
The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques

Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with various applications: cancellativity, embedding in a group,

recognizing Garsideness, determining combinatorial distance...

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques

Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with various applications: cancellativity, embedding in a group,

recognizing Garsideness, determining combinatorial distance...

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques

Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with various applications: cancellativity, embedding in a group,

recognizing Garsideness, determining combinatorial distance...

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques

Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,

with various applications: cancellativity, embedding in a group,
recognizing Garsideness, determining combinatorial distance...

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques

Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with various applications:

cancellativity, embedding in a group,
recognizing Garsideness, determining combinatorial distance...

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques

Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with various applications: cancellativity,

embedding in a group,
recognizing Garsideness, determining combinatorial distance...

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques

Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with various applications: cancellativity, embedding in a group,

recognizing Garsideness, determining combinatorial distance...

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques

Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with various applications: cancellativity, embedding in a group,

recognizing Garsideness,

determining combinatorial distance...

The Subword Reversing Method

Patrick Dehornoy

Laboratoire de Mathématiques

Nicolas Oresme, Université de Caen

• A strategy for constructing van Kampen diagrams for semigroups,
with various applications: cancellativity, embedding in a group,

recognizing Garsideness, determining combinatorial distance...

Plan :

• 1. Subword Reversing : Description

• 2. Subword Reversing : Range

• 3. Subword Reversing : Uses

• 4. Subword Reversing : Efficiency

Plan :

• 1. Subword Reversing : Description

• 2. Subword Reversing : Range

• 3. Subword Reversing : Uses

• 4. Subword Reversing : Efficiency

Plan :

• 1. Subword Reversing : Description

• 2. Subword Reversing : Range

• 3. Subword Reversing : Uses

• 4. Subword Reversing : Efficiency

Plan :

• 1. Subword Reversing : Description

• 2. Subword Reversing : Range

• 3. Subword Reversing : Uses

• 4. Subword Reversing : Efficiency

Plan :

• 1. Subword Reversing : Description

• 2. Subword Reversing : Range

• 3. Subword Reversing : Uses

• 4. Subword Reversing : Efficiency

1. Subword Reversing : Description

- A motivating example

- Van Kampen diagrams

- Reversing : geometric description

- Reversing : syntactic description

1. Subword Reversing : Description

- A motivating example

- Van Kampen diagrams

- Reversing : geometric description

- Reversing : syntactic description

A challenging example

• Our red line in the sequel:

M = 〈a, b, c, d |ab = bc = ca, ba = db = ad 〉+++.

a

ca

b

b

c
a

ca

b

b

c

b

d

d a

• Typical questions:

- Is M cancellative?

- Does M embed in a group?

- Does the universal group of M admit an automatic structure
connected with this presentation?

• Note: M is not eligible for Adjan’s cancellativity criterion.

A challenging example

• Our red line in the sequel:

M = 〈a, b, c, d |ab = bc = ca, ba = db = ad 〉+++.

a

ca

b

b

c

a

ca

b

b

c

b

d

d a

• Typical questions:

- Is M cancellative?

- Does M embed in a group?

- Does the universal group of M admit an automatic structure
connected with this presentation?

• Note: M is not eligible for Adjan’s cancellativity criterion.

A challenging example

• Our red line in the sequel:

M = 〈a, b, c, d |ab = bc = ca, ba = db = ad 〉+++.

a

ca

b

b

c
a

ca

b

b

c

b

d

d a

• Typical questions:

- Is M cancellative?

- Does M embed in a group?

- Does the universal group of M admit an automatic structure
connected with this presentation?

• Note: M is not eligible for Adjan’s cancellativity criterion.

A challenging example

• Our red line in the sequel:

M = 〈a, b, c, d |ab = bc = ca, ba = db = ad 〉+++.

a

ca

b

b

c
a

ca

b

b

c

b

d

d a

• Typical questions:

- Is M cancellative?

- Does M embed in a group?

- Does the universal group of M admit an automatic structure
connected with this presentation?

• Note: M is not eligible for Adjan’s cancellativity criterion.

A challenging example

• Our red line in the sequel:

M = 〈a, b, c, d |ab = bc = ca, ba = db = ad 〉+++.

a

ca

b

b

c
a

ca

b

b

c

b

d

d a

• Typical questions:

- Is M cancellative?

- Does M embed in a group?

- Does the universal group of M admit an automatic structure
connected with this presentation?

• Note: M is not eligible for Adjan’s cancellativity criterion.

A challenging example

• Our red line in the sequel:

M = 〈a, b, c, d |ab = bc = ca, ba = db = ad 〉+++.

a

ca

b

b

c
a

ca

b

b

c

b

d

d a

• Typical questions:

- Is M cancellative?

- Does M embed in a group?

- Does the universal group of M admit an automatic structure
connected with this presentation?

• Note: M is not eligible for Adjan’s cancellativity criterion.

A challenging example

• Our red line in the sequel:

M = 〈a, b, c, d |ab = bc = ca, ba = db = ad 〉+++.

a

ca

b

b

c
a

ca

b

b

c

b

d

d a

• Typical questions:

- Is M cancellative?

- Does M embed in a group?

- Does the universal group of M admit an automatic structure
connected with this presentation?

• Note: M is not eligible for Adjan’s cancellativity criterion.

A challenging example

• Our red line in the sequel:

M = 〈a, b, c, d |ab = bc = ca, ba = db = ad 〉+++.

a

ca

b

b

c
a

ca

b

b

c

b

d

d a

• Typical questions:

- Is M cancellative?

- Does M embed in a group?

- Does the universal group of M admit an automatic structure
connected with this presentation?

• Note: M is not eligible for Adjan’s cancellativity criterion.

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.

Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++
if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++

if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Van Kampen diagrams

all relations of the form u = v with u, v nonempty words on S
↓

• Let (S, R) be a semigroup presentation.
Two words w, w′ on S represent the same element of the monoid 〈S |R〉+++

if and only if there exists an R-derivation from w to w′.

• Proposition (van Kampen, ?): Two words w, w′ on S represent the same element
of 〈S |R〉+++ if and only if there exists a van Kampen diagram for (w, w′).

↑
a tesselated disk with (oriented) edges labeled by elements of S and

faces labeled by relations of R, with boundary paths labelled w and w′.

• Example:

Let M = 〈a, b, c, d |
ab = bc = ca, ba = db = ad〉+++

(our preferred example).

Then a van Kampen diagram
for (acaaa, cdbbb) is

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a
d

a

c
a

a

a

bc

d

b
b

b
c

a

b

c

a

d

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?

(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
,

and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Subword reversing

• How to build a van Kampen diagram for (w, w′)—when it exists?
(includes solving the word problem, i.e., deciding whether w, w′ are R-equivalent)

• Definition : Subword reversing = the “left strategy”, i.e.,

- look at the (a) leftmost pending pattern
s

t
,

- choose a relation sv = tu of R to close this pattern into
s

t

v

u
, and repeat.

• Facts : - May not be possible
(no relation s... = t...);

- May not be unique
(several relations s... = t...);

- May never terminate
(if u, v have length more than 1);

- May terminate but boundary
words are longer than w, w′

(certainly happens if w, w′

are not R-equivalent).

• Example: (same hypotheses)

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

??

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c

b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,

plus dotted arcs connecting vertices that are to be identified
in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• Another way of drawing the same diagram: “reversing diagram”

a c a a a

d

b

b

b

c b

a

a

c

b

d

??

 only vertical and horizontal edges,
plus dotted arcs connecting vertices that are to be identified

in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= equivalent or not) initial words
and then possibly gives a common right-multiple

of (the elements represented by) these words:

w ’

w

v’

v

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

with sv = tu in R.

