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e In this setting, “subword reversing” means replacing —+ with +—,
whence the terminology.
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acaaa and cdbbb are equivalent, but (acaaa) ! (cdbbb) ~ e fails
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- What to do with a non-complete presentation? (Make it complete...)
- What to do with a complete presentation? (Prove properties of the monoid.)




The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.




The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,




The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.




The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

o hOI'I’IOgCI’]COUS:



The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

e homogeneous: exists R-invariant function X\ : S* — N s.t. A(sw) > A(w).



The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

e homogeneous: exists R-invariant function X\ : S* — N s.t. A(sw) > A(w).

e cube condition for
a triple u, v, w:



The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

e homogeneous: exists R-invariant function X\ : S* — N s.t. A(sw) > A(w).

w
e cube condition for w
a triple u, v, w:
u



The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

e homogeneous: exists R-invariant function X\ : S* — N s.t. A(sw) > A(w).

w
e cube condition for w w
a triple u, v, w: ~
u

—_ 5
,v7



The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

e homogeneous: exists R-invariant function X\ : S* — N s.t. A(sw) > A(w).

v v u

—_—
wl—’ ul—>
e cube condition for' w w’ implies ~
a triple u, v, w: ~
u v’

—_ 5
,v7



The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

e homogeneous: exists R-invariant function X\ : S* — N s.t. A(sw) > A(w).

v v u

_—
w u H
e cube condition for' w w’ implies ~
a triple u, v, w: ~
u v’ e

—_ 5
,v7



The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

e homogeneous: exists R-invariant function X\ : S* — N s.t. A(sw) > A(w).

v v u

_—
w u H
e cube condition for' w w’ implies ~
a triple u, v, w: ~
u v’ e

—_ 5
,v7



The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

e homogeneous: exists R-invariant function X\ : S* — N s.t. A(sw) > A(w).

v v u

_—
w u H
e cube condition for' w w’ implies ~
a triple u, v, w: ~
u v’ e

—_ 5
,v7



The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

e homogeneous: exists R-invariant function X\ : S* — N s.t. A(sw) > A(w).

v v u

_—
w u H
e cube condition for' w w’ implies ~
a triple u, v, w: ~
u v’ e

y
——————
/w

,v7




The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

e homogeneous: exists R-invariant function X\ : S* — N s.t. A(sw) > A(w).

v v u

_—
w u H
e cube condition for' w w’ implies ~
a triple u, v, w: ~
u v’ e

—_ 5
,v7




The cube condition

e Theorem (D., '97 and '02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for 7, s, t is satisfied.

e homogeneous: exists R-invariant function X\ : S* — N s.t. A(sw) > A(w).

v v u

_—
w u H
e cube condition for' w w’ implies ~
a triple u, v, w: ~
u v’ e

y
e —C
/w

,v7




e Example: M = (a,b,c,d|ab = bc = ca,ba = db= ad)*.

«O>r «Fr <

it
-

DA



e Example: M = (a,b,c,d|ab = bc = ca,ba = db= ad)*.
- Homogeneous: take A\ = length.

«0O)>r «F)r «

it
-

DA



The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.
- Cube condition?



e Example: M = (a,b,c,d|ab = bc = ca,ba = db= ad)*.
- Homogeneous: take A\ = length.
- Cube condition?

«O>r «Fr <

it
-

ae



The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.
- Cube condition?

(a,b,c):
b,
c lc
C v a Y




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.
- Cube condition?

(a,b,c):




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.
- Homogeneous: take A = length.
- Cube condition?

(a,b,c):




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.
- Homogeneous: take A = length.
- Cube condition?
(a,a,b):

(a,b,c): a
b b, c, . b
Il o, !l
C Y _a> v b.v.. - a
a a b
b v .~




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.

- Cube condition?

(a,b,c):

(a,a,b):




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.
- Homogeneous: take A = length.
- Cube condition?
((l, a, b): Qa d b

(a,b,c) N

a,b,c): a a
b, b, c b ld
L1 L |

cC.y a.y b.v.. a c lb
o" b




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.
- Cube condition?
(a,a,b):

(a,b,¢): _,ld




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.
- Cube condition?
(a,a,b):

(a,b,¢): _,ld




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.

