
The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with an application to the combinatorial distance between

the reduced expressions of a permutation.

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with an application to the combinatorial distance between

the reduced expressions of a permutation.

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with an application to the combinatorial distance between

the reduced expressions of a permutation.

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with an application to the combinatorial distance between

the reduced expressions of a permutation.

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,

with an application to the combinatorial distance between
the reduced expressions of a permutation.

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with an application to the combinatorial distance between

the reduced expressions of a permutation.

Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram

Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram

Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram

Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram

Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram

Plan :

• The general case:

- Subword reversing as a strategy
for constructing van Kampen diagrams

- Subword reversing as a syntactic transformation

- A cancellativity criterion

• The case of permutations:

- bounds for the combinatorial distance
between reduced expressions of a permutation

- recognizing the optimality of a van Kampen diagram

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S,R) be a semigroup presentation. Then two words w, w′ on S
represent the same element of the monoid 〈S |R〉+

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): If (S,R) is a semigroup presentation,
two words w, w′ on S represent the same element of the monoid 〈S |R〉+

if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labelled by relations of R, with boundary paths labelled w and w′.

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S,R) be a semigroup presentation. Then two words w, w′ on S
represent the same element of the monoid 〈S |R〉+

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): If (S,R) is a semigroup presentation,
two words w, w′ on S represent the same element of the monoid 〈S |R〉+

if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labelled by relations of R, with boundary paths labelled w and w′.

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S,R) be a semigroup presentation. Then two words w, w′ on S
represent the same element of the monoid 〈S |R〉+

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): If (S,R) is a semigroup presentation,
two words w, w′ on S represent the same element of the monoid 〈S |R〉+

if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labelled by relations of R, with boundary paths labelled w and w′.

Van Kampen diagrams

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

E+

(the n-strand Artin braid monoid).

Then

s1

s3

s2

s2

s2 s2

s1 s3

s3 s1

s3 s1

s1 s3

s2

s2
s2

s2

s1

s3

s3

s1

is a van Kampen diagram for (s1s2s1s3s2s1, s3s2s3s1s2s3).

Van Kampen diagrams

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

E+
(the n-strand Artin braid monoid).

Then

s1

s3

s2

s2

s2 s2

s1 s3

s3 s1

s3 s1

s1 s3

s2

s2
s2

s2

s1

s3

s3

s1

is a van Kampen diagram for (s1s2s1s3s2s1, s3s2s3s1s2s3).

Van Kampen diagrams

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

E+
(the n-strand Artin braid monoid).

Then

s1

s3

s2

s2

s2 s2

s1 s3

s3 s1

s3 s1

s1 s3

s2

s2
s2

s2

s1

s3

s3

s1

is a van Kampen diagram for (s1s2s1s3s2s1, s3s2s3s1s2s3).

A building strategy

• How to build a van Kampen diagram (when it exists)?

↑∼= solve the word problem: decide w ≡+
R w′

• Subword reversing = the left strategy: starting with two words w, w′,

- look at the leftmost pending pattern

s

t

- choose a relation sv = tu of R to close it into
s

t

v

u

, and repeat.

• Facts: - May not be possible (no relation s... = t...);
- May not be unique (several relations s... = t...);
- May never terminate (when u, v have length more than 1);
- May terminate but boundary words are longer than w, w′

(certainly happens if w, w′ are not R-equivalent).

A building strategy

• How to build a van Kampen diagram (when it exists)?
↑∼= solve the word problem: decide w ≡+

R w′

• Subword reversing = the left strategy: starting with two words w, w′,

- look at the leftmost pending pattern

s

t

- choose a relation sv = tu of R to close it into
s

t

v

u

, and repeat.

• Facts: - May not be possible (no relation s... = t...);
- May not be unique (several relations s... = t...);
- May never terminate (when u, v have length more than 1);
- May terminate but boundary words are longer than w, w′

(certainly happens if w, w′ are not R-equivalent).

A building strategy

• How to build a van Kampen diagram (when it exists)?
↑∼= solve the word problem: decide w ≡+

R w′

• Subword reversing = the left strategy:

starting with two words w, w′,

- look at the leftmost pending pattern

s

t

- choose a relation sv = tu of R to close it into
s

t

v

u

, and repeat.

• Facts: - May not be possible (no relation s... = t...);
- May not be unique (several relations s... = t...);
- May never terminate (when u, v have length more than 1);
- May terminate but boundary words are longer than w, w′

(certainly happens if w, w′ are not R-equivalent).

A building strategy

• How to build a van Kampen diagram (when it exists)?
↑∼= solve the word problem: decide w ≡+

R w′

• Subword reversing = the left strategy: starting with two words w, w′,

- look at the leftmost pending pattern

s

t

- choose a relation sv = tu of R to close it into
s

t

v

u

, and repeat.

• Facts: - May not be possible (no relation s... = t...);
- May not be unique (several relations s... = t...);
- May never terminate (when u, v have length more than 1);
- May terminate but boundary words are longer than w, w′

(certainly happens if w, w′ are not R-equivalent).

A building strategy

• How to build a van Kampen diagram (when it exists)?
↑∼= solve the word problem: decide w ≡+

R w′

• Subword reversing = the left strategy: starting with two words w, w′,

- look at the leftmost pending pattern

s

t

- choose a relation sv = tu of R to close it into
s

t

v

u

,

and repeat.

