

Dual presentation of Thompson's group F and flip distance between triangulations

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

• Main theme: Algebraic and combinatorial properties of F

- An alternative—more natural?—presentation of \bm{F} that gives a lattice ("pre-Garside") structure;
- A connection with the rotation distance between finite trees and the flip distance between triangulations of a polygon.

Plan :

• 1. F as the geometry group of associativity (as in Thompson–McKenzie, cf. Matt Brin's course 1)

 $4\ \Box\ \rightarrow\ 4\ \overline{r} \rightarrow\ 4\ \Xi\ \rightarrow\ 4\ \Xi\ \rightarrow\ 1\ \Xi\quad\ 9\ \mathrm{Q}\ \mathrm{O}$

- 2. The lattice structure of F
- 3. Associahedra and flip distance
- 4. Proving lower bounds for the distance in F

1. F as the geometry group of associativity

- Starting idea: Associate with every algebraic law a certain monoid that captures its geometry—here: associativity $(A) x(yz) = (xy)z$.
- What means applying A to a term (= bracketted expression)?

 \rightarrow Depends on the position and the orientation.

- Def.: A_{α} : = (partial) operator "apply A at α in the \rightarrow direction";
- $\mathcal{G}_{\mathcal{A}}$ ("geometry monoid of \mathcal{A} ") := monoid generated by all $A_\alpha^{\pm 1}.$

Fact: Two terms T, T' are $\mathcal A$ -equivalent iff some element of $\mathcal{G}_{\mathcal{A}}$ maps T to $T'.$ \bullet The monoid $\mathcal{G}_{\mathcal{A}}$ is not a group $(A_{\alpha}A_{\alpha}^{-1}\neq \mathrm{id})$, but almost:

Proposition: The monoid $\mathcal{G}_{\mathcal{A}}/\approx$ is a group, isomorphic to F.

↑ to agree on at least one term

 \rightarrow "F is the geometry group of associativity"

• Every element of \mathcal{G}_A consists of the instances of a pair of terms \simeq a pair of binary trees (as variables are not permuted):

$$
A_\emptyset \; \leftrightarrow \left(\rule{0pt}{2.5pt}\right)\left(\rule{0pt}{2
$$

- Under the previous correspondence: $x_n \leftrightarrow A_{11...1}$, n times 1.
- A (redundant) family of generators for F: all A_{α} 's.

↑ a binary address $=$ a finite sequence of 0 's and 1 's

• **Example:**
$$
A_0
$$
 ("associativity at 0") = $\left(\bigwedge \limits_{n=1}^{\infty} \bigwedge \limits_{n=1}^{\infty} x_0^{-1} x_1^{-1} x_0^2\right)$.

 \rightsquigarrow a new presentation of $F+$ a new submonoid $\,F^{+\ast}$ that includes $\,F^+\, .$

↑ submonoid of F generated by all A_α ↑ submonoid of F generated by all x_i

- Reminiscent of the Birman–Ko–Lee generators of B_n and the dual braid monoids \rightarrow the "dual Thompson monoid".
- Claim: The monoid F^{+*} is a very natural object, and it has good properties, more symmetric than those of $F^{\scriptscriptstyle +}.$
- Relations connecting the A_{α} 's? Find common multiples in $F^{+\ast}.$
- Commutation and twisted commutation relations:

• MacLane–Stasheff pentagon relations:

 $4\ \Box\ \rightarrow\ 4\ \overline{r} \rightarrow\ 4\ \Xi\ \rightarrow\ 4\ \Xi\ \rightarrow\ 1\ \Xi\quad\ 9\ \mathrm{Q}\ \mathrm{O}$

Proposition: The previous relations (commutation $+$ pentagon) make a presentation of F —and of $F^{+\ast}$ —in terms of the A_{α} 's.

• Other laws: Associativity $+$ commutativity: in addition to A_{α} , define C_{α} : = "apply commutativity at α ": α α α \rightarrow Thompson's group V, presented by pentagon + hexagon rel's.

• Other laws: Self-distributivity $x(yz) = (xy)(xz)$: define Σ_{α} : = "apply self-distributivity at α ": α α α \rightarrow Group \mathcal{G}_{CD} — "Thompson's group for $\mathcal{L}D$ "—presented by ...

4 ロ > 4 何 > 4 ミ > 4 ミ > ニ ミ - 9 Q (V

• The heptagon relation of self-distributivity:

• Put $\sigma_i := \Sigma_{11...1}$, *n* times 1. The heptagon becomes $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \cdot \Sigma_{1i}$

→ The group $\mathcal{G}_{\mathcal{L}\mathcal{D}}$ is an extension of Artin's braid group B_{∞} .

Corollary: The relation $a^{-1}b \in F^{+*}$ defines a lattice ordering on $F.$

- Fact: For each pair of generators A_{α}, A_{β} , the presentation contains exactly one relation of the form A_{α} ... = A_{β} ...
- Can one deduce anything?

