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joint work with A.Weiermann, L.Carlucci, A.Bovykin

• Aim: Describe combinatorial statements involving braids
that are unprovable in weak subsystems of Peano arithmetic

contrary to all usual algebraic and combinatorial properties.

• Interest: - Involves mainstream objects
and (hopefully) natural properties;

- Leads to new questions and results about braids,
in particular: a new normal form.

• Plan: - 1. Braids and their ordering
- 2. Long sequences in B3

- 3. Phase transition in B3

- 4. Long sequences in Bn
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Braids

• A 4-strand braid diagram

= 2D-projection of a 3D-figure:

←

• isotopy = move the strands but keep the ends fixed:

isotopic to

• a braid := an isotopy class          represented by 2D-diagram,
but different 2D-diagrams may give rise to the same braid.
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• Product of two braids:

∗ :=

• Then well-defined (w.r.t. isotopy), associative, admits a unit:
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         For each n, the group Bn of n strand braids (E.Artin, ∼1925).
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Artin presentation of Bn

• Artin generators of Bn:

= ∗ ∗ ∗

σ1 σ2 σ3 σ−1
1

• Theorem (Artin): The group Bn is generated by σ1, ...,σn−1,

subject to

{
σiσjσi = σjσiσj for |i− j| = 1,
σiσj = σjσi for |i− j| > 2.

≈

σ1 σ2 σ1 σ2 σ1 σ2

≈

σ1 σ3 σ3 σ1
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The standard braid order

• Definition: For x, y in B∞, say that x < y holds if, among all
words representing x−1y, at least one is such that the generator σi

with highest index appears positively only (σi occurs, σ−1
i does not).

         e.g., σ2 < σ2σ1 holds, because σ−1
2 σ1σ2 = σ1σ2σ−1

1 ,
and, in the latter word, σ2 appears positively only.

• Theorem: (i) The relation < is a left-invariant total order on B∞;
(ii) (Laver) The restriction of < to B+

∞ is a well-order;

(iii) (Burckel) The restriction of < to B+

n has length ωωn−2
.
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Long sequences of braids

• Construct (very) long descending sequences of braids
using a simple inductive rule.

         Reminiscent of Goodstein’s sequences and Hydra battles:
“battle against a malevolent braid”: get rid of all crossings;

at step t, chop off 1 crossing,
but t new crossings reappear in general.

• Here in the 3 strand version—but exists for each n.
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Critical position

• (Burckel) The alternating normal form of a positive 3-braid:

σ
ep

[p] ...σ
e2
2 σe1

1 with ep > 1, ek > 2 for p > k > 3, e2 > 1, e1 > 0,
↖

1 or 2 according to p (mod 2)

• The critical position: smallest (= rightmost) k s.t. ek does not
have the minimal legal value, if it exists, p otherwise.

σ1

σ2

︸ ︷︷ ︸
4

︸ ︷︷ ︸
3

︸︷︷︸
2

↑
1
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G3G3G3-sequences

• The G3G3G3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block;

add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

︸ ︷︷ ︸
remove 1 crossing

critical block:
︸ ︷︷ ︸
add t crossings

next block (if it exists):

. . . . . . . . . . . .

• Example: σ2
2 σ2

1 , σ2
2 σ1, σ2

2 , σ2σ3
1 , σ2σ2

1 , σ2σ1, σ2, σ7
1 , σ6

1 , σ5
1 ,

σ4
1 , σ3

1 , σ2
1 , σ1, 1.
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- At step t: remove 1 crossing in the critical block;

add t new crossings in the next block, if it exists;
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- Start with the alternating normal form of b;
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- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block;
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G3G3G3-sequences

• The G3G3G3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block;

add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.
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1 , σ2
1 , σ1, 1.



An unprovability statement

• More examples:

- starting with σ1σ2σ1 requires 30 steps;
- starting with σ2

1 σ2
2 σ2

1 requires 90,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.

Proof: G3G3G3-sequences are descending sequences in a well-order. �

But:

• Theorem: Proposition A cannot be proved in IΣ1.

↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.
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An unprovability statement

• More examples:
- starting with σ1σ2σ1 requires 30 steps;
- starting with σ2

1 σ2
2 σ2

1 requires 9

0,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.

