

Dual presentation of Thompson's group ${\cal F}$ and flip distance between triangulations

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

• Main theme: Algebraic and combinatorial properties of F

- An alternative—more natural?—presentation of *F* that gives a lattice ("pre-Garside") structure;
- A connection with the rotation distance between finite trees and the flip distance between triangulations of a polygon.

Plan :

 1. F as the geometry group of associativity (as in Thompson–McKenzie, cf. Matt Brin's course 1)

- 2. The lattice structure of **F**
- 3. Associahedra and flip distance
- 4. Proving lower bounds for the distance in F

1. *F* as the geometry group of associativity

- Starting idea: Associate with every algebraic law a certain monoid that captures its geometry—here: associativity $(\mathcal{A}) x(yz) = (xy)z$.
- What means applying A to a term (= bracketted expression)?

→ Depends on the position and the orientation.

- Def.: A_{α} := (partial) operator "apply A at α in the \rightarrow direction";
- $\mathcal{G}_{\mathcal{A}}$ ("geometry monoid of \mathcal{A} ") := monoid generated by all $A_{\alpha}^{\pm 1}$.

Fact: Two terms T, T' are \mathcal{A} -equivalent iff some element of $\mathcal{G}_{\mathcal{A}}$ maps T to T'. • The monoid $\mathcal{G}_{\mathcal{A}}$ is not a group $(A_{\alpha}A_{\alpha}^{-1} \neq \mathrm{id})$, but almost:

Proposition: The monoid $\mathcal{G}_{\mathcal{A}}/\approx$ is a group, isomorphic to F.

to agree on at least one term

→ "F is the geometry group of associativity"

• Every element of $\mathcal{G}_{\mathcal{A}}$ consists of the instances of a pair of terms \simeq a pair of binary trees (as variables are not permuted):

$$egin{aligned} &A_{\emptyset} &\leftrightarrow \left(egin{aligned} &\Lambda_{0} & \Lambda_{1} & \Lambda_{2} \ & v_{1}(v_{2}v_{3}), \ (v_{1}v_{2})v_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} & \Lambda_{0} \ & \lambda_{1} & \Lambda_{1} \ & \lambda_{2} \ & \lambda_{3} \ & \lambda_{1} \ & \lambda_{2} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} & \Lambda_{0} \ & \Lambda_{1} \ & \lambda_{2} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} & \Lambda_{0} \ & \Lambda_{1} \ & \lambda_{2} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} & \Lambda_{1} \ & \lambda_{2} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} & \Lambda_{1} \ & \lambda_{2} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} & \Lambda_{1} \ & \lambda_{2} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} & \Lambda_{1} \ & \lambda_{3} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} & \Lambda_{2} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} & \Lambda_{2} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} & \Lambda_{2} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} & \Lambda_{2} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{1} \ & \Lambda_{2} \ & \lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{2} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{2} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{2} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{2} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{2} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\leftrightarrow \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} & \Lambda_{3} \ & \Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\to \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\to \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} &\to \left(egin{aligned} &\Lambda_{3} \ & \Lambda_{3} \ & \Lambda_{3} \ & \Lambda_{3} \ \end{pmatrix} & \Lambda_{3} \ & \Lambda_{3} \$$

- Under the previous correspondence: $x_n \nleftrightarrow A_{11\dots 1}$, n times 1.
- A (redundant) family of generators for F: all A_{α} 's.

a binary address = a finite sequence of 0's and 1's

• Example:
$$A_0$$
 ("associativity at 0") = $\left(\bigwedge$, \bigwedge $\right) = x_0^{-1}x_1^{-1}x_0^2$.

 \rightsquigarrow a new presentation of F + a new submonoid F^{+*} that includes F^+ .

submonoid of F generated by all A_{α} submonoid of F generated by all x_i

- Reminiscent of the Birman–Ko–Lee generators of B_n and the dual braid monoids \rightarrow the "dual Thompson monoid".
- Claim: The monoid F^{+*} is a very natural object, and it has good properties, more symmetric than those of F^+ .

- Relations connecting the A_{lpha} 's? Find common multiples in F^{+*} .
- Commutation and twisted commutation relations:

• MacLane–Stasheff pentagon relations:

Proposition: The previous relations (commutation + pentagon) make a presentation of F—and of F^{+*} —in terms of the A_{α} 's.

 Other laws:
 Associativity + commutativity: in addition to A_α, define C_α:= "apply commutativity at α":
 → Thompson's group V, presented by pentagon + hexagon rel's.

• Other laws: Self-distributivity x(yz) = (xy)(xz): define Σ_{α} := "apply self-distributivity at α ": \Rightarrow Group $\mathcal{G}_{\mathcal{LD}}$ —"Thompson's group for \mathcal{LD} "—presented by ...

