
・ロト・日本・日本・日本・日本

Patrick Dehornoy

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へぐ

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups, with an application to the combinatorial distance between the reduced expressions of a permutation.

• The general case:

- Subword reversing as a strategy

for constructing van Kampen diagrams

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- The general case:
 - Subword reversing as a strategy
 - for constructing van Kampen diagrams

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- Subword reversing as a syntactic transformation

- The general case:
 - Subword reversing as a strategy
 - for constructing van Kampen diagrams

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Subword reversing as a syntactic transformation
- A cancellativity criterion

- The general case:
 - Subword reversing as a strategy
 - for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation
- A cancellativity criterion
- The case of permutations:
 - bounds for the combinatorial distance

between reduced expressions of a permutation

- The general case:
 - Subword reversing as a strategy
 - for constructing van Kampen diagrams

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Subword reversing as a syntactic transformation
- A cancellativity criterion
- The case of permutations:
 - bounds for the combinatorial distance
 - between reduced expressions of a permutation
 - recognizing the optimality of a van Kampen diagram

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの

all relations of the form u = v with u, v nonempty words on S

• Let (S, R) be a semigroup presentation. Then two words w, w' on S represent the same element of the monoid $\langle S | R \rangle^+$ if and only if there exists an R-derivation from w to w'.

all relations of the form $\mathbf{u} = \mathbf{v}$ with \mathbf{u}, \mathbf{v} nonempty words on S

• Let (S, R) be a semigroup presentation. Then two words w, w' on S represent the same element of the monoid $\langle S | R \rangle^+$ if and only if there exists an R-derivation from w to w'.

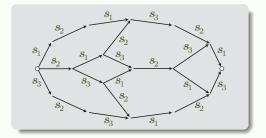
• Proposition (van Kampen, ?): If (S, R) is a semigroup presentation, two words w, w' on S represent the same element of the monoid $\langle S | R \rangle^+$ if and only if there exists a van Kampen diagram for (w, w').

all relations of the form u = v with u, v nonempty words on S

• Let (S, R) be a semigroup presentation. Then two words w, w' on S represent the same element of the monoid $\langle S | R \rangle^+$ if and only if there exists an R-derivation from w to w'.

• Proposition (van Kampen, ?): If (S, R) is a semigroup presentation, two words w, w' on S represent the same element of the monoid $\langle S | R \rangle^+$ if and only if there exists a van Kampen diagram for (w, w').

a tesselated disk with (oriented) edges labeled by elements of S and faces labelled by relations of R, with boundary paths labelled w and w'.


• Example: Let
$$B_n^+ = \begin{pmatrix} s_1, ..., s_{n-1} \\ s_i s_j s_i = s_j s_i s_j & \text{for } |i-j| = 1 \\ s_i s_j = s_j s_i & \text{for } |i-j| \ge 2 \end{pmatrix}^+$$

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの

• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right| \begin{vmatrix} s_i s_j s_i = s_j s_i s_j & \text{for } |i-j| = 1 \\ s_i s_j = s_j s_i & \text{for } |i-j| \ge 2 \end{vmatrix}^+$ (the *n*-strand Artin braid monoid).

• Example: Let
$$B_n^+ = \left\langle s_1, ..., s_{n-1} \right|$$
 $\begin{cases} s_i s_j s_i = s_j s_i s_j & \text{for } |i - j| = 1 \\ s_i s_j = s_j s_i & \text{for } |i - j| \ge 2 \end{cases}$ $\left\rangle^+$ (the *n*-strand Artin braid monoid).

Then

is a van Kampen diagram for $(s_1s_2s_1s_3s_2s_1,s_3s_2s_3s_1s_2s_3).$

• How to build a van Kampen diagram (when it exists)?

• How to build a van Kampen diagram (when it exists)?

 \cong solve the word problem: decide $\mathbf{w}\equiv^+_R\mathbf{w}'$

(日) (日) (日) (日) (日) (日) (日)

• How to build a van Kampen diagram (when it exists)?

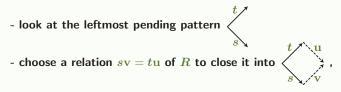
 \cong solve the word problem: decide $\mathbf{w}\equiv^+_R\mathbf{w}'$

• Subword reversing = the left strategy:

• How to build a van Kampen diagram (when it exists)?

 \cong solve the word problem: decide $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$

• Subword reversing = the left strategy: starting with two words \mathbf{w}, \mathbf{w}' ,

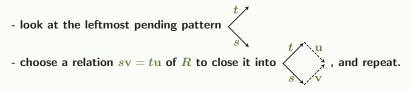

- look at the leftmost pending pattern

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの

• How to build a van Kampen diagram (when it exists)?

 \cong solve the word problem: decide $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$

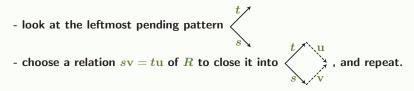
• Subword reversing = the left strategy: starting with two words w, w',



▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの

• How to build a van Kampen diagram (when it exists)?

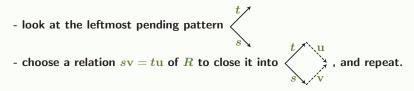
 \cong solve the word problem: decide $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$


• Subword reversing = the left strategy: starting with two words w, w',

• How to build a van Kampen diagram (when it exists)?

 \cong solve the word problem: decide $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$

• Subword reversing = the left strategy: starting with two words w, w',



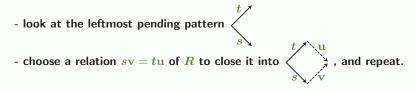
Facts: - May not be possible (no relation s... = t...);

• How to build a van Kampen diagram (when it exists)?

 \cong solve the word problem: decide $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$

• Subword reversing = the left strategy: starting with two words w, w',

Facts: - May not be possible (no relation s... = t...);
May not be unique (several relations s... = t...);

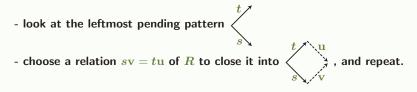

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの

• How to build a van Kampen diagram (when it exists)?

 \cong solve the word problem: decide $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$

• Subword reversing = the left strategy: starting with two words w, w',



- Facts: May not be possible (no relation s... = t...);
 - May not be unique (several relations s... = t...);
 - May never terminate (when \mathbf{u}, \mathbf{v} have length more than 1);

• How to build a van Kampen diagram (when it exists)?

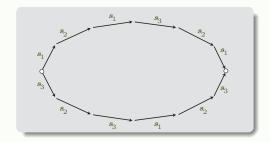
 \cong solve the word problem: decide $\mathbf{w} \equiv_{B}^{+} \mathbf{w}'$

• Subword reversing = the left strategy: starting with two words w, w',

- Facts: May not be possible (no relation s... = t...);
 - May not be unique (several relations s... = t...);
 - May never terminate (when u, v have length more than 1);
 - May terminate but boundary words are longer than \mathbf{w}, \mathbf{w}'

(certainly happens if w, w' are not *R*-equivalent).

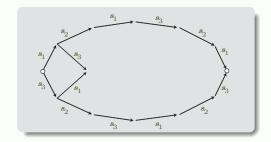
• At least: deterministic whenever R is a complemented presentation:


• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

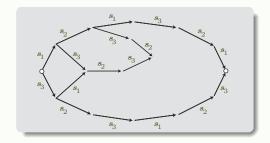
• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right|$ $\left| \begin{array}{c} s_i s_j s_i = s_j s_i s_j \ \text{for} \ |i-j| = 1 \\ s_i s_j = s_j s_i \ \text{for} \ |i-j| \geqslant 2 \end{array} \right\rangle^+$.

• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

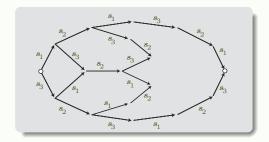

• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right| \left| \begin{array}{c} s_i s_j s_i = s_j s_i s_j \ \text{for} \ |i-j| = 1 \\ s_i s_i = s_i s_i \ \text{for} \ |i-j| \ge 2 \end{array} \right\rangle^+$.

• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

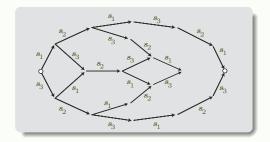
• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right| \left| \begin{array}{c} s_i s_j s_i = s_j s_i s_j \ \text{for} \ |i-j| = 1 \\ s_i s_i = s_i s_i \ \text{for} \ |i-j| \ge 2 \end{array} \right\rangle^+$.


Applying the reversing strategy to $s_1s_2s_1s_3s_2s_1$ and $s_3s_2s_3s_1s_2s_3$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

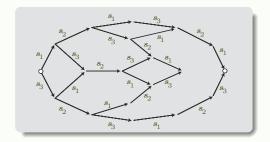

• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right| \left| \begin{array}{c} s_i s_j s_i = s_j s_i s_j \ \text{for} \ |i-j| = 1 \\ s_i s_i = s_i s_i \ \text{for} \ |i-j| \ge 2 \end{array} \right\rangle^+$.


• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right|$ $\begin{cases} s_i s_j s_i = s_j s_i s_j \text{ for } |i-j| = 1 \\ s_i s_j = s_j s_i \end{cases}$ for $|i-j| \ge 2 \end{pmatrix}^+$.

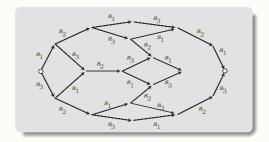
• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.


• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right|$ $\begin{cases} s_i s_j s_i = s_j s_i s_j \text{ for } |i-j| = 1 \\ s_i s_j = s_j s_i \end{cases}$ for $|i-j| \ge 2 \end{pmatrix}^+$.

• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right|$ $\begin{cases} s_i s_j s_i = s_j s_i s_j \text{ for } |i-j| = 1 \\ s_i s_j = s_j s_i \end{cases}$ for $|i-j| \ge 2 \end{pmatrix}^+$.

Applying the reversing strategy to $s_1s_2s_1s_3s_2s_1$ and $s_3s_2s_3s_1s_2s_3$:

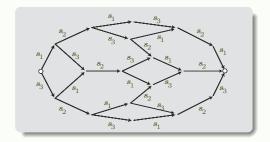


< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right|$ $\begin{cases} s_i s_j s_i = s_j s_i s_j \text{ for } |i-j| = 1 \\ s_i s_j = s_j s_i \end{cases}$ for $|i-j| \ge 2 \end{pmatrix}^+$.

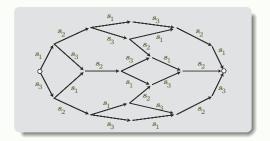
Applying the reversing strategy to $s_1s_2s_1s_3s_2s_1$ and $s_3s_2s_3s_1s_2s_3$:

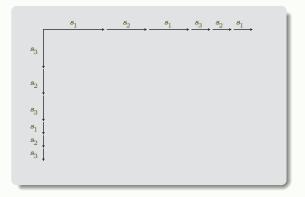


< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

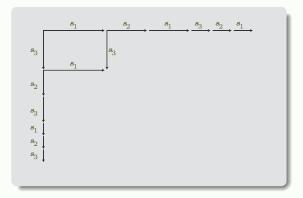
• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right|$ $\begin{cases} s_i s_j s_i = s_j s_i s_j \text{ for } |i-j| = 1 \\ s_i s_j = s_j s_i \end{cases}$ for $|i-j| \ge 2 \end{pmatrix}^+$.