• More exactly:

s

t

becomes
s

t

u

v

with sv = tu in R,

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

with sv = tu in R.

• More exactly:

s

t

becomes
s

t

u

v

with sv = tu in R,

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

with sv = tu in R.

• More exactly:

s

t

becomes
s

t

u

v

with sv = tu in R,

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

with sv = tu in R.

• More exactly:

s

t

becomes
s

t

u

v

with sv = tu in R,

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

with sv = tu in R.

• More exactly:

s

t

becomes
s

t

u

v

with sv = tu in R,

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

with sv = tu in R.

• More exactly:

s

t

becomes
s

t

u

v

with sv = tu in R,

including

s

s

becomes
s

s

.

Reversing diagrams

• In this way, a uniform pattern:

s

t

becomes s

t

u

v

with sv = tu in R.

• More exactly:

s

t

becomes
s

t

u

v

with sv = tu in R,

including

s

s

becomes
s

s

.

Syntactic description

• Syntactic description of the reversing process:

- introduce a formal copy S−1 of the alphabet S;
- read words from SW to NE, using s−1 when a vertical s-edge is crossed

(in the wrong direction).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t yyy vu−1,
↑

reverses to

including

s

s

7→
s

s

reads: s−1s yyy ε.
↑

the empty word

• In this setting, “subword reversing” means replacing −+−+−+ with +−+−+−,
whence the terminology.

Syntactic description

• Syntactic description of the reversing process:
- introduce a formal copy S−1 of the alphabet S;

- read words from SW to NE, using s−1 when a vertical s-edge is crossed
(in the wrong direction).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t yyy vu−1,
↑

reverses to

including

s

s

7→
s

s

reads: s−1s yyy ε.
↑

the empty word

• In this setting, “subword reversing” means replacing −+−+−+ with +−+−+−,
whence the terminology.

Syntactic description

• Syntactic description of the reversing process:
- introduce a formal copy S−1 of the alphabet S;
- read words from SW to NE, using s−1 when a vertical s-edge is crossed

(in the wrong direction).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t yyy vu−1,
↑

reverses to

including

s

s

7→
s

s

reads: s−1s yyy ε.
↑

the empty word

• In this setting, “subword reversing” means replacing −+−+−+ with +−+−+−,
whence the terminology.

Syntactic description

• Syntactic description of the reversing process:
- introduce a formal copy S−1 of the alphabet S;
- read words from SW to NE, using s−1 when a vertical s-edge is crossed

(in the wrong direction).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t yyy vu−1,
↑

reverses to

including

s

s

7→
s

s

reads: s−1s yyy ε.
↑

the empty word

• In this setting, “subword reversing” means replacing −+−+−+ with +−+−+−,
whence the terminology.

Syntactic description

• Syntactic description of the reversing process:
- introduce a formal copy S−1 of the alphabet S;
- read words from SW to NE, using s−1 when a vertical s-edge is crossed

(in the wrong direction).

• Basic step:

s

t

7→
s

t

u

v

reads:

s−1t yyy vu−1,
↑

reverses to

including

s

s

7→
s

s

reads: s−1s yyy ε.
↑

the empty word

• In this setting, “subword reversing” means replacing −+−+−+ with +−+−+−,
whence the terminology.

Syntactic description

• Syntactic description of the reversing process:
- introduce a formal copy S−1 of the alphabet S;
- read words from SW to NE, using s−1 when a vertical s-edge is crossed

(in the wrong direction).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t yyy vu−1,

↑
reverses to

including

s

s

7→
s

s

reads: s−1s yyy ε.
↑

the empty word

• In this setting, “subword reversing” means replacing −+−+−+ with +−+−+−,
whence the terminology.

Syntactic description

• Syntactic description of the reversing process:
- introduce a formal copy S−1 of the alphabet S;
- read words from SW to NE, using s−1 when a vertical s-edge is crossed

(in the wrong direction).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t yyy vu−1,
↑

reverses to

including

s

s

7→
s

s

reads: s−1s yyy ε.
↑

the empty word

• In this setting, “subword reversing” means replacing −+−+−+ with +−+−+−,
whence the terminology.

Syntactic description

• Syntactic description of the reversing process:
- introduce a formal copy S−1 of the alphabet S;
- read words from SW to NE, using s−1 when a vertical s-edge is crossed

(in the wrong direction).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t yyy vu−1,
↑

reverses to

including

s

s

7→
s

s

reads:

s−1s yyy ε.
↑

the empty word

• In this setting, “subword reversing” means replacing −+−+−+ with +−+−+−,
whence the terminology.

Syntactic description

• Syntactic description of the reversing process:
- introduce a formal copy S−1 of the alphabet S;
- read words from SW to NE, using s−1 when a vertical s-edge is crossed

(in the wrong direction).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t yyy vu−1,
↑

reverses to

including

s

s

7→
s

s

reads: s−1s yyy ε.
↑

the empty word

• In this setting, “subword reversing” means replacing −+−+−+ with +−+−+−,
whence the terminology.

Syntactic description

• Syntactic description of the reversing process:
- introduce a formal copy S−1 of the alphabet S;
- read words from SW to NE, using s−1 when a vertical s-edge is crossed

(in the wrong direction).

• Basic step:

s

t

7→
s

t

u

v

reads: s−1t yyy vu−1,
↑

reverses to

including

s

s

7→
s

s

reads: s−1s yyy ε.
↑

the empty word

• In this setting, “subword reversing” means replacing −+−+−+ with +−+−+−,
whence the terminology.

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi yyy1

R
wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1, i.e., w

w′

v

v′

yyyR , implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.
↑

the empty word

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R

and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi yyy1

R
wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1, i.e., w

w′

v

v′

yyyR , implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.
↑

the empty word

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi yyy1

R
wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1, i.e., w

w′

v

v′

yyyR , implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.
↑

the empty word

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.

w0 = w, wp = w′, and wi yyy1
R

wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1, i.e., w

w′

v

v′

yyyR , implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.
↑

the empty word

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi yyy1

R
wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1, i.e., w

w′

v

v′

yyyR , implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.
↑

the empty word

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi yyy1

R
wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1, i.e., w

w′

v

v′

yyyR , implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.
↑

the empty word

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi yyy1

R
wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1,

i.e., w

w′

v

v′

yyyR , implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.
↑

the empty word

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi yyy1

R
wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1, i.e., w

w′

v

v′

yyyR ,

implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.
↑

the empty word

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi yyy1

R
wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1, i.e., w

w′

v

v′

yyyR , implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.
↑

the empty word

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi yyy1

R
wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1, i.e., w

w′

v

v′

yyyR , implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.

↑
the empty word

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi yyy1

R
wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1, i.e., w

w′

v

v′

yyyR , implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.
↑

the empty word

Reversing sequences

• Definition : For w, w′ words on S ∪ S−1, declare w yyy1
R

w′ if

∃s, t, u, v (sv = tu belongs to R and w = ... s−1t ... and w′ = ... vu−1 ...).

Declare w yyyR w′ if there exist w0, ..., wp s.t.
w0 = w, wp = w′, and wi yyy1

R
wi+1 for each i.

• Terminal words: v′v−1 with v, v′ words on S
(no −+ pattern s−1t to possibly reverse).

• Lemma : If w, w′, v, v′ are words on S,

then w−1w′ yyyR v′v−1, i.e., w

w′

v

v′

yyyR , implies wv′ ≡+++
R

w′v.