Proof: G3G3G3-sequences are descending sequences in a well-order. �

But:

• Theorem: Proposition A cannot be proved in IΣ1.

↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.
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An unprovability statement

• More examples:
- starting with σ1σ2σ1 requires 30 steps;
- starting with σ2

1 σ2
2 σ2

1 requires 90,1

59,953,477,630 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.

Proof: G3G3G3-sequences are descending sequences in a well-order. �

But:

• Theorem: Proposition A cannot be proved in IΣ1.

↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.



An unprovability statement

• More examples:
- starting with σ1σ2σ1 requires 30 steps;
- starting with σ2

1 σ2
2 σ2

1 requires 90,15

9,953,477,630 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.

Proof: G3G3G3-sequences are descending sequences in a well-order. �

But:

• Theorem: Proposition A cannot be proved in IΣ1.

↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.
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An unprovability statement

• More examples:
- starting with σ1σ2σ1 requires 30 steps;
- starting with σ2

1 σ2
2 σ2

1 requires 90,159,9

53,477,630 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.

Proof: G3G3G3-sequences are descending sequences in a well-order. �

But:

• Theorem: Proposition A cannot be proved in IΣ1.

↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.



An unprovability statement

• More examples:
- starting with σ1σ2σ1 requires 30 steps;
- starting with σ2

1 σ2
2 σ2

1 requires 90,159,95

3,477,630 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.

Proof: G3G3G3-sequences are descending sequences in a well-order. �

But:

• Theorem: Proposition A cannot be proved in IΣ1.

↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.
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But:
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↑
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in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.



An unprovability statement

• More examples:
- starting with σ1σ2σ1 requires 30 steps;
- starting with σ2

1 σ2
2 σ2

1 requires 90,159,953,4

77,630 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.

Proof: G3G3G3-sequences are descending sequences in a well-order. �

But:

• Theorem: Proposition A cannot be proved in IΣ1.

↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.



An unprovability statement

• More examples:
- starting with σ1σ2σ1 requires 30 steps;
- starting with σ2

1 σ2
2 σ2

1 requires 90,159,953,47

7,630 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.

Proof: G3G3G3-sequences are descending sequences in a well-order. �

But:

• Theorem: Proposition A cannot be proved in IΣ1.

↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.
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,630 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.
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But:
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↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.



An unprovability statement

• More examples:
- starting with σ1σ2σ1 requires 30 steps;
- starting with σ2

1 σ2
2 σ2

1 requires 90,159,953,477,6

30 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.

Proof: G3G3G3-sequences are descending sequences in a well-order. �

But:

• Theorem: Proposition A cannot be proved in IΣ1.

↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.



An unprovability statement

• More examples:
- starting with σ1σ2σ1 requires 30 steps;
- starting with σ2

1 σ2
2 σ2

1 requires 90,159,953,477,63

0 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.

Proof: G3G3G3-sequences are descending sequences in a well-order. �

But:

• Theorem: Proposition A cannot be proved in IΣ1.

↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with one ∃ quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in IΣ1.
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- starting with σ2

1 σ2
2 σ2

1 requires 90,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every G3G3G3-sequence is finite.
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Proof of unprovability

• Unprovability of the finiteness of G3G3G3-sequences in IΣ1:

- assign ordinals to braids, and
- compare with fundamental sequences and the Hardy hierarchy.

• Definition: For b a 3-braid with normal form σ
ep

[p] ...σ
e2
2 σe1

1 , put

ordordord(b) := ωp−1 · ep +
∑

p>k>1

ωk−1 · (ek − emin
k )

where emin
k = 2 for k > 3, emin

2 = 1, emin
1 = 0.

• Lemma: For every 3-braid b and every number t:

ordordord(b{t}) = ordordord(b)[t].
↗

the braid obtained from b
at step t

↖
“fundamental sequence” of ordinals:
λ[x] := γ + ωr−1 · x for λ = γ + ωr
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         IΣ1 does not prove the totality of the Ackermann function,
hence it cannot prove the finiteness of G3G3G3-sequences of braids.
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The combinatorial principle WOf

• So far: G3G3G3-sequences = particular descending sequences of braids.