• Facts: - May not be possible (no relation s... = t...);
- May not be unique (several relations s... = t...);
- May never terminate (when u, v have length more than 1);
- May terminate but boundary words are longer than w, w′

(certainly happens if w, w′ are not R-equivalent).

A building strategy

• How to build a van Kampen diagram (when it exists)?
↑∼= solve the word problem: decide w ≡+

R w′

• Subword reversing = the left strategy: starting with two words w, w′,

- look at the leftmost pending pattern

s

t

- choose a relation sv = tu of R to close it into
s

t

v

u

, and repeat.

• Facts: - May not be possible (no relation s... = t...);
- May not be unique (several relations s... = t...);
- May never terminate (when u, v have length more than 1);
- May terminate but boundary words are longer than w, w′

(certainly happens if w, w′ are not R-equivalent).

A building strategy

• How to build a van Kampen diagram (when it exists)?
↑∼= solve the word problem: decide w ≡+

R w′

• Subword reversing = the left strategy: starting with two words w, w′,

- look at the leftmost pending pattern

s

t

- choose a relation sv = tu of R to close it into
s

t

v

u

, and repeat.

• Facts: - May not be possible (no relation s... = t...);

- May not be unique (several relations s... = t...);
- May never terminate (when u, v have length more than 1);
- May terminate but boundary words are longer than w, w′

(certainly happens if w, w′ are not R-equivalent).

A building strategy

• How to build a van Kampen diagram (when it exists)?
↑∼= solve the word problem: decide w ≡+

R w′

• Subword reversing = the left strategy: starting with two words w, w′,

- look at the leftmost pending pattern

s

t

- choose a relation sv = tu of R to close it into
s

t

v

u

, and repeat.

• Facts: - May not be possible (no relation s... = t...);
- May not be unique (several relations s... = t...);

- May never terminate (when u, v have length more than 1);
- May terminate but boundary words are longer than w, w′

(certainly happens if w, w′ are not R-equivalent).

A building strategy

• How to build a van Kampen diagram (when it exists)?
↑∼= solve the word problem: decide w ≡+

R w′

• Subword reversing = the left strategy: starting with two words w, w′,

- look at the leftmost pending pattern

s

t

- choose a relation sv = tu of R to close it into
s

t

v

u

, and repeat.

• Facts: - May not be possible (no relation s... = t...);
- May not be unique (several relations s... = t...);
- May never terminate (when u, v have length more than 1);

- May terminate but boundary words are longer than w, w′

(certainly happens if w, w′ are not R-equivalent).

A building strategy

• How to build a van Kampen diagram (when it exists)?
↑∼= solve the word problem: decide w ≡+

R w′

• Subword reversing = the left strategy: starting with two words w, w′,

- look at the leftmost pending pattern

s

t

- choose a relation sv = tu of R to close it into
s

t

v

u

, and repeat.

• Facts: - May not be possible (no relation s... = t...);
- May not be unique (several relations s... = t...);
- May never terminate (when u, v have length more than 1);
- May terminate but boundary words are longer than w, w′

(certainly happens if w, w′ are not R-equivalent).

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:

for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:
for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:
for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:
for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:
for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:
for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:
for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:
for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:
for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:
for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:
for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

The subword reversing strategy

• At least: deterministic whenever R is a complemented presentation:
for each pair of letters s, t in S, there is exactly one relation s... = t... in R.

• Example: Let B+
n =

D
s1, ..., sn−1

˛̨̨ E+
.

sisjsi = sjsisj for |i− j| = 1
sisj = sjsi for |i− j| > 2

Applying the reversing strategy to s1s2s1s3s2s1 and s3s2s3s1s2s3:

s1

s2

s1 s3

s2

s1

s3

s2

s3 s1

s2

s3

s3

s1

s2
s3

s3 s2

s1

s1

s2

s3

s1

s1

s3

s2

So, on this particular example, the reversing strategy works.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3

s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• Another way of drawing the same diagram:

s3

s2

s1

s3

s2

s3

s1 s2 s1 s3 s2 s1

s3

s1

s1 s2

s2

s1

s2 s3

s3

s2

s3
s1

s1s3

s1

s3
s2 s3

s3
s2

s1 s2

s2

s1

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to get an actual van Kampen diagram.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

for sv = tu in R

• More exactly:

s

t

becomes
s

t

u

v

for sv = tu in R

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

for sv = tu in R

• More exactly:

s

t

becomes
s

t

u

v

for sv = tu in R

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

for sv = tu in R

• More exactly:

s

t

becomes
s

t

u

v

for sv = tu in R

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

for sv = tu in R

• More exactly:

s

t

becomes
s

t

u

v

for sv = tu in R

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

for sv = tu in R

• More exactly:

s

t

becomes
s

t

u

v

for sv = tu in R

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

for sv = tu in R

• More exactly:

s

t

becomes
s

t

u

v

for sv = tu in R

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

for sv = tu in R

• More exactly:

s

t

becomes
s

t

u

v

for sv = tu in R

including

s

s

becomes
s

s

.

Syntactic description

• Introduce two types of letters:

- S for horizontal edges, S−1 for vertical edges;
- read words the Mull of Kintyre to the Pentland Fifth (SW to NE).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t 7→ vu−1,

including

s

s

7→
s

s

reads: s−1s 7→ ε.
↑

the empty word

• Syntactically, “subword reversing”: replacing −+ with +−.

Syntactic description

• Introduce two types of letters:
- S for horizontal edges,

S−1 for vertical edges;
- read words the Mull of Kintyre to the Pentland Fifth (SW to NE).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t 7→ vu−1,

including

s

s

7→
s

s

reads: s−1s 7→ ε.
↑

the empty word

• Syntactically, “subword reversing”: replacing −+ with +−.