(obvious, since one gets a witnessing van Kampen diagram)

• In particular, w−1w′ yyyR ε, i.e., w

w′

yyyR , implies w ≡+++
R

w′.
↑

the empty word

2. Subword Reversing : Range

- Completeness

- The cube condition

2. Subword Reversing : Range

- Completeness

- The cube condition

Completeness

• When is reversing useful ?

...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)

if w ≡+++
R

w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem

only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:

acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails
—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

Completeness

• When is reversing useful ?
...When it succeeds in building a van Kampen diagramwhenever one exists.

• Definition : A presentation (S, R) is called complete (w.r.t. subword reversing)
if w ≡+++

R
w′ implies w−1w′ yyyR ε.

↑
hence ... is equivalent to ...

• Two remarks :

- Completeness implies the solvability of the word problem
only if reversing is proved to always terminate.

- Our favourite presentation (a, b, c, d | ...) is not complete:
acaaa and cdbbb are equivalent, but (acaaa)−1(cdbbb) yyy ε fails

—and so does (acaaa)−1(cdbbb) yyy v′v−1 for all positive words v, v′.

• Three problems :

- How to recognize completeness?

- What to do with a non-complete presentation? (Make it complete...)

- What to do with a complete presentation? (Prove properties of the monoid.)

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.

Then (S, R) is complete if, and only if,
for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous:

exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition

• Theorem (D., ’97 and ’02): Assume that (S, R) is a homogeneous presentation.
Then (S, R) is complete if, and only if,

for each triple r, s, t in S, the cube condition for r, s, t is satisfied.

• homogeneous: exists R-invariant function λ : S∗ → NNN s.t. λ(sw) > λ(w).

• cube condition for
a triple u, v, w:

w

u

v

w

v’

u’
yyy

implies
u

v

v’

u’

yyy

ε

• called “cube condition” because it means
that every reversing (u, v, w)-cube closes:

u

v

w

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.

- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c

a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b

a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

The cube condition (bis)

• Example: M = 〈a, b, c, d |ab = bc = ca, ba = db = ad〉+++.

- Homogeneous: take λ = length.
- Cube condition?

a

c

c

b

(a, b, c):

b

a

a

c a

b

b c

c

b a

b

b

a

(a, a, b):

b

c

a

d

a

b

a

b

a d

a

b

b

a

c

a

a

d

(c, d, a):

a

b

d

b

a

b

c

a

d b

a

b

b

a a b

?

 A completion procedure: if the cube fails, add the (redundant) missing relation.
here: add caa = dbb.

Completion

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

a

a

b

b

a c a a a

d

b

b

b

c b

a

a

c

b

d
a

a

b b

Completion

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

a

a

b

b

a c a a a

d

b

b

b

c b

a

a

c

b

d
a

a

b b

Completion

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

a

a

b

b

a c a a a

d

b

b

b

c b

a

a

c

b

d
a

a

b b

Completion

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

a

a

b

b

a c a a a

d

b

b

b

c b

a

a

c

b

d
a

a

b b

Completion

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

a

a

b

b

a c a a a

d

b

b

b

c

b

a

a

c

b

d
a

a

b b

Completion

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

a

a

b

b

a c a a a

d

b

b

b

c b

a

a

c

b

d

a

a

b b

Completion

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

a

a

b

b

a c a a a

d

b

b

b

c b

a

a

c

b

d
a

a

b b

Completion

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

a

a

b

b

a c a a a

d

b

b

b

c b

a

a

c

b

d
a

a

b b

Completion

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

a

a

b

b

a c a a a

d

b

b

b

c b

a

a

c

b

d
a

a

b b

Completion

a

c
a

a

a

bc

d

b
b

b

a

a

c

b

d

a

a

b

b

a c a a a

d

b

b

b

c b

a

a

c

b

d
a

a

b b

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations

(the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps

= the case of our current example: becomes complete
after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example:

becomes complete
after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,

for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:

(= only one reversing diagram for all initial words u, v)
u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy

u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

Completion

• Three possible cases:

- Originally complete presentations (the optimal case);

- Presentations that become complete after finitely many completion steps
= the case of our current example: becomes complete

after adding the single (redundant) relation caa = dbb;

- Presentations that require infinitely many completion steps (the bad case).

• A particular framework:

• Definition : A semigroup presentation (S, R) is called complemented if,
for all s, t in S, there is at most one relation s ... = t ... in R.

• For a complemented presentation, reversing is deterministic:
(= only one reversing diagram for all initial words u, v)

u

v

yyy u\v

v\u

• Proposition : If (S, R) is complemented, the cube condition for u, v, w holds iff

(u\v)\(u\w) ≡+++
R

(v\u)\(v\w).

(the cube law)

3. Subword Reversing : Uses

- Cancellativity

- Word problems

- Recognizing Garside structures

- Computing in Garside structures

3. Subword Reversing : Uses

- Cancellativity

- Word problems

- Recognizing Garside structures

- Computing in Garside structures

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s

Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′.

(Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.

s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative

—and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

A cancellativity criterion

• Proposition : Assume that (S, R) is a complete presentation and R contains no
relation s ... = s Then the monoid 〈S |R〉+++ is left-cancellative.

↑
sx = sx′ implies x = x′

• Proof: Assume sw ≡+++
R

sw′. (Want to prove w ≡+++
R

w′.)

Completeness implies: (sw)−1(sw′) yyyR ε, i.e.,

exists a sequence w−1s−1sw′ yyy1
R

... yyy1
R

... yyy1
R

ε.
s

w

s w′

The first step must be w−1s−1sw′ yyyR w−1w′,

so the sequel must be w−1w′ yyyR ε,

which implies w ≡+++
R

w′. �

• Example : M is left-cancellative —and right-cancellative too by symmetry.

(not visible on the initial presentation; becomes visible after completion only)

• Remark: Applies in particular to every complete complemented presentation.

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation

and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).

Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,
and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS

• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:

w ≡+++
R

w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:

assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;

then w ≡R ε iff v ≡R v′ iff v ≡+++
R

v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′

iff v ≡+++
R

v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence

iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Word problems

• Proposition : Assume that (S, R) is a complete (complemented) presentation and

there exists a finite set bS ⊇ S satisfying ∀w,w′∈bS ∃v,v′∈bS (w−1w′ yyyR v′v−1).
Then the word problem of 〈S |R〉+++ is solvable in exponential (quadratic) time,

and so is that of 〈S |R〉 whenever 〈S |R〉+++ is right-cancellative.

• Proof: Reversing terminates
in exponential (quadratic) time:

construct an bS-labeled grid

∈S ∈S ∈S ∈S ∈S

∈S

∈S

∈bS
∈bS

∈bS
∈bS

∈bS
∈bS

∈bS ∈bS ∈bS ∈bS ∈bS• For w, w′ words on S:
w ≡+++

R
w′ iff w−1w′ yyyR ε.

• For w a word on S ∪ S−1:
assume w yyyR v′v−1;
then w ≡R ε iff v ≡R v′ iff v ≡+++

R
v′

assuming right-cancellativity, hence
iff v−1v′ yyyR ε (double reversing). �

w

yyyR

v

v′

v′

yyyR

?

• Example : Applies to M with bS = {ε, a, b, c, d, a2, ab, ba, b2}.
So M satisfies Ore’s conditions, hence embeds in a group of fractions (here B3).

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that

- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,

- ∆ is a Garside element in M :
DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).

(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories,

remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):

- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,
σiσjσi = σjσiσj for |i− j| = 1〉;

- Garside structure:
- monoid: B+++

n = 〈...〉+,
- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;

- Garside structure:
- monoid: B+++

n = 〈...〉+,
- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order).