_ ition?
Cube condition? oo
(a,b,c): _a,
b b, ¢ b ld
y a




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.
- Cube condition?

(a, b, c):

(a,a,b):




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.

i s
Cube condition? (a,a,b):
(a.b,0): =
b b, e b ld
c lc @ lc r’b —
c.va r b Y. a C lb
a a b bt
b v . Vo
(e, d,a): d,_b, b
d c b




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.

i s
Cube condition? (a,a,b):
(a, b, c): —
b b, e b ld
c lc @ lc r’b —
c.va r b Y. a C lb
al_>a b L >
b v . Vo
(e, d,a): d,_b, b
d c| 2 b




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.

i s
Cube condition? (a,a,b):
(a, b, c): —
b b, e b ld
c lc @ lc r’b —
c.va r b Y. a C lb
al_>a b b’ =
b v . Vo
(e, d,a): d,_b, b
d c| 2 b S




The cube condition (bis)

e Example: M = (a,b,c,d|ab=bc = ca,ba = db=ad)*.

- Homogeneous: take A = length.
- Cube condition?
(a,a,b):

(a, b, c): SCUR
ld

4

missing relation.

~ A completion procedure: if the cube fails, add the
here: add caa = dbb.




Q>



Q>



Q>



Q>






Completion




Completion

CREES
L5 =
ﬁb
3
< |3 ﬁb
N S
3 %b
S S o




Completion

Ja




Completion

Ja




Completion




Q>



Q>



Q>



Q>



Q>



e Three possible cases:

Completion

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;
- Presentations that require infinitely many completion steps (the bad case).
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Completion

e Three possible cases:
- Originally complete presentations :
- Presentations that become complete after finitely many completion steps

- Presentations that require infinitely many completion steps

e A particular framework:

o Definition : A semigroup presentation (S, R) is called complemented if,

for all s,t in S, there is at most one relation s... = t... in R.

e For a complemented presentation, reversing is deterministic:

e Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) =} (v\w)\(v\w).

cube law
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- Cancellativity
- Word problems

- Recognizing Garside structures

- Computing in Garside structures
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e Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,

how to use reversing to investigate that monoid ?

e Word problems: one/two reversings.
e Least common multiple: one reversing; Greatest common divisor: three reversings.
e Greedy normal form: Every non-trivial element in a Garside monoid admits a unique
decomposition a = a;...ap such that, for each <,
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e Theorem : Assume that (ai,...,ap), (b1, ..., bg) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

e Leads to the grid property in Garside groups
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e Aim : Recognize whether a given reversing diagram (= reversing sequence)

(or, more generally, a Van Kampen diagram) is possibly optimal.

e Use the names of the elements

that cross
, then connect the edges with the same name:

{p,qa}

{a,7} {p.a} {p',a'} {p.a}

type I: type Il:

{p.q} {a,7} {p,q} {r'.q"}

{a,7}] 7~
~ for each pair {p, g}, an curve
that connect all {p, g}-edges: the {p, g}-separatrix Xy 4.

e Lemma :

A sufficient condition for a van Kampen diagram D to be optimal

is that any two separatrices cross at most once in D.
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Separatrices

. _ ;o
e Example : w = 030,030,0,03, W' = 0,0,0,030,0;.

D:

15 33,4

~» The separatrices 32 3 and X7 4 cross twice, hence D is not optimal.
v







Separatrices and reversing

e Applies in particular to reversing diagrams
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An optimality criterion

e How are separatrices in a reversing diagram? Three types of faces:
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e Proposition : A reversing diagram containing no type Ill face is optimal.
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~+ Note the importance of metric vs. topological features here.

e Corollary (Autord, D.): For each ¢, there exist length ¢ braid words w, w’
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satisfying w™—
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Conclusions

e Conclusion : In good cases (= when it is complete), subword reversing is useful

- for proving cancellativity,
- for solving word problems (both for monoids and for groups),
- for recognizing Garside structures,
- for computing in Garside structures (normal form, homology, ...),
- for getting optimal derivations,
- hopefully more...

e Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.
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