Applying the reversing strategy to $s_1s_2s_1s_3s_2s_1$ and $s_3s_2s_3s_1s_2s_3$:

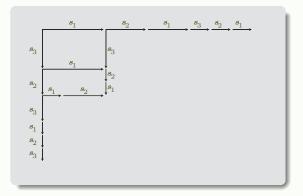

• At least: deterministic whenever R is a complemented presentation: for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

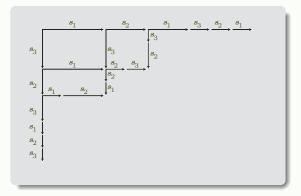
• Example: Let $B_n^+ = \left\langle s_1, ..., s_{n-1} \right|$ $\begin{cases} s_i s_j s_i = s_j s_i s_j \text{ for } |i-j| = 1 \\ s_i s_j = s_j s_i \end{cases}$ for $|i-j| \ge 2 \end{pmatrix}^+$.

Applying the reversing strategy to $s_1s_2s_1s_3s_2s_1$ and $s_3s_2s_3s_1s_2s_3$:

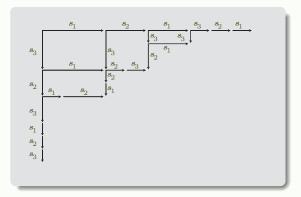


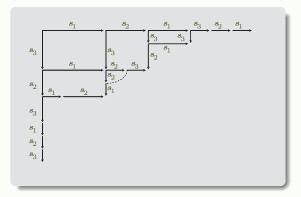
So, on this particular example, the reversing strategy works.

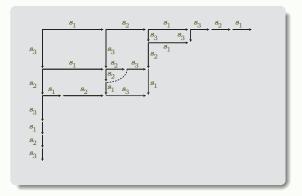



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

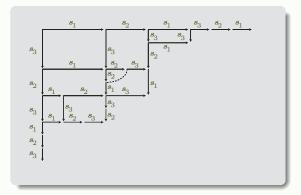
• Another way of drawing the same diagram:

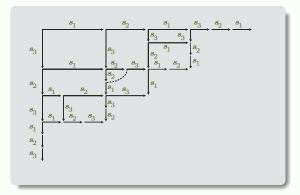


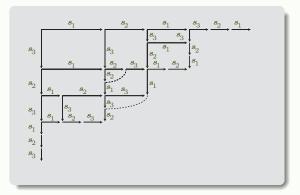

• Another way of drawing the same diagram:

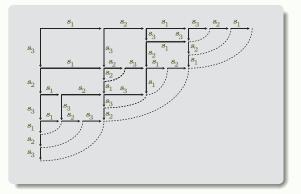


▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - のへで

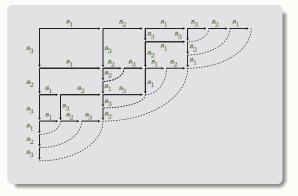



• Another way of drawing the same diagram:

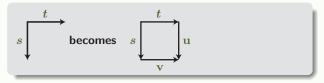


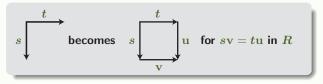


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



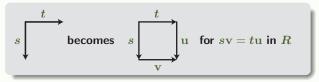
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで


<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



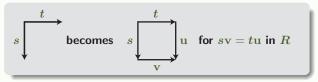
→ only vertical and horizontal edges,

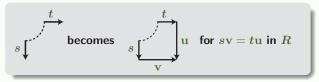
plus dotted arcs connecting vertices that are to be identified in order to get an actual van Kampen diagram.

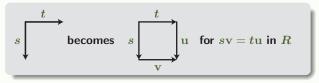


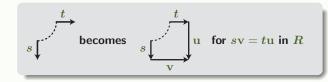


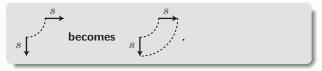
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで


• In this way, a uniform pattern:


• More exactly:


• In this way, a uniform pattern:


• More exactly:

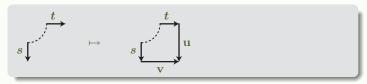

• In this way, a uniform pattern:

• More exactly:

including

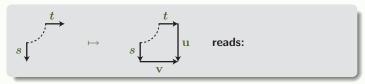
• Introduce two types of letters:

- Introduce two types of letters:
 - \boldsymbol{S} for horizontal edges,

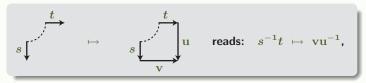

- Introduce two types of letters:
 - S for horizontal edges, S^{-1} for vertical edges;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

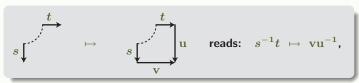
- Introduce two types of letters:
 - S for horizontal edges, S^{-1} for vertical edges;
 - read words the Mull of Kintyre to the Pentland Fifth (SW to NE).


▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

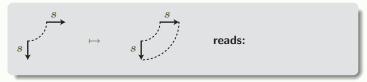
- Introduce two types of letters:
 - S for horizontal edges, S^{-1} for vertical edges;
 - read words the Mull of Kintyre to the Pentland Fifth (SW to NE).
- Basic step:


▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

- Introduce two types of letters:
 - S for horizontal edges, S^{-1} for vertical edges;
 - read words the Mull of Kintyre to the Pentland Fifth (SW to NE).
- Basic step:

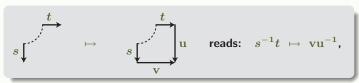

(ロ) (日) (日) (日) (日) (日)

- Introduce two types of letters:
 - S for horizontal edges, S^{-1} for vertical edges;
 - read words the Mull of Kintyre to the Pentland Fifth (SW to NE).
- Basic step:

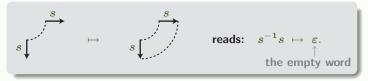


- 日本 - 4 日本 - 4 日本 - 日本

- Introduce two types of letters:
 - S for horizontal edges, S^{-1} for vertical edges;
 - read words the Mull of Kintyre to the Pentland Fifth (SW to NE).
- Basic step:

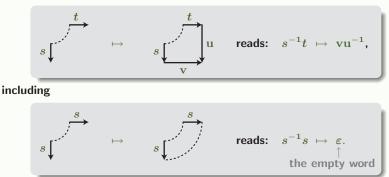


including



▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

- Introduce two types of letters:
 - S for horizontal edges, S^{-1} for vertical edges;
 - read words the Mull of Kintyre to the Pentland Fifth (SW to NE).
- Basic step:



including

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Introduce two types of letters:
 - S for horizontal edges, S^{-1} for vertical edges;
 - read words the Mull of Kintyre to the Pentland Fifth (SW to NE).
- Basic step:

• Syntactically, "subword reversing": replacing -+ with +-.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Definition: For \mathbf{w}, \mathbf{w}' words on $S \cup S^{-1}$, declare $\mathbf{w} \curvearrowright_{_{\!\!\boldsymbol{B}}}^{(1)} \mathbf{w}'$ if

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Definition: For w, w' words on $S \cup S^{-1}$, declare w $\frown_{R}^{(1)}$ w' if $\exists s, t, u, v \text{ (sv } = tu \text{ lies in } R$

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

• Definition: For w, w' words on $S \cup S^{-1}$, declare w $\bigwedge_R^{(1)} w'$ if $\exists s, t, u, v \text{ (sv = }tu \text{ lies in } R \text{ and } w = ...s^{-1}t... \text{ and } w' = ...vu^{-1}...\text{).}$

• Definition: For w, w' words on $S \cup S^{-1}$, declare w $\curvearrowright_{R}^{(1)}$ w' if $\exists s, t, u, v \text{ (} sv = tu \text{ lies in } R \text{ and } w = ...s^{-1}t... \text{ and } w' = ...vu^{-1}...\text{).}$ Declare w \curvearrowright_{R} w' if there exist w₀, ..., w_p s.t.

• Definition: For w, w' words on $S \cup S^{-1}$, declare w $\curvearrowright_{R}^{(1)}$ w' if $\exists s, t, u, v \text{ (} sv = tu \text{ lies in } R \text{ and } w = ...s^{-1}t... \text{ and } w' = ...vu^{-1}...\text{).}$ Declare w $\curvearrowright_{R} w'$ if there exist $w_0, ..., w_p$ s.t. $w_0 = w$, $w_p = w'$, and $w_i ~ \curvearrowright_{R}^{(1)} w_{i+1}$ for each i.

• Definition: For w, w' words on $S \cup S^{-1}$, declare w $\curvearrowright_R^{(1)} w'$ if $\exists s, t, u, v \text{ (} sv = tu \text{ lies in } R \text{ and } w = ...s^{-1}t... \text{ and } w' = ...vu^{-1}...\text{).}$ Declare w $\curvearrowright_R w'$ if there exist $w_0, ..., w_p$ s.t. $w_0 = w$, $w_p = w'$, and $w_i ~ \curvearrowright_R^{(1)} w_{i+1}$ for each i.

• Terminal words: $w'w^{-1}$ with w, w' words on S (no letter s^{-1}).

- Definition: For w, w' words on $S \cup S^{-1}$, declare w $\bigcap_{R}^{(1)} w'$ if $\exists s, t, u, v \text{ (} sv = tu \text{ lies in } R \text{ and } w = ...s^{-1}t... \text{ and } w' = ...vu^{-1}...\text{).}$ Declare w $\bigcap_{R} w'$ if there exist $w_0, ..., w_p$ s.t. $w_0 = w$, $w_p = w'$, and $w_i \cap_{R}^{(1)} w_{i+1}$ for each i.
- Terminal words: $w'w^{-1}$ with w, w' words on S (no letter s^{-1}).

• Lemma: If
$$w, w', v, v'$$
 are words on S and $w^{-1}w' \curvearrowright_R v'v^{-1}$,
i.e., $w \underbrace{\bigtriangledown_R'}_{v'} v$,

- Definition: For w, w' words on $S \cup S^{-1}$, declare w $\bigcap_{R}^{(1)} w'$ if $\exists s, t, u, v \text{ (} sv = tu \text{ lies in } R \text{ and } w = ...s^{-1}t... \text{ and } w' = ...vu^{-1}...\text{).}$ Declare w $\bigcap_{R} w'$ if there exist $w_0, ..., w_p$ s.t. $w_0 = w$, $w_p = w'$, and $w_i \cap_{R}^{(1)} w_{i+1}$ for each i.
- Terminal words: $w'w^{-1}$ with w, w' words on S (no letter s^{-1}).

• Lemma: If
$$\mathbf{w}, \mathbf{w}', \mathbf{v}, \mathbf{v}'$$
 are words on S and $\mathbf{w}^{-1}\mathbf{w}' \curvearrowright_R \mathbf{v}' \mathbf{v}^{-1}$,
i.e., $\mathbf{w} \overbrace{\frown_R}^{\mathbf{w}'} \mathbf{v}$, then $\mathbf{w}\mathbf{v}' \equiv_R^+ \mathbf{w}'\mathbf{v}$.

- Definition: For w, w' words on $S \cup S^{-1}$, declare w $\bigcap_{R}^{(1)} w'$ if $\exists s, t, u, v \text{ (} sv = tu \text{ lies in } R \text{ and } w = ...s^{-1}t... \text{ and } w' = ...vu^{-1}...\text{).}$ Declare w $\bigcap_{R} w'$ if there exist $w_0, ..., w_p$ s.t. $w_0 = w$, $w_p = w'$, and $w_i \cap_{R}^{(1)} w_{i+1}$ for each i.
- Terminal words: $w'w^{-1}$ with w, w' words on S (no letter s^{-1}).