1

∆4

Garside structures

• Definition : A Garside monoid is a pair (M ,∆) such that
- M is a cancellative monoid admitting lcm’s and gcd’s, and no nontrivial unit,
- ∆ is a Garside element in M :

DivL(∆) = DivR(∆), this set is finite, and generates M .

• By Ore’s conditions, a Garside monoid embeds in a group of fractions.

• Definition : A Garside group is a group that is the group of fractions of
(at least one) Garside monoid.

• Principle : A Garside group is controlled by the finite lattice Div(∆).
(Many generalizations: categories, remove existence of ∆, etc.)

• Example : Artin’s braid group Bn (the original example):
- Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 2,

σiσjσi = σjσiσj for |i− j| = 1〉;
- Garside structure:

- monoid: B+++
n = 〈...〉+,

- Garside half-turn braid: ∆n = σ1σ2σ1σ3σ2σ1...;

- lattice Div(∆n) ≈ (symmetric group Sn, weak order). 1

∆4

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),

how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation.

Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε,

i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.

u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Recognizing Garside structures

• Proposition : Every Garside monoid admits
a finite complete complemented presentation.

 Hence: natural to start from such presentations.

• Question 1 : Starting from a complete complemented presentation (S, R),
how to use reversing to recognize whether 〈S |R〉+++ is a Garside monoid?

 Typically: recognize whether least common multiples exist.

• Proposition : Assume that (S, R) is a complete complemented presentation. Then
two elements of 〈S |R〉+++ that admit a common right-multiple admit a right-lcm.

• Proof : Assume uv′ ≡+++
R

vu′. By completeness,

(uv′)−1(vu′) yyyR ε, i.e., v′−1u−1vu yyyR ε.
u

v′

v u′

The reversing diagram splits as
v′′

u′′

This means that [uv′] is a right-multiple of [uv′′].

The latter only depends on [u] and [v].

Hence it is a right-lcm of [u] and [v]. �

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems:

one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.

• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple:

one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing;

Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor:

three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.

• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique
decomposition a = a1...ap such that, for each i,

- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form:

Every non-trivial element in a Garside monoid admits a unique
decomposition a = a1...ap such that, for each i,

- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,

- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;

- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal.

Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

Investigating Garside structures

• Question 2 : Assuming that (S, R) is a complete presentation for a Garside monoid,
how to use reversing to investigate that monoid ?

• Word problems: one/two reversings.
• Least common multiple: one reversing; Greatest common divisor: three reversings.
• Greedy normal form: Every non-trivial element in a Garside monoid admits a unique

decomposition a = a1...ap such that, for each i,
- ai belongs to Div(∆), with a1 6= 1;
- ai is the maximal right-divisor of a1...ai lying in Div(∆).

• Theorem : Assume that (a1, ..., ap), (b1, ..., bq) are normal. Then so is every
horizontal-then-diagonal and vertical-then-diagonal sequence in

a1

..

.

ap

b1 b2 ... bq

yyy yyy yyy yyy

yyy yyy yyy yyy

yyy yyy yyy yyy

• Leads to the so-called grid property in Garside groups (≈ CAT(0) geometry).

4. Subword Reversing : Efficiency

- Upper bounds

- Optimality criteria

4. Subword Reversing : Efficiency

- Upper bounds

- Optimality criteria

Upper bounds

• Preliminary remark: Subword reversing (viewed as a method for finding
derivations between equivalent words) need not be optimal.

↑
provide shortest derivation

• Definition : For (S, R) (complete), and w, w′ (equivalent) words on S,

- dist(w, w′) := minimal # of relations needed to go from w to w′;

- distyyy(w, w′) := (minimal)#of non-trivial steps needed to reverse w−1w′ into ε.

• Proposition : Assume that (S, R) is complete, and there exists a finite set bS ⊇ S
that is closed under reversing. Then there exists C s.t., for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 C · |w| · |w′|.

• Easy...
contrary to the next result, which does not assume that reversing terminates:

• Theorem (D., 2003) : Assume that (S, R) is finite, complemented, complete, and
the relations of R preserve the length. Then there exists C—effectively computable
from (S, R)—such that, for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 dist(w, w′) · 22C|w|
.

Upper bounds

• Preliminary remark: Subword reversing (viewed as a method for finding
derivations between equivalent words) need not be optimal.

↑
provide shortest derivation

• Definition : For (S, R) (complete), and w, w′ (equivalent) words on S,

- dist(w, w′) := minimal # of relations needed to go from w to w′;

- distyyy(w, w′) := (minimal)#of non-trivial steps needed to reverse w−1w′ into ε.

• Proposition : Assume that (S, R) is complete, and there exists a finite set bS ⊇ S
that is closed under reversing. Then there exists C s.t., for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 C · |w| · |w′|.

• Easy...
contrary to the next result, which does not assume that reversing terminates:

• Theorem (D., 2003) : Assume that (S, R) is finite, complemented, complete, and
the relations of R preserve the length. Then there exists C—effectively computable
from (S, R)—such that, for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 dist(w, w′) · 22C|w|
.

Upper bounds

• Preliminary remark: Subword reversing (viewed as a method for finding
derivations between equivalent words) need not be optimal.

↑
provide shortest derivation

• Definition : For (S, R) (complete), and w, w′ (equivalent) words on S,

- dist(w, w′) := minimal # of relations needed to go from w to w′;

- distyyy(w, w′) := (minimal)#of non-trivial steps needed to reverse w−1w′ into ε.

• Proposition : Assume that (S, R) is complete, and there exists a finite set bS ⊇ S
that is closed under reversing. Then there exists C s.t., for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 C · |w| · |w′|.

• Easy...
contrary to the next result, which does not assume that reversing terminates:

• Theorem (D., 2003) : Assume that (S, R) is finite, complemented, complete, and
the relations of R preserve the length. Then there exists C—effectively computable
from (S, R)—such that, for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 dist(w, w′) · 22C|w|
.

Upper bounds

• Preliminary remark: Subword reversing (viewed as a method for finding
derivations between equivalent words) need not be optimal.

↑
provide shortest derivation

• Definition : For (S, R) (complete), and w, w′ (equivalent) words on S,

- dist(w, w′) := minimal # of relations needed to go from w to w′;

- distyyy(w, w′) := (minimal)#of non-trivial steps needed to reverse w−1w′ into ε.

• Proposition : Assume that (S, R) is complete, and there exists a finite set bS ⊇ S
that is closed under reversing. Then there exists C s.t., for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 C · |w| · |w′|.

• Easy...
contrary to the next result, which does not assume that reversing terminates:

• Theorem (D., 2003) : Assume that (S, R) is finite, complemented, complete, and
the relations of R preserve the length. Then there exists C—effectively computable
from (S, R)—such that, for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 dist(w, w′) · 22C|w|
.

Upper bounds

• Preliminary remark: Subword reversing (viewed as a method for finding
derivations between equivalent words) need not be optimal.

↑
provide shortest derivation

• Definition : For (S, R) (complete), and w, w′ (equivalent) words on S,

- dist(w, w′) := minimal # of relations needed to go from w to w′;

- distyyy(w, w′) := (minimal)#of non-trivial steps needed to reverse w−1w′ into ε.

• Proposition : Assume that (S, R) is complete, and there exists a finite set bS ⊇ S
that is closed under reversing. Then there exists C s.t., for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 C · |w| · |w′|.

• Easy...
contrary to the next result, which does not assume that reversing terminates:

• Theorem (D., 2003) : Assume that (S, R) is finite, complemented, complete, and
the relations of R preserve the length. Then there exists C—effectively computable
from (S, R)—such that, for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 dist(w, w′) · 22C|w|
.

