◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

<ロ> <0</p>

Subword Reversing and Ordered Groups

Patrick Dehornoy Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Subword Reversing and Ordered Groups

Patrick Dehornoy Laboratoire de Mathématiques Nicolas Oresme Université de Caen

◆ロト ◆聞ト ◆注ト ◆注ト

€ 990

Subword Reversing and Ordered Groups

Patrick Dehornoy Laboratoire de Mathématiques Nicolas Oresme Université de Caen

• Use subword reversing to constructing examples of ordered groups.

• Subword Reversing is a combinatorial method

• Subword Reversing is a combinatorial method (pprox rewrite rule on words)

• Subword Reversing is a combinatorial method (\approx rewrite rule on words) for investigating (certain) concrete positive group presentations.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Subword Reversing is a combinatorial method (\approx rewrite rule on words) for investigating (certain) concrete positive group presentations.

all relations of the form $w \stackrel{|}{=} w'$ with no s^{-1} in w, w'

• Subword Reversing is a combinatorial method (\approx rewrite rule on words) for investigating (certain) concrete positive group presentations.

all relations of the form $w \stackrel{\scriptstyle |}{=} w'$ with no s^{-1} in w, w'

• Here, case of triangular presentations:

• Subword Reversing is a combinatorial method (≈ rewrite rule on words) for investigating (certain) concrete positive group presentations.

all relations of the form $w \stackrel{\scriptstyle +}{=} w'$ with no s^{-1} in w, w'

• Here, case of triangular presentations: construct monoids in which the left-divisibility relation is a linear ordering.

• Subword Reversing is a combinatorial method (\approx rewrite rule on words) for investigating (certain) concrete positive group presentations.

all relations of the form $w \stackrel{\scriptstyle +}{=} w'$ with no s^{-1} in w, w'

• Here, case of triangular presentations: construct monoids in which the left-divisibility relation is a linear ordering.

all relations of the form $s_i r_i = s_{i+1}$, with r_i a positive word

• Subword Reversing is a combinatorial method (\approx rewrite rule on words) for investigating (certain) concrete positive group presentations.

all relations of the form $w \stackrel{\scriptstyle |}{=} w'$ with no s^{-1} in w, w'

• Here, case of triangular presentations: construct monoids in which the left-divisibility relation is a linear ordering.

all relations of the form $s_i r_i = s_{i+1}$, with r_i a positive word

• (Modest) output:

• Subword Reversing is a combinatorial method (\approx rewrite rule on words) for investigating (certain) concrete positive group presentations.

all relations of the form $w \stackrel{\scriptstyle |}{=} w'$ with no s^{-1} in w, w'

• Here, case of triangular presentations: construct monoids in which the left-divisibility relation is a linear ordering.

all relations of the form $s_i r_i = s_{i+1}$, with r_i a positive word

• (Modest) output: a very simple (self-contained) proof of

• Subword Reversing is a combinatorial method (\approx rewrite rule on words) for investigating (certain) concrete positive group presentations.

all relations of the form $w \stackrel{\scriptstyle |}{=} w'$ with no s^{-1} in w, w'

• Here, case of triangular presentations: construct monoids in which the left-divisibility relation is a linear ordering.

all relations of the form $s_i r_i = s_{i+1}$, with r_i a positive word

• (Modest) output: a very simple (self-contained) proof of

• Proposition (Navas, Ito).— For $n, m \ge 1$, the group $\langle x, y | x^m = y^n \rangle$ is left-orderable with isolated points in the LO space.

• Subword Reversing is a combinatorial method (\approx rewrite rule on words) for investigating (certain) concrete positive group presentations.

all relations of the form $w \stackrel{\scriptstyle |}{=} w'$ with no s^{-1} in w, w'

• Here, case of triangular presentations: construct monoids in which the left-divisibility relation is a linear ordering.

all relations of the form $s_i r_i = s_{i+1}$, with r_i a positive word

• (Modest) output: a very simple (self-contained) proof of

• Proposition (Navas, Ito).— For $n, m \ge 1$, the group $\langle x, y | x^m = y^n \rangle$ is left-orderable with isolated points in the LO space.

(and a new proof of the orderability of the braid group B_3)

(日) (日) (日) (日) (日) (日) (日) (日)

<ロト < 個 > < 目 > < 目 > 目 の < @</p>

– Plan –

- I. What is subword reversing?
- II. Subword reversing in a triangular context

– Plan –

I. What is subword reversing?

II. Subword reversing in a triangular context

Appendix. The μ function on positive braids

• A strategy for constructing Kampen diagrams

all relations of the form w = w' with w, w' nonempty words in S (no s^{-1}) • Let (S, R) be a positive group presentation.

• Let (S, R) be a positive group presentation.

Then two words u, v in S represent the same element in the monoid $\langle S | R \rangle^+$

• Let (S, R) be a positive group presentation.

Then two words u, v in S represent the same element in the monoid $\langle S | R \rangle^+$

iff there exists an *R*-derivation from *u* to $v : u \equiv_{R}^{+} v$.

• Let (S, R) be a positive group presentation.

Then two words u, v in S represent the same element in the monoid $\langle S | R \rangle^+$ iff there exists an R-derivation from u to $v : u \equiv_n^+ v$.

• Proposition (van Kampen?).—

all relations of the form w = w' with w, w' nonempty words in S (no s^{-1})

• Let (S, R) be a positive group presentation.

Then two words u, v in S represent the same element in the monoid $\langle S | R \rangle^+$ iff there exists an R-derivation from u to $v : u \equiv_{n}^+ v$.

 Proposition (van Kampen?).— The relation u ≡⁺_R v holds iff there exists a van Kampen diagram for (u, v).

• Let (S, R) be a positive group presentation.

Then two words u, v in S represent the same element in the monoid $\langle S \mid R \rangle^+$ iff there exists an R-derivation from u to $v : u \equiv_p^+ v$.

 Proposition (van Kampen?).— The relation u ≡⁺_R v holds iff there exists a van Kampen diagram for (u, v).

a tesselated disk with (oriented) edges labeled by elements of S and faces labeled by relations of R, with boundary paths labeled u and v.

• Let (S, R) be a positive group presentation.

Then two words u, v in S represent the same element in the monoid $\langle S | R \rangle^+$ iff there exists an R-derivation from u to $v : u \equiv_{c}^+ v$.

 Proposition (van Kampen?).— The relation u ≡⁺_R v holds iff there exists a van Kampen diagram for (u, v).

a tesselated disk with (oriented) edges labeled by elements of S and faces labeled by relations of R, with boundary paths labeled u and v.

• Example:

$$\begin{split} B_4^+ &= \langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \\ \sigma_2 \sigma_3 \sigma_2 &= \sigma_3 \sigma_2 \sigma_3, \sigma_1 \sigma_3 = \sigma_3 \sigma_2 \rangle^+ \end{split}$$

• Let (S, R) be a positive group presentation.

