Patrick Dehornoy Les Houches, Jan. 2011

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two half-talks:

- 1. A conjecture about Artin-Tits groups
- 2. News from Garside theory

1. A conjecture about Artin–Tits groups

• A (very vague) claim.— Some elementary facts about the word problem of Artin-Tits presentations might have not yet been discovered.

- $G = \langle S \mid R \rangle$ means $G = (S \cup S^{-1})^* / \equiv_R$ the free monoid generated by S and a copy S^{-1} of S the smallest congruence that includes R plus the free group relations $ss^{-1} = s^{-1}s = 1$
- Special case (positive presentation) : relations of the form u = v with $u, v \in S^*$

• Fact.— Two words w, w' of $(S \cup S^{-1})^*$ represent the same element of $\langle S \mid R \rangle$ iff one can go from w to w' using transformations of

- type **0** : Erasing some subword $s^{-1}s$ or ss^{-1} with s in S;
- type 1 : Replacing some subword u by v with u = v in R;
- type ∞ : Inserting some subword $s^{-1}s$ or ss^{-1} with s in S.

<日 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Summary : $w \equiv w'$ iff $w \xrightarrow{0,1,\infty} w'$.

Question: Can one avoid type ∞ ?

- Stupid : \equiv is symmetric, $\stackrel{0,1}{\rightsquigarrow}$ is not.
- Special case : $w \equiv \varepsilon$ iff $w \xrightarrow{0,1,\infty} \varepsilon$ (ε = empty word, representing 1)

Question: Does $w \equiv \varepsilon$ imply $w \stackrel{0,1}{\rightsquigarrow} \varepsilon$?

- YES for a free group.
 The monoid ⟨S | R⟩⁺ embeds in the group ⟨S | R⟩ iff YES for every word of the form u⁻¹v with u, v in S*.
- But NO in general: $\langle a, b \mid ab = ba \rangle$ and w = aBAb ($A = a^{-1}$, $B = b^{-1}$, ...)

 \Rightarrow Complete definition with :

- type 1: Replacing u by v, or u^{-1} by v^{-1} , with u = v in R.

• Then aBAb $\xrightarrow{1}$ aABb $\xrightarrow{0}$ Bb $\xrightarrow{0}$ ε

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Still NO : $(a, b, c \mid ab = ba, bc = cb, ac = ca)$ and w = aBcAbC.

\Rightarrow Introduce

- type 2: Replacing $u^{-1}v$ by $v'u'^{-1}$ s.t. $u, v \neq \epsilon$ and uv' = vu' lies in R, or vice versa.

• Then : aBcAbC $\xrightarrow{2}$ aBAcbC $\xrightarrow{1}$ aABcbC $\xrightarrow{0}$ BcbC $\xrightarrow{1}$ BbcC $\xrightarrow{0}$ cC $\xrightarrow{0}$ ε .

Definition.— A positive presentation (S, R) satisfies (#) if $w \equiv \varepsilon$ implies $w \xrightarrow{0,1,2} \varepsilon$.

Property (#)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Fact.— Some presentations do not satisfy (#).

Conjecture.— All Artin–Tits presentations satisfy (#).

all relations are of the form sts... = tst... with same length on both sides

• Possible interest of (#) ?

(日) (日) (日) (日) (日) (日) (日) (日)

Proposition.— Assume that (S, R) is complete with respect to right-reversing and satisfies (#). Then the monoid $\langle S | R \rangle^+$ embeds in the group $\langle S | R \rangle$.

a technical hypothesis satisfied by all Artin–Tits presentations

• Principle of proof : Say that w is a bridge from u to v if there exists a commutative positive equivalence diagram

If w is a bridge from u to v and $w \stackrel{0,1,2}{\rightsquigarrow} w'$ holds, then w' is a bridge from u to v.

Now assume $u \equiv v$. Then uv^{-1} is a bridge from u to v. Hence, if (#) is true, ε is also a bridge from u to v: this means $u \equiv^+ v$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

Proposition.— Artin–Tits presentations of spherical type satisfy (#).

the associated Coxeter group is finite

• Principle of proof : $\langle S | R \rangle$ is a group of fractions of $\langle S | R \rangle^+$, and type 2 transformations compute lcm's :

$$\boldsymbol{w} \overset{0^+,2^+}{\leadsto} \boldsymbol{u} \boldsymbol{v}^{-1} \overset{0^-,2^-}{\leadsto} \boldsymbol{v}'^{-1} \boldsymbol{u}',$$

with $u, v, u', v' \in S^*$ and $v'^{-1}u'$ shortest fractionary word equivalent to w. Then $w \equiv \varepsilon$ implies $u' = v' = \varepsilon$, hence $w \stackrel{0,2}{\rightsquigarrow} \varepsilon$.

all relations of the fom st = ts

• Principle of proof : Start with a derivation $w \xrightarrow{0,1,2,\infty} \varepsilon$ and [project] it to another derivation $w \xrightarrow{0,1,2} \varepsilon$ by following the pairs $s^{-1}s$ and ss^{-1} created in type ∞ steps.