Upper bounds

• Preliminary remark: Subword reversing (viewed as a method for finding
derivations between equivalent words) need not be optimal.

↑
provide shortest derivation

• Definition : For (S, R) (complete), and w, w′ (equivalent) words on S,

- dist(w, w′) := minimal # of relations needed to go from w to w′;

- distyyy(w, w′) := (minimal)#of non-trivial steps needed to reverse w−1w′ into ε.

• Proposition : Assume that (S, R) is complete, and there exists a finite set bS ⊇ S
that is closed under reversing.

Then there exists C s.t., for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 C · |w| · |w′|.

• Easy...
contrary to the next result, which does not assume that reversing terminates:

• Theorem (D., 2003) : Assume that (S, R) is finite, complemented, complete, and
the relations of R preserve the length. Then there exists C—effectively computable
from (S, R)—such that, for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 dist(w, w′) · 22C|w|
.

Upper bounds

• Preliminary remark: Subword reversing (viewed as a method for finding
derivations between equivalent words) need not be optimal.

↑
provide shortest derivation

• Definition : For (S, R) (complete), and w, w′ (equivalent) words on S,

- dist(w, w′) := minimal # of relations needed to go from w to w′;

- distyyy(w, w′) := (minimal)#of non-trivial steps needed to reverse w−1w′ into ε.

• Proposition : Assume that (S, R) is complete, and there exists a finite set bS ⊇ S
that is closed under reversing. Then there exists C s.t., for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 C · |w| · |w′|.

• Easy...
contrary to the next result, which does not assume that reversing terminates:

• Theorem (D., 2003) : Assume that (S, R) is finite, complemented, complete, and
the relations of R preserve the length. Then there exists C—effectively computable
from (S, R)—such that, for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 dist(w, w′) · 22C|w|
.

Upper bounds

• Preliminary remark: Subword reversing (viewed as a method for finding
derivations between equivalent words) need not be optimal.

↑
provide shortest derivation

• Definition : For (S, R) (complete), and w, w′ (equivalent) words on S,

- dist(w, w′) := minimal # of relations needed to go from w to w′;

- distyyy(w, w′) := (minimal)#of non-trivial steps needed to reverse w−1w′ into ε.

• Proposition : Assume that (S, R) is complete, and there exists a finite set bS ⊇ S
that is closed under reversing. Then there exists C s.t., for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 C · |w| · |w′|.

• Easy...

contrary to the next result, which does not assume that reversing terminates:

• Theorem (D., 2003) : Assume that (S, R) is finite, complemented, complete, and
the relations of R preserve the length. Then there exists C—effectively computable
from (S, R)—such that, for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 dist(w, w′) · 22C|w|
.

Upper bounds

• Preliminary remark: Subword reversing (viewed as a method for finding
derivations between equivalent words) need not be optimal.

↑
provide shortest derivation

• Definition : For (S, R) (complete), and w, w′ (equivalent) words on S,

- dist(w, w′) := minimal # of relations needed to go from w to w′;

- distyyy(w, w′) := (minimal)#of non-trivial steps needed to reverse w−1w′ into ε.

• Proposition : Assume that (S, R) is complete, and there exists a finite set bS ⊇ S
that is closed under reversing. Then there exists C s.t., for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 C · |w| · |w′|.

• Easy...
contrary to the next result, which does not assume that reversing terminates:

• Theorem (D., 2003) : Assume that (S, R) is finite, complemented, complete, and
the relations of R preserve the length. Then there exists C—effectively computable
from (S, R)—such that, for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 dist(w, w′) · 22C|w|
.

Upper bounds

• Preliminary remark: Subword reversing (viewed as a method for finding
derivations between equivalent words) need not be optimal.

↑
provide shortest derivation

• Definition : For (S, R) (complete), and w, w′ (equivalent) words on S,

- dist(w, w′) := minimal # of relations needed to go from w to w′;

- distyyy(w, w′) := (minimal)#of non-trivial steps needed to reverse w−1w′ into ε.

• Proposition : Assume that (S, R) is complete, and there exists a finite set bS ⊇ S
that is closed under reversing. Then there exists C s.t., for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 C · |w| · |w′|.

• Easy...
contrary to the next result, which does not assume that reversing terminates:

• Theorem (D., 2003) : Assume that (S, R) is finite, complemented, complete, and
the relations of R preserve the length. Then there exists C—effectively computable
from (S, R)—such that, for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 dist(w, w′) · 22C|w|
.

Upper bounds

• Preliminary remark: Subword reversing (viewed as a method for finding
derivations between equivalent words) need not be optimal.

↑
provide shortest derivation

• Definition : For (S, R) (complete), and w, w′ (equivalent) words on S,

- dist(w, w′) := minimal # of relations needed to go from w to w′;

- distyyy(w, w′) := (minimal)#of non-trivial steps needed to reverse w−1w′ into ε.

• Proposition : Assume that (S, R) is complete, and there exists a finite set bS ⊇ S
that is closed under reversing. Then there exists C s.t., for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 C · |w| · |w′|.

• Easy...
contrary to the next result, which does not assume that reversing terminates:

• Theorem (D., 2003) : Assume that (S, R) is finite, complemented, complete, and
the relations of R preserve the length. Then there exists C—effectively computable
from (S, R)—such that, for all equivalent w, w′,

dist(w, w′) 6 distyyy(w, w′) 6 dist(w, w′) · 22C|w|
.

Braids and permutations

• Definition : Artin’s braid monoid vs. symmetric group:

B+++
n =

D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2

E+++
.

Sn =
D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2
, σ2

1 = ...=σ2
n−1 =1

E
.

• Proposition (“Exchange Lemma”) : Any two reduced (= of minimal length) expres-
sions of a permutation are connected by braid relations (no need of using σ2

i = 1).

• Combinatorial distance makes sense both for B+++
n and Sn:

dist(w, w′) = minimal # of braid relations needed to transform w into w′

both for w, w′ positive braid words and for w, w′ reduced expressions.

• Proposition : There exist positive constants C, C′ s.t.

- dist(u, v) 6 Cn4 for all f in Sn and all reduced expressions u, v of f ,

- dist(u, v) > C′n4 for some f in Sn and some reduced expressions u, v of f .

Braids and permutations

• Definition : Artin’s braid monoid vs. symmetric group:

B+++
n =

D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2

E+++
.

Sn =
D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2
, σ2

1 = ...=σ2
n−1 =1

E
.

• Proposition (“Exchange Lemma”) : Any two reduced (= of minimal length) expres-
sions of a permutation are connected by braid relations (no need of using σ2

i = 1).

• Combinatorial distance makes sense both for B+++
n and Sn:

dist(w, w′) = minimal # of braid relations needed to transform w into w′

both for w, w′ positive braid words and for w, w′ reduced expressions.

• Proposition : There exist positive constants C, C′ s.t.

- dist(u, v) 6 Cn4 for all f in Sn and all reduced expressions u, v of f ,

- dist(u, v) > C′n4 for some f in Sn and some reduced expressions u, v of f .

Braids and permutations

• Definition : Artin’s braid monoid vs. symmetric group:

B+++
n =

D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2

E+++
.

Sn =
D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2
, σ2

1 = ...=σ2
n−1 =1

E
.

• Proposition (“Exchange Lemma”) : Any two reduced (= of minimal length) expres-
sions of a permutation are connected by braid relations (no need of using σ2

i = 1).

• Combinatorial distance makes sense both for B+++
n and Sn:

dist(w, w′) = minimal # of braid relations needed to transform w into w′

both for w, w′ positive braid words and for w, w′ reduced expressions.

• Proposition : There exist positive constants C, C′ s.t.