Then two words u, v in S represent the same element in the monoid $\langle S | R \rangle^+$ iff there exists an R-derivation from u to $v : u \equiv_{n}^+ v$.

 Proposition (van Kampen?).— The relation u ≡⁺_R v holds iff there exists a van Kampen diagram for (u, v).

a tesselated disk with (oriented) edges labeled by elements of S and faces labeled by relations of R, with boundary paths labeled u and v.

- Example:
 - $\begin{array}{l} B_4^+ = \langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \\ \sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_3, \sigma_1 \sigma_3 = \sigma_3 \sigma_2 \rangle^+ \end{array}$

A van Kampen diagram for $(\sigma_1 \sigma_2 \sigma_3 \sigma_2 \sigma_1 \sigma_2, \sigma_2 \sigma_3 \sigma_2 \sigma_1 \sigma_2 \sigma_3)$ is

• Let (S, R) be a positive group presentation.

Then two words u, v in S represent the same element in the monoid $\langle S | R \rangle^+$ iff there exists an R-derivation from u to $v : u \equiv_{n}^+ v$.

 Proposition (van Kampen?).— The relation u ≡⁺_R v holds iff there exists a van Kampen diagram for (u, v).

a tesselated disk with (oriented) edges labeled by elements of S and faces labeled by relations of R, with boundary paths labeled u and v.

• Example:

 $\begin{array}{l} B_4^+ = \langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \\ \sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_3, \sigma_1 \sigma_3 = \sigma_3 \sigma_2 \rangle^+ \end{array}$

A van Kampen diagram for $(\sigma_1 \sigma_2 \sigma_3 \sigma_2 \sigma_1 \sigma_2, \sigma_2 \sigma_3 \sigma_2 \sigma_1 \sigma_2 \sigma_3)$ is

• Let (S, R) be a positive group presentation.

Then two words u, v in S represent the same element in the monoid $\langle S | R \rangle^+$ iff there exists an R-derivation from u to $v : u \equiv_{n}^+ v$.

 Proposition (van Kampen?).— The relation u ≡⁺_R v holds iff there exists a van Kampen diagram for (u, v).

a tesselated disk with (oriented) edges labeled by elements of S and faces labeled by relations of R, with boundary paths labeled u and v.

- Example:
 - $\begin{array}{l} B_4^+ = \langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \\ \sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_3, \sigma_1 \sigma_3 = \sigma_3 \sigma_2 \rangle^+ \end{array}$
 - A van Kampen diagram for $(\sigma_1 \sigma_2 \sigma_3 \sigma_2 \sigma_1 \sigma_2, \sigma_2 \sigma_3 \sigma_2 \sigma_1 \sigma_2 \sigma_3)$ is

• How to build a van Kampen diagram for (u, v)—when it exists?

• How to build a van Kampen diagram for (u, v)—when it exists?

• Definition.— Subword reversing = the "left strategy", i.e.,

◆□ > ◆母 > ◆臣 > ◆臣 > 三臣 - のへで

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

= 900

・ロト < 団ト < 三ト < 三・ < □ < ○

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

・ロト < 団ト < 三ト < 三・ < □ < ○

• Another way of drawing the same diagram: "reversing diagram"

 \rightsquigarrow only vertical and horizontal arrows,

- \rightsquigarrow only vertical and horizontal arrows,
 - plus equality signs connecting vertices that are to be identified in order to (possibly) get an actual van Kampen diagram.

 \rightsquigarrow only vertical and horizontal arrows,

plus equality signs connecting vertices that are to be identified in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= not necessarily equivalent) initial words and then (possibly) leads to a diagram of the form

 \equiv

SQC

• Another way of drawing the same diagram: "reversing diagram"

 \rightsquigarrow only vertical and horizontal arrows,

plus equality signs connecting vertices that are to be identified in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= not necessarily equivalent) initial words and then (possibly) leads to a diagram of the form
• Another way of drawing the same diagram: "reversing diagram"

 \rightsquigarrow only vertical and horizontal arrows,

plus equality signs connecting vertices that are to be identified in order to (possibly) get an actual van Kampen diagram.

naa

• Can be applied with arbitrary (= not necessarily equivalent) initial words and then (possibly) leads to a diagram of the form $u \bigvee_{v'} \bigvee_{v'} u'$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• In this way, a uniform pattern:

$$s \downarrow \xrightarrow{t} becomes \qquad s \downarrow \xrightarrow{c} \downarrow_R \downarrow_U \quad with sv = tu in R.$$

• Encoding by signed words: read labels from SW to NE and put a negative sign when one crosses in the wrong direction (words in $S \cup S^{-1}$).

• In this way, a uniform pattern:

$$s \downarrow \xrightarrow{t} becomes \qquad s \downarrow \xrightarrow{c} \downarrow_R \downarrow_U \quad with sv = tu in R.$$

• Encoding by signed words: read labels from SW to NE and put a negative sign when one crosses in the wrong direction (words in $S \cup S^{-1}$). The basic step reads $s^{-1}t \sim_R vu^{-1}$ (" $s^{-1}t$ reverses to vu^{-1} ").

• In this way, a uniform pattern:

$$s \downarrow \xrightarrow{t} becomes s \downarrow \xrightarrow{c} \downarrow_R \downarrow_U with sv = tu in R.$$

• Encoding by signed words: read labels from SW to NE and put a negative sign when one crosses in the wrong direction (words in $S \cup S^{-1}$). The basic step reads $s^{-1}t \frown_R vu^{-1}$ (" $s^{-1}t$ reverses to vu^{-1} ").

Then subword reversing means replacing -+ with +-, whence the terminology.

$$s \downarrow \xrightarrow{t} becomes \qquad s \downarrow \xrightarrow{c} \uparrow_{\mathcal{R}} \downarrow u \quad \text{with } sv = tu \text{ in } R.$$

• Encoding by signed words: read labels from SW to NE and put a negative sign when one crosses in the wrong direction (words in $S \cup S^{-1}$). The basic step reads $s^{-1}t \frown_R vu^{-1}$ (" $s^{-1}t$ reverses to vu^{-1} ").

Then subword reversing means replacing -+ with +-, whence the terminology.

• Degenerated cases:

$$s \downarrow \xrightarrow{t} becomes \qquad s \downarrow \xrightarrow{c} \uparrow_{\mathcal{R}} \downarrow u \quad \text{with } sv = tu \text{ in } R.$$

• Encoding by signed words: read labels from SW to NE and put a negative sign when one crosses in the wrong direction (words in $S \cup S^{-1}$). The basic step reads $s^{-1}t \frown_R vu^{-1}$ (" $s^{-1}t$ reverses to vu^{-1} ").

Then subword reversing means replacing -+ with +-, whence the terminology.

