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• Main theme: Algebraic and combinatorial properties of F



• An alternative—more natural?—presentation of F that gives
a lattice (“pre-Garside”) structure;

• A connection with the rotation distance between finite trees
and the flip distance between triangulations of a polygon.

Plan :

• 1. F as the geometry group of associativity
(as in Thompson–McKenzie, cf. Matt Brin’s course 1)

• 2. The lattice structure of F

• 3. Associahedra and flip distance

• 4. Proving lower bounds for the distance in F



The geometry monoid of associativity

1. F as the geometry group of associativity

• Starting idea: Associate with every algebraic law a certain monoid
that captures its geometry—here: associativity (AAA) x(yz) = (xy)z.

• What means applying AAA to a term (= bracketted expression)?

α α

         Depends on the position and the orientation.

• Def.: Aα:= (partial) operator “apply AAA at α in the → direction”;
- GGGAAA (“geometry monoid of AAA”) := monoid generated by all A±1

α .

Fact: Two terms T ,T ′ are AAA-equivalent iff
some element of GGGAAA maps T to T ′.



F as the geometry group of associativity

• The monoid GGGAAA is not a group (AαA−1
α 6= id), but almost:

Proposition: The monoid GGGAAA/≈ is a group, isomorphic to F .

↑
to agree on at least one term

         “F is the geometry group of associativity”

• Every element of GGGAAA consists of the instances of a pair of terms
' a pair of binary trees (as variables are not permuted):
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The dual Thompson monoid

• Under the previous correspondence: xn !!!!!!!!! A11...1, n times 1.

• A (redundant) family of generators for F : all Aα’s.
↑

a binary address = a finite sequence of 0’s and 1’s

• Example: A0 (“associativity at 0”) =

(
,

)
= x−1

0 x−1
1 x2

0.

         anewpresentationofF +a newsubmonoid F +∗ that includes F +.
↑

submonoid of F generated by all Aα
↑

submonoid of F generated by all xi

• Reminiscent of the Birman–Ko–Lee generators of Bn

and the dual braid monoids         the “dual Thompson monoid”.

• Claim: The monoid F +∗ is a very natural object,
and it has good properties, more symmetric than those of F +.



Relations in F +∗

• Relations connecting the Aα’s? Find common multiples in F +∗.

• Commutation and twisted commutation relations:
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Aα1β Aα0γ = Aα0γ Aα1β

A
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A
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Aα10β Aα = Aα Aα01β

• MacLane–Stasheff pentagon relations:
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A
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A A0

A

Aα1 Aα Aα0 = Aα Aα



The dual presentation of F

Proposition: The previous relations (commutation + pentagon)
make a presentation of F—and of F +∗—in terms of the Aα’s.

• Other laws:
Associativity + commutativity:
in addition to Aα, define

Cα:= “apply commutativity at α”:

α α

         Thompson’s group V , presented by pentagon + hexagon rel’s.

• Other laws:
Self-distributivity x(yz) = (xy)(xz):
define Σα:= “apply self-distributivity at α”:

α α

         Group GGGLDLDLD—“Thompson’s group for LDLDLD”—presented by ...



The heptagon of self-distributivity

• The heptagon relation of self-distributivity:

Σ

Σ1

Σ

Σ1

Σ Σ1 Σ0

Σ1

Σ

Σα Σα1 Σα = Σα1 Σα Σα1 Σα0

• Put σi := Σ11...1, n times 1. The heptagon becomes
σiσi+1σi = σi+1σiσi+1 ·Σ1i0:

         The group GGGLDLDLD is an extension of Artin’s braid group B∞.



Back to F

2. The lattice structure of F

Theorem: The group F is a group of (left and right) fractions
for F +∗; the latter admits (left and right) lcm’s and gcd’s.

↑
least common multiples / greatest common divisors

Corollary: The relation a−1b ∈ F +∗ defines a lattice ordering on F .

• Fact: For each pair of generators Aα,Aβ, the presentation
contains exactly one relation of the form Aα... = Aβ....

• Can one deduce anything?
(typically that Aα... = Aβ... is an lcm of Aα and Aβ)

• In general: no; but yes, if some specific syntactic condition holds.



Subword reversing

• Associate with every word in the letters A±1
α a stair

by concatenating arrows Aα 7→ Aα , A−1
α 7→ Aα .

• Close the ppp patterns until an yyy square is obtained using
Aβ

Aα 7→

Aβ

Aα

Aβ

Aα

v

u7→

Aβ

Aα

Aβ

Aα

v

u
where Aαv = Aβu is the unique
relation of the presentation
of the form Aα... = Aβ...

Criterion: Suppose that, for each relation u = v of the presentation
and each α, reversing A−1

α u and A−1
α v leads to equivalent words.

Then F +∗ admits (right) lcm’s (and is left cancellative).

• Example: u = AA1, v = A11A, and α = 1:
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Word problem

• Thus: F +∗ admits lcm’s and gcd’s—whence the lattice structure.

• Moreover, word reversing solves the word problem of F +∗:

Proposition: Two words u,v in the letters Aα represent the same
element of F +∗ iff reversing u−1v leads to the empty word.

u

v

• Extends to F—by combining left and right reversings.

Corollary: The Dehn function of F w.r.t. the Aα’s is quadratic.

