3^k\}.$ • Let $S_{k,\ell} := \{b \in B_3 \mid \|b\| \leqslant \ell \ \& \ b < \Delta_3^k\}.$

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● � ●

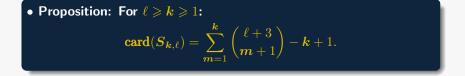
• Let $S_{k,\ell} := \{b \in B_3 \mid \|b\| \leqslant \ell \ \& \ b < \Delta_3^k\}.$



 \square

(日) (日) (日) (日) (日) (日) (日) (日)

• Let $S_{k,\ell} := \{b \in B_3 \mid \|b\| \leqslant \ell \ \& \ b < \Delta_3^k\}.$



- Proof: Explicitly construct the <-increasing enumeration of $\{b \mid \|b\| \leq \ell\}$ by means of a Pascal triangle.

 \square

• Let $S_{k,\ell} := \{ b \in B_3 \mid \|b\| \leqslant \ell \ \& \ b < \Delta_3^k \}.$

• Proposition: For $\ell \ge k \ge 1$: $\operatorname{card}(S_{k,\ell}) = \sum_{m=1}^{k} {\ell+3 \choose m+1} - k + 1.$

- Proof: Explicitly construct the <-increasing enumeration of $\{b \mid \|b\| \leq \ell\}$ by means of a Pascal triangle.

• Corollary: - $\operatorname{card}(S_{k,\ell}) \leq (\ell+3)^{k+2}$ for $\ell \geq k \geq 1$.

 \square

(日) (日) (日) (日) (日) (日) (日) (日)

• Let $S_{k,\ell} := \{b \in B_3 \mid \|b\| \leqslant \ell \ \& \ b < \Delta_3^k\}.$

• Proposition: For $\ell \ge k \ge 1$: $\operatorname{card}(S_{k,\ell}) = \sum_{m=1}^{k} {\ell+3 \choose m+1} - k + 1.$

- Proof: Explicitly construct the <-increasing enumeration of $\{b \mid \|b\| \leq \ell\}$ by means of a Pascal triangle.

• Corollary: $-\operatorname{card}(S_{k,\ell}) \leq (\ell+3)^{k+2}$ for $\ell \geq k \geq 1$. $-\operatorname{card}(S_{k,\ell}) \geq \ell^{k+1}/2(k+1)!$ for $k \geq 1$ and $\ell \gg 1$. • Extension to n-braids: Two solutions developed so far:

- Extension to *n*-braids: Two solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of *n*-braids;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Extension to *n*-braids: Two solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of *n*-braids;
 - Use an inductive definition based on the flip splitting of *n*-braids:

- Extension to *n*-braids: Two solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of *n*-braids;
 - Use an inductive definition based on the flip splitting of n-braids:

• Proposition: Every braid in B_n^+ admits a unique decomposition $b = \phi_n^{p-1} b_p \cdot \ldots \cdot \phi_n^2 b_3 \cdot \phi_n b_2 \cdot b_1$ with b_p, \ldots, b_1 in B_{n-1}^+

- Extension to *n*-braids: Two solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of *n*-braids;
 - Use an inductive definition based on the flip splitting of *n*-braids:

• Proposition: Every braid in B_n^+ admits a unique decomposition $b = \phi_n^{p-1} b_p \cdot \ldots \cdot \phi_n^2 b_3 \cdot \phi_n b_2 \cdot b_1$ with b_p, \ldots, b_1 in B_{n-1}^+ and, for each k, the only σ_k that is a right divisor of $\phi_n^{p-k} b_p \cdot \ldots \cdot \phi_n b_{k+1} \cdot b_k$ is σ_1 .

- Extension to *n*-braids: Two solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of *n*-braids;
 - Use an inductive definition based on the flip splitting of *n*-braids:

• Proposition: Every braid in B_n^+ admits a unique decomposition $b = \phi_n^{p-1} b_p \cdot \ldots \cdot \phi_n^2 b_3 \cdot \phi_n b_2 \cdot b_1$ with b_p, \ldots, b_1 in B_{n-1}^+ and, for each k, the only σ_k that is a right divisor of $\phi_n^{p-k} b_p \cdot \ldots \cdot \phi_n b_{k+1} \cdot b_k$ is σ_1 .

the flip automorphism of B_n^+ that maps σ_i to σ_{n-i} for each i

- Extension to *n*-braids: Two solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of *n*-braids;
 - Use an inductive definition based on the flip splitting of *n*-braids:

• Proposition: Every braid in B_n^+ admits a unique decomposition $b = \phi_n^{p-1} b_p \cdot \ldots \cdot \phi_n^2 b_3 \cdot \phi_n b_2 \cdot b_1$ with b_p, \ldots, b_1 in B_{n-1}^+ and, for each k, the only σ_k that is a right divisor of $\phi_n^{p-k} b_p \cdot \ldots \cdot \phi_n b_{k+1} \cdot b_k$ is σ_1 .

the flip automorphism of B_n^+ that maps σ_i to σ_{n-i} for each i

• Main point: The order on *n*-braids is a ShortLex-extension of the order on (n-1)-braids.

- Extension to *n*-braids: Two solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of *n*-braids;
 - Use an inductive definition based on the flip splitting of *n*-braids:

• Proposition: Every braid in B_n^+ admits a unique decomposition $b = \phi_n^{p-1} b_p \cdot \ldots \cdot \phi_n^2 b_3 \cdot \phi_n b_2 \cdot b_1$ with b_p, \ldots, b_1 in B_{n-1}^+ and, for each k, the only σ_k that is a right divisor of $\phi_n^{p-k} b_p \cdot \ldots \cdot \phi_n b_{k+1} \cdot b_k$ is σ_1 .

the flip automorphism of B_n^+ that maps σ_i to σ_{n-i} for each i

- Main point: The order on *n*-braids is a ShortLex-extension of the order on (n-1)-braids.
 - \rightsquigarrow A notion of \mathcal{G}_{∞} -sequence similar to \mathcal{G}_3 -sequence, but involving arbitrary braids instead of 3-braids.

• Proposition B: Every \mathcal{G}_{∞} -sequence is finite.

• Proposition B: Every \mathcal{G}_{∞} -sequence is finite.

- Proof: \mathcal{G}_{∞} -sequences are descending in a well-order.

• Proposition B: Every \mathcal{G}_{∞} -sequence is finite.

- Proof: \mathcal{G}_{∞} -sequences are descending in a well-order.

But:

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Now:

• Proposition B: Every \mathcal{G}_{∞} -sequence is finite.

- Proof: \mathcal{G}_{∞} -sequences are descending in a well-order.

But:

• Theorem: Proposition B cannot be proved in $I\Sigma_2$.

Now:

• Proposition B: Every \mathcal{G}_{∞} -sequence is finite.

- Proof: \mathcal{G}_{∞} -sequences are descending in a well-order.

But:

• Theorem: Proposition B cannot be proved in $I\Sigma_2$.

the subsystem of Peano arithmetic in which induction is restricted to formulas with two ∃∀ quantifiers

• Proposition B: Every \mathcal{G}_{∞} -sequence is finite.

- Proof: \mathcal{G}_{∞} -sequences are descending in a well-order.

But:

• Theorem: Proposition B cannot be proved in $I\Sigma_2$.

the subsystem of Peano arithmetic in which induction is restricted to formulas with two $\exists \forall$ quantifiers

- Proof: Compare the length function of \mathcal{G}_{∞} -sequences with the Hardy function $H_{\omega^{\omega^{\omega}}}$, whose totality cannot be proved in $I\Sigma_2$.

• Proposition B: Every \mathcal{G}_{∞} -sequence is finite.

- Proof: \mathcal{G}_{∞} -sequences are descending in a well-order.

But:

• Theorem: Proposition B cannot be proved in $I\Sigma_2$.

the subsystem of Peano arithmetic in which induction is restricted to formulas with two $\exists \forall$ quantifiers

- Proof: Compare the length function of \mathcal{G}_{∞} -sequences with the Hardy function $H_{\omega^{\omega^{\omega}}}$, whose totality cannot be proved in $I\Sigma_2$.

P. Dehornoy,

Alternating normal forms for braids and locally Garside monoids math.GR/0702592.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

P. Dehornoy,

Alternating normal forms for braids and locally Garside monoids math.GR/0702592.

P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Why are braids orderable? Panoramas & Synthèses vol. 14, Soc. Math. France (2002).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

P. Dehornoy,

Alternating normal forms for braids and locally Garside monoids math.GR/0702592.

P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Why are braids orderable? Panoramas & Synthèses vol. 14, Soc. Math. France (2002).

http://www.math.unicaen.fr/~dehornoy

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>