• Degenerated cases:

$$s \downarrow \xrightarrow{t} becomes \qquad s \downarrow \xrightarrow{c} \uparrow_{\mathcal{R}} \downarrow u \quad \text{with } sv = tu \text{ in } R.$$

• Encoding by signed words: read labels from SW to NE and put a negative sign when one crosses in the wrong direction (words in $S \cup S^{-1}$). The basic step reads $s^{-1}t \frown_R vu^{-1}$ (" $s^{-1}t$ reverses to vu^{-1} ").

Then subword reversing means replacing -+ with +-, whence the terminology.

• Degenerated cases:

Subword reversing: basic results

• Reversing may be stuck: $s \downarrow$

• Reversing may be stuck: $s \sqrt{\frac{t}{?}}$ if no relation s... = t...;• Result may not be unique: $s \sqrt{\frac{t}{\bigcirc_R}} \sqrt{u_1}$, $s \sqrt{\frac{t}{\bigcirc_R}} \sqrt{u_2}$, if several relations s... = t...;

а

• Reversing may be stuck: $s \sqrt{\frac{t}{?}}$ if no relation s... = t...;• Result may not be unique: $s \sqrt{\frac{t}{\gamma_R}} u_1$, $s \sqrt{\frac{t}{\gamma_R}} u_2$, if several relations s... = t...;• Reversing may never terminate (unless relations involve words of length ≤ 2): assume $a^2b = ba$:

а

• Reversing may be stuck: $s \sqrt{\frac{t}{?}}$ if no relation s... = t...;• Result may not be unique: $s \sqrt{\frac{t}{\bigcap_R}} \sqrt{u_1}$, $s \sqrt{\frac{t}{\bigcap_R}} \sqrt{u_2}$, if several relations s... = t...;• Reversing may never terminate (unless relations involve words of length ≤ 2): assume $a^2b = ba$:

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ロト ・ 同ト ・ ヨト ・ ヨト

 \exists

nac

• Reversing may terminate with nonempty output words:

? if no relation s... = t...;• Reversing may be stuck: s • Result may not be unique: $s \bigvee \frown_R \bigvee u_1$, $s \bigvee \frown_R \bigvee u_2$, if several relations s... = t...; $R \xrightarrow{a} a \xrightarrow{R} b \xrightarrow{a} b$ Reversing may never terminate (unless relations) involve words of length ≤ 2): assume $a^2b = ba$: а • Reversing may terminate with nonempty output words:

? if no relation s... = t...;• Reversing may be stuck: • Result may not be unique: $s \bigvee \frown_R \bigvee u_1$, $s \bigvee \frown_R \bigvee u_2$, if several relations s... = t...; Reversing may never terminate (unless relations) involve words of length ≤ 2): assume $a^2b = ba$: а • Reversing may terminate with nonempty output words: (certainly happens if input words u, v are not equivalent)

<ロ> <目> <目> <目> <目> <目> <目> <日> <日> <日> <日</p>

• Reversing may be stuck: $s \downarrow ?$ if no relation s... = t...;• Result may not be unique: $s \bigvee \bigcap_{R} \bigvee u_1$, $s \bigvee \bigcap_{R} \bigvee u_2$, if several relations s... = t...; $a \downarrow a \land B \downarrow a$ Reversing may never terminate (unless relations) involve words of length ≤ 2): assume $a^2b = ba$: а • Reversing may terminate with nonempty output words: (certainly happens if input words u, v are not equivalent) • Lemma.-

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Reversing may be stuck: $s \downarrow ?$ if no relation $s \dots = t \dots;$ • Result may not be unique: $s \bigvee \frown_R \bigvee u_1$, $s \bigvee \frown_R \bigvee u_2$, if several relations s... = t...; Reversing may never terminate (unless relations) involve words of length ≤ 2): assume $a^2b = ba$: а Reversing may terminate with nonempty output words: (certainly happens if input words u, v are not equivalent)

emma.—
$$u \bigvee \bigcirc R \bigvee u'$$
 implies $uv' \equiv_R^+ vu'$.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 句 ◆ ○

<ロト < 部 > < 注 > < 注 > 三 三 の < 0</p>

• When is reversing useful ?

• When is reversing useful ?

... When it succeeds in building a van Kampen diagram whenever one exists.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 = の � @

• When is reversing useful ? ...When it succeeds in building a van Kampen diagram whenever one exists.

• Definition.— A presentation (S, R) is called complete for \curvearrowright if

• When is reversing useful ? ...When it succeeds in building a van Kampen diagram whenever one exists.

• When is reversing useful ?When it succeeds in building a van Kampen diagram whenever one exists.

• Definition.— A presentation (S, R) is called complete for \frown if	\xrightarrow{v}
$u\equiv^+_{_{\!$	$ = \left\ \underbrace{u_{\mathcal{R}}}_{u} \right\ = \left\ \underbrace{A_{\mathcal{R}}}_{u} \right\ = \left$

• When is reversing useful ? ...When it succeeds in building a van Kampen diagram whenever one exists.

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• When is reversing useful ? ...When it succeeds in building a van Kampen diagram whenever one exists.

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• Proposition.— Assume (S, R) is complete for \sim and contains no relation s... = s...Then the monoid $\langle S \mid R \rangle^+$ is left-cancellative

• When is reversing useful ? ...When it succeeds in building a van Kampen diagram whenever one exists.

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• Proposition.— Assume (S, R) is complete for \curvearrowright and contains no relation s... = s...Then the monoid $\langle S | R \rangle^+$ is left-cancellative (fg = fh implies g = h).

• When is reversing useful ? ...When it succeeds in building a van Kampen diagram whenever one exists.

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• Proposition.— Assume (S, R) is complete for \curvearrowright and contains no relation s... = s...Then the monoid $\langle S | R \rangle^+$ is left-cancellative (fg = fh implies g = h).

• Proof. Assume $su \equiv_{R}^{+} sv$.
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• When is reversing useful ? ...When it succeeds in building a van Kampen diagram whenever one exists.

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• Proposition.— Assume (S, R) is complete for \curvearrowright and contains no relation s... = s...Then the monoid $\langle S \mid R \rangle^+$ is left-cancellative (fg = fh implies g = h).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• Remark.— Completeness for \sim does **not** imply the solvability of the word problem unless reversing has been proved to always terminate.

• How to recognize completeness?

◆ロ ▶ ◆母 ▶ ◆ 三 ▶ ◆ 日 ▶ ● の Q @

• How to recognize completeness?

• Proposition.— If (\overline{S}, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.

◆ロ ▶ ◆母 ▶ ◆ 三 ▶ ◆ 日 ▶ ● の Q @

- How to recognize completeness?
- Proposition.— If (S, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.
 - homogeneous:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• How to recognize completeness?

• Proposition.— If (S, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.

- homogeneous: there exists an *R*-invariant function $\lambda : S^* \to \mathbb{N}$ s.t. $\lambda(sw) > \lambda(w)$.

• How to recognize completeness?

• Proposition.— If (S, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.

- homogeneous: there exists an *R*-invariant function $\lambda : S^* \to \mathbb{N}$ s.t. $\lambda(sw) > \lambda(w)$. typically : $\lambda(w) = \text{length of } w$ if preserved by the relations of *R*

• How to recognize completeness?