Syntactic description

• Introduce two types of letters:
- S for horizontal edges, S−1 for vertical edges;

- read words the Mull of Kintyre to the Pentland Fifth (SW to NE).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t 7→ vu−1,

including

s

s

7→
s

s

reads: s−1s 7→ ε.
↑

the empty word

• Syntactically, “subword reversing”: replacing −+ with +−.

Syntactic description

• Introduce two types of letters:
- S for horizontal edges, S−1 for vertical edges;
- read words the Mull of Kintyre to the Pentland Fifth (SW to NE).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t 7→ vu−1,

including

s

s

7→
s

s

reads: s−1s 7→ ε.
↑

the empty word

• Syntactically, “subword reversing”: replacing −+ with +−.

Syntactic description

• Introduce two types of letters:
- S for horizontal edges, S−1 for vertical edges;
- read words the Mull of Kintyre to the Pentland Fifth (SW to NE).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t 7→ vu−1,

including

s

s

7→
s

s

reads: s−1s 7→ ε.
↑

the empty word

• Syntactically, “subword reversing”: replacing −+ with +−.

Syntactic description

• Introduce two types of letters:
- S for horizontal edges, S−1 for vertical edges;
- read words the Mull of Kintyre to the Pentland Fifth (SW to NE).

• Basic step:

s

t

7→
s

t

u

v

reads:

s−1t 7→ vu−1,

including

s

s

7→
s

s

reads: s−1s 7→ ε.
↑

the empty word

• Syntactically, “subword reversing”: replacing −+ with +−.

Syntactic description

• Introduce two types of letters:
- S for horizontal edges, S−1 for vertical edges;
- read words the Mull of Kintyre to the Pentland Fifth (SW to NE).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t 7→ vu−1,

including

s

s

7→
s

s

reads: s−1s 7→ ε.
↑

the empty word

• Syntactically, “subword reversing”: replacing −+ with +−.

Syntactic description

• Introduce two types of letters:
- S for horizontal edges, S−1 for vertical edges;
- read words the Mull of Kintyre to the Pentland Fifth (SW to NE).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t 7→ vu−1,

including

s

s

7→
s

s

reads:

s−1s 7→ ε.
↑

the empty word

• Syntactically, “subword reversing”: replacing −+ with +−.

Syntactic description

• Introduce two types of letters:
- S for horizontal edges, S−1 for vertical edges;
- read words the Mull of Kintyre to the Pentland Fifth (SW to NE).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t 7→ vu−1,

including

s

s

7→
s

s

reads: s−1s 7→ ε.
↑

the empty word

• Syntactically, “subword reversing”: replacing −+ with +−.

Syntactic description

• Introduce two types of letters:
- S for horizontal edges, S−1 for vertical edges;
- read words the Mull of Kintyre to the Pentland Fifth (SW to NE).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t 7→ vu−1,

including

s

s

7→
s

s

reads: s−1s 7→ ε.
↑

the empty word

• Syntactically, “subword reversing”: replacing −+ with +−.

Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi y(1)

R
wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR , then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR , then w ≡+
R

w′.
↑

the empty word

Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R

and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi y(1)

R
wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR , then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR , then w ≡+
R

w′.
↑

the empty word

Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi y(1)

R
wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR , then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR , then w ≡+
R

w′.
↑

the empty word

Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.

w0 = w, wp = w′, and wi y(1)
R

wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR , then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR , then w ≡+
R

w′.
↑

the empty word

Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi y(1)

R
wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR , then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR , then w ≡+
R

w′.
↑

the empty word

Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi y(1)

R
wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR , then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR , then w ≡+
R

w′.
↑

the empty word

Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi y(1)

R
wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR ,

then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR , then w ≡+
R

w′.
↑

the empty word

Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi y(1)

R
wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR , then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR , then w ≡+
R

w′.
↑

the empty word

Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi y(1)

R
wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR , then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR ,

then w ≡+
R

w′.
↑

the empty word

Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi y(1)

R
wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR , then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR , then w ≡+
R

w′.

↑
the empty word

Reversing sequences

• Definition: For w, w′ words on S ∪ S−1, declare w y(1)
R

w′ if

∃s, t, u, v (sv = tu lies in R and w = ...s−1t... and w′ = ...vu−1...).

Declare w yR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi y(1)

R
wi+1 for each i.

• Terminal words: w′w−1 with w, w′ words on S (no letter s−1).

• Lemma: If w, w′, v, v′ are words on S and w−1w′ yR v′v−1,

i.e., w

w′

v

v′

yR , then wv′ ≡+
R

w′v.

• In particular, if w−1w′ yR ε, i.e., if w

w′

yR , then w ≡+
R

w′.
↑

the empty word

Completeness

• Conversely, does w ≡+
R

w′ implies w−1w′ yR ε?

• Definition: A presentation (S,R) is called complete (w.r.t. subword re-
versing)

if w ≡+
R

w′ implies w−1w′ yR ε.

↑
hence ... is equivalent to ...

• Remark: Completeness implies the solvability of the word problem
only if one knows that reversing always terminates.

• Two questions:

- How to recognize completeness?

- What to do with a complete presentation?

Completeness

• Conversely, does w ≡+
R

w′ implies w−1w′ yR ε?

• Definition: A presentation (S,R) is called complete (w.r.t. subword re-
versing) if w ≡+

R
w′ implies w−1w′ yR ε.

