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e The Garside structure of braids is the emerging part of
an iceberg: the Garside structure of self-distributivity.




e Reuvisiting old results of 1985—-95 about the self-distributive law
in the new context of Garside categories.

Plan :

e The Garside structure of braids
e The normal form in a Garside monoid
e Garside categories

e The category LD* of self-distributivity

e The Embedding Conjecture




The Garside structure of braids

Proposition 1 (Garside, 1967):
- The braid group B,, is a group of fractions for the monoid B.

Proposition 2 (Garside, 1967):

- The monoid Bj, is cancellative: abc = ab’c implies b = b’;

- It admits gcd’s and lem’s w.r.t. divisibility: a < b if dc(ac = b);
- Every bounded <-ascending chain is finite;

- The left and right divisors of A,, coincide, and generate B.




The greedy normal form

e Main (7) application of Garside’s results: a normal form.
(Adjan, EIRifai-Morton, Thurston, ...)

e Simple n-braids = divisors of A,

e Lemma: Every braid a in B;, admits one maximal simple divisor.

the head H(a) of a, namely ged(a, A,,)

a =H(a)a =H(a)-H(a)a" =H(a)-H(a')-H(a")-... = ... J

~+ a distinguished decomposition of a in terms of simple braids
: the greedy normal form.



The greedy NF is local

e Why is the greedy NF good? Because it is easy:
- to recognize normal sequences,
- to compute the NF’s of ao; and o;a from the NF of a.

e Proposition 1: A sequence (a, ..., aq) of simple n-braids is normal

iff, for each r < d, the subsequence (a..,a, 1) is normal.

e Proof: Assume (ai,as) and (a2, as) normal.
Want: (a1, as,as) is normal, i.e, a; = H(aiaza3) or, equivalently,
a simple < a1az2a3 — a < a.
Assume aa’ =lem(a, aq). Then, for each z,
a<aiz & lem(a,a1z) =arx & d < x.
Soa <ajazas & a <asas3 = a' <ax & a<aia: =a<a;. O
a a2 as
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Multiplying a NF

e Proposition 2: Assume NF(a) = (a1, ...,aq) and b is simple. Then
- NF(ba) = (a},....al;, ba),
where bp = b and (a..,b,.) = NF(b,_1a,) for r > 1,

- NF(ab) = (bo,a},...,a);),
where bg = b and (b,_1,al) = NF(a,b,) for r > 1.

bo

a a Qa
LA @ o A
by |b2  |bga
\ a\ R4 . wh R
a,/ .\_’.a/ |\_’l |\_’.a/ >
1 2 d

bq




Proof for multiplication on the left

bo

b2

e Want: (a),a}) is normal.

Assume a < a)al.

Then a < a)jabbs = bpaias.
Assume aa’ =lem(a, by).
Then (as before) o' < a;as.

As (a1,as) is normal, a’ < a;
Hence a < bpa; = a/b;.

As (a',by) is normal, a < a)




Proof for

multiplying on the right
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e Want: (a/,a)) is normal

For x simple, introduce z* s.t. zz* = A, and let ¢(x)

. = A, ST
Then A = A¢(x), and ¢ is an automorphism.
Hence (¢(a1), ¢(az)) is normal
Next (by.a’) normal = ged(by, ab) = 1 (actually <)
Assume a < a)al.
Then a <

ajasby = byp(ai)d(az).
Hence (same argument as before) a < bj¢p(a1) = a)b]
Hence a < ged(a)b], a)ab) = dj.




Extension 1

e Does not work only for B,,, B}, and A,, (D.—Paris '97, ...)

o Definition: (M, A) is a left-Garside monoid if
- M is a left cancellative monoid,
- M admits right lcm’s and left gcd’s,
- every bounded <-ascending sequence is finite,

- A belongs to M, the left divisors of A generate M and include
the right divisors of A (equivalently: are closed under \).

(M, A) is regular if, in addition,
- ¢ preserves normality: (a1, as) normal = (¢(a1), ¢(az) normal.

e Then the construction of the greedy NF extends:
- Prop. 1 and 2 hold for every left-Garside monoid;
- Prop. 3 holds for every regular left-Garside monoid.
any



Garside monoids and groups

e Theorem (Garside, 1967) (B, A,,) is a Garside monoid.

e Many other examples:
- Spherical Artin—Tits groups (Charney),
- Dual monoids (Birman—Ko—Lee, Bessis, ...),
- Certain complex reflection groups (Bessis, Corran, ...),
- Free groups (Bessis, Brady—Crisp—Kaul-McCammond, ...),
- Many more... (Picantin, Krammer, ...).

e Many questions:
- Conjugacy problem (Gonzalez-Meneses, Gebhardt, Lee—Lee),
- Properties of roots (Sibert, Gonzalez-Meneses, Lee-Lee),
- Other normal forms (Burckel, Fromentin, ...).
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Extension 2
e Replace monoids with categories:

(Krammer, Digne—Michel, Bessis, 2005- 6)
Deligne
e Principle: Keep the diagrams, but add objects

- call the elements of the monoid morphisms,

- attach a source dgf and a target d, f with every morphism f
Before:

After:
a
a ~ —

a J
a ~» r —>y
o Benefit:

- a partial product: fg exists only if 91 f = 9og,

- a local notion of simple: for each object x, the simples at =

e Of course: monoid = category with one object




Left-Garside categories

e Definition: (C,A) is a left-Garside category if
- C is a category and Hom(C) is left-cancellative,
- any two morphisms with the same source have a right Ilcm,
- every <-ascending sequence in Div( f) (left-divisors of f) is finite,

- A maps Obj (C) to Hom(C) so that A(x) € Hom(xz, —),
every nontrivial element of Hom(x, —) is left-divisible by a nontrivial
left-divisor of A(z), and every right-divisor of A(x) is simple.

simple at =

o If (C, A) is weakly left-Garside, there is a (unique) functor ¢ s.t.
¢(x) = 01 A(x), fAly) = Ax)e(f) for f -z — y.

e Definition: (C, A) is regular if, moreover, ¢ preserves normality.




Garside categories

e Garside = left-Garside + right-Garside with the same A.

e Examples:
- For M a (left)-Garside monoid:

Obj (Car) = {1}, Hom(Cas) = {1}xMx{1}, A(1) = A.

Obj (Cpr) = M, Hom(Cas) = {(a,b,c) | ab=c}, A(1 = A. |

- (Krammer) MCG's of disks with punctures on the boundary,
- (Godelle) Ribbon categories,

- (Digne—Michel) Conjugacy categories,

- (Bessis) Divided categories,

- Braid category B

Obj (B*) =Z., Hom(B*)={(n,a,n) |a € B!}, A(n) =

Obj (B )=Seq(N), Hom(B' )={(s,a, s.a) | a € B}, A(s)=Ay. |

- Self-distributivity.



Self-distributivity

o The left self-distributive law LD:

x(yz) = (zy)(x=z).

e Examples of LD-systems:

-xxy = f(y), in any set,
-z xy =zyx ', in a group,

zxy = (1—t)x+ty, in a Z[t]-module,
- x xy = x applied to y, elementary embeddings

- x+y = xsh(y) oy sh(z)™1, in B, with sh(o;) = 0;41,
Laver tables

- Free LD-systems.



Free LD-systems

e Fact (trivial): The free LD-system of rank n is T, /=.p,

where
T, is the set of all terms on Iy, ..., Ty,
equipped with the operation ¢; * t5 = (t1)(t2),

rooted binary trees

=.p is the smallest congruence on 7T',, that contains all pairs
(tl * (tz * tg) 5 (tl * t2) * (tl * tg))

—LD




LD-equivalence

e More examples of LD-equivalences:

—LD
1

=1D
T2 T3 L1 T2 1 T3 T1 3
Tl T2 T1 T2
v
—LD —LD
1 T1
T1 T2 1 T2
T3 Ta T3 g L2 3 T2 T4

and everything obtained by substituting variables with terms.




LD-expansion

e How to study the relation =, ?
Orientate it.

e Definition: t’ is an LD-expansion of ¢, denoted t — t/, if ' can

be obtained from t by applying LD in the expanding direction only.

—>LD D)
T3

T2 L3 wl T2 1 T3

L1 T2 T1 T2

7L’LD —LD
1
1 T2 T1 T2

T3 Ta T3 Ta Lo T3 T2 Ta

e Clearly, =, is generated by —:
t =.p t' holds iff there exists a —,-zigzag from ¢ to t'.



The confluence theorem

Theorem (D., '86) Two terms are LD-equivalent

iff they admit a common LD-expansion.

(53

"
—7LD t

=LD
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Corollary ('91) Braid groups are orderable.

~




Proof of the confluence theorem

e How to prove the Confluence Theorem?

e Main Lemma: For each t, there exists an LD-expansion ¢(t) of ¢
that is a common LD-expansion of every atomic LD-expansion of ¢;
moreover t —; 5, t' implies ¢(t) —p O(t).

e From there: ¢“(t) is a common LD-expansion of
all degree d LD-expansions of t. [



e Inductive construction of ¢(t):

d(x;) = z;,

The fundamental expansion ¢ (%)
P(t1 xt2) = P(t1) ® ¢(12),
where & means “distribute once everywhere”:
texr=t*xx,

t® (tyxta) = (R t1) * (E® ta).

¢<> B b(t2)

{}Aﬁmﬂ ﬁ@ ? ..

[m]

A,

=




A first attempt

Is there a left-Garside category here?

Natural candidate: graph of the LD-expansion relation:

Definition: The category LD}
Obj (LDY) :={ terms },

Hom (LD*) := {(t,t') |t —wp t'}.

Simples at ¢t = all LD-expansions of ¢ between ¢ and ¢(t).

Least common multiple = least common LD-expansion (?7?),
~» Problem: Not proved to exist...

e Solution: Control LD-expansions better:
~ Take into account the position where LD is applied.



Naming LD-expansions

e Attach a label to each atomic LD-expansion:
an address specifying where LD is applied
~+ a sequence of 0’s and 1’s describing the path from the root

&&sz DR

D()

o m




LD-relations (1): parallel case

e There are natural relations between the various D, -expansions.