- dist(u, v) 6 Cn4 for all f in Sn and all reduced expressions u, v of f ,

- dist(u, v) > C′n4 for some f in Sn and some reduced expressions u, v of f .

Braids and permutations

• Definition : Artin’s braid monoid vs. symmetric group:

B+++
n =

D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2

E+++
.

Sn =
D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2
, σ2

1 = ...=σ2
n−1 =1

E
.

• Proposition (“Exchange Lemma”) :

Any two reduced (= of minimal length) expres-
sions of a permutation are connected by braid relations (no need of using σ2

i = 1).

• Combinatorial distance makes sense both for B+++
n and Sn:

dist(w, w′) = minimal # of braid relations needed to transform w into w′

both for w, w′ positive braid words and for w, w′ reduced expressions.

• Proposition : There exist positive constants C, C′ s.t.

- dist(u, v) 6 Cn4 for all f in Sn and all reduced expressions u, v of f ,

- dist(u, v) > C′n4 for some f in Sn and some reduced expressions u, v of f .

Braids and permutations

• Definition : Artin’s braid monoid vs. symmetric group:

B+++
n =

D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2

E+++
.

Sn =
D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2
, σ2

1 = ...=σ2
n−1 =1

E
.

• Proposition (“Exchange Lemma”) : Any two reduced (= of minimal length) expres-
sions of a permutation are connected by braid relations

(no need of using σ2
i = 1).

• Combinatorial distance makes sense both for B+++
n and Sn:

dist(w, w′) = minimal # of braid relations needed to transform w into w′

both for w, w′ positive braid words and for w, w′ reduced expressions.

• Proposition : There exist positive constants C, C′ s.t.

- dist(u, v) 6 Cn4 for all f in Sn and all reduced expressions u, v of f ,

- dist(u, v) > C′n4 for some f in Sn and some reduced expressions u, v of f .

Braids and permutations

• Definition : Artin’s braid monoid vs. symmetric group:

B+++
n =

D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2

E+++
.

Sn =
D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2
, σ2

1 = ...=σ2
n−1 =1

E
.

• Proposition (“Exchange Lemma”) : Any two reduced (= of minimal length) expres-
sions of a permutation are connected by braid relations (no need of using σ2

i = 1).

• Combinatorial distance makes sense both for B+++
n and Sn:

dist(w, w′) = minimal # of braid relations needed to transform w into w′

both for w, w′ positive braid words and for w, w′ reduced expressions.

• Proposition : There exist positive constants C, C′ s.t.

- dist(u, v) 6 Cn4 for all f in Sn and all reduced expressions u, v of f ,

- dist(u, v) > C′n4 for some f in Sn and some reduced expressions u, v of f .

Braids and permutations

• Definition : Artin’s braid monoid vs. symmetric group:

B+++
n =

D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2

E+++
.

Sn =
D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2
, σ2

1 = ...=σ2
n−1 =1

E
.

• Proposition (“Exchange Lemma”) : Any two reduced (= of minimal length) expres-
sions of a permutation are connected by braid relations (no need of using σ2

i = 1).

• Combinatorial distance makes sense both for B+++
n and Sn:

dist(w, w′) = minimal # of braid relations needed to transform w into w′

both for w, w′ positive braid words and for w, w′ reduced expressions.

• Proposition : There exist positive constants C, C′ s.t.

- dist(u, v) 6 Cn4 for all f in Sn and all reduced expressions u, v of f ,

- dist(u, v) > C′n4 for some f in Sn and some reduced expressions u, v of f .

Braids and permutations

• Definition : Artin’s braid monoid vs. symmetric group:

B+++
n =

D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2

E+++
.

Sn =
D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2
, σ2

1 = ...=σ2
n−1 =1

E
.

• Proposition (“Exchange Lemma”) : Any two reduced (= of minimal length) expres-
sions of a permutation are connected by braid relations (no need of using σ2

i = 1).

• Combinatorial distance makes sense both for B+++
n and Sn:

dist(w, w′) = minimal # of braid relations needed to transform w into w′

both for w, w′ positive braid words and for w, w′ reduced expressions.

• Proposition : There exist positive constants C, C′ s.t.

- dist(u, v) 6 Cn4 for all f in Sn and all reduced expressions u, v of f ,

- dist(u, v) > C′n4 for some f in Sn and some reduced expressions u, v of f .

Braids and permutations

• Definition : Artin’s braid monoid vs. symmetric group:

B+++
n =

D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2

E+++
.

Sn =
D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2
, σ2

1 = ...=σ2
n−1 =1

E
.

• Proposition (“Exchange Lemma”) : Any two reduced (= of minimal length) expres-
sions of a permutation are connected by braid relations (no need of using σ2

i = 1).

• Combinatorial distance makes sense both for B+++
n and Sn:

dist(w, w′) = minimal # of braid relations needed to transform w into w′

both for w, w′ positive braid words

and for w, w′ reduced expressions.

• Proposition : There exist positive constants C, C′ s.t.

- dist(u, v) 6 Cn4 for all f in Sn and all reduced expressions u, v of f ,

- dist(u, v) > C′n4 for some f in Sn and some reduced expressions u, v of f .

Braids and permutations

• Definition : Artin’s braid monoid vs. symmetric group:

B+++
n =

D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2

E+++
.

Sn =
D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2
, σ2

1 = ...=σ2
n−1 =1

E
.

• Proposition (“Exchange Lemma”) : Any two reduced (= of minimal length) expres-
sions of a permutation are connected by braid relations (no need of using σ2

i = 1).

• Combinatorial distance makes sense both for B+++
n and Sn:

dist(w, w′) = minimal # of braid relations needed to transform w into w′

both for w, w′ positive braid words and for w, w′ reduced expressions.

• Proposition : There exist positive constants C, C′ s.t.

- dist(u, v) 6 Cn4 for all f in Sn and all reduced expressions u, v of f ,

- dist(u, v) > C′n4 for some f in Sn and some reduced expressions u, v of f .

Braids and permutations

• Definition : Artin’s braid monoid vs. symmetric group:

B+++
n =

D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2

E+++
.

Sn =
D
σ1, ..., σn−1

˛̨̨ σiσjσi = σjσiσj for |i− j| = 1

σiσj = σjσi for |i− j| > 2
, σ2

1 = ...=σ2
n−1 =1

E
.

• Proposition (“Exchange Lemma”) : Any two reduced (= of minimal length) expres-
sions of a permutation are connected by braid relations (no need of using σ2

i = 1).

• Combinatorial distance makes sense both for B+++
n and Sn:

dist(w, w′) = minimal # of braid relations needed to transform w into w′

both for w, w′ positive braid words and for w, w′ reduced expressions.

• Proposition : There exist positive constants C, C′ s.t.

- dist(u, v) 6 Cn4 for all f in Sn and all reduced expressions u, v of f ,

- dist(u, v) > C′n4 for some f in Sn and some reduced expressions u, v of f .

Naming crossings

• Aim :

Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross

(i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality),

then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve

that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal

is that any two separatrices cross at most once in D.

Naming crossings

• Aim : Recognize whether a given reversing diagram (= reversing sequence)
(or, more generally, a Van Kampen diagram) is possibly optimal.

↑
non-trivial faces = combinatorial distance between the bounding words

• Use the names of the elements (or braid strands) that cross (i.e., use a “position
vs. name” duality), then connect the edges with the same name:

type I:

{p,q}

{q,r}

{q,r}

{p,q}

{q,r}

{p,q}

type II:

{p,q}

{p′,q′} {p,q}

{p′,q′}

 for each pair {p, q}, an (oriented) curve
that connect all {p, q}-edges: the {p, q}-separatrix Σp,q.