↑
hence ... is equivalent to ...

• Remark: Completeness implies the solvability of the word problem
only if one knows that reversing always terminates.

• Two questions:

- How to recognize completeness?

- What to do with a complete presentation?

Completeness

• Conversely, does w ≡+
R

w′ implies w−1w′ yR ε?

• Definition: A presentation (S,R) is called complete (w.r.t. subword re-
versing) if w ≡+

R
w′ implies w−1w′ yR ε.

↑
hence ... is equivalent to ...

• Remark: Completeness implies the solvability of the word problem
only if one knows that reversing always terminates.

• Two questions:

- How to recognize completeness?

- What to do with a complete presentation?

Completeness

• Conversely, does w ≡+
R

w′ implies w−1w′ yR ε?

• Definition: A presentation (S,R) is called complete (w.r.t. subword re-
versing) if w ≡+

R
w′ implies w−1w′ yR ε.

↑
hence ... is equivalent to ...

• Remark: Completeness implies the solvability of the word problem

only if one knows that reversing always terminates.

• Two questions:

- How to recognize completeness?

- What to do with a complete presentation?

Completeness

• Conversely, does w ≡+
R

w′ implies w−1w′ yR ε?

• Definition: A presentation (S,R) is called complete (w.r.t. subword re-
versing) if w ≡+

R
w′ implies w−1w′ yR ε.

↑
hence ... is equivalent to ...

• Remark: Completeness implies the solvability of the word problem
only if one knows that reversing always terminates.

• Two questions:

- How to recognize completeness?

- What to do with a complete presentation?

Completeness

• Conversely, does w ≡+
R

w′ implies w−1w′ yR ε?

• Definition: A presentation (S,R) is called complete (w.r.t. subword re-
versing) if w ≡+

R
w′ implies w−1w′ yR ε.

↑
hence ... is equivalent to ...

• Remark: Completeness implies the solvability of the word problem
only if one knows that reversing always terminates.

• Two questions:

- How to recognize completeness?

- What to do with a complete presentation?

Completeness

• Conversely, does w ≡+
R

w′ implies w−1w′ yR ε?

• Definition: A presentation (S,R) is called complete (w.r.t. subword re-
versing) if w ≡+

R
w′ implies w−1w′ yR ε.

↑
hence ... is equivalent to ...

• Remark: Completeness implies the solvability of the word problem
only if one knows that reversing always terminates.

• Two questions:

- How to recognize completeness?

- What to do with a complete presentation?

Completeness

• Conversely, does w ≡+
R

w′ implies w−1w′ yR ε?

• Definition: A presentation (S,R) is called complete (w.r.t. subword re-
versing) if w ≡+

R
w′ implies w−1w′ yR ε.

↑
hence ... is equivalent to ...

• Remark: Completeness implies the solvability of the word problem
only if one knows that reversing always terminates.

• Two questions:

- How to recognize completeness?

- What to do with a complete presentation?

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation.

Then (S,R) is complete if, and only if,
for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous:

∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w:

u
v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

The cube condition

• Theorem: (D., ’97) Assume that (S,R) is a homogeneous complemented
presentation. Then (S,R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: ∃ R-invariant λ : S∗ → N (λ(sw) > λ(w)).

• cube condition for a triple
of positive words u, v, w: u

v

w

...hence checkable (for one triple)

A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′. Want to prove w ≡+

R
w′.

Completeness implies: (sw)−1(sw′) yR ε, i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,
so the sequel must be w−1w′ yR ε, hence w ≡+

R
w′. �

A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′. Want to prove w ≡+

R
w′.

Completeness implies: (sw)−1(sw′) yR ε, i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,
so the sequel must be w−1w′ yR ε, hence w ≡+

R
w′. �

A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′.

Want to prove w ≡+
R

w′.

Completeness implies: (sw)−1(sw′) yR ε, i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,
so the sequel must be w−1w′ yR ε, hence w ≡+

R
w′. �

A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′. Want to prove w ≡+

R
w′.

Completeness implies: (sw)−1(sw′) yR ε, i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,
so the sequel must be w−1w′ yR ε, hence w ≡+

R
w′. �

A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′. Want to prove w ≡+

R
w′.

Completeness implies: (sw)−1(sw′) yR ε,

i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,
so the sequel must be w−1w′ yR ε, hence w ≡+

R
w′. �

A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′. Want to prove w ≡+

R
w′.

Completeness implies: (sw)−1(sw′) yR ε, i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,
so the sequel must be w−1w′ yR ε, hence w ≡+

R
w′. �

A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′. Want to prove w ≡+

R
w′.

Completeness implies: (sw)−1(sw′) yR ε, i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,
so the sequel must be w−1w′ yR ε, hence w ≡+

R
w′. �

A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′. Want to prove w ≡+

R
w′.

Completeness implies: (sw)−1(sw′) yR ε, i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,
so the sequel must be w−1w′ yR ε, hence w ≡+

R
w′. �

A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′. Want to prove w ≡+

R
w′.

Completeness implies: (sw)−1(sw′) yR ε, i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,

so the sequel must be w−1w′ yR ε, hence w ≡+
R

w′. �

A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′. Want to prove w ≡+

R
w′.

Completeness implies: (sw)−1(sw′) yR ε, i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,
so the sequel must be w−1w′ yR ε, hence w ≡+

R
w′. �

A cancellativity criterion

• Proposition: Assume that (S,R) is a complete complemented presenta-
tion. Then the monoid 〈S |R〉+ is left-cancellative.

