

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups, with an application to the combinatorial distance between the reduced expressions of a permutation.

Plan :

- The general case:
 - Subword reversing as a strategy
 - for constructing van Kampen diagrams

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Subword reversing as a syntactic transformation
- A cancellativity criterion
- The case of permutations:
 - bounds for the combinatorial distance

between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

all relations of the form $\mathbf{u} = \mathbf{v}$ with \mathbf{u}, \mathbf{v} nonempty words on S

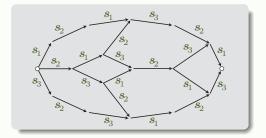
• Let (S, R) be a semigroup presentation. Then two words w, w' on S represent the same element of the monoid $\langle S | R \rangle^+$ if and only if there exists an R-derivation from w to w'.

• Proposition (van Kampen, ?): If (S, R) is a semigroup presentation, two words w, w' on S represent the same element of the monoid $\langle S | R \rangle^+$ if and only if there exists a van Kampen diagram for (w, w').

a tesselated disk with (oriented) edges labeled by elements of S and faces labelled by relations of R, with boundary paths labelled w and w'.

• Example: Let
$$B_n^+ = \left\langle s_1, ..., s_{n-1} \right|$$
 $\begin{cases} s_i s_j s_i = s_j s_i s_j & \text{for } |i - j| = 1 \\ s_i s_j = s_j s_i & \text{for } |i - j| \ge 2 \end{cases}$ $\left\rangle^+$ (the *n*-strand Artin braid monoid).

Then

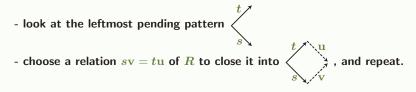


is a van Kampen diagram for $(s_1s_2s_1s_3s_2s_1,s_3s_2s_3s_1s_2s_3).$

• How to build a van Kampen diagram (when it exists)?

 \cong solve the word problem: decide $\mathbf{w} \equiv_{B}^{+} \mathbf{w}'$

• Subword reversing = the left strategy: starting with two words w, w',



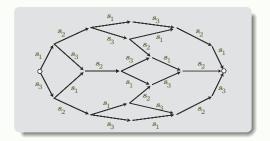
- Facts: May not be possible (no relation s... = t...);
 - May not be unique (several relations s... = t...);
 - May never terminate (when \mathbf{u}, \mathbf{v} have length more than 1);
 - May terminate but boundary words are longer than \mathbf{w}, \mathbf{w}'

(certainly happens if w, w' are not *R*-equivalent).

• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

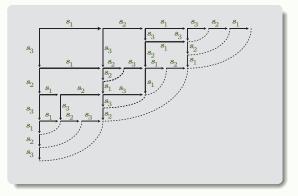
• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right|$ $\left| \begin{array}{c} s_i s_j s_i = s_j s_i s_j \ \text{for} \ |i-j| = 1 \\ s_i s_j = s_j s_i \ \text{for} \ |i-j| \geqslant 2 \end{array} \right\rangle^+$.

Applying the reversing strategy to $s_1s_2s_1s_3s_2s_1$ and $s_3s_2s_3s_1s_2s_3$:



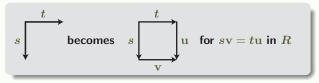
So, on this particular example, the reversing strategy works.

• Another way of drawing the same diagram:

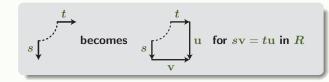


↔ only vertical and horizontal edges,

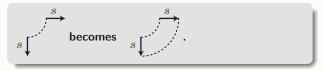
plus dotted arcs connecting vertices that are to be identified in order to get an actual van Kampen diagram. • In this way, a uniform pattern:



• More exactly:

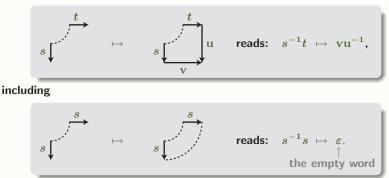


including



< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Introduce two types of letters:
 - S for horizontal edges, S^{-1} for vertical edges;
 - read words the Mull of Kintyre to the Pentland Fifth (SW to NE).
- Basic step:



• Syntactically, "subword reversing": replacing -+ with +-.