         Now: arbitrary descending sequences of braids.

• Standard notion of complexity for a braid: the canonical length.

Definition: ||b|| 6 k if b is a divisor of ∆k
3, where ∆3 = σ1σ2σ1.

• Fact: For each k, there exists m s.t. there exists no descending
sequence (b0, ..., bm) in B3 satisfying ||bi|| 6 k for each i.

Trivial: finitely many braids with bounded complexity. �

• Definition: For f : NNN→ NNN, let WOf be the combinatorial principle:
For each k, there exists m s.t. there exists no descending sequence
(b0, ..., bm) in B3 satisfying ||bi|| 6 k + f(i) for each i.

         Trivial: WOconstant is true.
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Phase transition

• Proposition: For each f , the principle WOf is true.

Proof: - Build a tree of descending sequences ordered by extension;
- This tree is finitely branching because ∃ finitely many braids

with given canonical length;
- Apply König’s lemma. �

• Two easy remarks:
- WOconstant is provable in IΣ1 ← counting argument valid;
- WOsquare is unprovable in IΣ1 ← G3G3G3-sequences would witness.

         Question: Where is the transition between IΣ1-provability
and IΣ1-unprovability?
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Phase transition (continued)

• Notation: - Ackω for the Ackermann function;

- Ackr for the rth approximation to Ackω;
- Ack−1 for the functional inverse of Ack:

Ack−1(n) = p if Ack(p) 6 n < Ack(p + 1);
         a very slow growing function

• Theorem: For r 6 ω put fr(x) := bAck
−1
r (x)
√

xc. Then:

(i) WOfr
is provable from IΣ1 for each finite r.

(ii) WOfω
is not provable from IΣ1.

• Key point: Fine counting arguments in B3, namely evaluating

cardcardcard{b ∈ B3 | ||b|| 6 ` & b < ∆k
3}.
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• Theorem: For r 6 ω put fr(x) := bAck
−1
r (x)
√

xc. Then:

(i) WOfr
is provable from IΣ1 for each finite r.

(ii) WOfω
is not provable from IΣ1.

• Key point: Fine counting arguments in B3, namely evaluating

cardcardcard{b ∈ B3 | ||b|| 6 ` & b < ∆k
3}.
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Braid counting

• Let Sk,` := {b ∈ B3 | ||b|| 6 ` & b < ∆k
3}.

• Proposition: For ` > k > 1:

cardcardcard(Sk,`) =
k∑

m=1

(
` + 3
m + 1

)
− k + 1.

- Proof: Explicitly construct the <-increasing enumeration
of {b | ||b|| 6 `} by means of a Pascal triangle. �

• Corollary: - cardcardcard(Sk,`) 6 (` + 3)k+2 for ` > k > 1.
- cardcardcard(Sk,`) > `k+1/2(k + 1)! for k > 1 and `� 1.
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Arbitrary braid index

• Extension to n-braids: Two solutions developed so far:

- (Bovykin–Carlucci) Use the Burckel normal form of n-braids;
- Use an inductive definition based on the flip splitting of n-braids:

• Proposition: Every braid in B+

n admits a unique decomposition

b = φp−1
n bp · ... · φ2

nb3 · φnb2 · b1

with bp, ..., b1 in B+

n−1and, for each k, the only σk that is a right

divisor of φp−k
n bp · ... · φnbk+1 · bk is σ1.

↑
the flip automorphism of B+

n
that maps σi to σn−i for each i

• Main point: The order on n-braids is a ShortLex-extension of
the order on (n− 1)-braids.

         A notion of G∞G∞G∞-sequence similar to G3G3G3-sequence,
but involving arbitrary braids instead of 3-braids.
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Another unprovability result

Now:

• Proposition B: Every G∞G∞G∞-sequence is finite.

- Proof: G∞G∞G∞-sequences are descending in a well-order. �

But:

• Theorem: Proposition B cannot be proved in IΣ2.

↑
the subsystem of Peano arithmetic in which induction

is restricted to formulas with two ∃∀ quantifiers

- Proof: Compare the length function of G∞G∞G∞-sequences with the
Hardy function Hωωω , whose totality cannot be proved in IΣ2. �
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