• Lemma: If
$$\mathbf{w}, \mathbf{w}', \mathbf{v}, \mathbf{v}'$$
 are words on S and $\mathbf{w}^{-1}\mathbf{w}' \frown_R \mathbf{v}' \mathbf{v}^{-1}$,
i.e., $\mathbf{w} \overbrace{\frown_R}^{\mathbf{w}'} \mathbf{v}$, then $\mathbf{w}\mathbf{v}' \equiv_R^+ \mathbf{w}'\mathbf{v}$.

• In particular, if
$$\mathbf{w}^{-1}\mathbf{w}' \sim_R \varepsilon$$
, *i.e.*, if $\mathbf{w} \bigtriangledown \sim_R \prime$,

- Definition: For w, w' words on $S \cup S^{-1}$, declare w $\bigcap_{R}^{(1)} w'$ if $\exists s, t, u, v \text{ (} sv = tu \text{ lies in } R \text{ and } w = ...s^{-1}t... \text{ and } w' = ...vu^{-1}...\text{).}$ Declare w $\bigcap_{R} w'$ if there exist $w_0, ..., w_p$ s.t. $w_0 = w$, $w_p = w'$, and $w_i \cap_{R}^{(1)} w_{i+1}$ for each i.
- Terminal words: $w'w^{-1}$ with w, w' words on S (no letter s^{-1}).

• Lemma: If
$$\mathbf{w}, \mathbf{w}', \mathbf{v}, \mathbf{v}'$$
 are words on S and $\mathbf{w}^{-1}\mathbf{w}' \curvearrowright_R \mathbf{v}'\mathbf{v}^{-1}$,
i.e., $\mathbf{w} \underbrace{\bigtriangledown_R}' \mathbf{v}'$, then $\mathbf{w}\mathbf{v}' \equiv_R^+ \mathbf{w}'\mathbf{v}$.

• In particular, if
$$w^{-1}w' \curvearrowright_R \varepsilon$$
, *i.e.*, if $w \bigtriangledown^{W'}$, then $w \equiv^+_R w'$.

- Definition: For w, w' words on $S \cup S^{-1}$, declare w $\bigcap_{R}^{(1)} w'$ if $\exists s, t, u, v \text{ (} sv = tu \text{ lies in } R \text{ and } w = ...s^{-1}t... \text{ and } w' = ...vu^{-1}...\text{).}$ Declare w $\bigcap_{R} w'$ if there exist $w_0, ..., w_p$ s.t. $w_0 = w$, $w_p = w'$, and $w_i \cap_{R}^{(1)} w_{i+1}$ for each i.
- Terminal words: $w'w^{-1}$ with w, w' words on S (no letter s^{-1}).

• Lemma: If
$$\mathbf{w}, \mathbf{w}', \mathbf{v}, \mathbf{v}'$$
 are words on S and $\mathbf{w}^{-1}\mathbf{w}' \curvearrowright_R \mathbf{v}'\mathbf{v}^{-1}$,
i.e., $\mathbf{w} \overbrace{\frown_R}^{\mathbf{w}'} \mathbf{v}$, then $\mathbf{w}\mathbf{v}' \equiv_R^+ \mathbf{w}'\mathbf{v}$.

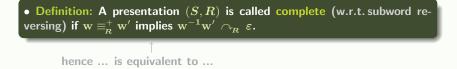
• In particular, if
$$\mathbf{w}^{-1}\mathbf{w}' \curvearrowright_R \varepsilon$$
, *i.e.*, if $\mathbf{w} \bigtriangledown^{\mathbf{w}'}_R$, then $\mathbf{w} \equiv^+_R \mathbf{w}'$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Conversely, does $\mathbf{w} \equiv_{_{\!\!R}}^{_+} \mathbf{w}'$ implies $\mathbf{w}^{-1}\mathbf{w}' \curvearrowright_{_{\!\!R}} \varepsilon$?

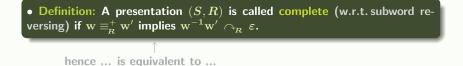
 \bullet Definition: A presentation $({\boldsymbol{S}},{\boldsymbol{R}})$ is called complete (w.r.t. subword reversing)


- Conversely, does $\mathbf{w} \equiv_{_{\!\!R}}^{_+} \mathbf{w}'$ implies $\mathbf{w}^{-1}\mathbf{w}' \curvearrowright_{_{\!\!R}} \varepsilon$?
- Definition: A presentation (S, R) is called complete (w.r.t. subword reversing) if $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{R} \varepsilon$.

• Conversely, does $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{R} \varepsilon$?

• Definition: A presentation (S, R) is called complete (w.r.t. subword reversing) if $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{R} \varepsilon$.

hence ... is equivalent to ...


• Conversely, does $\mathbf{w} \equiv_{B}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{B} \varepsilon$?

• Remark: Completeness implies the solvability of the word problem

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの

• Conversely, does $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{R} \varepsilon$?

• Remark: Completeness implies the solvability of the word problem only if one knows that reversing always terminates.

• Conversely, does $\mathbf{w} \equiv_{B}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{B} \varepsilon$?

• Definition: A presentation (S, R) is called complete (w.r.t. subword reversing) if $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1}\mathbf{w}' \sim_{R} \varepsilon$. \uparrow hence ... is equivalent to ...

- Remark: Completeness implies the solvability of the word problem only if one knows that reversing always terminates.
- Two questions:

• Conversely, does $\mathbf{w} \equiv_{B}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{B} \varepsilon$?

• Definition: A presentation (S, R) is called complete (w.r.t. subword reversing) if $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1}\mathbf{w}' \sim_{R} \varepsilon$. \uparrow hence ... is equivalent to ...

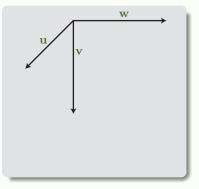
- Remark: Completeness implies the solvability of the word problem only if one knows that reversing always terminates.
- Two questions:
 - How to recognize completeness?

• Conversely, does $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{R} \varepsilon$?

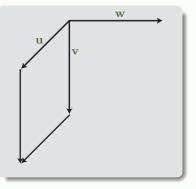
• Definition: A presentation (S, R) is called complete (w.r.t. subword reversing) if $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$ implies $\mathbf{w}^{-1}\mathbf{w}' \curvearrowright_{R} \varepsilon$.

- Remark: Completeness implies the solvability of the word problem only if one knows that reversing always terminates.
- Two questions:
 - How to recognize completeness?
 - What to do with a complete presentation?

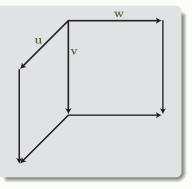
 \bullet Theorem: (D., '97) Assume that $({\boldsymbol{S}},{\boldsymbol{R}})$ is a homogeneous complemented presentation.

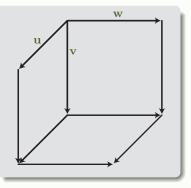

 \bullet Theorem: (D., '97) Assume that (S,R) is a homogeneous complemented presentation. Then (S,R) is complete if, and only if,

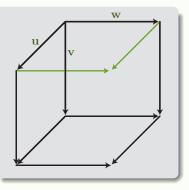
• homogeneous:


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

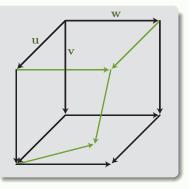
- homogeneous: $\exists R$ -invariant $\lambda : S^* \to \mathbb{N} \ (\lambda(s\mathbf{w}) > \lambda(\mathbf{w})).$
- cube condition for a triple of positive words $\mathbf{u}, \mathbf{v}, \mathbf{w}$:


- homogeneous: $\exists R$ -invariant $\lambda : S^* \to \mathbb{N} \ (\lambda(s\mathbf{w}) > \lambda(\mathbf{w})).$
- cube condition for a triple of positive words $\mathbf{u}, \mathbf{v}, \mathbf{w}$:

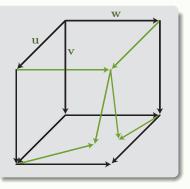

- homogeneous: $\exists R$ -invariant $\lambda : S^* \to \mathbb{N} \ (\lambda(s\mathbf{w}) > \lambda(\mathbf{w})).$
- cube condition for a triple of positive words $\mathbf{u}, \mathbf{v}, \mathbf{w}$:


- homogeneous: $\exists R$ -invariant $\lambda : S^* \to \mathbb{N} \ (\lambda(s\mathbf{w}) > \lambda(\mathbf{w})).$
- cube condition for a triple of positive words $\mathbf{u}, \mathbf{v}, \mathbf{w}$:

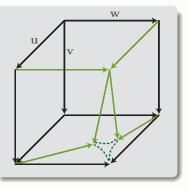
- homogeneous: $\exists R$ -invariant $\lambda : S^* \to \mathbb{N} \ (\lambda(s\mathbf{w}) > \lambda(\mathbf{w})).$
- cube condition for a triple of positive words u, v, w:



- homogeneous: $\exists R$ -invariant $\lambda : S^* \to \mathbb{N} \ (\lambda(s\mathbf{w}) > \lambda(\mathbf{w})).$
- cube condition for a triple of positive words $\mathbf{u}, \mathbf{v}, \mathbf{w}$:

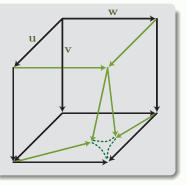

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 - のへぐ

- homogeneous: $\exists R$ -invariant $\lambda : S^* \to \mathbb{N} \ (\lambda(s\mathbf{w}) > \lambda(\mathbf{w})).$
- cube condition for a triple of positive words $\mathbf{u}, \mathbf{v}, \mathbf{w}$:



◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

- homogeneous: $\exists R$ -invariant $\lambda : S^* \to \mathbb{N} \ (\lambda(s\mathbf{w}) > \lambda(\mathbf{w})).$
- cube condition for a triple of positive words $\mathbf{u}, \mathbf{v}, \mathbf{w}$:



- homogeneous: $\exists R$ -invariant $\lambda : S^* \to \mathbb{N} \ (\lambda(s\mathbf{w}) > \lambda(\mathbf{w})).$
- cube condition for a triple of positive words u, v, w:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()・

- homogeneous: $\exists R$ -invariant $\lambda : S^* \to \mathbb{N} \ (\lambda(s\mathbf{w}) > \lambda(\mathbf{w})).$
- cube condition for a triple of positive words $\mathbf{u}, \mathbf{v}, \mathbf{w}$:

...hence checkable (for one triple)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

$$sa \stackrel{\uparrow}{=} sa'$$
 implies $a = a'$

• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

$$sa \stackrel{\uparrow}{=} sa'$$
 implies $a = a'$

• Proof: Assume $s\mathbf{w} \equiv_{R}^{+} s\mathbf{w}'$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

$$sa = sa'$$
 implies $a = a'$

• Proof: Assume $sw \equiv_{B}^{+} sw'$. Want to prove $w \equiv_{B}^{+} w'$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

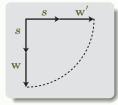
• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

$$sa = sa'$$
 implies $a = a'$

• Proof: Assume $s\mathbf{w} \equiv_R^+ s\mathbf{w}'$. Want to prove $\mathbf{w} \equiv_R^+ \mathbf{w}'$. Completeness implies: $(s\mathbf{w})^{-1}(s\mathbf{w}') \curvearrowright_R \varepsilon$,

• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

$$sa \stackrel{\uparrow}{=} sa'$$
 implies $a = a'$

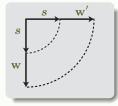

• Proof: Assume $s \mathbf{w} \equiv_{R}^{+} s \mathbf{w}'$. Want to prove $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$. Completeness implies: $(s \mathbf{w})^{-1} (s \mathbf{w}') \curvearrowright_{R} \varepsilon$, i.e., $\mathbf{w}^{-1} s^{-1} s \mathbf{w}' \curvearrowright_{R} \varepsilon$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

$$sa \stackrel{\uparrow}{=} sa'$$
 implies $a = a'$

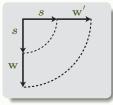
• Proof: Assume $s\mathbf{w} \equiv_{R}^{+} s\mathbf{w}'$. Want to prove $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$. Completeness implies: $(s\mathbf{w})^{-1}(s\mathbf{w}') \curvearrowright_{R} \varepsilon$, i.e., $\mathbf{w}^{-1}s^{-1}s\mathbf{w}' \curvearrowright_{R} \varepsilon$.