- Definition: For w, w' words on $S \cup S^{-1}$, declare w $\bigcap_{R}^{(1)} w'$ if $\exists s, t, u, v \text{ (} sv = tu \text{ lies in } R \text{ and } w = ...s^{-1}t... \text{ and } w' = ...vu^{-1}...\text{).}$ Declare w $\bigcap_{R} w'$ if there exist $w_0, ..., w_p$ s.t. $w_0 = w$, $w_p = w'$, and $w_i \cap_{R}^{(1)} w_{i+1}$ for each i.
- Terminal words: $w'w^{-1}$ with w, w' words on S (no letter s^{-1}).

• Lemma: If
$$\mathbf{w}, \mathbf{w}', \mathbf{v}, \mathbf{v}'$$
 are words on S and $\mathbf{w}^{-1}\mathbf{w}' \curvearrowright_R \mathbf{v}'\mathbf{v}^{-1}$,
i.e., $\mathbf{w} \overbrace{\frown_R}^{\mathbf{w}'} \mathbf{v}$, then $\mathbf{w}\mathbf{v}' \equiv_R^+ \mathbf{w}'\mathbf{v}$.

• In particular, if
$$\mathbf{w}^{-1}\mathbf{w}' \curvearrowright_R \varepsilon$$
, *i.e.*, if $\mathbf{w} \bigtriangledown^{\mathbf{w}'}_R$, then $\mathbf{w} \equiv^+_R \mathbf{w}'$.

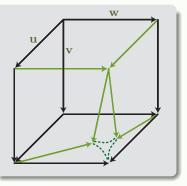
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Conversely, does $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{R} \varepsilon$?

- Remark: Completeness implies the solvability of the word problem only if one knows that reversing always terminates.
- Two questions:
 - How to recognize completeness?
 - What to do with a complete presentation?

• Theorem: (D., '97) Assume that (S, R) is a homogeneous complemented presentation. Then (S, R) is complete if, and only if, for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

- homogeneous: $\exists R$ -invariant $\lambda : S^* \to \mathbb{N} \ (\lambda(s\mathbf{w}) > \lambda(\mathbf{w})).$
- cube condition for a triple of positive words $\mathbf{u}, \mathbf{v}, \mathbf{w}$:



...hence checkable (for one triple)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

$$sa \stackrel{\uparrow}{=} sa'$$
 implies $a = a'$

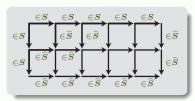
• Proof: Assume $s\mathbf{w} \equiv_{R}^{+} s\mathbf{w}'$. Want to prove $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$. Completeness implies: $(s\mathbf{w})^{-1}(s\mathbf{w}') \curvearrowright_{R} \varepsilon$, i.e., $\mathbf{w}^{-1}s^{-1}s\mathbf{w}' \curvearrowright_{R} \varepsilon$.

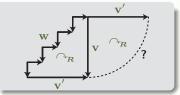


• Proposition: Assume that (S, R) is a complete complemented presentation and there exists a finite set \widehat{S} including S and closed under reversing. Then the word problem of $\langle S | R \rangle^+$ is solvable in quadratic time, and so is that of $\langle S | R \rangle$ if $\langle S | R \rangle^+$ is right-cancellative.

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \ \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} \ (\ \mathbf{w}^{-1} \mathbf{w}' \ \frown_{\mathbf{R}} \ \mathbf{v}' \mathbf{v}^{-1} \)$$

- Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:
- For \mathbf{w}, \mathbf{w}' words on S: $\mathbf{w} \equiv^+_R \mathbf{w}'$ iff $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_R \varepsilon$.
- For w a word on $S \cup S^{-1}$: assume w $\curvearrowright_R v'v^{-1}$; then w $\equiv_R \varepsilon$ iff v $\equiv_R v'$ iff v $\equiv_R^+ v'$ iff $v^{-1}v' \curvearrowright_R \varepsilon$ (double reversing).





◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ○日 ● ◇◇◇

Range

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown; at least: classical and dual presentations of (generalized) braid groups (and all Garside groups) —but certainly more.

- Cancellativity criterion;
- Existence of least common multiples, identification of Garside structures;
- Computation of the greedy normal form;
- (with Y. Lafont) Construction of explicit resolutions (whence homology);
- (with B. Wiest) Solution to the word problem (complexity issues);
- (with M. Autord) Combinatorial distance between the reduced expressions of a permutation.