• Lemma : A sufficient condition for a van Kampen diagram D to be optimal
is that any two separatrices cross at most once in D.

Separatrices

• Example : w = σ3σ2σ3σ1σ2σ3, w′ = σ1σ2σ1σ3σ2σ1.

D :

σ3

σ1

σ2

σ2

σ3

σ1

σ3

σ1

σ1

σ3

σ2

σ3

σ2

σ1

σ1

σ3

σ2 σ2

σ1

σ3

σ3

σ1

σ2

σ2

σ3

σ1

Σ1,2

Σ1,3 Σ2,4

Σ3,4

Σ2,3 Σ1,4

 The separatrices Σ2,3 and Σ1,4 cross twice, hence D is not optimal.

Separatrices

• Example : w = σ3σ2σ3σ1σ2σ3, w′ = σ1σ2σ1σ3σ2σ1.

D :

σ3

σ1

σ2

σ2

σ3

σ1

σ3

σ1

σ1

σ3

σ2

σ3

σ2

σ1

σ1

σ3

σ2 σ2

σ1

σ3

σ3

σ1

σ2

σ2

σ3

σ1Σ1,2

Σ1,3 Σ2,4

Σ3,4

Σ2,3 Σ1,4

 The separatrices Σ2,3 and Σ1,4 cross twice, hence D is not optimal.

Separatrices

• Example : w = σ3σ2σ3σ1σ2σ3, w′ = σ1σ2σ1σ3σ2σ1.

D :

σ3

σ1

σ2

σ2

σ3

σ1

σ3

σ1

σ1

σ3

σ2

σ3

σ2

σ1

σ1

σ3

σ2 σ2

σ1

σ3

σ3

σ1

σ2

σ2

σ3

σ1Σ1,2

Σ1,3 Σ2,4

Σ3,4

Σ2,3 Σ1,4

 The separatrices Σ2,3 and Σ1,4 cross twice, hence D is not optimal.

Separatrices

• Example : w = σ3σ2σ3σ1σ2σ3, w′ = σ1σ2σ1σ3σ2σ1.

D :

σ3

σ1

σ2

σ2

σ3

σ1

σ3

σ1

σ1

σ3

σ2

σ3

σ2

σ1

σ1

σ3

σ2 σ2

σ1

σ3

σ3

σ1

σ2

σ2

σ3

σ1Σ1,2

Σ1,3 Σ2,4

Σ3,4

Σ2,3 Σ1,4

 The separatrices Σ2,3 and Σ1,4 cross twice, hence D is not optimal.

Separatrices

• Example : w = σ3σ2σ3σ1σ2σ3, w′ = σ1σ2σ1σ3σ2σ1.

D :

σ3

σ1

σ2

σ2

σ3

σ1

σ3

σ1

σ1

σ3

σ2

σ3

σ2

σ1

σ1

σ3

σ2 σ2

σ1

σ3

σ3

σ1

σ2

σ2

σ3

σ1Σ1,2

Σ1,3 Σ2,4

Σ3,4

Σ2,3 Σ1,4

 The separatrices Σ2,3 and Σ1,4 cross twice, hence D is not optimal.

Separatrices and reversing

• Applies in particular to reversing diagrams
(viewed as particular van Kampen diagrams):

σ1

σ2

σ3

σ1 σ1
σ1

σ2

σ2

σ1 σ1

σ2

σ3

σ3

σ3 σ2 σ1 σ3 σ2

σ2σ3 σ1

σ3 σ2 σ1

σ2 σ3 σ1 σ2 σ1

σ1 σ1

σ2

σ3

σ2

σ2

σ1

Σ2,3

Σ1,4

Separatrices and reversing

• Applies in particular to reversing diagrams
(viewed as particular van Kampen diagrams):

σ1

σ2

σ3

σ1 σ1
σ1

σ2

σ2

σ1 σ1

σ2

σ3

σ3

σ3 σ2 σ1 σ3 σ2

σ2σ3 σ1

σ3 σ2 σ1

σ2 σ3 σ1 σ2 σ1

σ1 σ1

σ2

σ3

σ2

σ2

σ1

Σ2,3

Σ1,4

An optimality criterion

• How are separatrices in a reversing diagram?

Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Proposition : A reversing diagram containing no type III face is optimal.

• Proof: For two separatrices to cross twice, must go from horizontal to vertical. �

 Note the importance of metric vs. topological features here.

• Corollary (Autord, D.): For each `, there exist length ` braid words w, w′

satisfying w−1w′ yyyR v′v−1 and dist(wv′, w′v) > `4/8.

• By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

An optimality criterion

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Proposition : A reversing diagram containing no type III face is optimal.

• Proof: For two separatrices to cross twice, must go from horizontal to vertical. �

 Note the importance of metric vs. topological features here.

• Corollary (Autord, D.): For each `, there exist length ` braid words w, w′

satisfying w−1w′ yyyR v′v−1 and dist(wv′, w′v) > `4/8.

• By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

An optimality criterion

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Proposition : A reversing diagram containing no type III face is optimal.

• Proof: For two separatrices to cross twice, must go from horizontal to vertical. �

 Note the importance of metric vs. topological features here.

• Corollary (Autord, D.): For each `, there exist length ` braid words w, w′

satisfying w−1w′ yyyR v′v−1 and dist(wv′, w′v) > `4/8.

• By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

An optimality criterion

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Proposition : A reversing diagram containing no type III face is optimal.

• Proof: For two separatrices to cross twice, must go from horizontal to vertical. �

 Note the importance of metric vs. topological features here.

• Corollary (Autord, D.): For each `, there exist length ` braid words w, w′

satisfying w−1w′ yyyR v′v−1 and dist(wv′, w′v) > `4/8.

• By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

An optimality criterion

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Proposition : A reversing diagram containing no type III face is optimal.

• Proof: For two separatrices to cross twice, must go from horizontal to vertical. �

 Note the importance of metric vs. topological features here.

• Corollary (Autord, D.): For each `, there exist length ` braid words w, w′

satisfying w−1w′ yyyR v′v−1 and dist(wv′, w′v) > `4/8.

• By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

An optimality criterion

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Proposition : A reversing diagram containing no type III face is optimal.

• Proof: For two separatrices to cross twice, must go from horizontal to vertical. �

 Note the importance of metric vs. topological features here.

• Corollary (Autord, D.): For each `, there exist length ` braid words w, w′

satisfying w−1w′ yyyR v′v−1 and dist(wv′, w′v) > `4/8.

• By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

An optimality criterion

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Proposition : A reversing diagram containing no type III face is optimal.

• Proof: For two separatrices to cross twice, must go from horizontal to vertical. �

 Note the importance of metric vs. topological features here.

• Corollary (Autord, D.): For each `, there exist length ` braid words w, w′

satisfying w−1w′ yyyR v′v−1 and dist(wv′, w′v) > `4/8.

• By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

An optimality criterion

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Proposition : A reversing diagram containing no type III face is optimal.

• Proof: For two separatrices to cross twice, must go from horizontal to vertical. �

 Note the importance of metric vs. topological features here.

• Corollary (Autord, D.): For each `, there exist length ` braid words w, w′

satisfying w−1w′ yyyR v′v−1 and dist(wv′, w′v) > `4/8.

• By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

An optimality criterion

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Proposition : A reversing diagram containing no type III face is optimal.

• Proof: For two separatrices to cross twice, must go from horizontal to vertical. �

 Note the importance of metric vs. topological features here.

• Corollary (Autord, D.): For each `, there exist length ` braid words w, w′

satisfying w−1w′ yyyR v′v−1 and dist(wv′, w′v) > `4/8.