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

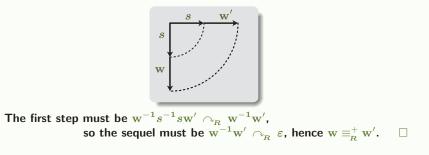
$$sa \stackrel{\uparrow}{=} sa'$$
 implies $a = a'$


• Proof: Assume $s\mathbf{w} \equiv_{R}^{+} s\mathbf{w}'$. Want to prove $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$. Completeness implies: $(s\mathbf{w})^{-1}(s\mathbf{w}') \curvearrowright_{R} \varepsilon$, i.e., $\mathbf{w}^{-1}s^{-1}s\mathbf{w}' \curvearrowright_{R} \varepsilon$.

• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

$$sa \stackrel{\uparrow}{=} sa'$$
 implies $a = a'$

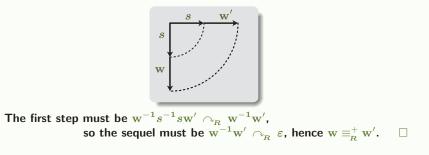
• Proof: Assume $s\mathbf{w} \equiv_{R}^{+} s\mathbf{w}'$. Want to prove $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$. Completeness implies: $(s\mathbf{w})^{-1}(s\mathbf{w}') \curvearrowright_{R} \varepsilon$, i.e., $\mathbf{w}^{-1}s^{-1}s\mathbf{w}' \curvearrowright_{R} \varepsilon$.


The first step must be $\mathbf{w}^{-1}s^{-1}s\mathbf{w}' \, \curvearrowright_{\!_R} \, \mathbf{w}^{-1}\mathbf{w}'$,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ●

• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

$$sa \stackrel{\uparrow}{=} sa'$$
 implies $a = a'$


• Proof: Assume $s\mathbf{w} \equiv_{R}^{+} s\mathbf{w}'$. Want to prove $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$. Completeness implies: $(s\mathbf{w})^{-1}(s\mathbf{w}') \curvearrowright_{R} \varepsilon$, i.e., $\mathbf{w}^{-1}s^{-1}s\mathbf{w}' \curvearrowright_{R} \varepsilon$.

• Proposition: Assume that (S, R) is a complete complemented presentation. Then the monoid $\langle S | R \rangle^+$ is left-cancellative.

$$sa \stackrel{\uparrow}{=} sa'$$
 implies $a = a'$

• Proof: Assume $s\mathbf{w} \equiv_{R}^{+} s\mathbf{w}'$. Want to prove $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$. Completeness implies: $(s\mathbf{w})^{-1}(s\mathbf{w}') \curvearrowright_{R} \varepsilon$, i.e., $\mathbf{w}^{-1}s^{-1}s\mathbf{w}' \curvearrowright_{R} \varepsilon$.

Application to the word problem(s)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

 \bullet Proposition: Assume that $({\boldsymbol{S}},{\boldsymbol{R}})$ is a complete complemented presentation

• Proposition: Assume that (S, R) is a complete complemented presentation and there exists a finite set \hat{S} including S and closed under reversing.

• Proposition: Assume that (S, R) is a complete complemented presentation and there exists a finite set \widehat{S} including S and closed under reversing. Then the word problem of $\langle S | R \rangle^+$ is solvable in quadratic time,

 $\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \ \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} \ (\mathbf{w}^{-1} \mathbf{w}' \frown_{\mathcal{R}} \mathbf{v}' \mathbf{v}^{-1})$

• Proposition: Assume that (S, R) is a complete complemented presentation and there exists a finite set \widehat{S} including S and closed under reversing. Then the word problem of $\langle S | R \rangle^+$ is solvable in quadratic time, and so is that of $\langle S | R \rangle$ if $\langle S | R \rangle^+$ is right-cancellative.

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} (\mathbf{w}^{-1} \mathbf{w}' \frown_{R} \mathbf{v}' \mathbf{v}^{-1})$$

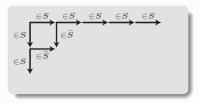
• Proof: Reversing terminates in quadratic time:

• Proposition: Assume that (S, R) is a complete complemented presentation and there exists a finite set \widehat{S} including S and closed under reversing. Then the word problem of $\langle S | R \rangle^+$ is solvable in quadratic time, and so is that of $\langle S | R \rangle$ if $\langle S | R \rangle^+$ is right-cancellative.

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} (\mathbf{w}^{-1} \mathbf{w}' \frown_{R} \mathbf{v}' \mathbf{v}^{-1})$$

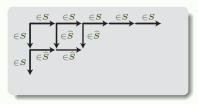
• Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} \ (\mathbf{w}^{-1} \mathbf{w}' \frown_R \mathbf{v}' \mathbf{v}^{-1})$$

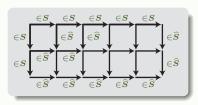

• Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} (\mathbf{w}^{-1} \mathbf{w}' \frown_{R} \mathbf{v}' \mathbf{v}^{-1})$$

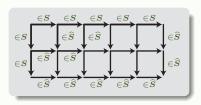

• Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・


$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \ \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} \ (\mathbf{w}^{-1} \mathbf{w}' \frown_{R} \mathbf{v}' \mathbf{v}^{-1})$$

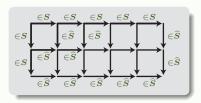
• Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \ \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} \ (\mathbf{w}^{-1} \mathbf{w}' \frown_{R} \mathbf{v}' \mathbf{v}^{-1})$$

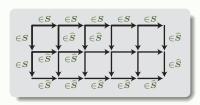

• Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

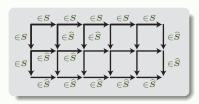
$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} (\mathbf{w}^{-1} \mathbf{w}' \frown_{R} \mathbf{v}' \mathbf{v}^{-1})$$


- Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:
- For \mathbf{w}, \mathbf{w}' words on S:

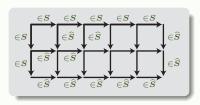
$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} (\mathbf{w}^{-1} \mathbf{w}' \frown_{R} \mathbf{v}' \mathbf{v}^{-1})$$


• Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:

• For
$$\mathbf{w}, \mathbf{w}'$$
 words on S :
 $\mathbf{w} \equiv_{R}^{+} \mathbf{w}'$ iff $\mathbf{w}^{-1}\mathbf{w}' \curvearrowright_{R} \varepsilon$.


$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \ \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} \ (\ \mathbf{w}^{-1} \mathbf{w}' \ \frown_{\mathbf{R}} \ \mathbf{v}' \mathbf{v}^{-1} \)$$

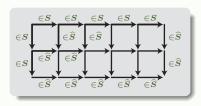
- Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:
- For \mathbf{w}, \mathbf{w}' words on S: $\mathbf{w} \equiv^+_R \mathbf{w}'$ iff $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_R \varepsilon$.
- ullet For w a word on $S\cup S^{-1}$:


$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} (\mathbf{w}^{-1} \mathbf{w}' \frown_{R} \mathbf{v}' \mathbf{v}^{-1})$$

- Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:
- For \mathbf{w}, \mathbf{w}' words on S: $\mathbf{w} \equiv^+_R \mathbf{w}'$ iff $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_R \varepsilon$.
- For w a word on $S\cup S^{-1}$: assume $w\, \curvearrowright_{_{\!\! R}}\, v'v^{-1};$

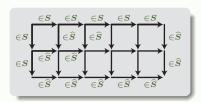

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} (\mathbf{w}^{-1} \mathbf{w}' \frown_{R} \mathbf{v}' \mathbf{v}^{-1})$$

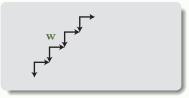
- Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:
- For \mathbf{w}, \mathbf{w}' words on S: $\mathbf{w} \equiv^+_R \mathbf{w}'$ iff $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_R \varepsilon$.
- For w a word on $S \cup S^{-1}$: assume w $\curvearrowright_R v'v^{-1}$; then w $\equiv_R \varepsilon$ iff $v \equiv_R v'$


$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} (\mathbf{w}^{-1} \mathbf{w}' \frown_{R} \mathbf{v}' \mathbf{v}^{-1})$$

- Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:
- For \mathbf{w}, \mathbf{w}' words on S: $\mathbf{w} \equiv^+_{\!\!R} \mathbf{w}'$ iff $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{\!\!R} \varepsilon$.
- For w a word on $S \cup S^{-1}$: assume w $\curvearrowright_R v'v^{-1}$; then w $\equiv_R \varepsilon$ iff $v \equiv_R v'$ iff $v \equiv_R^+ v'$

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \ \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} \ (\ \mathbf{w}^{-1} \mathbf{w}' \ \frown_{\mathbf{R}} \ \mathbf{v}' \mathbf{v}^{-1} \)$$

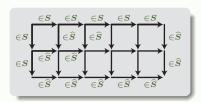

- Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:
- For \mathbf{w}, \mathbf{w}' words on S: $\mathbf{w} \equiv^+_{\!\!R} \mathbf{w}'$ iff $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{\!\!R} \varepsilon$.
- For w a word on $S \cup S^{-1}$: assume w $\curvearrowright_R v'v^{-1}$; then w $\equiv_R \varepsilon$ iff v $\equiv_R v'$ iff v $\equiv_R^+ v'$ iff $v^{-1}v' \curvearrowright_R \varepsilon$ (double reversing).

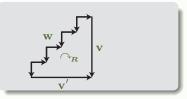


・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \ \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} \ (\ \mathbf{w}^{-1} \mathbf{w}' \ \frown_{\mathbf{R}} \ \mathbf{v}' \mathbf{v}^{-1} \)$$

- Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:
- For \mathbf{w}, \mathbf{w}' words on S: $\mathbf{w} \equiv^+_{\!\!R} \mathbf{w}'$ iff $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{\!\!R} \varepsilon$.
- For w a word on $S \cup S^{-1}$: assume w $\curvearrowright_R v'v^{-1}$; then w $\equiv_R \varepsilon$ iff v $\equiv_R v'$ iff v $\equiv_R^+ v'$ iff $v^{-1}v' \curvearrowright_R \varepsilon$ (double reversing).

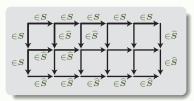


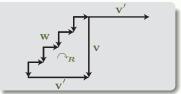


▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \ \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} \ (\ \mathbf{w}^{-1} \mathbf{w}' \ \frown_{\mathbf{R}} \ \mathbf{v}' \mathbf{v}^{-1} \)$$

- Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:
- For \mathbf{w}, \mathbf{w}' words on S: $\mathbf{w} \equiv^+_{\!\!R} \mathbf{w}'$ iff $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{\!\!R} \varepsilon$.
- For w a word on $S \cup S^{-1}$: assume w $\curvearrowright_R v'v^{-1}$; then w $\equiv_R \varepsilon$ iff v $\equiv_R v'$ iff v $\equiv_R^+ v'$ iff $v^{-1}v' \curvearrowright_R \varepsilon$ (double reversing).