• Every permutation of $\{1, ..., n\}$ is a product of transpositions:

$$\begin{split} \mathfrak{S}_n = \Big\langle s_1, ..., s_{n-1} \Big| & \begin{array}{c} s_i s_j s_i = s_j s_i s_j \\ s_i s_j = s_j s_i \end{array} & \begin{array}{c} \text{for } |i-j| = 1 \\ \text{for } |i-j| \geqslant 2 \end{array}, s_1^2 = ... = s_{n-1}^2 = 1 \Big\rangle. \\ & \begin{array}{c} \text{of minimal length} \\ \downarrow \end{array} \end{split}$$

• **Proposition** ("Exchange Lemma"): Any two reduced expressions of a permutation are connected by braid relations (no need of using $s_i^2 = 1$).

- Combinatorial distance: d(u, v) = minimal number of braid relations needed to transform u into v.
- Question: Bounds on $d(\mathbf{u}, \mathbf{v})$? (The standard proof of the Exchange Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C, C' s.t. - $d(\mathbf{u}, \mathbf{v}) \leq Cn^4$ holds for every permutation f of $\{1, ..., n\}$ and all reduced expressions \mathbf{u}, \mathbf{v} of f, - $d(\mathbf{u}, \mathbf{v}) \geq C'n^4$ holds for some permutation f of $\{1, ..., n\}$ and some reduced expressions \mathbf{u}, \mathbf{v} of f.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

• Here: lower bounds; more specifically:

 Aim: Recognize whether a given Van Kampen diagram or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

 \bullet Associate a braid diagram with every (reduced) s-word and use the names (or the colors) of the strands that cross

(*i.e.*, use a "position vs. name" duality):

$$s_1s_2s_1 \hspace{0.5cm} \mapsto \hspace{0.5cm} \begin{array}{c} 3 \\ 2 \\ 1 \\ s_1 \\ s_2 \\ s_1 \end{array} \begin{array}{c} \{1,2\}\{1,3\}\{2,3\} \leftarrow \hspace{0.5cm} oldsymbol{N}(\mathbf{w}) \\ s_1 \\ s_2 \\ s_1 \end{array} \begin{array}{c} s_2 \\ s_1 \end{array} \begin{array}{c} \leftarrow \hspace{0.5cm} oldsymbol{w} \end{array}$$

 \rightsquigarrow a sequence $N(\mathbf{w})$ of pairs of integers in $\{1, ..., n\}$.

• For S, S' sequences of pairs of integers in $\{1, ..., n\}$:

-
$$I_3(S,S') = \#$$
 triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S' .

-
$$I_{2,2}(S,S') = \#$$
 pairs of pairs $\{\{p,q\},\{p',q'\}\}$ s.t.

 $\{p,q\}$ and $\{p',q'\}$ appear in different orders in S,S'.

• Lemma: If \mathbf{w},\mathbf{w}' are two reduced expressions of some permutation, then $d(\mathbf{w},\mathbf{w}') \geqslant I_3(N(\mathbf{w}),N(\mathbf{w}')) + I_{2,2}(N(\mathbf{w}),N(\mathbf{w}')).$

 Proof: Each type I braid relation ("hexagon") contributes at most 1 to I₃, each type II braid relation ("square") contributes at most 1 to I_{2,2}. □

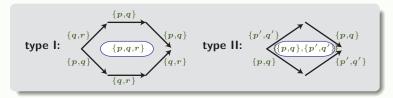
• Example: $\mathbf{w} = s_1 s_2 s_1 s_3 s_2 s_1$, $\mathbf{w}' = s_3 s_2 s_3 s_1 s_2 s_3$. Then $N(\mathbf{w}) = (\{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 4\}, \{2, 4\}, \{3, 4\})$, $N(\mathbf{w}') = (\{3, 4\}, \{2, 4\}, \{2, 3\}, \{1, 4\}, \{1, 3\}, \{1, 2\})$. Hence $d(\mathbf{w}, \mathbf{w}') \ge 4 + 2 = 6$.

• Question (Conjecture?): Is the above inequality an equality?

• Back to van Kampen diagrams with the aim of recognizing optimality.

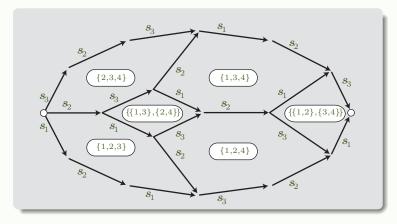
faces = combinatorial distance between bounding words

• Having given names to the generators s_i (= the edges of the diagram), give names to the faces:



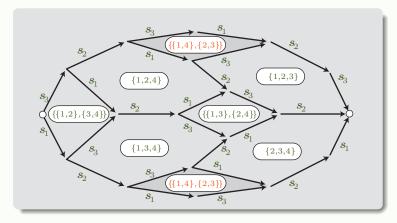
• Criterion 1: A van Kampen diagram in which different faces have different names is optimal.