4
Aéa = L

o More generally: D, Dg = DgD, when o, 3 are parallel.




LD-relations (2): nested case

DA T Lrh

De De

v,

e More genera"y: DaOﬁ Da — Da DaOOﬁ DalO,Gv
DalOﬁ D, = D, DaOl,Bv

Dallﬁ Da - Da Dallﬂ-




LD-relations (3): critical case

D,
>
o
Dy
Dy Dy

o More generally: D, D,, D, = D,, D, D, D,g.




The category LD

Definition: The monoid LD*:

( {Dy | @ an address } | LD-relations )*.

By construction: a action of LD" on terms
via LD-expansions.

Definition: The category LD ':
Obj (LDT) := { terms },

Hom(LD*) :={(t,a,t') |a € LD* and t.a =t'}.

A typical morphism in LD:

2 )




The main result

Theorem: The category LD is left-Garside, and there is a projection

of LD+ onto B that preserves the Garside structures.

Conjecture: The category left-Garside LD is regular.

e What we shall do:
- 1. Explain the connection with braids.

- 2. Explain why LD is left cancellative and admits Icm'’s
(plus the chain condition);

- 3. Describe the A;
- 4. Discuss the conjecture.



Projection to braids

e Put 7(t) := length of the rightmost branch in ¢,
D o; fora=11..1, 17— 1 times 1,
7(Da) 1= { 1 if v contains at least one 0.

(?\ DDo./<Q> (2,01, 2) J

e Proposition 1: 7 is an lcm-functor of LD* onto B*.

%<% Delo m> = ((1,3), a1 .(3,1)).

T2 T3 T1X2L1L3




Using subword reversing

e Proposition 2: LD* is left cancellative, and morphisms of

Hom(t, —) with a common right multiple admit a right Icm.

one

“completeness of right reversing”

e For <-ascending sequences:
Every chain from ¢ to ¢’ has length < size(t') — size(t).



Delta

e How to define A, i.e.,, how to define simples at ¢ ?
~» Use ¢(t):

e Define A; in LD" as a distinguished way to expand ¢ into ¢(t)
following the inductive construction of ¢

1
Ar = { Ay Ay

and then put

for t = z, (size 1 term)
for t =t *x to

J

A(t) =

e Example:

(t, A¢, &(1)).

J

Oy non )|

, 010207 ,
12131214

3 )

1 2 3) 0102071, (32 1))



Recognizing simples

e Proposition 3: (i) If t . D,, exists, then D, left-divides A;.
(ii) Right-divisors of A; are simple,

(iii) Common right-multiples always exist in Hom (¢, —).

iff
iff
iff
iff covers
o1 o1 D, D,
2 P 1 ,2 ) 3
1 > o 1 ! 23 1213 1 3
e . = ! 12 12
. simple . simple

not simple not simple




The Embedding Conjecture

e Conjecture: The category LD+ is regular.

e The main result:

e Theorem: If the category LD is regular,
then the Embedding Conjecture is true:

- The monoid LD" admits right cancellation.
- Any LD-equivalent terms admit a least common LD-expansion.
- For all terms t,t/, the cardinality of Hom/p+(¢,t’) is at most 1.

- The category LD is isomorphic to LD} (graph of LD-expansion).




The Regularity Conjecture
e Proof of the theorem: uses most known results about LD.

(in particular that ¢ is injective on objects and simple morphisms)
e A possible attack to the Regularity Conjecture:

- Enough to show: ¢ preserves left-coprimeness of simples.
- A fortiori, enough to show for a, b simple:

b(ged(a, b)) =ged(p(a), $(b).

- Simples admit unique expressions (“permutation-expansions”):

<
a = H DaDalDall---

o address

e factors

- Use the sequence of e, ’s as coordinates for a and find
explicit formulas for the coordinates of ¢(a) and ged(a, b).
—not so easy, even for braids...

«O» «Fr» «=>»

«E)»

2N G



Why care on these questions?

e Originally (1991): Solve the word problem of LD.

Theorem (Laver, 1989): If there exists a self-similar rank,

then the word problem of LD is decidable.

orderable

e Now: shorter proofs of braid acyclicity (Larue, Dynnikov)
provide shorter proofs for the orderability of free LD-systems.

e What remains? The Garside structure of LD* as an explanation
for the Garside structure of braids (“7 is an lcm-functor”).

e At least: an example of a left-Garside, non-Garside structure.



Associativity

e Everything is similar when associativity replaces selfdistributivity:
z(yz) = (zy)z

- A-expansion: replace t; * (to * t3) with (1 * to) * t3;
- monoid A ": generated by all A, with A-relations (MacLane);
- category A": Hom(A") ={(t,g9.t') |gcAtand t.g=1t}.

e Good news: There is a Garside structure. J

- Least common A-expansions exist: the Tamari lattice;
- Themonoid A is Garside; its group of fract. is Thompson’s group F’;
- The category A" is left-Garside

e Bad news: The Garside structure is trivial. J

- The category A" is not Garside.
- ¢is constant on terms of a given size: ¢(t) = KO for size(t) = 4.
- Every morphism is simple.
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