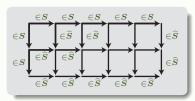


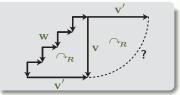


◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ○日 ● ◇◇◇

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \ \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} \ (\mathbf{w}^{-1} \mathbf{w}' \frown_{R} \mathbf{v}' \mathbf{v}^{-1})$$

- Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:
- For \mathbf{w}, \mathbf{w}' words on S: $\mathbf{w} \equiv^+_{\!\!R} \mathbf{w}'$ iff $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{\!\!R} \varepsilon$.
- For w a word on $S \cup S^{-1}$: assume w $\curvearrowright_R \mathbf{v}' \mathbf{v}^{-1}$; then w $\equiv_R \varepsilon$ iff $\mathbf{v} \equiv_R \mathbf{v}'$ iff $\mathbf{v} \equiv_R^+ \mathbf{v}'$ iff $\mathbf{v}^{-1} \mathbf{v}' \curvearrowright_R \varepsilon$ (double reversing).





◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ○日 ● ◇◇◇

$$\forall \mathbf{w}, \mathbf{w}' \in \widehat{S} \ \exists \mathbf{v}, \mathbf{v}' \in \widehat{S} \ (\ \mathbf{w}^{-1} \mathbf{w}' \ \frown_{\mathbf{R}} \ \mathbf{v}' \mathbf{v}^{-1} \)$$

- Proof: Reversing terminates in quadratic time: construct an \widehat{S} -labeled grid:
- For \mathbf{w}, \mathbf{w}' words on S: $\mathbf{w} \equiv^+_{\!_R} \mathbf{w}'$ iff $\mathbf{w}^{-1} \mathbf{w}' \curvearrowright_{\!_R} \varepsilon$.
- For w a word on $S \cup S^{-1}$: assume w $\curvearrowright_R v'v^{-1}$; then w $\equiv_R \varepsilon$ iff v $\equiv_R v'$ iff v $\equiv_R^+ v'$ iff $v^{-1}v' \curvearrowright_R \varepsilon$ (double reversing).

Subword reversing as a tool

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Range

• For semigroups: in principle, all are eligible:

Range

• For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown;

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

Range

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown; at least: classical and dual presentations of (generalized) braid groups

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Range

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown; at least: classical and dual presentations of (generalized) braid groups (and all Garside groups)

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

Range

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown; at least: classical and dual presentations of (generalized) braid groups (and all Garside groups) —but certainly more.

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown; at least: classical and dual presentations of (generalized) braid groups (and all Garside groups) —but certainly more.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Range

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown; at least: classical and dual presentations of (generalized) braid groups (and all Garside groups) —but certainly more.

• Cancellativity criterion;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown; at least: classical and dual presentations of (generalized) braid groups (and all Garside groups) —but certainly more.

- Cancellativity criterion;
- Existence of least common multiples, identification of Garside structures;

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown; at least: classical and dual presentations of (generalized) braid groups (and all Garside groups) —but certainly more.

- Cancellativity criterion;
- Existence of least common multiples, identification of Garside structures;
- Computation of the greedy normal form;

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown; at least: classical and dual presentations of (generalized) braid groups (and all Garside groups) —but certainly more.

- Cancellativity criterion;
- Existence of least common multiples, identification of Garside structures;
- Computation of the greedy normal form;
- (with Y. Lafont) Construction of explicit resolutions (whence homology);

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown; at least: classical and dual presentations of (generalized) braid groups (and all Garside groups) —but certainly more.

- Cancellativity criterion;
- Existence of least common multiples, identification of Garside structures;
- Computation of the greedy normal form;
- (with Y. Lafont) Construction of explicit resolutions (whence homology);
- (with B. Wiest) Solution to the word problem (complexity issues);

- For semigroups: in principle, all are eligible: completion procedure (when the cube condition fails).
- For groups: unknown; at least: classical and dual presentations of (generalized) braid groups (and all Garside groups) —but certainly more.

- Cancellativity criterion;
- Existence of least common multiples, identification of Garside structures;
- Computation of the greedy normal form;
- (with Y. Lafont) Construction of explicit resolutions (whence homology);
- (with B. Wiest) Solution to the word problem (complexity issues);
- (with M. Autord) Combinatorial distance between the reduced expressions of a permutation.

• Every permutation of $\{1,...,n\}$ is a product of transpositions:

$$\mathfrak{S}_{n} = \Big\langle s_{1}, ..., s_{n-1} \Big| \begin{array}{cc} s_{i}s_{j}s_{i} = s_{j}s_{i}s_{j} & \text{ for } |i-j| = 1 \\ s_{i}s_{j} = s_{j}s_{i} & \text{ for } |i-j| \ge 2 \end{array}, s_{1}^{2} = ... = s_{n-1}^{2} = 1 \Big\rangle.$$

Reduced expressions of a permutation

• Every permutation of $\{1, ..., n\}$ is a product of transpositions:

$$\mathfrak{S}_n = \left\langle s_1, ..., s_{n-1} \right| egin{array}{cc} s_i s_j s_i = s_j s_i s_j & ext{for } |i-j| = 1 \\ s_i s_j = s_j s_i & ext{for } |i-j| \geqslant 2 \ , s_1^2 = ... = s_{n-1}^2 = 1
ight
angle.$$

• Proposition ("Exchange Lemma"):

Reduced expressions of a permutation

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Every permutation of $\{1, ..., n\}$ is a product of transpositions:

$$\mathfrak{S}_n = \left\langle s_1, ..., s_{n-1} \right| \begin{array}{cc} s_i s_j s_i = s_j s_i s_j \\ s_i s_j = s_j s_i \end{array} \begin{array}{c} \text{for } |i-j| = 1 \\ \text{for } |i-j| \geqslant 2 \end{array}, s_1^2 = ... = s_{n-1}^2 = 1 \right\rangle.$$

• **Proposition** ("Exchange Lemma"): Any two reduced expressions of a permutation are connected by braid relations

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Every permutation of $\{1, ..., n\}$ is a product of transpositions:

$$\mathfrak{S}_n = \left\langle s_1, ..., s_{n-1} \right| \begin{array}{cc} s_i s_j s_i = s_j s_i s_j \\ s_i s_j = s_j s_i \end{array} \begin{array}{c} \text{for } |i-j| = 1 \\ \text{for } |i-j| \geqslant 2 \end{array}, s_1^2 = ... = s_{n-1}^2 = 1 \right\rangle.$$

• Proposition ("Exchange Lemma"): Any two reduced expressions of a permutation are connected by braid relations (no need of using $s_i^2 = 1$).

$$\mathfrak{S}_n = \left\langle s_1, ..., s_{n-1} \right| \begin{array}{cc} s_i s_j s_i = s_j s_i s_j \\ s_i s_j = s_j s_i \end{array} \begin{array}{c} \text{for } |i-j| = 1 \\ \text{for } |i-j| \geqslant 2 \end{array}, s_1^2 = ... = s_{n-1}^2 = 1 \right\rangle.$$

• Proposition ("Exchange Lemma"): Any two reduced expressions of a permutation are connected by braid relations (no need of using $s_i^2 = 1$).

• Combinatorial distance:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Every permutation of $\{1, ..., n\}$ is a product of transpositions:

$$\mathfrak{S}_{n} = \left\langle s_{1}, ..., s_{n-1} \right| \begin{array}{cc} s_{i}s_{j}s_{i} = s_{j}s_{i}s_{j} & \text{for } |i-j| = 1 \\ s_{i}s_{j} = s_{j}s_{i} & \text{for } |i-j| \ge 2 \end{array}, s_{1}^{2} = ... = s_{n-1}^{2} = 1 \right\rangle.$$
of minimal length

• Proposition ("Exchange Lemma"): Any two reduced expressions of a permutation are connected by braid relations (no need of using $s_i^2 = 1$).

• Combinatorial distance: d(u, v) = minimal number of braid relations needed to transform u into v.

• Every permutation of $\{1, ..., n\}$ is a product of transpositions:

$$\mathfrak{S}_{n} = \left\langle s_{1}, ..., s_{n-1} \right| \begin{array}{cc} s_{i}s_{j}s_{i} = s_{j}s_{i}s_{j} & \text{for } |i-j| = 1 \\ s_{i}s_{j} = s_{j}s_{i} & \text{for } |i-j| \ge 2 \end{array}, s_{1}^{2} = ... = s_{n-1}^{2} = 1 \right\rangle.$$
of minimal length

• Proposition ("Exchange Lemma"): Any two reduced expressions of a permutation are connected by braid relations (no need of using $s_i^2 = 1$).

- Combinatorial distance: d(u, v) = minimal number of braid relations needed to transform u into v.
- Question: Bounds on $d(\mathbf{u}, \mathbf{v})$?

• Every permutation of $\{1, ..., n\}$ is a product of transpositions:

$$\begin{split} \mathfrak{S}_n = \Big\langle s_1, ..., s_{n-1} \Big| & \begin{array}{c} s_i s_j s_i = s_j s_i s_j \\ s_i s_j = s_j s_i \end{array} & \begin{array}{c} \text{for } |i-j| = 1 \\ \text{for } |i-j| \geqslant 2 \end{array}, s_1^2 = ... = s_{n-1}^2 = 1 \Big\rangle. \\ & \begin{array}{c} \text{of minimal length} \\ \downarrow \end{array} \end{split}$$

• Proposition ("Exchange Lemma"): Any two reduced expressions of a permutation are connected by braid relations (no need of using $s_i^2 = 1$).

- Combinatorial distance: d(u, v) = minimal number of braid relations needed to transform u into v.
- Question: Bounds on $d(\mathbf{u}, \mathbf{v})$? (The standard proof of the Exchange Lemma gives an exponential upper bound.)

$$\begin{split} \mathfrak{S}_n = \Big\langle s_1, ..., s_{n-1} \Big| & \begin{array}{c} s_i s_j s_i = s_j s_i s_j \\ s_i s_j = s_j s_i \end{array} & \begin{array}{c} \text{for } |i-j| = 1 \\ \text{for } |i-j| \geqslant 2 \end{array}, s_1^2 = ... = s_{n-1}^2 = 1 \Big\rangle. \\ & \begin{array}{c} \text{of minimal length} \\ \downarrow \end{array} \end{split}$$

• Proposition ("Exchange Lemma"): Any two reduced expressions of a permutation are connected by braid relations (no need of using $s_i^2 = 1$).

- Combinatorial distance: d(u, v) = minimal number of braid relations needed to transform u into v.
- Question: Bounds on $d(\mathbf{u}, \mathbf{v})$? (The standard proof of the Exchange Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C, C' s.t.

$$\begin{split} \mathfrak{S}_n = \Big\langle s_1,...,s_{n-1} \Big| \begin{array}{cc} s_i s_j s_i = s_j s_i s_j \\ s_i s_j = s_j s_i \end{array} & \begin{array}{c} \text{for } |i-j| = 1 \\ \text{for } |i-j| \geqslant 2 \end{array}, s_1^2 = ... = s_{n-1}^2 = 1 \Big\rangle. \\ & \begin{array}{c} \text{of minimal length} \\ \downarrow \end{array} \end{split}$$

• **Proposition** ("Exchange Lemma"): Any two reduced expressions of a permutation are connected by braid relations (no need of using $s_i^2 = 1$).