Point : All such pairs become $s^e v s^{-e}$ with *s* commuting with $\pi(v)$, the word obtained by erasing all later pairs $t^d t^{-d}$ (hence induction).

• Example :

aBcAbC $\stackrel{\infty}{\longrightarrow}$ aBAacAbC $\stackrel{1}{\longrightarrow}$ aABacAbC $\stackrel{0}{\longrightarrow}$ BacAbC $\stackrel{1}{\longrightarrow}$ BcaAbC $\stackrel{0}{\longrightarrow}$ BcbC \rightsquigarrow $\downarrow \pi$ $\downarrow \pi$ aBcAbC=aBcAbC $\stackrel{2}{\rightarrow}$ BacAbC $\stackrel{1}{\rightarrow}$ BcaAbC $\stackrel{0}{\rightarrow}$ BcbC \rightsquigarrow

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Connection with the word problem? NO (at least, not directly)

Proposition.— (D.–Wiest) For type A_n with $n \ge 3$ (braids with at least 4 strands) there exist words w such that $\{w' \mid w \stackrel{0,1,2}{\rightsquigarrow} w'\}$ is infinite.

So $\boldsymbol{w} \overset{0,1,2}{\leadsto} \boldsymbol{\varepsilon}$ need not be decidable.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• On the other hand, there may exist strategies for ^{0,1,2}: Handle reduction (type *A*) is such a strategy, for which termination is provable.

Is the existence of such a strategy really specific to type A?

2. News from Garside theory

(ongoing work with F.Digne, D.Krammer, and J.Michel)

Definition.— Assume that C is a left-cancellative category. A subfamily S of C $(= \mathcal{H}om(C))$ is said to be a Garside family in C if 1_C is included in S, and (i) $S \cup C^{\times}$ generates C, (ii) SC^{\times} is closed under right-divisor, (iii) each element of C admits a maximum left-divisor lying in S.

 $\mathcal{C}^{\times} :=$ invertible elements of $\mathcal{C} \qquad \forall g \exists g_1 \in \mathcal{S} \ \forall h \in \mathcal{S} \ (h \preccurlyeq g \Leftrightarrow h \preccurlyeq g_1)$

Proposition.— Assume that C is a left-cancellative category and S is a Garside family in C. Then every element of C admits an S-normal decomposition, which is unique up to C^{\times} -deformation.

An S-normal decomposition : $(g_1, ..., g_\ell)$ s.t. $g_1, ..., g_{\ell-1}$ lie in S, g_ℓ lies in SC^{\times} , and (g_i, g_{i+1}) is S-greedy for each i.

 $\forall h \in \mathcal{S} \ \forall f \ (h \preccurlyeq fg_ig_{i+1} \Rightarrow h \preccurlyeq fg_i)$

A \mathcal{C}^{\times} -deformation : left- and right-multiplication, by invertible elements

Proposition.— Assume that \mathcal{C} is a left-cancellative category.

(i) If Δ is a Garside map in C, then $Div(\Delta)$ is a Garside family that is closed under left-divisor and is bounded by Δ .

(ii) Conversely, if S is a Garside family in C that is closed under left-divisor and is bounded by a map Δ , then Δ (nearly) is a Garside map in C.

 \mathcal{S} bounded by Δ : $\forall g \in \mathcal{S} \ (g \preccurlyeq \Delta(\operatorname{source}(g)))$

• If (M, Δ) is a Garside monoid, then Δ is a Garside (map) element in M, and $Div(\Delta)$ is a Garside family in M. **Definition.**— A left-cancellative category C is called left-Noetherian if proper rightdivisibility in C has no infinite descending sequence.

Proposition.— Assume that C is a left-cancellative category that is left-Noetherian. For S included in C such that $S \cup C^{\times}$ generates C, TFAE (i) S is Garside in C, (ii) SC^{\times} is closed under right-divisor and S is closed under right-comultiple.

S closed under right-comultiple : for all f, g in S, every right-comultiple of f and g is a right-multiple of some right-comultiple that lies in S.

• If the ambient category admits right-lcm's, then (ii) is equivalent to \mathcal{SC}^{\times} being closed under right-divisor and right-lcm

(whence the existence of a smallest Garside family including a given family).

• Reference : http://www.math.unicaen.fr/~DDKM/DDKM.pdf