• Example:



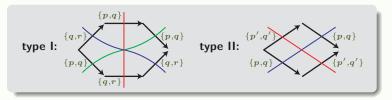
・ロト ・ 直 ト ・ 主 ト ・ 主 ・ つ へ ()・

• Example:

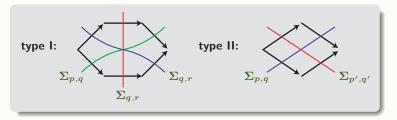


< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ○

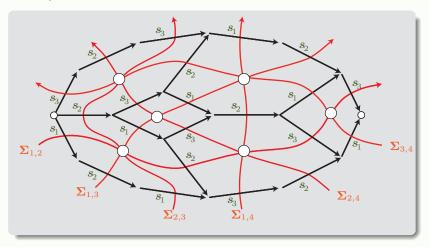
• (Again in a van Kampen diagram) connect the edges with the same name:



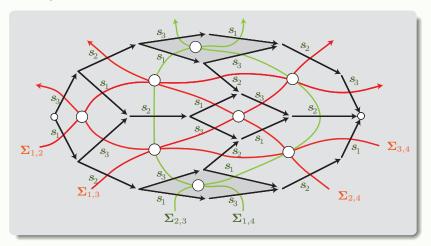
 \rightsquigarrow for each pair $\{p,q\}$, an (oriented) curve that connect all $\{p,q\}$ -edges: the $\{p,q\}$ -separatrix $\Sigma_{p,q}$.



• Example:



• Example:



▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの

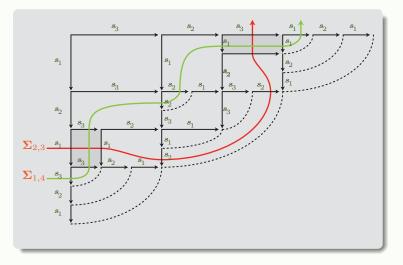
• Criterion 2: A van Kampen diagram in which any two separatrices cross at most once is optimal.

• Question: Is the condition necessary, *i.e.*, do any two separatrices cross at most once in an optimal van Kampen diagram?

 Remark: Compare with "a s-word is reduced iff any two strands in the associated braid diagram cross at most one".

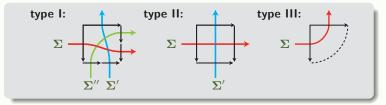
• Applies in particular to reversing diagrams

(viewed as particular van Kampen diagrams):



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

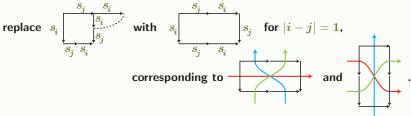
▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの



• Criterion 3: A reversing diagram containing no type III face is optimal.

• Proof: In order that two separatrices cross twice, one has to go from horizontal to vertical.

• An improvement: Same argument when reversing steps are grouped:



• An application:

• Proposition: For each ℓ , there exist length ℓ reduced *s*-words w, w' satisfying $w^{-1}w' \curvearrowright_{\mathcal{R}} v'v^{-1}$ and $d(wv', w'v) \ge \ell^4/8$.

By contrast: for fixed *n*, Garside's theory gives an upper bound in $O(\ell^2)$.

• Two conclusions:

• Even in the simple(?) case of braids and permutations, many open questions.

• Importance of having van Kampen diagrams included in a grid.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへつ

- P. Dehornoy, Deux propriétés des groupes de tresses C. R. Acad. Sci. Paris 315 (1992) 633-638.
- F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20-78 (1969) 235-254.
- K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type Trans. Amer. Math. Soc. 339–2 (1993) 537–551.
- R. Corran, A normal form for a class of monoids including the singular braid monoids J. Algebra 223 (2000) 256–282.
- P. Dehornoy, Complete positive group presentations;

J. Algebra 268 (2003) 156-197.

- P. Dehornoy & Y. Lafont, Homology of Gaussian groups Ann. Inst. Fourier 53-2 (2003) 1001–1052.
- P. Dehornoy & B. Wiest, On word reversing in braid groups Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of a permutation in preparation.

www.math.unicaen.fr/~dehornoy

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>