- Combinatorial distance: d(u, v) = minimal number of braid relations needed to transform u into v.
- Question: Bounds on $d(\mathbf{u}, \mathbf{v})$? (The standard proof of the Exchange Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C, C' s.t. - $d(\mathbf{u}, \mathbf{v}) \leqslant Cn^4$ holds for every permutation f of $\{1, ..., n\}$ and all reduced expressions \mathbf{u}, \mathbf{v} of f,

$$\begin{split} \mathfrak{S}_n = \Big\langle s_1, ..., s_{n-1} \Big| & \begin{array}{c} s_i s_j s_i = s_j s_i s_j \\ s_i s_j = s_j s_i \end{array} & \begin{array}{c} \text{for } |i-j| = 1 \\ \text{for } |i-j| \geqslant 2 \end{array}, s_1^2 = ... = s_{n-1}^2 = 1 \Big\rangle. \\ & \begin{array}{c} \text{of minimal length} \\ \downarrow \end{array} \end{split}$$

• Proposition ("Exchange Lemma"): Any two reduced expressions of a permutation are connected by braid relations (no need of using $s_i^2 = 1$).

- Combinatorial distance: d(u, v) = minimal number of braid relations needed to transform u into v.
- Question: Bounds on $d(\mathbf{u}, \mathbf{v})$? (The standard proof of the Exchange Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C, C' s.t. - $d(\mathbf{u}, \mathbf{v}) \leq Cn^4$ holds for every permutation f of $\{1, ..., n\}$ and all reduced expressions \mathbf{u}, \mathbf{v} of f, - $d(\mathbf{u}, \mathbf{v}) \geq C'n^4$ holds for some permutation f of $\{1, ..., n\}$ and some reduced expressions \mathbf{u}, \mathbf{v} of f. • Here: lower bounds; more specifically:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• Here: lower bounds; more specifically:

• Aim:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Here: lower bounds; more specifically:
- Aim: Recognize whether a given Van Kampen diagram or reversing diagram is possibly optimal.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word

• Here: lower bounds; more specifically:

Aim: Recognize whether a given Van Kampen diagram
 or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

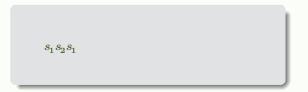
• Associate a braid diagram with every (reduced) *s*-word and use the names (or the colors) of the strands that cross

• Here: lower bounds; more specifically:

Aim: Recognize whether a given Van Kampen diagram
 or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) *s*-word and use the names (or the colors) of the strands that cross (*i.e.*, use a "position vs. name" duality):


• Here: lower bounds; more specifically:

Aim: Recognize whether a given Van Kampen diagram
 or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) *s*-word and use the names (or the colors) of the strands that cross

(*i.e.*, use a "position vs. name" duality):

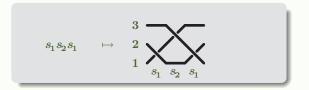
• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) *s*-word and use the names (or the colors) of the strands that cross

(*i.e.*, use a "position vs. name" duality):


• Here: lower bounds; more specifically:

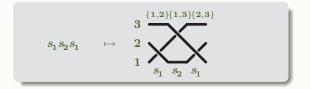
• Aim: Recognize whether a given Van Kampen diagram or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) *s*-word and use the names (or the colors) of the strands that cross

(*i.e.*, use a "position vs. name" duality):

◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆□ >


• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) *s*-word and use the names (or the colors) of the strands that cross

(*i.e.*, use a "position vs. name" duality):

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ● ●

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) *s*-word and use the names (or the colors) of the strands that cross

(*i.e.*, use a "position vs. name" duality):

• Here: lower bounds; more specifically:

Aim: Recognize whether a given Van Kampen diagram
 or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) *s*-word and use the names (or the colors) of the strands that cross

(*i.e.*, use a "position vs. name" duality):

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram or reversing diagram is possibly optimal.

faces = combinatorial distance between the bounding words

 \bullet Associate a braid diagram with every (reduced) s-word and use the names (or the colors) of the strands that cross

(*i.e.*, use a "position vs. name" duality):

$$s_1s_2s_1 \hspace{0.5cm} \mapsto \hspace{0.5cm} \begin{array}{c} 3 \\ 2 \\ 1 \\ s_1 \\ s_2 \\ s_1 \end{array} \begin{array}{c} \{1,2\}\{1,3\}\{2,3\} \leftarrow \hspace{0.5cm} oldsymbol{N}(\mathbf{w}) \\ s_1 \\ s_2 \\ s_1 \end{array} \begin{array}{c} s_2 \\ s_1 \end{array} \begin{array}{c} \leftarrow \hspace{0.5cm} oldsymbol{N}(\mathbf{w}) \\ \leftarrow \end{array} \end{array}$$

 \rightsquigarrow a sequence $N(\mathbf{w})$ of pairs of integers in $\{1, ..., n\}$.

- \bullet For S,S' sequences of pairs of integers in $\{1,...,n\}$:
 - $\pmb{I_3}(\pmb{S},\pmb{S}')$

- For S, S' sequences of pairs of integers in $\{1, ..., n\}$:
 - $I_3(S,S') = \#$ triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S'.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- For S, S' sequences of pairs of integers in $\{1, ..., n\}$:
 - $I_3(S,S') = \#$ triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S'.
 - $\pmb{I_{2,2}}(S,S')$

(日) (日) (日) (日) (日) (日) (日) (日)

- For S, S' sequences of pairs of integers in $\{1, ..., n\}$:
 - $I_3(S,S') = \#$ triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S'.
 - $\pmb{I_{2,2}}(S,S')=\#$ pairs of pairs $\{\{p,q\},\{p',q'\}\}$ s.t.

 $\{p,q\}$ and $\{p',q'\}$ appear in different orders in S,S'.

• For S, S' sequences of pairs of integers in $\{1, ..., n\}$:

- $I_3(S,S') = \#$ triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S'.
- $I_{2,2}(S,S')=\#$ pairs of pairs $\{\{p,q\},\{p',q'\}\}$ s.t.

 $\{p,q\}$ and $\{p',q'\}$ appear in different orders in S,S'.

 \bullet Lemma: If \mathbf{w},\mathbf{w}' are two reduced expressions of some permutation, then

- $I_3(S,S') = \#$ triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S'.
- $I_{2,2}(S,S') = \#$ pairs of pairs $\{\{p,q\}, \{p',q'\}\}$ s.t.

 $\{p,q\}$ and $\{p',q'\}$ appear in different orders in S,S'.

• Lemma: If w, w' are two reduced expressions of some permutation, then $d(\mathbf{w},\mathbf{w}') \geqslant I_3(N(\mathbf{w}),N(\mathbf{w}')) + I_{2,2}(N(\mathbf{w}),N(\mathbf{w}')).$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

• For S, S' sequences of pairs of integers in $\{1, ..., n\}$:

- $I_3(S,S') = \#$ triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S'.
- $I_{2,2}(S, S') = \#$ pairs of pairs $\{\{p, q\}, \{p', q'\}\}$ s.t. $\{p, q\}$ and $\{p', q'\}$ appear in different orders in S, S'.

• Lemma: If \mathbf{w},\mathbf{w}' are two reduced expressions of some permutation, then $d(\mathbf{w},\mathbf{w}') \geqslant I_3(N(\mathbf{w}),N(\mathbf{w}')) + I_{2,2}(N(\mathbf{w}),N(\mathbf{w}')).$

• Proof: Each type I braid relation ("hexagon") contributes at most 1 to I₃,

- $I_3(S,S') = \#$ triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S'.
- $I_{2,2}(S,S') = \#$ pairs of pairs $\{\{p,q\}, \{p',q'\}\}$ s.t.

 $\{p,q\}$ and $\{p',q'\}$ appear in different orders in S,S'.

• Lemma: If \mathbf{w},\mathbf{w}' are two reduced expressions of some permutation, then $d(\mathbf{w},\mathbf{w}') \geqslant I_3(N(\mathbf{w}),N(\mathbf{w}')) + I_{2,2}(N(\mathbf{w}),N(\mathbf{w}')).$

 Proof: Each type I braid relation ("hexagon") contributes at most 1 to I₃, each type II braid relation ("square") contributes at most 1 to I_{2,2}. □

• For S, S' sequences of pairs of integers in $\{1, ..., n\}$:

- $I_3(S,S') = \#$ triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S'.
- $I_{2,2}(S,S') = \#$ pairs of pairs $\{\{p,q\},\{p',q'\}\}$ s.t.

 $\{p,q\}$ and $\{p',q'\}$ appear in different orders in S,S'.

• Lemma: If \mathbf{w},\mathbf{w}' are two reduced expressions of some permutation, then $d(\mathbf{w},\mathbf{w}') \geqslant I_3(N(\mathbf{w}),N(\mathbf{w}')) + I_{2,2}(N(\mathbf{w}),N(\mathbf{w}')).$

 Proof: Each type I braid relation ("hexagon") contributes at most 1 to I₃, each type II braid relation ("square") contributes at most 1 to I_{2,2}. □

• Example: $w = s_1 s_2 s_1 s_3 s_2 s_1$, $w' = s_3 s_2 s_3 s_1 s_2 s_3$.

• For S, S' sequences of pairs of integers in $\{1, ..., n\}$:

- $I_3(S,S') = \#$ triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S'.
- $I_{2,2}(S,S') = \#$ pairs of pairs $\{\{p,q\},\{p',q'\}\}$ s.t.

 $\{p,q\}$ and $\{p',q'\}$ appear in different orders in S,S'.

• Lemma: If \mathbf{w},\mathbf{w}' are two reduced expressions of some permutation, then $d(\mathbf{w},\mathbf{w}') \geqslant I_3(N(\mathbf{w}),N(\mathbf{w}')) + I_{2,2}(N(\mathbf{w}),N(\mathbf{w}')).$

 Proof: Each type I braid relation ("hexagon") contributes at most 1 to I₃, each type II braid relation ("square") contributes at most 1 to I_{2,2}. □

• Example: w = $s_1s_2s_1s_3s_2s_1$, w' = $s_3s_2s_3s_1s_2s_3$. Then $N(w) = (\{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 4\}, \{2, 4\}, \{3, 4\})$,

-
$$I_3(S,S') = \#$$
 triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S' .

-
$$I_{2,2}(S,S') = \#$$
 pairs of pairs $\{\{p,q\},\{p',q'\}\}$ s.t.

 $\{p,q\}$ and $\{p',q'\}$ appear in different orders in S,S'.

• Lemma: If \mathbf{w},\mathbf{w}' are two reduced expressions of some permutation, then $d(\mathbf{w},\mathbf{w}') \geqslant I_3(N(\mathbf{w}),N(\mathbf{w}')) + I_{2,2}(N(\mathbf{w}),N(\mathbf{w}')).$

 Proof: Each type I braid relation ("hexagon") contributes at most 1 to I₃, each type II braid relation ("square") contributes at most 1 to I_{2,2}. □

• Example: w = $s_1s_2s_1s_3s_2s_1$, w' = $s_3s_2s_3s_1s_2s_3$. Then $N(w) = (\{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 4\}, \{2, 4\}, \{3, 4\})$, $N(w') = (\{3, 4\}, \{2, 4\}, \{2, 3\}, \{1, 4\}, \{1, 3\}, \{1, 2\})$.