• Proposition.— If (S, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.

homogeneous: there exists an *R*-invariant function λ : S* → N s.t. λ(sw) > λ(w). typically : λ(w) = length of w if preserved by the relations of R for instance : braid relations σ_iσ_iσ_i = σ_iσ_iσ_i

• How to recognize completeness?

• Proposition.— If (S, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.

- homogeneous: there exists an *R*-invariant function λ : S* → N s.t. λ(sw) > λ(w). typically : λ(w) = length of w if preserved by the relations of R for instance : braid relations σ_iσ_iσ_i = σ_iσ_iσ_i
- cube condition for three words u, v, w: some effective transitivity condition involving the reversings of $u^{-1}v$, $v^{-1}w$, and $u^{-1}w$.

• How to recognize completeness?

• Proposition.— If (S, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.

- homogeneous: there exists an *R*-invariant function λ : S* → N s.t. λ(sw) > λ(w). typically : λ(w) = length of w if preserved by the relations of R for instance : braid relations σ_iσ_iσ_i = σ_iσ_iσ_i
- cube condition for three words u, v, w: some effective transitivity condition involving the reversings of $u^{-1}v$, $v^{-1}w$, and $u^{-1}w$.

• Summary.— In good cases

• How to recognize completeness?

• Proposition.— If (S, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.

- homogeneous: there exists an *R*-invariant function λ : S* → N s.t. λ(sw) > λ(w). typically : λ(w) = length of w if preserved by the relations of R for instance : braid relations σ_iσ_iσ_i = σ_iσ_iσ_i
- cube condition for three words u, v, w: some effective transitivity condition involving the reversings of $u^{-1}v$, $v^{-1}w$, and $u^{-1}w$.

Summary.— In good cases (= complete presentations), subword reversing is useful

 for proving cancellativity,

- How to recognize completeness?
- Proposition.— If (S, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.
 - homogeneous: there exists an *R*-invariant function λ : S* → N s.t. λ(sw) > λ(w). typically : λ(w) = length of w if preserved by the relations of R for instance : braid relations σ_iσ_iσ_i = σ_iσ_iσ_i
 - cube condition for three words u, v, w: some effective transitivity condition involving the reversings of $u^{-1}v$, $v^{-1}w$, and $u^{-1}w$.
- Summary.— In good cases (= complete presentations), subword reversing is useful
 - for proving cancellativity,
 - for solving word problems (both for monoids and for groups),

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- How to recognize completeness?
- Proposition.— If (S, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.
 - homogeneous: there exists an *R*-invariant function λ : S* → N s.t. λ(sw) > λ(w). typically : λ(w) = length of w if preserved by the relations of R for instance : braid relations σ_iσ_iσ_i = σ_iσ_iσ_i
 - cube condition for three words u, v, w: some effective transitivity condition involving the reversings of $u^{-1}v$, $v^{-1}w$, and $u^{-1}w$.
- Summary.— In good cases (= complete presentations), subword reversing is useful
 - for proving cancellativity,
 - for solving word problems (both for monoids and for groups),
 - for recognizing Garside structures and computing with them, etc.

- How to recognize completeness?
- Proposition.— If (S, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.
 - homogeneous: there exists an *R*-invariant function λ : S* → N s.t. λ(sw) > λ(w). typically : λ(w) = length of w if preserved by the relations of R for instance : braid relations σ_iσ_iσ_i = σ_iσ_iσ_i
 - cube condition for three words u, v, w: some effective transitivity condition involving the reversings of $u^{-1}v$, $v^{-1}w$, and $u^{-1}w$.
- Summary.— In good cases (= complete presentations), subword reversing is useful
 - for proving cancellativity,
 - for solving word problems (both for monoids and for groups),
 - for recognizing Garside structures and computing with them, etc.

• What for a non-complete presentation?

- How to recognize completeness?
- Proposition.— If (S, R) is homogeneous, then (S, R) is complete for \frown iff, for all r, s, t in S, the cube condition for r, s, t is satisfied.
 - homogeneous: there exists an *R*-invariant function λ : S* → N s.t. λ(sw) > λ(w). typically : λ(w) = length of w if preserved by the relations of R for instance : braid relations σ_iσ_iσ_i = σ_iσ_iσ_i
 - cube condition for three words u, v, w: some effective transitivity condition involving the reversings of $u^{-1}v$, $v^{-1}w$, and $u^{-1}w$.
- Summary.— In good cases (= complete presentations), subword reversing is useful
 - for proving cancellativity,
 - for solving word problems (both for monoids and for groups),
 - for recognizing Garside structures and computing with them, etc.

• What for a non-complete presentation? Make it complete : completion procedure...

– Part II –

Subword reversing in a triangular context

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

• Construct monoids in which the left-divibility relation is a linear ordering,

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 = の � @

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Definition.— For M a monoid and f, g in M, say that f is a left-divisor of g,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Definition.— For *M* a monoid and *f*, *g* in *M*, say that *f* is a left-divisor of *g*, or *g* is a right-multiple of *f*,

 Definition.— For M a monoid and f, g in M, say that f is a left-divisor of g, or g is a right-multiple of f, denoted f ≼ g,

 Definition.— For M a monoid and f, g in M, say that f is a left-divisor of g, or g is a right-multiple of f, denoted f ≼ g, if we have fg' = g for some g' (of M).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Recall: (S, R) triangular

• Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}). • Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}).

Typically: (a, b | $aba = b, b^2 cac^2 = c$), ...

- Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}). Typically: $(a, b \mid aba = b, b^2 cac^2 = c)$, ...
- Bad news: a triangular presentation is (almost) never homogeneous:

- Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}). Typically: $(a, b \mid aba = b, b^2 cac^2 = c)$, ...
- Bad news: a triangular presentation is (almost) never homogeneous: e.g., aba = b makes $\lambda(b) < \lambda(ab) \leq \lambda(aba) = \lambda(b)$ impossible

- Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}). Typically: $(a, b \mid aba = b, b^2 cac^2 = c), ...$
- Bad news: a triangular presentation is (almost) never homogeneous: e.g., aba = b makes $\lambda(b) < \lambda(ab) \leq \lambda(aba) = \lambda(b)$ impossible

• Good news:

• Main lemma.— Every triangular presentation is complete for \sim .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}). Typically: $(a, b | aba = b, b^2 cac^2 = c), \dots$
- Bad news: a triangular presentation is (almost) never homogeneous: e.g., aba = b makes $\lambda(b) < \lambda(ab) \leq \lambda(aba) = \lambda(b)$ impossible

Good news:

• Main lemma.— Every triangular presentation is complete for \sim .