• By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

An optimality criterion

• How are separatrices in a reversing diagram? Three types of faces:

type I:

Σ

Σ′Σ′′

type II:

Σ

Σ′

type III:

Σ

• Proposition : A reversing diagram containing no type III face is optimal.

• Proof: For two separatrices to cross twice, must go from horizontal to vertical. �

 Note the importance of metric vs. topological features here.

• Corollary (Autord, D.): For each `, there exist length ` braid words w, w′

satisfying w−1w′ yyyR v′v−1 and dist(wv′, w′v) > `4/8.

• By contrast: for fixed n, Garside’s theory gives an upper bound in O(`2).

Conclusions

• Conclusion : In good cases (= when it is complete), subword reversing is useful

- for proving cancellativity,

- for solving word problems (both for monoids and for groups),

- for recognizing Garside structures,

- for computing in Garside structures (normal form, homology, ...),

- for getting optimal derivations,

- hopefully more...

• Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.

Conclusions

• Conclusion : In good cases

(= when it is complete), subword reversing is useful

- for proving cancellativity,

- for solving word problems (both for monoids and for groups),

- for recognizing Garside structures,

- for computing in Garside structures (normal form, homology, ...),

- for getting optimal derivations,

- hopefully more...

• Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.

Conclusions

• Conclusion : In good cases (= when it is complete), subword reversing is useful

- for proving cancellativity,

- for solving word problems (both for monoids and for groups),

- for recognizing Garside structures,

- for computing in Garside structures (normal form, homology, ...),

- for getting optimal derivations,

- hopefully more...

• Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.

Conclusions

• Conclusion : In good cases (= when it is complete), subword reversing is useful

- for proving cancellativity,

- for solving word problems (both for monoids and for groups),

- for recognizing Garside structures,

- for computing in Garside structures (normal form, homology, ...),

- for getting optimal derivations,

- hopefully more...

• Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.

Conclusions

• Conclusion : In good cases (= when it is complete), subword reversing is useful

- for proving cancellativity,

- for solving word problems (both for monoids and for groups),

- for recognizing Garside structures,

- for computing in Garside structures (normal form, homology, ...),

- for getting optimal derivations,

- hopefully more...

• Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.

Conclusions

• Conclusion : In good cases (= when it is complete), subword reversing is useful

- for proving cancellativity,

- for solving word problems (both for monoids and for groups),

- for recognizing Garside structures,

- for computing in Garside structures (normal form, homology, ...),

- for getting optimal derivations,

- hopefully more...

• Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.

Conclusions

• Conclusion : In good cases (= when it is complete), subword reversing is useful

- for proving cancellativity,

- for solving word problems (both for monoids and for groups),

- for recognizing Garside structures,

- for computing in Garside structures (normal form, homology, ...),

- for getting optimal derivations,

- hopefully more...

• Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.

Conclusions

• Conclusion : In good cases (= when it is complete), subword reversing is useful

- for proving cancellativity,

- for solving word problems (both for monoids and for groups),

- for recognizing Garside structures,

- for computing in Garside structures (normal form, homology, ...),

- for getting optimal derivations,

- hopefully more...

• Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.

Conclusions

• Conclusion : In good cases (= when it is complete), subword reversing is useful

- for proving cancellativity,

- for solving word problems (both for monoids and for groups),

- for recognizing Garside structures,

- for computing in Garside structures (normal form, homology, ...),

- for getting optimal derivations,

- hopefully more...

• Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.

Conclusions

• Conclusion : In good cases (= when it is complete), subword reversing is useful

- for proving cancellativity,

- for solving word problems (both for monoids and for groups),

- for recognizing Garside structures,

- for computing in Garside structures (normal form, homology, ...),

- for getting optimal derivations,

- hopefully more...

• Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.

Conclusions

• Conclusion : In good cases (= when it is complete), subword reversing is useful

- for proving cancellativity,

- for solving word problems (both for monoids and for groups),

- for recognizing Garside structures,

- for computing in Garside structures (normal form, homology, ...),

- for getting optimal derivations,

- hopefully more...

• Attention ! Once completeness is granted, using words and re-
versing is essentially equivalent to using elements of the monoid and
common multiples,

but, before completeness is established, it is crucial to distinguish
between words and the elements they represent: reversing equivalent
words need not lead to equivalent results.

Reversing is really an operation on words.

References

• P.Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K.Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P.Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P.Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P.Dehornoy & B.Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• M.Autord & P.Dehornoy, On the combinatorial distance between expressions of
a permutation arXiv: math.CO/0902.3074

www.math.unicaen.fr/∼dehornoy

References

• P.Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K.Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P.Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P.Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P.Dehornoy & B.Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• M.Autord & P.Dehornoy, On the combinatorial distance between expressions of
a permutation arXiv: math.CO/0902.3074

www.math.unicaen.fr/∼dehornoy

References

• P.Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K.Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P.Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P.Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P.Dehornoy & B.Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• M.Autord & P.Dehornoy, On the combinatorial distance between expressions of
a permutation arXiv: math.CO/0902.3074

www.math.unicaen.fr/∼dehornoy

References

• P.Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K.Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P.Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P.Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P.Dehornoy & B.Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• M.Autord & P.Dehornoy, On the combinatorial distance between expressions of
a permutation arXiv: math.CO/0902.3074

www.math.unicaen.fr/∼dehornoy

References

• P.Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K.Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P.Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P.Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P.Dehornoy & B.Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• M.Autord & P.Dehornoy, On the combinatorial distance between expressions of
a permutation arXiv: math.CO/0902.3074

www.math.unicaen.fr/∼dehornoy

References

• P.Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K.Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P.Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P.Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P.Dehornoy & B.Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• M.Autord & P.Dehornoy, On the combinatorial distance between expressions of
a permutation arXiv: math.CO/0902.3074

www.math.unicaen.fr/∼dehornoy

References

• P.Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K.Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P.Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P.Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P.Dehornoy & B.Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• M.Autord & P.Dehornoy, On the combinatorial distance between expressions of
a permutation arXiv: math.CO/0902.3074

www.math.unicaen.fr/∼dehornoy

References

• P.Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K.Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P.Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P.Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P.Dehornoy & B.Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• M.Autord & P.Dehornoy, On the combinatorial distance between expressions of
a permutation arXiv: math.CO/0902.3074

www.math.unicaen.fr/∼dehornoy

References

• P.Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K.Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P.Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P.Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P.Dehornoy & B.Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• M.Autord & P.Dehornoy, On the combinatorial distance between expressions of
a permutation arXiv: math.CO/0902.3074

www.math.unicaen.fr/∼dehornoy

References

• P.Dehornoy, Deux propriétés des groupes de tresses
C. R. Acad. Sci. Paris 315 (1992) 633–638.

• F.A. Garside, The braid group and other groups
Quart. J. Math. Oxford 20-78 (1969) 235–254.

• K.Tatsuoka, An isoperimetric inequality for Artin groups of finite type
Trans. Amer. Math. Soc. 339–2 (1993) 537–551.

• R. Corran, A normal form for a class of monoids including the singular braid
monoids J. Algebra 223 (2000) 256–282.

• P.Dehornoy, Complete positive group presentations;
J. Algebra 268 (2003) 156–197.

• P.Dehornoy & Y. Lafont, Homology of Gaussian groups
Ann. Inst. Fourier 53-2 (2003) 1001–1052.

• P.Dehornoy & B.Wiest, On word reversing in braid groups
Int. J. for Algebra and Comput. 16-5 (2006) 941–957.

• M.Autord & P.Dehornoy, On the combinatorial distance between expressions of
a permutation arXiv: math.CO/0902.3074

www.math.unicaen.fr/∼dehornoy