(typically that $A_{\alpha} = A_{\beta}$... is an lcm of A_{α} and A_{β})

• In general: no; but yes, if some specific syntactic condition holds.

- \bullet Associate with every word in the letters $A^{\pm 1}_\alpha$ a stair by concatenating arrows $A_{\alpha} \mapsto \frac{A_{\alpha}}{A_{\alpha}}$, $A_{\alpha}^{-1} \mapsto \boxed{A_{\alpha}}$.
- Close the \ulcorner patterns until an \lrcorner square is obtained using

$$
A_\alpha \overbrace{\leftarrow{\qquad \qquad } A_\beta \qquad \qquad } A_\alpha \overbrace{\leftarrow{\qquad \qquad } a_\alpha \qquad \qquad } a_\alpha \qquad \qquad }
$$

where $A_{\alpha}v = A_{\beta}u$ is the unique relation of the presentation of the form A_{α} ... = A_{β} ...

Criterion: Suppose that, for each relation $u = v$ of the presentation and each α , reversing $A_\alpha^{-1} u$ and $A_\alpha^{-1} v$ leads to equivalent words. Then $F^{+\ast}$ admits (right) lcm's (and is left cancellative).

• Example: $u = AA_1$, $v = A_{11}A$, and $\alpha = 1$:

- Thus: F^{+*} admits lcm's and gcd's—whence the lattice structure.
- \bullet Moreover, word reversing solves the word problem of $F^{+\ast}\colon$

Proposition: Two words u, v in the letters A_{α} represent the same element of $F^{+\ast}$ iff reversing $u^{-1}v$ leads to the empty word.

• Extends to F —by combining left and right reversings.

Corollary: The Dehn function of F w.r.t. the A_{α} 's is quadratic.

• Gives a unique irreducible F^{+*} -fraction for each element of F , whence a unique normal form in \overline{F} once one is chosen in F^{+*}

(for instance, a "Polish normal form").

KED KARD KED KED E VOOR

3. Associahedra and flip distance

• \overline{F} has a partial action on finite trees (= bracketted expressions) \rightarrow for every finite tree, a finite orbit:

Definition: The associahedron K_n is the oriented graph s.t.

- vertex set: the orbit of (any) size n tree under F .
- edges: α -labelled edge from T to T' iff A_α maps T to $T'.$
- \rightsquigarrow a finite fragment of the Cayley graph of F^{+*} w.r.t. the A_{α} 's. \rightarrow as F^{+*} admits lcm's, a lattice: the Tamari lattice.

$$
K_2: \wedge \xrightarrow{\emptyset} \wedge K_3: \wedge \xrightarrow{\emptyset} \wedge \wedge \xrightarrow{\emptyset} \wedge
$$

• Normal form in F^{+*} provides a spanning tree on K_n .

イロト (母) (ミ) (ミ) 三 ラ のQQ

Problem: Compute the distance between vertices in K_n , *i.e.*, between binary trees; in particular, compute the diameter of K_n .

↑ "rotation distance"

• Equivalently:

Compute distances in (the Cayley graph of) **F** w.r.t. the A_{α} 's.

• Reminiscent of, but seemingly unrelated to, the similar problem with x_0, x_1 —solved by B.Fordham.

Proposition: The embedding of F^{+*} into F is not a quasi-isometry: For each C , there exist f in $F^{+\ast}$ satisfying ${\rm dist}_{\bm F} ({\bf 1}, {\bm f}) < \frac{1}{C} \, \, {\rm dist}_{{\bm F}^{+ *}} ({\bf 1}, {\bm f}).$

The distance in $(F, \{A_\alpha\}_\alpha)$ is not the distance in $(F^{+*}, \{A_\alpha\}_\alpha).$

• Binary trees of size $n \leftrightarrow$ triangulations of an $(n + 2)$ -gon

• Then flipping on edge in a triangulation \leftrightsquigarrow applying one $A_\alpha^{\pm 1}$

- \rightarrow Diameter d_n of K_n
	- $=$ maximal rotation distance between two size n trees.
	- $=$ max. flip distance between two triangulations of an $(n+2)$ -gon.

Theorem (Sleator-Tarjan-Thurston, '88): $d_n = 2n - 6$ for $n \gg 0$.

