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• A strategy for constructing van Kampen diagrams for semigroups,
with an application to the combinatorial distance between

the reduced expressions of a permutation.



Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram



Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram



Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram



Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram



Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram



Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram



Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S,R) be a semigroup presentation. Then two words w, w′ on S
represent the same element of the monoid 〈S |R〉+

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): If (S,R) is a semigroup presentation,
two words w, w′ on S represent the same element of the monoid 〈S |R〉+

if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labelled by relations of R, with boundary paths labelled w and w′.
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Van Kampen diagrams

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

E+

(the n-strand Artin braid monoid).

Then
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A building strategy

• How to build a van Kampen diagram (when it exists)?

↑∼= solve the word problem: decide w ≡+
R w′

• Subword reversing = the left strategy: starting with two words w, w′,

- look at the leftmost pending pattern

s

t

- choose a relation sv = tu of R to close it into
s

t

v

u

, and repeat.

• Facts: - May not be possible (no relation s... = t...);
- May not be unique (several relations s... = t...);
- May never terminate (when u, v have length more than 1);
- May terminate but boundary words are longer than w, w′

(certainly happens if w, w′ are not R-equivalent).
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The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:

for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:
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So, on this particular example, the reversing strategy works.
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• Another way of drawing the same diagram:
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plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.
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Syntactic description

• Introduce two types of letters:

- S for horizontal edges, S−1 for vertical edges;
- read words the Mull of Kintyre to the Pentland Fifth (SW to NE).

• Basic step:

s
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7→
s

t

u

v

reads: s−1t 7→ vu−1,
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reads: s−1s 7→ ε.
↑

the empty word

• Syntactically, “subword reversing”: replacing −+ with +−.
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Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi y(1)

R
wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR , then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR , then w ≡+
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Completeness

• Conversely, does w ≡+
R

w′ implies w−1w′ yR ε?

• Definition: A presentation (S,R) is called complete (w.r.t. subword re-
versing)

if w ≡+
R

w′ implies w−1w′ yR ε.

↑
hence ... is equivalent to ...

• Remark: Completeness implies the solvability of the word problem
only if one knows that reversing always terminates.

• Two questions:

- How to recognize completeness?

- What to do with a complete presentation?
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The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation.

Then (S,R) is complete if, and only if,
for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)
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A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′. Want to prove w ≡+

R
w′.

Completeness implies: (sw)−1(sw′) yR ε, i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,
so the sequel must be w−1w′ yR ε, hence w ≡+

R
w′. �
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Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS ( w−1w′ yR v′v−1 )

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?
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Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.
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Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .
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Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
# faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

         a sequence N(w) of pairs of integers in {1, ...,n}.
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Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?
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Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.

↑
# faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),
give names to the faces:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r} type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}
{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.
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Separatrices

• (Again in a van Kampen diagram) connect the edges with the same name:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

         for each pair {p, q}, an (oriented) curve that connect all {p, q}-edges:
the {p, q}-separatrix Σp,q.

type I:

Σp,q Σq,r

Σq,r

type II:

Σp,q Σp′,q′
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An optimality criterion

• Criterion 2: A van Kampen diagram in which
any two separatrices cross at most once is optimal.

• Question: Is the condition necessary, i.e., do any two separatrices
cross at most once in an optimal van Kampen diagram?

• Remark: Compare with “a s-word is reduced iff
any two strands in the associated braid diagram cross at most one”.
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Separatrices and reversing

• Applies in particular to reversing diagrams
(viewed as particular van Kampen diagrams):
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Separatrices and reversing

• How are separatrices in a reversing diagram?

Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Criterion 3: A reversing diagram containing no type III face is optimal.

• Proof: In order that two separatrices cross twice,
one has to go from horizontal to vertical. �
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A lower bound result

• An improvement: Same argument when reversing steps are grouped:

replace si
si
sj

sisj

sj si

with si

sj si

sj si

sj for |i− j| = 1,

corresponding to and .

• An application:

• Proposition: For each `, there exist length ` reduced s-words w, w′

satisfying w−1w′ yR v′v−1 and d(wv′, w′v) > `4/8.

By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).
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• Two conclusions:

• Even in the simple(?) case of braids and permutations, many open questions.

• Importance of having van Kampen diagrams included in a grid.
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