↑
sa = sa′ implies a = a′

• Proof: Assume sw ≡+
R
sw′. Want to prove w ≡+

R
w′.

Completeness implies: (sw)−1(sw′) yR ε, i.e., w−1s−1sw′ yR ε.

s

w

s w′

The first step must be w−1s−1sw′ yR w−1w′,
so the sequel must be w−1w′ yR ε, hence w ≡+

R
w′. �

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion

and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.

Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time,

and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time:

construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS

• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:

w ≡+
R

w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:

assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;

then w ≡R ε iff v ≡R v′ iff v ≡+
R

v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′

iff v ≡+
R

v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Application to the word problem(s)

• Proposition: Assume that (S,R) is a complete complemented presenta-

tion and there exists a finite set bS including S and closed under reversing.
Then the word problem of 〈S |R〉+ is solvable in quadratic time, and so is
that of 〈S |R〉 if 〈S |R〉+ is right-cancellative.

↑
∀w,w′∈bS ∃v,v′∈bS (w−1w′ yR v′v−1)

• Proof: Reversing terminates
in quadratic time: construct
an bS-labeled grid:

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+

R
w′ iff w−1w′ yR ε.

• For w a word on S ∪ S−1:
assume w yR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+

R
v′

iff v−1v′ yR ε (double reversing).

w

yR

v

v′

v′

yR

?

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible:

completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown;

at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups

(and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups)

—but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Subword reversing as a tool

Range

• For semigroups: in principle, all are eligible: completion procedure
(when the cube condition fails).

• For groups: unknown; at least: classical and dual presentations of
(generalized) braid groups (and all Garside groups) —but certainly more.

Uses

• Cancellativity criterion;

• Existence of least common multiples, identification of Garside structures;

• Computation of the greedy normal form;

• (with Y. Lafont) Construction of explicit resolutions (whence homology);

• (with B. Wiest) Solution to the word problem (complexity issues);

• (with M. Autord) Combinatorial distance between
the reduced expressions of a permutation.

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”):

Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations

(no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance:

d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)?

(The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.

- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}
and all reduced expressions u, v of f ,

- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}
and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,

- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}
and some reduced expressions u, v of f .

Reduced expressions of a permutation

• Every permutation of {1, ...,n} is a product of transpositions:

Sn =
D
s1, ..., sn−1

˛̨̨
sisjsi = sjsisj for |i− j| = 1

sisj = sjsi for |i− j| > 2
, s21 = ...=s2n−1 =1

E
.

of minimal length
↓

• Proposition (“Exchange Lemma”): Any two reduced expressions of a
permutation are connected by braid relations (no need of using s2i = 1).

• Combinatorial distance: d(u, v) = minimal number of braid relations
needed to transform u into v.

• Question: Bounds on d(u, v)? (The standard proof of the Exchange
Lemma gives an exponential upper bound.)

• Proposition (folklore ?): There exist positive constants C,C′ s.t.
- d(u, v) 6 Cn4 holds for every permutation f of {1, ...,n}

and all reduced expressions u, v of f ,
- d(u, v) > C′n4 holds for some permutation f of {1, ...,n}

and some reduced expressions u, v of f .

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim:

Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word

and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1

7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1

1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3

{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Naming crossings

• Here: lower bounds; more specifically:

• Aim: Recognize whether a given Van Kampen diagram
or reversing diagram is possibly optimal.

↑
faces = combinatorial distance between the bounding words

• Associate a braid diagram with every (reduced) s-word and use the
names (or the colors) of the strands that cross

(i.e., use a “position vs. name” duality):

s1s2s1 7→

s1 s2 s1
1

2

3
{1,2}{1,3}{2,3}

← w

← N(w)

 a sequence N(w) of pairs of integers in {1, ...,n}.

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′)

= # triples {p, q, r} s.t.
{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′)

= # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,

each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),

N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).
Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Lower bounds

• For S,S′ sequences of pairs of integers in {1, ...,n}:
- I3(S,S′) = # triples {p, q, r} s.t.

{p, q}, {p, r} and {q, r} appear in different orders in S,S′.

- I2,2(S,S′) = # pairs of pairs {{p, q}, {p′, q′}} s.t.
{p, q} and {p′, q′} appear in different orders in S,S′.

• Lemma: If w, w′ are two reduced expressions of some permutation, then

d(w, w′) > I3(N(w),N(w′)) + I2,2(N(w),N(w′)).

• Proof: Each type I braid relation (“hexagon”) contributes at most 1 to I3,
each type II braid relation (“square”) contributes at most 1 to I2,2. �

• Example: w = s1s2s1s3s2s1, w′ = s3s2s3s1s2s3.

Then N(w) = ({1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}),
N(w′) = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}).

Hence d(w, w′) > 4 + 2 = 6.

• Question (Conjecture?): Is the above inequality an equality?

Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.

↑
faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),
give names to the faces:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r} type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}
{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.

Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.
↑

faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),
give names to the faces:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r} type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}
{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.

Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.
↑

faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),

give names to the faces:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r} type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}
{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.

Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.
↑

faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),
give names to the faces:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r} type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}
{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.

Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.
↑

faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),
give names to the faces:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r} type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}
{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.

Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.
↑

faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),
give names to the faces:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r} type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}
{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.

Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.
↑

faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),
give names to the faces:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}
{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.

Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.
↑

faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),
give names to the faces:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r} type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}
{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.

Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.
↑

faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),
give names to the faces:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r} type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.

Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.
↑

faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),
give names to the faces:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r} type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}
{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.

Naming faces

• Back to van Kampen diagrams with the aim of recognizing optimality.
↑

faces = combinatorial distance between bounding words

• Having given names to the generators si (= the edges of the diagram),
give names to the faces:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

{p,q,r} type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}
{{p,q},{p′,q′}}

• Criterion 1: A van Kampen diagram in which different faces
have different names is optimal.

Naming faces (2)

• Example:

s3

s1

s2

s2

s3

s1

s2
s3

s1

s2

s2

s1

s3

s2

s1

s3

s1

s3

s2

s2

s3

s1

{2,3,4}

{1,2,3}

{{1,3},{2,4}} {{1,2},{3,4}}

{1,3,4}

{1,2,4}

Naming faces (2)

• Example:

s3

s1

s2

s2

s3

s1

s2
s3

s1

s2

s2

s1

s3

s2

s1

s3

s1

s3

s2

s2

s3

s1

{2,3,4}

{1,2,3}

{{1,3},{2,4}} {{1,2},{3,4}}

{1,3,4}

{1,2,4}

Naming faces (2)

• Example:

s3

s1

s2

s2

s3

s1

s2
s3

s1

s2

s2

s1

s3

s2

s1

s3

s1

s3

s2

s2

s3

s1

{2,3,4}

{1,2,3}

{{1,3},{2,4}} {{1,2},{3,4}}

{1,3,4}

{1,2,4}

Naming faces (2)

• Example:

s3

s1

s2

s2

s3

s1

s2
s3

s1

s2

s2

s1

s3

s2

s1

s3

s1

s3

s2

s2

s3

s1

{2,3,4}

{1,2,3}

{{1,3},{2,4}}

{{1,2},{3,4}}

{1,3,4}

{1,2,4}

Naming faces (2)

• Example:

s3

s1

s2

s2

s3

s1

s2
s3

s1

s2

s2

s1

s3

s2

s1

s3

s1

s3

s2

s2

s3

s1

{2,3,4}

{1,2,3}

{{1,3},{2,4}} {{1,2},{3,4}}

{1,3,4}

{1,2,4}

Naming faces (2)

• Example:

s3

s1

s2

s2

s3

s1

s3

s1

s1

s3

s2

s3

s2
s1

s1

s3

s2 s2

s1

s3

s3

s1

s2

s2

s3

s1

{{1,2},{3,4}} {{1,3},{2,4}}

{2,3,4}

{1,2,4}

{1,3,4}

{1,2,3}

{{1,4},{2,3}}

{{1,4},{2,3}}

Naming faces (2)

• Example:

s3

s1

s2

s2

s3

s1

s3

s1

s1

s3

s2

s3

s2
s1

s1

s3

s2 s2

s1

s3

s3

s1

s2

s2

s3

s1

{{1,2},{3,4}} {{1,3},{2,4}}

{2,3,4}

{1,2,4}

{1,3,4}

{1,2,3}

{{1,4},{2,3}}

{{1,4},{2,3}}

Naming faces (2)

• Example:

s3

s1

s2

s2

s3

s1

s3

s1

s1

s3

s2

s3

s2
s1

s1

s3

s2 s2

s1

s3

s3

s1

s2

s2

s3

s1

{{1,2},{3,4}} {{1,3},{2,4}}

{2,3,4}

{1,2,4}

{1,3,4}

{1,2,3}

{{1,4},{2,3}}

{{1,4},{2,3}}

Separatrices

• (Again in a van Kampen diagram) connect the edges with the same name:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve that connect all {p, q}-edges:
the {p, q}-separatrix Σp,q.

type I:

Σp,q Σq,r

Σq,r

type II:

Σp,q Σp′,q′

Separatrices

• (Again in a van Kampen diagram) connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve that connect all {p, q}-edges:
the {p, q}-separatrix Σp,q.

type I:

Σp,q Σq,r

Σq,r

type II:

Σp,q Σp′,q′

Separatrices

• (Again in a van Kampen diagram) connect the edges with the same name:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve that connect all {p, q}-edges:
the {p, q}-separatrix Σp,q.

type I:

Σp,q Σq,r

Σq,r

type II:

Σp,q Σp′,q′

Separatrices

• (Again in a van Kampen diagram) connect the edges with the same name:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve that connect all {p, q}-edges:
the {p, q}-separatrix Σp,q.

type I:

Σp,q Σq,r

Σq,r

type II:

Σp,q Σp′,q′

Separatrices

• (Again in a van Kampen diagram) connect the edges with the same name:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve that connect all {p, q}-edges:

the {p, q}-separatrix Σp,q.

type I:

Σp,q Σq,r

Σq,r

type II:

Σp,q Σp′,q′

Separatrices

• (Again in a van Kampen diagram) connect the edges with the same name:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve that connect all {p, q}-edges:
the {p, q}-separatrix Σp,q.

type I:

Σp,q Σq,r

Σq,r

type II:

Σp,q Σp′,q′

Separatrices

• (Again in a van Kampen diagram) connect the edges with the same name:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve that connect all {p, q}-edges:
the {p, q}-separatrix Σp,q.

type I:

Σp,q Σq,r

Σq,r

type II:

Σp,q Σp′,q′

Separatrices

• (Again in a van Kampen diagram) connect the edges with the same name:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve that connect all {p, q}-edges:
the {p, q}-separatrix Σp,q.