- The easy direction: $d_n \leqslant 2n-6$ holds for $n > 10$. (Every size *n* tree is at distance at most $n - 1$ of a right comb.)
- The problem: Proving lower bounds for $dist(T, T^{\prime}).$
- The solution: Use hyperbolic geometry.
	- Glue ∂T and $\partial T'$ to get a triangulated polytope Π in $S^2.$
	- Then $dist(T, T') \approx #$ tetrahedra in $\Pi \geqslant \frac{\text{vol}(\Pi)}{\text{measurable}}$ $\frac{\text{vol}(H)}{\text{max vol}(\text{tetrahedron})}$.
	- In \mathbb{E}^3 : $\mathrm{vol}(\Pi) \leqslant \frac{4}{3}\pi R^3 \leqslant 3\max \mathrm{vol}(\text{tetrahedron})$: no hope!
	- In \mathbb{H}^3 : $\text{vol}(\Pi)$ may be large.
	- \rightarrow Find polytopes with few vertices and large hyperbolic volume:
	- Use carefully chosen finite plane tesselations and close them. \square
- Wonderful, but nothing for small $n \rightarrow \infty$ is there another method?

4. Proving lower bounds on d_n

↑ using combinatorial methods that work for each $n.$

- Recall: $d_n = \max. \#$ of $A_\alpha^{\pm 1}$ to transform a size n tree into another.
- \bullet The problem: find size n trees T,T' s.t. many $A_\alpha^{\pm 1}$ (possibly $2n - 6$) are provably needed to transform T to T'.
- Use the algebraic properties of the monoid $F^{+\ast}$?
- A naive attempt: Invariants of the relations.
- All relations (including pentagon) preserve global $\#$ of $A_{11...1}$.

- A semi-naive attempt: Action on addresses.
- Number the leaves, and follow the address of a given leaf; ↑

finite sequence of 0's and 1's describing the path from the root

• Action of
$$
A_{\alpha}
$$
 on an address: $\beta \mapsto \begin{cases} \alpha 00\gamma & \text{if } \beta = \alpha 0\gamma, \\ \alpha 01\gamma & \text{if } \beta = \alpha 10\gamma, \\ \alpha 1\gamma & \text{if } \beta = \alpha 11\gamma, \\ \beta & \text{otherwise.} \end{cases}$

Fact 2: For each n , one has $d_n \geqslant \frac{3}{2}n-2$.

address of $p+1$ in $T: 1^p0^p$ address of $p+1$ in T' : 0^p1^p \rightarrow at least 3p – 2 steps. □

> $\mathcal{L} \equiv \mathcal{L} \equiv \mathcal{$ OQ

• Number the leaves again.

• Definition: For a, b leaves of T , declare $a \triangleleft_{\boldsymbol{T}} b$ true if, for some α, β, k , ↑

 a is **covered** by b in T

 \rightarrow a transitive relation attached with T.

KED KARD KED KED E VOOR

Lemma: Assume that A_α maps T to $T'.$ Then $a \triangleleft_{T'} b$ iff $a \triangleleft_T b$ or $(a \in T_{\alpha 0} \text{ and } b = \text{last}(T_{\alpha 10})$.

Applying associativity $=$ adding covering.

Principle 1: Assume $a \not\rightsquigarrow b$ and $a \not\rightsquigarrow b$. Then any $A^{\pm 1}_\alpha$ -sequence from T to T' contains at least one b -step.

> ↑ s.t. b is the last leaf of the current $\alpha 10$ -subtree

• Attaching one step with a leaf cannot give more than n .

Principle 2: Assume a $\oint_T b$, a $\oint_{T'} b$, with a $\oint_{T'} b-1$, $b-1 \oint_{T'} b$. Then any $A_\alpha^{\pm 1}$ -sequence from $\, T$ to $\, T'$ contains at least two (b) -steps.

- Proof: Consider the first step where $b-1 \triangleleft b$ holds, a b-step.
- Case 1: After this step, we still have $a \not\! b$:

then a second b-step will occur subsequently.

- Case 2: After this step, we have $a \triangleleft b$, which requires $a \triangleleft b-1$; then a negative $b-1$ -step will occur subsequently.

Current results

(ロ) (日) (모) (모) (모) 및 990

• Conjecture: Such methods lead to $d_n = 2n - 6$ for $n > 10$.

• R. McKenzie & R.J. Thompson, An elementary construction of unsolvable word problems in group theory; in Word Problems, Boone & al. eds., Studies in Logic vol. 71, North Holland (1973)

• B. Fordham, Minimal length elements of Thompson's group F Geom. Dedicata 99 (2003) 179–220

• D. Sleator, R. Tarjan, W. Thurston, Rotation distance, triangulations, and hyperbolic geometry J. Amer. Math. Soc. 1 (1988) 647–681

• P. Dehornoy, The structure group for the associativity identity, J. Pure Appl. Algebra 111 (1996) 59–82

• P. Dehornoy, Geometric presentations of Thompson's groups, J. Pure Appl. Algebra 203 (2005) 1–44

- P. Dehornoy, Braids and Self-Distributivity, Progress in Math. vol. 192. Birkhäuser, (2000)
- D. Krammer, A class of Garside groupoid structures on the pure braid group, Trans. Amer. Math. Soc. 360 (2008), 4029-4061