• Gives a unique irreducible F +∗-fraction for each element of F ,
whence a unique normal form in F once one is chosen in F +∗

(for instance, a “Polish normal form”).



Associahedra

3. Associahedra and flip distance

• F has a partial action on finite trees (= bracketted expressions)
         for every finite tree, a finite orbit:

Definition: The associahedron Kn is the oriented graph s.t.
- vertex set: the orbit of (any) size n tree under F .
- edges: α-labelled edge from T to T ′ iff Aα maps T to T ′.

         a finite fragment of the Cayley graph of F +∗ w.r.t. the Aα’s.
         as F +∗ admits lcm’s, a lattice: the Tamari lattice.

K2 :
∅

K3 :

∅ ∅

1 0
∅



Associahedra

• K4:

∅

11

1

∅

1

1

10

1

∅

∅

0

∅

∅

01

0

∅

00

0

0

∅

∅

• Normal form in F +∗ provides a spanning tree on Kn.



The rotation distance problem

Problem: Compute the distance between vertices in Kn, i.e.,
between binary trees; in particular, compute the diameter of Kn.

↑
“rotation distance”

• Equivalently:
Compute distances in (the Cayley graph of) F w.r.t. the Aα’s.

• Reminiscent of, but seemingly unrelated to,
the similar problem with x0,x1—solved by B.Fordham.

Proposition: The embedding of F +∗ into F is not a quasi-isometry:
For each C, there exist f in F +∗ satisfying

distF (1,f) < 1
C distF +∗(1,f).

The distance in (F , {Aα}α) is not the distance in (F +∗, {Aα}α).



Triangulations

• Binary trees of size n!!!!!!!!! triangulations of an (n + 2)-gon

• Then flipping on edge in a triangulation!!!!!!!!! applying one A±1
α

         Diameter dn of Kn

= maximal rotation distance between two size n trees.
= max. flip distance between two triangulations of an (n+2)-gon.



An asymptotic result

Theorem (Sleator-Tarjan-Thurston, ’88): dn = 2n− 6 for n >> 0.

• The easy direction: dn 6 2n− 6 holds for n > 10.
(Every size n tree is at distance at most n− 1 of a right comb.)

• The problem: Proving lower bounds for dist(T ,T ′).
• The solution: Use hyperbolic geometry.

- Glue ∂T and ∂T ′ to get a triangulated polytope Π in S2.

- Then dist(T ,T ′) ≈ # tetrahedra in Π > vol(Π)
max vol(tetrahedron) .

- In E3: vol(Π) 6 4
3πR3 6 3 max vol(tetrahedron): no hope!

- In H3: vol(Π) may be large.
         Find polytopes with few vertices and large hyperbolic volume:
- Use carefully chosen finite plane tesselations and close them. �

• Wonderful, but nothing for small n.          Is there another method?



Naive attempts

4. Proving lower bounds on dn

↑
using combinatorial methods that work for each n.

• Recall: dn = max.# of A±1
α to transform a size n tree into another.

• The problem: find size n trees T ,T ′ s.t. many A±1
α

(possibly 2n− 6) are provably needed to transform T to T ′.

• Use the algebraic properties of the monoid F +∗?

• A naive attempt: Invariants of the relations.
- All relations (including pentagon) preserve global # of A11...1.

Fact 1: For each n, one has dn > n− 1.

...
A A A



Addresses of leaves

• A semi-naive attempt: Action on addresses.

• Number the leaves, and follow the address of a given leaf;
↑

finite sequence of 0’s and 1’s describing the path from the root

• Action of Aα on an address: β 7→


α00γ if β = α0γ,
α01γ if β = α10γ,
α1γ if β = α11γ,
β otherwise.

Fact 2: For each n, one has dn > 3
2n− 2.

1
2
3

p

p+1 p+2

2p+1 1
2
3

p p+1

p+2

2p+1

address of p + 1 in T : 1p0p

address of p + 1 in T ′: 0p1p

         at least 3p− 2 steps. �



The covering relation of a tree

• Number the leaves again.

• Definition: For a, b leaves of T ,
T

a b

declare a ///T b true
↑

a is covered by b in T

if, for some α,β,k,

T

α

β 1k

         a transitive relation attached with T .

Lemma: Assume that Aα maps T to T ′. Then
a ///T ′ b iff a ///T b or ( a ∈ Tα0 and b = last(Tα10) ).

T T ′Aα

α α

a ab b6///T ///T ′

         Applying associativity = adding covering.



Using covering

Principle 1: Assume a 6///T b and a ///T ′ b.
Then any A±1

α -sequence from T to T ′ contains at least one b-step.

↑
s.t. b is the last leaf of the current α10-subtree

• Attaching one step with a leaf cannot give more than n.

Principle 2: Assume a 6///T b, a ///T ′ b, with a 6///T ′ b−1, b−1 ///T ′ b.
Then any A±1

α -sequence from T to T ′ contains at least two (b)-steps.

• Proof: Consider the first step where b−1 /// b holds, a b-step.
- Case 1: After this step, we still have a 6/// b:

then a second b-step will occur subsequently.
- Case 2: After this step, we have a /// b, which requires a /// b−1;

then a negative b−1-step will occur subsequently. �



Current results

Fact 3: For each n, one has dn > 5
3n− 3.

Fact 4: For each n, one has dn > 7
4n− 4.

• Conjecture: Such methods lead to dn = 2n− 6 for n > 10.
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