type I:

Σp,q Σq,r

Σq,r

type II:

Σp,q Σp′,q′

Separatrices

• (Again in a van Kampen diagram) connect the edges with the same name:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve that connect all {p, q}-edges:
the {p, q}-separatrix Σp,q.

type I:

Σp,q Σq,r

Σq,r

type II:

Σp,q Σp′,q′

Separatrices

• (Again in a van Kampen diagram) connect the edges with the same name:

type I:
{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve that connect all {p, q}-edges:
the {p, q}-separatrix Σp,q.

type I:

Σp,q Σq,r

Σq,r

type II:

Σp,q Σp′,q′

Separatrices

• Example:

s3

s1

s2

s2

s3

s1

s2
s3

s1

s2

s2

s1

s3

s2

s1

s3

s1

s3

s2

s2

s3

s1

Σ1,2

Σ1,3

Σ2,3 Σ1,4

Σ2,4

Σ3,4

Separatrices

• Example:

s3

s1

s2

s2

s3

s1

s2
s3

s1

s2

s2

s1

s3

s2

s1

s3

s1

s3

s2

s2

s3

s1Σ1,2

Σ1,3

Σ2,3 Σ1,4

Σ2,4

Σ3,4

Separatrices

• Example:

s3

s1

s2

s2

s3

s1

s2
s3

s1

s2

s2

s1

s3

s2

s1

s3

s1

s3

s2

s2

s3

s1Σ1,2

Σ1,3

Σ2,3 Σ1,4

Σ2,4

Σ3,4

Separatrices

• Example:

s3

s1

s2

s2

s3

s1

s3

s1

s1

s3

s2

s3

s2
s1

s1

s3

s2 s2

s1

s3

s3

s1

s2

s2

s3

s1

Σ1,2

Σ1,3 Σ2,4

Σ3,4

Σ2,3 Σ1,4

Separatrices

• Example:

s3

s1

s2

s2

s3

s1

s3

s1

s1

s3

s2

s3

s2
s1

s1

s3

s2 s2

s1

s3

s3

s1

s2

s2

s3

s1Σ1,2

Σ1,3 Σ2,4

Σ3,4

Σ2,3 Σ1,4

Separatrices

• Example:

s3

s1

s2

s2

s3

s1

s3

s1

s1

s3

s2

s3

s2
s1

s1

s3

s2 s2

s1

s3

s3

s1

s2

s2

s3

s1Σ1,2

Σ1,3 Σ2,4

Σ3,4

Σ2,3 Σ1,4

Separatrices

• Example:

s3

s1

s2

s2

s3

s1

s3

s1

s1

s3

s2

s3

s2
s1

s1

s3

s2 s2

s1

s3

s3

s1

s2

s2

s3

s1Σ1,2

Σ1,3 Σ2,4

Σ3,4

Σ2,3 Σ1,4

An optimality criterion

• Criterion 2: A van Kampen diagram in which
any two separatrices cross at most once is optimal.

• Question: Is the condition necessary, i.e., do any two separatrices
cross at most once in an optimal van Kampen diagram?

• Remark: Compare with “a s-word is reduced iff
any two strands in the associated braid diagram cross at most one”.

An optimality criterion

• Criterion 2: A van Kampen diagram in which
any two separatrices cross at most once is optimal.

• Question: Is the condition necessary, i.e., do any two separatrices
cross at most once in an optimal van Kampen diagram?

• Remark: Compare with “a s-word is reduced iff
any two strands in the associated braid diagram cross at most one”.

An optimality criterion

• Criterion 2: A van Kampen diagram in which
any two separatrices cross at most once is optimal.

• Question: Is the condition necessary, i.e., do any two separatrices
cross at most once in an optimal van Kampen diagram?

• Remark: Compare with “a s-word is reduced iff
any two strands in the associated braid diagram cross at most one”.

Separatrices and reversing

• Applies in particular to reversing diagrams
(viewed as particular van Kampen diagrams):

s1

s2

s3

s1 s1
s1

s2

s2

s1 s1

s2

s3

s3

s3 s2 s1 s3 s2

s2s3 s1

s3 s2 s1

s2 s3 s1 s2 s1

s1 s1

s2

s3

s2

s2

s1

Σ2,3

Σ1,4

Separatrices and reversing

• How are separatrices in a reversing diagram?

Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Criterion 3: A reversing diagram containing no type III face is optimal.

• Proof: In order that two separatrices cross twice,
one has to go from horizontal to vertical. �

Separatrices and reversing

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Criterion 3: A reversing diagram containing no type III face is optimal.

• Proof: In order that two separatrices cross twice,
one has to go from horizontal to vertical. �

Separatrices and reversing

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Criterion 3: A reversing diagram containing no type III face is optimal.

• Proof: In order that two separatrices cross twice,
one has to go from horizontal to vertical. �

Separatrices and reversing

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Criterion 3: A reversing diagram containing no type III face is optimal.

• Proof: In order that two separatrices cross twice,
one has to go from horizontal to vertical. �

Separatrices and reversing

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Criterion 3: A reversing diagram containing no type III face is optimal.

• Proof: In order that two separatrices cross twice,
one has to go from horizontal to vertical. �

Separatrices and reversing

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Criterion 3: A reversing diagram containing no type III face is optimal.

• Proof: In order that two separatrices cross twice,
one has to go from horizontal to vertical. �

Separatrices and reversing

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Criterion 3: A reversing diagram containing no type III face is optimal.