 Proof. Show using induction on k that $u \equiv_{R}^{+(k)} \mathbf{v} \ (\exists \text{ a length } k \text{ derivation from } u \text{ to } v) \text{ implies } u \boxed{\frown_{R}} .$

(日) (日) (日) (日) (日) (日) (日) (日)

- Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}). Typically: $(a, b \mid aba = b, b^2 cac^2 = c), ...$
- Bad news: a triangular presentation is (almost) never homogeneous: e.g., aba = b makes $\lambda(b) < \lambda(ab) \leq \lambda(ab) = \lambda(b)$ impossible

• Good news:

• Main lemma.— Every triangular presentation is complete for \sim .

• Proof. Show using induction on k that $u \equiv_R^{+(k)} v \ (\exists a \text{ length } k \text{ derivation from } u \text{ to } v) \text{ implies } u \downarrow \frown_R$.

Claim: Let \tilde{u} be obtained from u by replacing the first letter, say s_i , with $s_1r_1...r_{i-1}$.

(日) (日) (日) (日) (日) (日) (日) (日)

- Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}). Typically: $(a, b \mid aba = b, b^2 cac^2 = c)$, ...
- Bad news: a triangular presentation is (almost) never homogeneous: e.g., aba = b makes $\lambda(b) < \lambda(ab) \leq \lambda(aba) = \lambda(b)$ impossible

• Good news:

• Main lemma.— Every triangular presentation is complete for \sim .

• Proof. Show using induction on k that $u \equiv_R^{+(k)} v \ (\exists a \text{ length } k \text{ derivation from } u \text{ to } v) \text{ implies } u \downarrow \frown_R$.

Claim: Let \tilde{u} be obtained from u by replacing the first letter, say s_i , with $s_1r_1...r_{i-1}$. Then $u \equiv_R^{+(k)} v$ implies $\tilde{u} \equiv_R^{+(k)} \tilde{v}$,
- Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}). Typically: $(a, b \mid aba = b, b^2 cac^2 = c), ...$
- Bad news: a triangular presentation is (almost) never homogeneous: e.g., aba = b makes $\lambda(b) < \lambda(ab) \leq \lambda(aba) = \lambda(b)$ impossible

• Good news:

• Main lemma.— Every triangular presentation is complete for \sim .

• Proof. Show using induction on k that $u \equiv_R^{+(k)} v \ (\exists a \text{ length } k \text{ derivation from } u \text{ to } v) \text{ implies } u \downarrow \frown_R \|$.

Claim: Let \tilde{u} be obtained from u by replacing the first letter, say s_i , with $s_1r_1...r_{i-1}$. Then $u \equiv_R^{+(k)} v$ implies $\tilde{u} \equiv_R^{+(k)} \tilde{v}$, and, if the first letter changes at least once in $u \equiv_R^{+(k)} v$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}). Typically: $(a, b \mid aba = b, b^2 cac^2 = c), ...$
- Bad news: a triangular presentation is (almost) never homogeneous: e.g., aba = b makes $\lambda(b) < \lambda(ab) \leq \lambda(aba) = \lambda(b)$ impossible

• Good news:

• Main lemma.— Every triangular presentation is complete for \sim .

• Proof. Show using induction on k that $u \equiv_R^{+(k)} v \ (\exists a \text{ length } k \text{ derivation from } u \text{ to } v) \text{ implies } u \downarrow \frown_R \|$.

Claim: Let \tilde{u} be obtained from u by replacing the first letter, say s_i , with $s_1r_1...r_{i-1}$. Then $u \equiv_R^{+(k)} v$ implies $\tilde{u} \equiv_R^{+(k)} \tilde{v}$, and, if the first letter changes at least once in $u \equiv_R^{+(k)} v$, one even has $\tilde{u} \equiv_R^{+(<k)} \tilde{v}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(日) (日) (日) (日) (日) (日) (日) (日)

- Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}). Typically: $(a, b \mid aba = b, b^2 cac^2 = c), ...$
- Bad news: a triangular presentation is (almost) never homogeneous: e.g., aba = b makes $\lambda(b) < \lambda(ab) \leq \lambda(ab) = \lambda(b)$ impossible

• Good news:

• Main lemma.— Every triangular presentation is complete for \sim .

• Proof. Show using induction on k that $u \equiv_R^{+(k)} v \ (\exists a \text{ length } k \text{ derivation from } u \text{ to } v) \text{ implies } u [\frown_R] .$

Claim: Let \tilde{u} be obtained from u by replacing the first letter, say s_i , with $s_1r_1...r_{i-1}$. Then $u \equiv_R^{+(k)} v$ implies $\tilde{u} \equiv_R^{+(k)} \tilde{v}$, and, if the first letter changes at least once in $u \equiv_R^{+(k)} v$, one even has $\tilde{u} \equiv_R^{+(<k)} \tilde{v}$. makes the induction possible • Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order:

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S | R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Proof. Choose words u, v in S^* that represent f and g.

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Proof. Choose words u, v in S^* that represent f and g. The assumption is that $uv' \equiv_R^+ vu'$ holds for some u', v'.

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Proof. Choose words u, v in S^* that represent f and g. The assumption is that $uv' \equiv_R^+ vu'$ holds for some u', v'.

Step 1:

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Proof. Choose words u, v in S^* that represent f and g. The assumption is that $uv' \equiv_R^+ vu'$ holds for some u', v'. Step 1: Reversing $u \downarrow \bigvee$ must terminate in finitely many steps.

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

Step 2:

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

Step 2: A terminating reversing finishes with at least one empty word.

• Recall: Interested in the case when the left-divisibility relation ≼ — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

Step 2: A terminating reversing finishes with at least one empty word. Indeed, use induction on the number n of reversing steps.

(日) (日) (日) (日) (日) (日) (日) (日)

• Recall: Interested in the case when the left-divisibility relation ≼ — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

Step 2: A terminating reversing finishes with at least one empty word. Indeed, use induction on the number n of reversing steps. For n = 1, follows from triangularity of (S, R).

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

(日) (日) (日) (日) (日) (日) (日) (日)

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Recall: Interested in the case when the left-divisibility relation \preccurlyeq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f, g of $\langle S \mid R \rangle^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering.

• Lemma. — Assume that M is a monoid generated by S

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S.

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

Proof.

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on *r* that $h \in S^r$ implies $h \preccurlyeq \delta^r$.

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1.
• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1. Assume $h \in S^r$ with r > 1.

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1. Assume $h \in S^r$ with r > 1. Write h = fg, $f \in S^p$, $g \in S^q$ and p + q = r.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1. Assume $h \in S^r$ with r > 1. Write h = fg, $f \in S^p$, $g \in S^q$ and p + q = r. By IH, there exists f', g' s.t. $ff' = \delta^p$, $gg' = \delta^q$.