• The heptagon relation of self-distributivity:

• Put $\sigma_i := \Sigma_{11\dots 1}$, n times 1. The heptagon becomes $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \cdot \Sigma_{1^{i_0}}$:

→ The group $\mathcal{G}_{\mathcal{LD}}$ is an extension of Artin's braid group B_{∞} .

Theorem: The group F is a group of (left and right) fractions for F^{+*} ; the latter admits (left and right) lcm's and gcd's.

least common multiples / greatest common divisors

Corollary: The relation $a^{-1}b \in F^{+*}$ defines a lattice ordering on F.

- Fact: For each pair of generators A_{α}, A_{β} , the presentation contains exactly one relation of the form $A_{\alpha}... = A_{\beta}...$
- Can one deduce anything?

(typically that $A_{lpha}...=A_{eta}...$ is an lcm of A_{lpha} and A_{eta})

• In general: no; but yes, if some specific syntactic condition holds.

- Associate with every word in the letters $A_{\alpha}^{\pm 1}$ a stair by concatenating arrows $A_{\alpha} \mapsto \underline{A_{\alpha}}$, $A_{\alpha}^{-1} \mapsto A_{\alpha}$.
- \bullet Close the \ulcorner patterns until an \lrcorner square is obtained using

$$A_{\alpha} \xrightarrow{A_{\beta}} \mapsto A_{\alpha} \xrightarrow{u} \underbrace{u}_{v}$$

where $A_{\alpha}v = A_{\beta}u$ is the unique relation of the presentation of the form $A_{\alpha}... = A_{\beta}...$

Criterion: Suppose that, for each relation u = v of the presentation and each α , reversing $A_{\alpha}^{-1}u$ and $A_{\alpha}^{-1}v$ leads to equivalent words. Then F^{+*} admits (right) lcm's (and is left cancellative).

• Example: $u = AA_1$, $v = A_{11}A$, and $\alpha = 1$:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Thus: F^{+*} admits lcm's and gcd's—whence the lattice structure.
- Moreover, word reversing solves the word problem of F^{+*} :

Proposition: Two words u, v in the letters A_{α} represent the same element of F^{+*} iff reversing $u^{-1}v$ leads to the empty word.

• Extends to F—by combining left and right reversings.

Corollary: The Dehn function of F w.r.t. the A_{α} 's is quadratic.

• Gives a unique irreducible *F*^{+*}-fraction for each element of *F*, whence a unique normal form in *F* once one is chosen in *F*^{+*} (for instance, a "Polish normal form").

3. Associahedra and flip distance

F has a partial action on finite trees (= bracketted expressions)
 → for every finite tree, a finite orbit:

Definition: The associahedron K_n is the oriented graph s.t.

- vertex set: the orbit of (any) size n tree under F.
- edges: α -labelled edge from T to T' iff A_{α} maps T to T'.
- → a finite fragment of the Cayley graph of F^{+*} w.r.t. the A_{α} 's. → as F^{+*} admits lcm's, a lattice: the Tamari lattice.

$$K_{2}: \bigwedge \xrightarrow{\emptyset} \bigwedge K_{3}: \bigwedge \xrightarrow{1} \bigwedge \xrightarrow{0} \bigwedge 0$$

• Normal form in F^{+*} provides a spanning tree on K_n .

Problem: Compute the distance between vertices in K_n , *i.e.*, between binary trees; in particular, compute the diameter of K_n .

"rotation distance"

• Equivalently:

Compute distances in (the Cayley graph of) F w.r.t. the A_{α} 's.

• Reminiscent of, but seemingly unrelated to, the similar problem with x_0, x_1 —solved by B.Fordham.

Proposition: The embedding of F^{+*} into F is not a quasi-isometry: For each C, there exist f in F^{+*} satisfying $\operatorname{dist}_F(1, f) < \frac{1}{C} \operatorname{dist}_{F^{+*}}(1, f)$.

The distance in $(F, \{A_{\alpha}\}_{\alpha})$ is not the distance in $(F^{+*}, \{A_{\alpha}\}_{\alpha})$.

<ロト < 回 ト < 三 ト < 三 ト < 三 の < で</p>

• Binary trees of size $n \nleftrightarrow$ triangulations of an (n+2)-gon

• Then flipping on edge in a triangulation \iff applying one $A_{\alpha}^{\pm 1}$

- \rightsquigarrow Diameter d_n of K_n
 - = maximal rotation distance between two size n trees.
 - = max. flip distance between two triangulations of an (n+2)-gon.

Theorem (Sleator-Tarjan-Thurston, '88): $d_n = 2n - 6$ for $n \gg 0$.