• Proof: In order that two separatrices cross twice,
one has to go from horizontal to vertical. �

A lower bound result

• An improvement: Same argument when reversing steps are grouped:

replace si
si
sj

sisj

sj si

with si

sj si

sj si

sj for |i− j| = 1,

corresponding to and .

• An application:

• Proposition: For each `, there exist length ` reduced s-words w, w′

satisfying w−1w′ yR v′v−1 and d(wv′, w′v) > `4/8.

By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

A lower bound result

• An improvement: Same argument when reversing steps are grouped:

replace si
si
sj

sisj

sj si

with si

sj si

sj si

sj for |i− j| = 1,

corresponding to and .

• An application:

• Proposition: For each `, there exist length ` reduced s-words w, w′

satisfying w−1w′ yR v′v−1 and d(wv′, w′v) > `4/8.

By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

A lower bound result

• An improvement: Same argument when reversing steps are grouped:

replace si
si
sj

sisj

sj si

with si

sj si

sj si

sj for |i− j| = 1,

corresponding to and .

• An application:

• Proposition: For each `, there exist length ` reduced s-words w, w′

satisfying w−1w′ yR v′v−1 and d(wv′, w′v) > `4/8.

By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

A lower bound result

• An improvement: Same argument when reversing steps are grouped:

replace si
si
sj

sisj

sj si

with si

sj si

sj si

sj for |i− j| = 1,

corresponding to

and .

• An application:

• Proposition: For each `, there exist length ` reduced s-words w, w′

satisfying w−1w′ yR v′v−1 and d(wv′, w′v) > `4/8.

By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

A lower bound result

• An improvement: Same argument when reversing steps are grouped:

replace si
si
sj

sisj

sj si

with si

sj si

sj si

sj for |i− j| = 1,

corresponding to and .

• An application:

• Proposition: For each `, there exist length ` reduced s-words w, w′

satisfying w−1w′ yR v′v−1 and d(wv′, w′v) > `4/8.

By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

A lower bound result

• An improvement: Same argument when reversing steps are grouped:

replace si
si
sj

sisj

sj si

with si

sj si

sj si

sj for |i− j| = 1,

corresponding to and .

• An application:

• Proposition: For each `, there exist length ` reduced s-words w, w′

satisfying w−1w′ yR v′v−1 and d(wv′, w′v) > `4/8.

By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

A lower bound result

• An improvement: Same argument when reversing steps are grouped:

replace si
si
sj

sisj

sj si

with si

sj si

sj si

sj for |i− j| = 1,

corresponding to and .

• An application:

• Proposition: For each `, there exist length ` reduced s-words w, w′

satisfying w−1w′ yR v′v−1 and d(wv′, w′v) > `4/8.

By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

A lower bound result

• An improvement: Same argument when reversing steps are grouped:

replace si
si
sj

sisj

sj si

with si

sj si

sj si

sj for |i− j| = 1,

corresponding to and .

• An application:

• Proposition: For each `, there exist length ` reduced s-words w, w′

satisfying w−1w′ yR v′v−1 and d(wv′, w′v) > `4/8.

By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

A lower bound result

• An improvement: Same argument when reversing steps are grouped:

replace si
si
sj

sisj

sj si

with si

sj si

sj si

sj for |i− j| = 1,

corresponding to and .

• An application:

• Proposition: For each `, there exist length ` reduced s-words w, w′

satisfying w−1w′ yR v′v−1 and d(wv′, w′v) > `4/8.

By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

• Two conclusions:

• Even in the simple(?) case of braids and permutations, many open questions.

• Importance of having van Kampen diagrams included in a grid.

• Two conclusions:

• Even in the simple(?) case of braids and permutations, many open questions.

• Importance of having van Kampen diagrams included in a grid.

• Two conclusions:

• Even in the simple(?) case of braids and permutations, many open questions.

• Importance of having van Kampen diagrams included in a grid.

• Two conclusions:

• Even in the simple(?) case of braids and permutations, many open questions.

• Importance of having van Kampen diagrams included in a grid.

• P. Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P. Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P. Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P. Dehornoy & B. Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of
a permutation in preparation.

www.math.unicaen.fr/∼dehornoy

• P. Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P. Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P. Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P. Dehornoy & B. Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of
a permutation in preparation.

www.math.unicaen.fr/∼dehornoy

• P. Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P. Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P. Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P. Dehornoy & B. Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of
a permutation in preparation.

www.math.unicaen.fr/∼dehornoy

• P. Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P. Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P. Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P. Dehornoy & B. Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of
a permutation in preparation.

www.math.unicaen.fr/∼dehornoy

• P. Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P. Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P. Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P. Dehornoy & B. Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of
a permutation in preparation.

www.math.unicaen.fr/∼dehornoy

• P. Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P. Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P. Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P. Dehornoy & B. Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of
a permutation in preparation.

www.math.unicaen.fr/∼dehornoy

• P. Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P. Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P. Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P. Dehornoy & B. Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of
a permutation in preparation.

www.math.unicaen.fr/∼dehornoy

• P. Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P. Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P. Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P. Dehornoy & B. Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of
a permutation in preparation.

www.math.unicaen.fr/∼dehornoy

• P. Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P. Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P. Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P. Dehornoy & B. Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of
a permutation in preparation.

www.math.unicaen.fr/∼dehornoy

• P. Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P. Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P. Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P. Dehornoy & B. Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• P. Dehornoy & M. Autord, On the combinatorial distance between expressions of
a permutation in preparation.

www.math.unicaen.fr/∼dehornoy