・ロト・日本・日本・日本・日本・日本

-
$$I_3(S,S') = \#$$
 triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S' .

-
$$I_{2,2}(S,S') = \#$$
 pairs of pairs $\{\{p,q\},\{p',q'\}\}$ s.t.

 $\{p,q\}$ and $\{p',q'\}$ appear in different orders in S,S'.

• Lemma: If \mathbf{w},\mathbf{w}' are two reduced expressions of some permutation, then $d(\mathbf{w},\mathbf{w}') \geqslant I_3(N(\mathbf{w}),N(\mathbf{w}')) + I_{2,2}(N(\mathbf{w}),N(\mathbf{w}')).$

 Proof: Each type I braid relation ("hexagon") contributes at most 1 to I₃, each type II braid relation ("square") contributes at most 1 to I_{2,2}. □

• Example: w = $s_1s_2s_1s_3s_2s_1$, w' = $s_3s_2s_3s_1s_2s_3$. Then $N(w) = (\{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 4\}, \{2, 4\}, \{3, 4\})$, $N(w') = (\{3, 4\}, \{2, 4\}, \{2, 3\}, \{1, 4\}, \{1, 3\}, \{1, 2\})$. Hence $d(w, w') \ge 4 + 2 = 6$.

・ロト ・ 母 ト ・ 臣 ト ・ 臣 ・ りへぐ

- $I_3(S,S') = \#$ triples $\{p,q,r\}$ s.t. $\{p,q\}$, $\{p,r\}$ and $\{q,r\}$ appear in different orders in S,S'.
- $I_{2,2}(S,S') = \#$ pairs of pairs $\{\{p,q\}, \{p',q'\}\}$ s.t.

 $\{p,q\}$ and $\{p',q'\}$ appear in different orders in S,S'.

• Lemma: If \mathbf{w},\mathbf{w}' are two reduced expressions of some permutation, then $d(\mathbf{w},\mathbf{w}') \geqslant I_3(N(\mathbf{w}),N(\mathbf{w}')) + I_{2,2}(N(\mathbf{w}),N(\mathbf{w}')).$

 Proof: Each type I braid relation ("hexagon") contributes at most 1 to I₃, each type II braid relation ("square") contributes at most 1 to I_{2,2}. □

• Example: $\mathbf{w} = s_1 s_2 s_1 s_3 s_2 s_1$, $\mathbf{w}' = s_3 s_2 s_3 s_1 s_2 s_3$. Then $N(\mathbf{w}) = (\{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 4\}, \{2, 4\}, \{3, 4\})$, $N(\mathbf{w}') = (\{3, 4\}, \{2, 4\}, \{2, 3\}, \{1, 4\}, \{1, 3\}, \{1, 2\})$. Hence $d(\mathbf{w}, \mathbf{w}') \ge 4 + 2 = 6$.

• Question (Conjecture?): Is the above inequality an equality?

• Back to van Kampen diagrams with the aim of recognizing optimality.

• Back to van Kampen diagrams with the aim of recognizing optimality.

faces = combinatorial distance between bounding words

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Back to van Kampen diagrams with the aim of recognizing optimality.

faces = combinatorial distance between bounding words

• Having given names to the generators s_i (= the edges of the diagram),

(日) (日) (日) (日) (日) (日) (日)

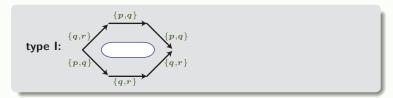
• Back to van Kampen diagrams with the aim of recognizing optimality.

faces = combinatorial distance between bounding words

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの

• Back to van Kampen diagrams with the aim of recognizing optimality.

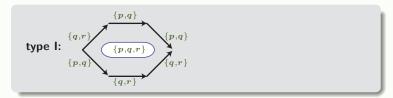
faces = combinatorial distance between bounding words


• Having given names to the generators $s_i \ (=$ the edges of the diagram), give names to the faces:

type I:

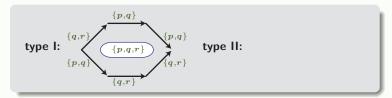
- 日本 - 4 日本 - 4 日本 - 日本

• Back to van Kampen diagrams with the aim of recognizing optimality.


faces = combinatorial distance between bounding words

(日) (圖) (E) (E) (E)

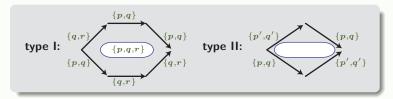
• Back to van Kampen diagrams with the aim of recognizing optimality.


faces = combinatorial distance between bounding words

<ロト < 回ト < 回ト < 回ト < 回ト = 三回</p>

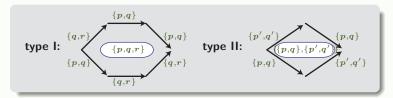
• Back to van Kampen diagrams with the aim of recognizing optimality.

faces = combinatorial distance between bounding words



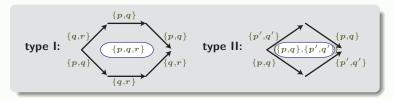
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

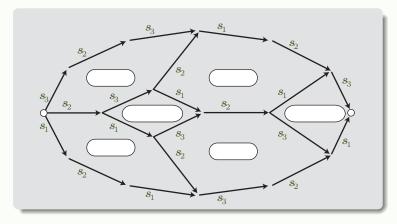
=

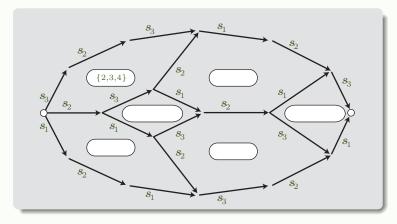

• Back to van Kampen diagrams with the aim of recognizing optimality.

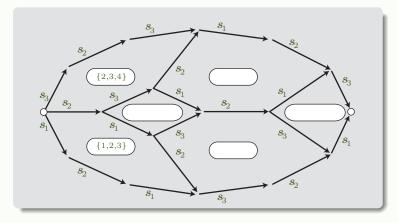
faces = combinatorial distance between bounding words

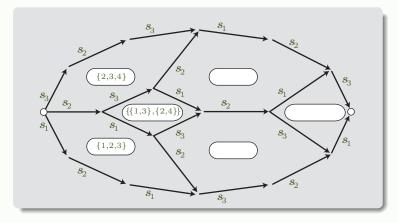
• Back to van Kampen diagrams with the aim of recognizing optimality.


faces = combinatorial distance between bounding words

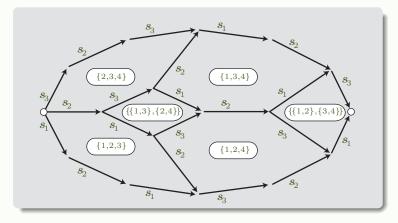

• Back to van Kampen diagrams with the aim of recognizing optimality.

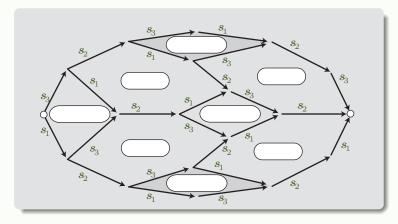

faces = combinatorial distance between bounding words

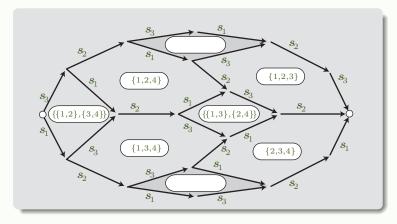

• Having given names to the generators s_i (= the edges of the diagram), give names to the faces:



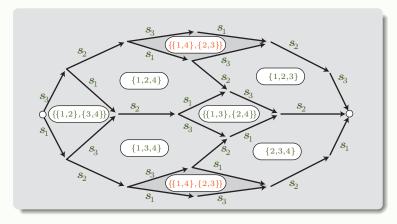
• Criterion 1: A van Kampen diagram in which different faces have different names is optimal.







・ロト ・ 直 ト ・ 主 ト ・ 主 ・ つ へ ()・



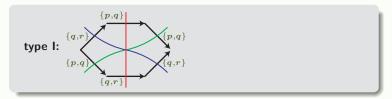
・ロト ・ 直 ト ・ 主 ト ・ 主 ・ つ へ ()・

・ロト ・ 直 ト ・ 主 ト ・ 主 ・ つ へ ()・

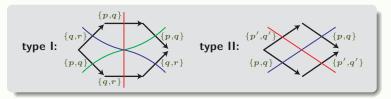
◆□ ▶ ◆昼 ▶ ◆臣 ▶ → 臣 − つへぐ

• (Again in a van Kampen diagram) connect the edges with the same name:

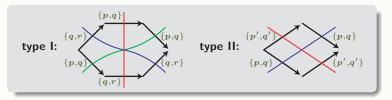
• (Again in a van Kampen diagram) connect the edges with the same name:


type I:

Separatrices

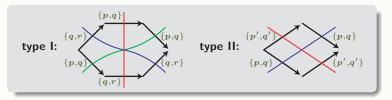

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

• (Again in a van Kampen diagram) connect the edges with the same name:

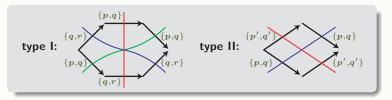


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• (Again in a van Kampen diagram) connect the edges with the same name:

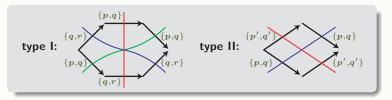


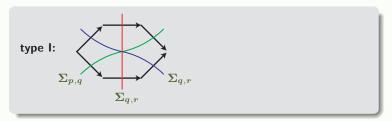
• (Again in a van Kampen diagram) connect the edges with the same name:

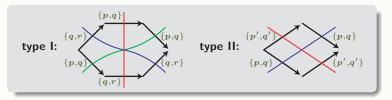


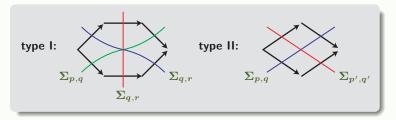
 \leftrightarrow for each pair $\{p, q\}$, an (oriented) curve that connect all $\{p, q\}$ -edges:

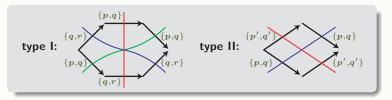
• (Again in a van Kampen diagram) connect the edges with the same name:

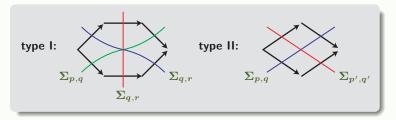


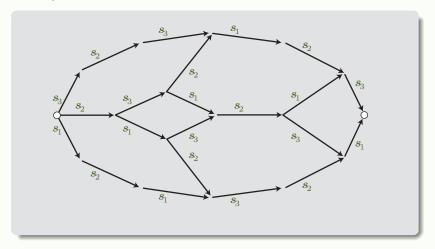

• (Again in a van Kampen diagram) connect the edges with the same name:

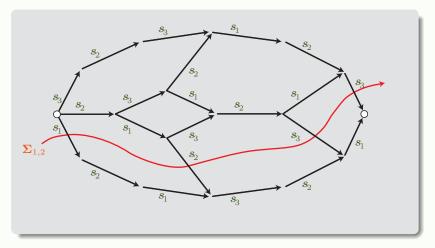


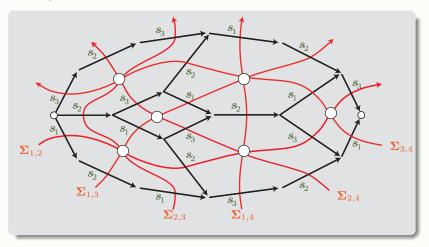

• (Again in a van Kampen diagram) connect the edges with the same name:

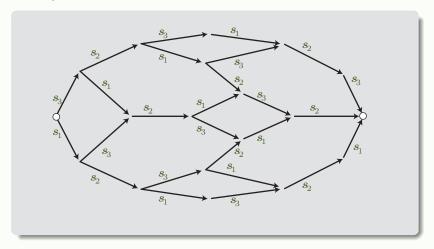


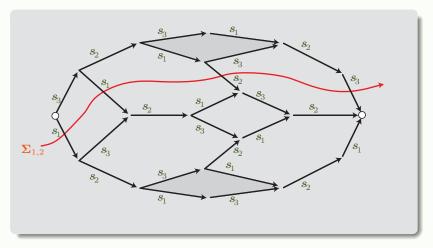

• (Again in a van Kampen diagram) connect the edges with the same name:

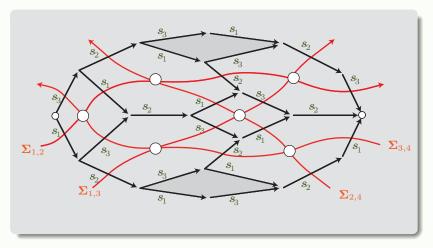


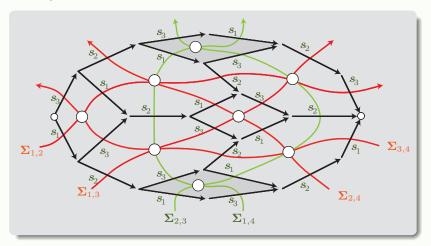

• (Again in a van Kampen diagram) connect the edges with the same name:




▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ● りゅで


▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - ● ○ ● ●


▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - ● ○ ● ●



▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - つへで

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - つへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

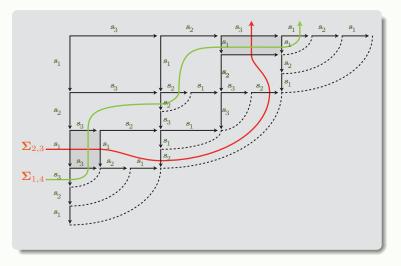
• Criterion 2: A van Kampen diagram in which any two separatrices cross at most once is optimal.

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの

• Criterion 2: A van Kampen diagram in which any two separatrices cross at most once is optimal.

• Question: Is the condition necessary, *i.e.*, do any two separatrices cross at most once in an optimal van Kampen diagram?

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの


• Criterion 2: A van Kampen diagram in which any two separatrices cross at most once is optimal.

• Question: Is the condition necessary, *i.e.*, do any two separatrices cross at most once in an optimal van Kampen diagram?

 Remark: Compare with "a s-word is reduced iff any two strands in the associated braid diagram cross at most one".

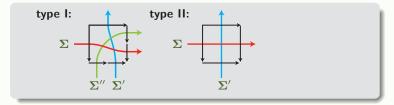
• Applies in particular to reversing diagrams

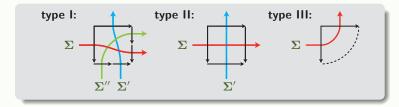
(viewed as particular van Kampen diagrams):

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

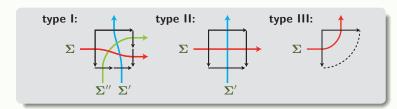
• How are separatrices in a reversing diagram?

• How are separatrices in a reversing diagram? Three types of faces:


▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

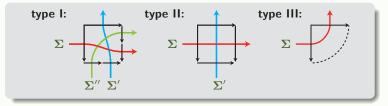

• How are separatrices in a reversing diagram? Three types of faces:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで



• How are separatrices in a reversing diagram? Three types of faces:

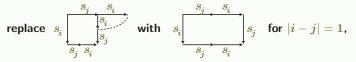
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

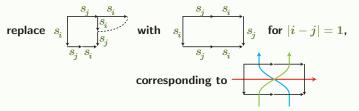


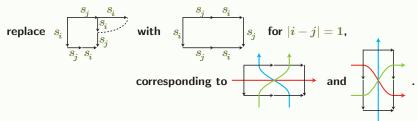
• How are separatrices in a reversing diagram? Three types of faces:

• Criterion 3: A reversing diagram containing no type III face is optimal.

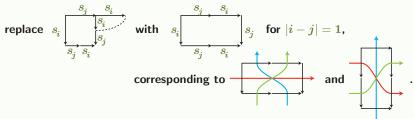
▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの



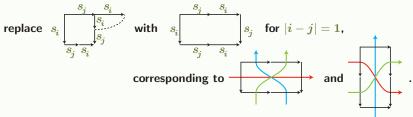

• Criterion 3: A reversing diagram containing no type III face is optimal.


• Proof: In order that two separatrices cross twice, one has to go from horizontal to vertical.

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの

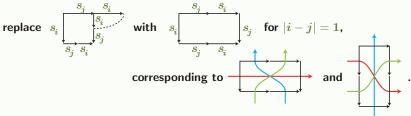


▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの


• An improvement: Same argument when reversing steps are grouped:

• An application:

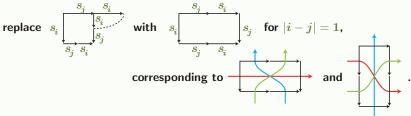
▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへの


• An improvement: Same argument when reversing steps are grouped:

• An application:

• Proposition: For each ℓ , there exist length ℓ reduced *s*-words \mathbf{w}, \mathbf{w}' satisfying $\mathbf{w}^{-1}\mathbf{w}' \curvearrowright_{R} \mathbf{v}'\mathbf{v}^{-1}$ and $d(\mathbf{w}\mathbf{v}', \mathbf{w}'\mathbf{v}) \ge \ell^{4}/8$.

• An improvement: Same argument when reversing steps are grouped:



• An application:

• Proposition: For each ℓ , there exist length ℓ reduced *s*-words w, w' satisfying $w^{-1}w' \curvearrowright_{\mathcal{R}} v'v^{-1}$ and $d(wv', w'v) \ge \ell^4/8$.

By contrast: for fixed *n*, Garside's theory gives an upper bound in $O(\ell^2)$.

• An improvement: Same argument when reversing steps are grouped:

• An application:

• Proposition: For each ℓ , there exist length ℓ reduced *s*-words w, w' satisfying $w^{-1}w' \curvearrowright_{\mathcal{R}} v'v^{-1}$ and $d(wv', w'v) \ge \ell^4/8$.

By contrast: for fixed *n*, Garside's theory gives an upper bound in $O(\ell^2)$.

・ロト・日本・日本・日本・日本・日本

• Two conclusions:

• Two conclusions:

• Even in the simple(?) case of braids and permutations, many open questions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Two conclusions:

• Even in the simple(?) case of braids and permutations, many open questions.

• Importance of having van Kampen diagrams included in a grid.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ ・ (口 ・

• P. Dehornoy, Deux propriétés des groupes de tresses C. R. Acad. Sci. Paris 315 (1992) 633–638. • P. Dehornoy, Deux propriétés des groupes de tresses C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20-78 (1969) 235-254.

- P. Dehornoy, Deux propriétés des groupes de tresses C. R. Acad. Sci. Paris 315 (1992) 633-638.
- F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20-78 (1969) 235-254.
- K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

- P. Dehornoy, Deux propriétés des groupes de tresses C. R. Acad. Sci. Paris 315 (1992) 633-638.
- F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20-78 (1969) 235-254.
- K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type Trans. Amer. Math. Soc. 339–2 (1993) 537–551.
- R. Corran, A normal form for a class of monoids including the singular braid monoids J. Algebra 223 (2000) 256–282.

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

- P. Dehornoy, Deux propriétés des groupes de tresses C. R. Acad. Sci. Paris 315 (1992) 633-638.
- F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20-78 (1969) 235-254.
- K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type Trans. Amer. Math. Soc. 339–2 (1993) 537–551.
- R. Corran, A normal form for a class of monoids including the singular braid monoids J. Algebra 223 (2000) 256–282.
- P. Dehornoy, Complete positive group presentations;

- P. Dehornoy, Deux propriétés des groupes de tresses C. R. Acad. Sci. Paris 315 (1992) 633-638.
- F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20-78 (1969) 235-254.
- K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type Trans. Amer. Math. Soc. 339–2 (1993) 537–551.
- R. Corran, A normal form for a class of monoids including the singular braid monoids J. Algebra 223 (2000) 256–282.
- P. Dehornoy, Complete positive group presentations;

• P. Dehornoy & Y. Lafont, Homology of Gaussian groups Ann. Inst. Fourier 53-2 (2003) 1001–1052.

- P. Dehornoy, Deux propriétés des groupes de tresses C. R. Acad. Sci. Paris 315 (1992) 633-638.
- F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20-78 (1969) 235-254.
- K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type Trans. Amer. Math. Soc. 339–2 (1993) 537–551.
- R. Corran, A normal form for a class of monoids including the singular braid monoids J. Algebra 223 (2000) 256–282.
- P. Dehornoy, Complete positive group presentations;

- P. Dehornoy & Y. Lafont, Homology of Gaussian groups Ann. Inst. Fourier 53-2 (2003) 1001–1052.
- P. Dehornoy & B. Wiest, On word reversing in braid groups Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

- P. Dehornoy, Deux propriétés des groupes de tresses C. R. Acad. Sci. Paris 315 (1992) 633-638.
- F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20-78 (1969) 235-254.
- K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type Trans. Amer. Math. Soc. 339–2 (1993) 537–551.
- R. Corran, A normal form for a class of monoids including the singular braid monoids J. Algebra 223 (2000) 256–282.
- P. Dehornoy, Complete positive group presentations;

- P. Dehornoy & Y. Lafont, Homology of Gaussian groups Ann. Inst. Fourier 53-2 (2003) 1001–1052.
- P. Dehornoy & B. Wiest, On word reversing in braid groups Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of a permutation in preparation.

- P. Dehornoy, Deux propriétés des groupes de tresses C. R. Acad. Sci. Paris 315 (1992) 633-638.
- F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20-78 (1969) 235-254.
- K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type Trans. Amer. Math. Soc. 339–2 (1993) 537–551.
- R. Corran, A normal form for a class of monoids including the singular braid monoids J. Algebra 223 (2000) 256–282.
- P. Dehornoy, Complete positive group presentations;

- P. Dehornoy & Y. Lafont, Homology of Gaussian groups Ann. Inst. Fourier 53-2 (2003) 1001–1052.
- P. Dehornoy & B. Wiest, On word reversing in braid groups Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of a permutation in preparation.

www.math.unicaen.fr/~dehornoy

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- P. Dehornoy, Deux propriétés des groupes de tresses C. R. Acad. Sci. Paris 315 (1992) 633-638.
- F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20-78 (1969) 235-254.
- K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type Trans. Amer. Math. Soc. 339–2 (1993) 537–551.
- R. Corran, A normal form for a class of monoids including the singular braid monoids J. Algebra 223 (2000) 256–282.
- P. Dehornoy, Complete positive group presentations;

- P. Dehornoy & Y. Lafont, Homology of Gaussian groups Ann. Inst. Fourier 53-2 (2003) 1001–1052.
- P. Dehornoy & B. Wiest, On word reversing in braid groups Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of a permutation in preparation.

www.math.unicaen.fr/~dehornoy

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>