- The easy direction: d_n ≤ 2n 6 holds for n > 10.
 (Every size n tree is at distance at most n 1 of a right comb.)
- The problem: Proving lower bounds for dist(T, T').
- The solution: Use hyperbolic geometry.
 - Glue ∂T and $\partial T'$ to get a triangulated polytope Π in S^2 .
 - Then $\operatorname{dist}(T,T') \approx \#$ tetrahedra in $\Pi \geqslant \frac{\operatorname{vol}(\Pi)}{\max \operatorname{vol}(\text{tetrahedron})}$.
 - In \mathbb{E}^3 : vol $(\Pi) \leqslant \frac{4}{3}\pi R^3 \leqslant 3 \max \text{vol}(\text{tetrahedron})$: no hope!
 - In \mathbb{H}^3 : $vol(\Pi)$ may be large.
 - → Find polytopes with few vertices and large hyperbolic volume:
 - Use carefully chosen finite plane tesselations and close them. \Box
- Wonderful, but nothing for small $n. \rightsquigarrow$ Is there another method?

4. Proving lower bounds on d_n

using combinatorial methods that work for each n.

- Recall: $d_n = \max. \# \text{ of } A_{\alpha}^{\pm 1}$ to transform a size n tree into another.
- The problem: find size n trees T, T' s.t. many $A_{\alpha}^{\pm 1}$ (possibly 2n - 6) are provably needed to transform T to T'.
- Use the algebraic properties of the monoid F^{+*} ?
- A naive attempt: Invariants of the relations.
- All relations (including pentagon) preserve global # of $A_{11...1}$.

- A semi-naive attempt: Action on addresses.
- Number the leaves, and follow the address of a given leaf;

finite sequence of 0's and 1's describing the path from the root

• Action of
$$A_{\alpha}$$
 on an address: $\beta \mapsto \begin{cases} \begin{array}{cc} \alpha 00\gamma & \text{if } \beta = \alpha 0\gamma, \\ \alpha 01\gamma & \text{if } \beta = \alpha 10\gamma, \\ \alpha 1\gamma & \text{if } \beta = \alpha 11\gamma, \\ \beta & \text{otherwise.} \end{cases}$

Fact 2: For each n, one has $d_n \ge \frac{3}{2}n - 2$.

address of p + 1 in T: $1^p 0^p$ address of p + 1 in T': $0^p 1^p$ \rightsquigarrow at least 3p - 2 steps. \Box

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Definition: For a, b leaves of T, declare $a \triangleleft_T b$ true if, for some α, β, k ,

a is covered by b in T

 \rightsquigarrow a transitive relation attached with T.

Lemma: Assume that A_{α} maps T to T'. Then $a \triangleleft_{T'} b$ iff $a \triangleleft_T b$ or ($a \in T_{\alpha 0}$ and $b = \text{last}(T_{\alpha 10})$).

→ Applying associativity = adding covering.

Principle 1: Assume $a \not \triangleleft_T b$ and $a \triangleleft_{T'} b$. Then any $A_{\alpha}^{\pm 1}$ -sequence from T to T' contains at least one *b*-step.

s.t. b is the last leaf of the current $\alpha 10$ -subtree

• Attaching one step with a leaf cannot give more than n.

Principle 2: Assume $a \not \triangleleft_T b$, $a \triangleleft_{T'} b$, with $a \not \triangleleft_{T'} b - 1$, $b - 1 \triangleleft_{T'} b$. Then any $A_{\alpha}^{\pm 1}$ -sequence from T to T' contains at least two (b)-steps.

- Proof: Consider the first step where $b-1 \triangleleft b$ holds, a *b*-step.
- Case 1: After this step, we still have $a \not \lhd b$:

then a second *b*-step will occur subsequently.

 Case 2: After this step, we have a ⊲ b, which requires a ⊲ b−1; then a negative b−1-step will occur subsequently.

Current results

• Conjecture: Such methods lead to $d_n = 2n - 6$ for n > 10.

・ロト・日本・モート ヨー うへで

• R. McKenzie & R.J. Thompson, An elementary construction of unsolvable word problems in group theory; *in* Word Problems, Boone & *al.* eds., Studies in Logic vol. 71, North Holland (1973)

• B. Fordham, Minimal length elements of Thompson's group *F* Geom. Dedicata 99 (2003) 179–220

• D. Sleator, R. Tarjan, W. Thurston, Rotation distance, triangulations, and hyperbolic geometry J. Amer. Math. Soc. 1 (1988) 647–681

• P. Dehornoy, The structure group for the associativity identity, J. Pure Appl. Algebra 111 (1996) 59–82

- P. Dehornoy, Geometric presentations of Thompson's groups, J. Pure Appl. Algebra 203 (2005) 1–44
- P. Dehornoy, Braids and Self-Distributivity, Progress in Math. vol. 192, Birkhäuser, (2000)
- D. Krammer, A class of Garside groupoid structures on the pure braid group, Trans. Amer. Math. Soc. 360 (2008), 4029-4061