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1. Assume $h \in S^r$ with r > 1. Write h = fg, $f \in S^p$, $g \in S^q$ and p + q = r. By IH, there exists f', g' s.t. $ff' = \delta^p$, $gg' = \delta^q$. Then

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1. Assume $h \in S^r$ with r > 1. Write h = fg, $f \in S^p$, $g \in S^q$ and p + q = r. By IH, there exists f', g' s.t. $ff' = \delta^p$, $gg' = \delta^q$. Then

 $h \cdot g' f'$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1. Assume $h \in S^r$ with r > 1. Write h = fg, $f \in S^p$, $g \in S^q$ and p + q = r. By IH, there exists f', g' s.t. $ff' = \delta^p$, $gg' = \delta^q$. Then

 $h \cdot g' f' = fgg' f'$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1. Assume $h \in S^r$ with r > 1. Write h = fg, $f \in S^p$, $g \in S^q$ and p + q = r. By IH, there exists f', g' s.t. $ff' = \delta^p$, $gg' = \delta^q$. Then

 $h \cdot g' f' = fgg' f' = f\delta^q f'$

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1. Assume $h \in S^r$ with r > 1. Write h = fg, $f \in S^p$, $g \in S^q$ and p + q = r. By IH, there exists f', g' s.t. $ff' = \delta^p$, $gg' = \delta^q$. Then

 $h \cdot g' f' = fgg' f' = f\delta^q f' = ff'\delta^q$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1. Assume $h \in S^r$ with r > 1. Write h = fg, $f \in S^p$, $g \in S^q$ and p + q = r. By IH, there exists f', g' s.t. $ff' = \delta^p$, $gg' = \delta^q$. Then

 $h \cdot g' f' = fgg' f' = f\delta^q f' = ff'\delta^q = \delta^p \delta^q$

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1. Assume $h \in S^r$ with r > 1. Write h = fg, $f \in S^p$, $g \in S^q$ and p + q = r. By IH, there exists f', g' s.t. $ff' = \delta^p$, $gg' = \delta^q$. Then

 $h \cdot g' f' = fgg' f' = f\delta^q f' = ff'\delta^q = \delta^p \delta^q = \delta^r.$

• The aim is to prove that the left-divisibility relation \preccurlyeq is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.

• Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r = 1. Assume $h \in S^r$ with r > 1. Write h = fg, $f \in S^p$, $g \in S^q$ and p + q = r. By IH, there exists f', g' s.t. $ff' = \delta^p$, $gg' = \delta^q$. Then

$$h \cdot g' f' = fgg' f' = f\delta^q f' = ff'\delta^q = \delta^p \delta^q = \delta^r.$$

• ...(under the same hypotheses) any two elements of *M* admit a common right-multiple.

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$.

• Proof.

• Proof. Let $G_{p,q}^+ = \langle a, b | (ab^p)^q a = b \rangle^+$.

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G^+_{\rho,q} = \langle a, b \mid (ab^{\rho})^q a = b \rangle^+$. The presentation $(a, b \mid (ab^{\rho})^q a = b)$ is triangular.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$.

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta$

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b$

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle \mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b} \rangle^+$. The presentation $(\mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b})$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = \mathbf{b}^{p+1}$. Then $\mathbf{a}\delta = \mathbf{a}\mathbf{b}^p\mathbf{b} = \mathbf{a}\mathbf{b}^p(\mathbf{a}\mathbf{b}^p)^q\mathbf{a}$

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^{\rho})^q a = b \rangle^+$. The presentation $(a, b \mid (ab^{\rho})^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{\rho+1}$. Then $a\delta = ab^{\rho}b = ab^{\rho}(ab^{\rho})^q a = (ab^{\rho})^q ab^{\rho}a$

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a$

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^\rho b = ab^\rho (ab^\rho)^q a = (ab^\rho)^q ab^\rho a = bb^\rho a = \delta a$.

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle \mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b} \rangle^+$. The presentation $(\mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b})$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = \mathbf{b}^{p+1}$. Then $\mathbf{a}\delta = \mathbf{a}\mathbf{b}^p\mathbf{b} = \mathbf{a}\mathbf{b}^p(\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = (\mathbf{a}\mathbf{b}^p)^q \mathbf{a}\mathbf{b}^p \mathbf{a} = \mathbf{b}\mathbf{b}^p \mathbf{a} = \delta \mathbf{a}$. So δ lies in the center of $G_{p,q}^+$.

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b | (ab^p)^q a = b \rangle^+$. The presentation $(a, b | (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$. So δ lies in the center of G^+ . Hence any two elements of G^+ , have a common

So δ lies in the center of $G^+_{\rho,q}.$ Hence any two elements of $G^+_{\rho,q}$ have a common right-multiple,

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$.

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle \mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b} \rangle^+$. The presentation $(\mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b})$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = \mathbf{b}^{p+1}$. Then $\mathbf{a}\delta = \mathbf{a}\mathbf{b}^p\mathbf{b} = \mathbf{a}\mathbf{b}^p(\mathbf{a}\mathbf{b}^p)^q\mathbf{a} = (\mathbf{a}\mathbf{b}^p)^q\mathbf{a}\mathbf{b}^p\mathbf{a} = \mathbf{b}\mathbf{b}^p\mathbf{a} = \delta\mathbf{a}$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative.

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle \mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b} \rangle^+$. The presentation $(\mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b})$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = \mathbf{b}^{p+1}$. Then $\mathbf{a}\delta = \mathbf{a}\mathbf{b}^p\mathbf{b} = \mathbf{a}\mathbf{b}^p(\mathbf{a}\mathbf{b}^p)^q\mathbf{a} = (\mathbf{a}\mathbf{b}^p)^q\mathbf{a}\mathbf{b}^p\mathbf{a} = \mathbf{b}\mathbf{b}^p\mathbf{a} = \delta\mathbf{a}$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle \mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b} \rangle^+$. The presentation $(\mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b})$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = \mathbf{b}^{p+1}$. Then $\mathbf{a}\delta = \mathbf{a}\mathbf{b}^p\mathbf{b} = \mathbf{a}\mathbf{b}^p(\mathbf{a}\mathbf{b}^p)^q\mathbf{a} = (\mathbf{a}\mathbf{b}^p)^q\mathbf{a}\mathbf{b}^p\mathbf{a} = \mathbf{b}\mathbf{b}^p\mathbf{a} = \delta\mathbf{a}$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

• Remark.—

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle \mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b} \rangle^+$. The presentation $(\mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b})$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = \mathbf{b}^{p+1}$. Then $\mathbf{a}\delta = \mathbf{a}\mathbf{b}^p\mathbf{b} = \mathbf{a}\mathbf{b}^p(\mathbf{a}\mathbf{b}^p)^q\mathbf{a} = (\mathbf{a}\mathbf{b}^p)^q\mathbf{a}\mathbf{b}^p\mathbf{a} = \mathbf{b}\mathbf{b}^p\mathbf{a} = \delta\mathbf{a}$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

• Remark.— Put $x = ab^{p}$ and y = b.

