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Braids

e A 4-strand = 2D-projection of a 3D-figure:
T
XN
° = move the strands but keep the ends fixed:
o -
e a := an isotopy class ~~» represented by 2D-diagram,

but different 2D-diagrams may give rise to the same braid.
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Braid groups

e Product of two braids:

.*. - “

e Then well-defined (w.r.t. isotopy), associative, admits a unit:

—— B

isotopic to

and inverses:

=

~» For each n, the group B,, of n strand braids (E.Artin, ~1925).
[m] [ = =

N/
because M = .
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e Definition: For z, y in B, say that holds if, among all
words representing =~ 'y, at least one is such that the generator o;

with highest index appears positively only (o; occurs, o-i_1 does not).

=1l =il
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e Theorem: (i) The relation < is a left-invariant total order on B..;
(ii) (Laver) The restriction of < to BZ_ is a well-order;

(iii) (Burckel) The restriction of < to B, has length W
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e The from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block;

add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

critical block: next block (lf it exists):
remove 1 crossing add t crossings
. 5252 42 2 3 2 7 6 _5
e Example: 0,05, 050, Oy, 0,07, 0,0, 0,0, Oy, 0y, 07, 07,

4 _3 _2
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e More examples:

- starting with o, 0,0, requires 30 steps;

- starting with 02020 requires steps...

Nevertheless:

e Proposition A: Every Gs-sequence is finite.

Proof: G3-sequences are descending sequences in a well-order. [

But:

e Theorem: Proposition A cannot be proved in 73;.

: T - :
the subsystem of Peano arithmetic in which induction
is restricted to formulas with one 3 quantifier

in contrast with the folklore result:

e All usual (algebraic) properties of braids can be proved in I3;.
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Proof of unprovability

e Unprovability of the finiteness of G3-sequences in I3;:
- assign ordinals to braids, and
- compare with fundamental sequences and the Hardy hierarchy.

e Definition: For b a 3-braid with normal form a'[;’]’...0'2620'f1, put

(b) o= wP—l -ep + E wk—l . (ek _ ezm’,n)
p>k>1
where €' =2 for k > 3, eJ''" = 1, e/"" = (.

e Lemma: For every 3-braid b and every number t:

ord(b{t}) = ord(b)[t].

the braid obtained from b “fundamental sequence” of ordinals:
at step ¢ Az] =y +w™ .z for A\ =~ +w"
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Unprovability of termination (end)

e Proposition: For b a 3-braid with ord(b) = 3 and k > 0:

T(bof) > Hp(k).

the length of the “Hardy hierarchy” of functions:

Gs-sequence from... Hy(z)=x, Hy 1(z) = Hy(xz + 1),

H,\(IIZ) o= HA“J(’I) for limit A

e Examples: Forr inN:  H,.(x)=x+r, Hyir(x) =2(x+7),
H,.o(x) = 4z, ..., H,,. is the Ackerman function, ...

~+» I3, does not prove the totality of the Ackermann function,
hence it cannot prove the finiteness of G3-sequences of braids.
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e So far: Gs-sequences = particular descending sequences of braids.
~+» Now: arbitrary descending sequences of braids.

e Standard notion of complexity for a braid: the canonical length.

Definition: |b| < k if b is a divisor of A%, where Az = 0,0,0;.
e Fact: For each k, there exists m s.t. there exists no descending
sequence (b, ..., b,,) in Bj satisfying |b;| < k for each 1.

Trivial: finitely many braids with bounded complexity. O

o Definition: For f : N — N, let WO ; be the combinatorial principle:
For each k, there exists m s.t. there exists no descending sequence
(bo, ...,bm) in Bg satisfying |b;| < k + f() for each 1.

~»  Trivial: WO, ., stant 1S true.
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Phase transition

o Proposition: For each f, the principle WOy is true.

Proof: - Build a tree of descending sequences ordered by extension;
- This tree is finitely branching because 7 finitely many braids

with given canonical length;

- Apply Konig’s lemma. O

e Two easy remarks:
- WO onstant is provable in I¥; < counting argument valid;
- WO quare is unprovable in I3, < Gs-sequences would witness.

~+ Question: Where is the transition between I3-provability
and IX;-unprovability?
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Phase transition (continued)

o Notation: - for the Ackermann function;
- for the rth approximation to Ack,;
- for the functional inverse of Ack:
Ack™'(n) =p if Ack(p) <n < Ack(p+1);
~» a very slow growing function

e Theorem: For r < w put f,.(z) := |[** @/x|. Then:

(i) WOy, is provable from I3, for each finite 7.
(ii) WOy is not provable from I3;.

e Key point: Fine counting arguments in B3, namely evaluating
card{b€ B3 | |b| <£ & b< A%}
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Braid counting

olet S, :={beBs||b] <L & b< Ak},

e Proposition: For ( > k > 1:

card(Sp,¢)

- Proof: Explicitly construct the <-increasing enumeration
of {b||b| < ¢} by means of a Pascal triangle. [

e Corollary: - card (S, ;) < (/ +3)T2 for / > k > 1.

- card(Sy ) = (k1 /2(k+1)! for k > 1 and /> 1.
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- Use an inductive definition based on the of n-braids:
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with b,.....b; in B, and, for each k, the only o, that is a right

divisor of ¢2 Fb,, - ... ¢, bri1 - by is 0.

]

the flip automorphlsm of B}
that maps o to g, _, for each i

e Main point: The order on n-braids is a -extension of
the order on (n — 1)-braids.

~» A notion of similar to G3-sequence,
but involving arbitrary braids instead of 3-braids.
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