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle \mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b} \rangle^+$. The presentation $(\mathbf{a}, \mathbf{b} \mid (\mathbf{a}\mathbf{b}^p)^q \mathbf{a} = \mathbf{b})$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = \mathbf{b}^{p+1}$. Then $\mathbf{a}\delta = \mathbf{a}\mathbf{b}^p\mathbf{b} = \mathbf{a}\mathbf{b}^p(\mathbf{a}\mathbf{b}^p)^q\mathbf{a} = (\mathbf{a}\mathbf{b}^p)^q\mathbf{a}\mathbf{b}^p\mathbf{a} = \mathbf{b}\mathbf{b}^p\mathbf{a} = \delta\mathbf{a}$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

• Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

- Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.
- Particular cases:
 - p = q = 1:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

- Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.
- Particular cases:
 - p = q = 1: aba = b

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

- Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.
- Particular cases:
 - p = q = 1: aba = b (or $x^2 = y^2$),
(日) (日) (日) (日) (日) (日) (日) (日)

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

- Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.
- Particular cases:

- p = q = 1: aba = b (or $x^2 = y^2$), the Klein bottle group K;

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

• Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.

• Particular cases:

- p = q = 1: aba = b (or $x^2 = y^2$), the Klein bottle group K; - p = 2, q = 1:

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

• Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.

• Particular cases:

- p = q = 1: aba = b (or $x^2 = y^2$), the Klein bottle group K; - p = 2, q = 1: $ab^2a = b$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

• Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.

• Particular cases:

-
$$p = q = 1$$
: $aba = b$ (or $x^2 = y^2$), the Klein bottle group K;
- $p = 2, q = 1$: $ab^2a = b$ (or $x^2 = y^3$),

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 句 ◆ ○

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

• Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.

• Particular cases:

- p = q = 1: aba = b (or $x^2 = y^2$), the Klein bottle group K; - p = 2, q = 1: $ab^2a = b$ (or $x^2 = y^3$), the 3-strand braid group B_3 ;

<ロト < @ ト < E ト < E ト E の < @</p>

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

• Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.

• Particular cases:

- p = q = 1: aba = b (or $x^2 = y^2$), the Klein bottle group K; - p = 2, q = 1: $ab^2a = b$ (or $x^2 = y^3$), the 3-strand braid group B_3 ; - p = 1, q = 2:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Proposition.— For $p, q \ge 1$, let $G_{p,q} = \langle a, b \mid (ab^p)^q a = b \rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

• Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.

• Particular cases:

- p = q = 1: aba = b (or $x^2 = y^2$), the Klein bottle group K; - p = 2, q = 1: $ab^2a = b$ (or $x^2 = y^3$), the 3-strand braid group B_3 ; - p = 1, q = 2: ababa = b

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

• Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.

• Particular cases:

- p = q = 1: aba = b (or $x^2 = y^2$), the Klein bottle group K; - p = 2, q = 1: $ab^2a = b$ (or $x^2 = y^3$), the 3-strand braid group B_3 ; - p = 1, q = 2: ababa = b (or $x^3 = y^2$),

• Proof. Let $G_{p,q}^+ = \langle a, b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a, b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a$.

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$.

• Remark.— Put $x = ab^{p}$ and y = b. Then $(ab^{p})^{q}a = b$ (iff) $x^{q+1} = y^{p+1}$.

• Particular cases:

- p = q = 1: aba = b (or $x^2 = y^2$), the Klein bottle group K; - p = 2, q = 1: $ab^2a = b$ (or $x^2 = y^3$), the 3-strand braid group B_3 ; - p = 1, q = 2: ababa = b (or $x^3 = y^2$), the 3-strand braid group B_3 again.

– Appendix –

The $\boldsymbol{\mu}$ function on positive braids

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

– Appendix –

The $\boldsymbol{\mu}$ function on positive braids

– Appendix –

The μ function on positive braids

... The orderability of braid groups is 20 years old this week.

• Artin's braid group *B_n*:

• Artin's braid group
$$B_n$$
: $\langle \sigma_1, ..., \sigma_{n-1} | \sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i-j| \ge 2$.

• Artin's braid group
$$B_n$$
: $\left\langle \sigma_1, ..., \sigma_{n-1} \right| \left\langle \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \\ \end{array} \right\rangle$.

• Artin's braid group
$$B_n$$
: $\left\langle \sigma_1, ..., \sigma_{n-1} \right|$ $\begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle$.

 \simeq { braid diagrams }/ isotopy:

• Artin's braid group
$$B_n$$
: $\Big\langle \sigma_1, ..., \sigma_{n-1} \Big|$ $\begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_j = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \Big\rangle.$

 \simeq { braid diagrams }/ isotopy:

σ_{i}	*~~ `	
		ł

◆ロト ◆昼 ト ◆臣 ト ◆臣 - 今へ⊙

• Artin's braid group
$$B_n$$
: $\Big\langle \sigma_1, ..., \sigma_{n-1} \Big|$ $\begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \Big\rangle.$

 \simeq { braid diagrams }/ isotopy:

◆ロト ◆昼 ト ◆臣 ト ◆臣 - 今へ⊙

• Artin's braid group
$$B_n$$
: $\Big\langle \sigma_1, ..., \sigma_{n-1} \Big| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2\\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \Big\rangle.$

 \simeq { braid diagrams }/ isotopy:

 \simeq mapping class group of D_n (disk with *n* punctures):

◆ロト ◆昼 ト ◆臣 ト ◆臣 - 今へ⊙

• Artin's braid group
$$B_n$$
: $\Big\langle \sigma_1, ..., \sigma_{n-1} \Big| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2\\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \Big\rangle$.

 \simeq { braid diagrams }/ isotopy:

 \simeq mapping class group of D_n (disk with *n* punctures):

• Artin's braid group
$$B_n$$
: $\Big\langle \sigma_1, ..., \sigma_{n-1} \Big|$ $\begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \Big\rangle$.

 \simeq { braid diagrams }/ isotopy:

 \simeq mapping class group of D_n (disk with *n* punctures):

The alternating normal form of braids

• Associate with every braid β in B_n^+ a finite sequence $(..., \beta_3, \beta_2, \beta_1)$ of braids in B_{n-1}^+ : the *n*-splitting of β . • Associate with every braid β in B_n^+

a finite sequence $(..., \beta_3, \beta_2, \beta_1)$ of braids in B_{n-1}^+ : the *n*-splitting of β .

• Associate with every braid β in B_n^+

a finite sequence $(..., \beta_3, \beta_2, \beta_1)$ of braids in B_{n-1}^+ : the *n*-splitting of β .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Definition (Birman-Ko-Lee, 1997).—

• Definition (Birman-Ko-Lee, 1997).— The dual braid monoid B_n^{+*} is the submonoid of B_n generated by $(a_{i,j})_{1 \leq i < j \leq n}$ with $a_{i,j} = \sigma_{j-1}^{-1} \dots \sigma_{i+1}^{-1} \sigma_i \sigma_{i+1} \dots \sigma_{j-1}^{-1}$.
• Definition (Birman-Ko-Lee, 1997).— The dual braid monoid B_n^{+*} is the submonoid of B_n generated by $(a_{i,j})_{1 \leq i < j \leq n}$ with $a_{i,j} = \sigma_{j-1}^{-1} \dots \sigma_{i+1}^{-1} \sigma_i \sigma_{i+1} \dots \sigma_{j-1}$.

• Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.

• Definition (Birman-Ko-Lee, 1997).— The dual braid monoid B_n^{+*} is the submonoid of B_n generated by $(a_{i,j})_{1 \le i < j \le n}$ with $a_{i,j} = \sigma_{j-1}^{-1} \dots \sigma_{i+1}^{-1} \sigma_i \sigma_{i+1} \dots \sigma_{j-1}$.

• Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.

• Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.

• Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.

• Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.

• Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.

• Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.

• Definition (Birman-Ko-Lee, 1997).— The dual braid monoid B_n^{+*} is the submonoid of B_n generated by $(a_{i,j})_{1 \leq i < j \leq n}$ with $a_{i,j} = \sigma_{j-1}^{-1} ... \sigma_{i+1}^{-1} \sigma_i \sigma_{i+1} ... \sigma_{j-1}^{-1}$.

• Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.

• Definition (Birman-Ko-Lee, 1997).— The dual braid monoid B_n^{+*} is the submonoid of B_n generated by $(a_{i,j})_{1 \leq i < j \leq n}$ with $a_{i,j} = \sigma_{j-1}^{-1} ... \sigma_{i+1}^{-1} \sigma_i \sigma_{i+1} ... \sigma_{j-1}^{-1}$.

• Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.

• Then similar splitting of braids in B_n^{+*} into sequences of braids in B_{n-1}^{+*} .

• Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.

• Then similar splitting of braids in B_n^{+*} into sequences of braids in B_{n-1}^{+*} .

• Theorem (Fromentin, 2008): For
$$\beta, \beta'$$
 in B_n^{+*} ,
 $\beta <_D \beta'$ is equivalent to $T_n^*(\beta) <^{\text{ShortLex}} T_n^*(\beta')$.

• Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.

• Then similar splitting of braids in B_n^{+*} into sequences of braids in B_{n-1}^{+*} .

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

• Definition.— For β in B^+_{∞} (resp. in B^{+*}_{∞}), put $\mu(\beta) = \min_{<_D} \{ \beta' \in B^+_{\infty} \mid \beta' \text{ conjugate to } \beta \}$

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

• Definition.— For β in B^+_{∞} (resp. in B^{+*}_{∞}), put $\mu(\beta) = \min_{<_D} \{ \beta' \in B^+_{\infty} \mid \beta' \text{ conjugate to } \beta \}$ (resp. $\mu^*(\beta) = \min_{<_D} \{ \beta' \in B^{+*}_{\infty} \mid \beta' \text{ conjugate to } \beta \}$).

<ロト < @ ト < E ト < E ト E の < @</p>

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Definition.— For β in B_{∞}^+ (resp. in B_{∞}^{+*}), put $\mu(\beta) = \min_{<_D} \{ \beta' \in B_{\infty}^+ \mid \beta' \text{ conjugate to } \beta \}$ (resp. $\mu^*(\beta) = \min_{<_D} \{ \beta' \in B_{\infty}^{+*} \mid \beta' \text{ conjugate to } \beta \}$).

• Makes sense because $<_D$ is a well-ordering on B^+_{∞} and B^{+*}_{∞} .

◆ロ ▶ ◆母 ▶ ◆ 三 ▶ ◆ 日 ▶ ● の Q @

• Definition.— For β in B^+_{∞} (resp. in B^{+*}_{∞}), put $\mu(\beta) = \min_{<_D} \{ \beta' \in B^+_{\infty} \mid \beta' \text{ conjugate to } \beta \}$ (resp. $\mu^*(\beta) = \min_{<_D} \{ \beta' \in B^{+*}_{\infty} \mid \beta' \text{ conjugate to } \beta \}$).

- Makes sense because $<_D$ is a well-ordering on B^+_{∞} and B^{+*}_{∞} .
- Example: $\mu(\sigma_1) = \mu(\sigma_2) = \ldots = \sigma_1$,

◆ロ ▶ ◆母 ▶ ◆ 三 ▶ ◆ 日 ▶ ● の Q @

• Definition.— For β in B_{∞}^+ (resp. in B_{∞}^{+*}), put $\mu(\beta) = \min_{<_D} \{ \beta' \in B_{\infty}^+ \mid \beta' \text{ conjugate to } \beta \}$ (resp. $\mu^*(\beta) = \min_{<_D} \{ \beta' \in B_{\infty}^{+*} \mid \beta' \text{ conjugate to } \beta \}$).

- Makes sense because $<_D$ is a well-ordering on B^+_{∞} and B^{+*}_{∞} .
- Example: $\mu(\sigma_1) = \mu(\sigma_2) = ... = \sigma_1, \ \mu(\Delta_3) = \Delta_3, \ ...$

- Definition.— For β in B^+_{∞} (resp. in B^{+*}_{∞}), put $\mu(\beta) = \min_{<_D} \{ \beta' \in B^+_{\infty} \mid \beta' \text{ conjugate to } \beta \}$ (resp. $\mu^*(\beta) = \min_{<_D} \{ \beta' \in B^{+*}_{\infty} \mid \beta' \text{ conjugate to } \beta \}$).
- Makes sense because $<_D$ is a well-ordering on B^+_{∞} and B^{+*}_{∞} .
- Example: $\mu(\sigma_1) = \mu(\sigma_2) = ... = \sigma_1, \ \mu(\Delta_3) = \Delta_3, \ ...$

• The problem : Compute μ and/or μ^* effectively

- Definition.— For β in B^+_{∞} (resp. in B^{+*}_{∞}), put $\mu(\beta) = \min_{<_D} \{ \beta' \in B^+_{\infty} \mid \beta' \text{ conjugate to } \beta \}$ (resp. $\mu^*(\beta) = \min_{<_D} \{ \beta' \in B^{+*}_{\infty} \mid \beta' \text{ conjugate to } \beta \}$).
- Makes sense because $<_D$ is a well-ordering on B^+_{∞} and B^{+*}_{∞} .
- Example: $\mu(\sigma_1) = \mu(\sigma_2) = ... = \sigma_1, \ \mu(\Delta_3) = \Delta_3, \ ...$

• The problem : Compute μ and/or μ^* effectively (at least for 3 or 4 strands).

- Definition.— For β in B_{∞}^+ (resp. in B_{∞}^{+*}), put $\mu(\beta) = \min_{<_D} \{ \beta' \in B_{\infty}^+ \mid \beta' \text{ conjugate to } \beta \}$ (resp. $\mu^*(\beta) = \min_{<_D} \{ \beta' \in B_{\infty}^{+*} \mid \beta' \text{ conjugate to } \beta \}$).
- Makes sense because $<_D$ is a well-ordering on B^+_{∞} and B^{+*}_{∞} .
- Example: $\mu(\sigma_1) = \mu(\sigma_2) = \dots = \sigma_1$, $\mu(\Delta_3) = \Delta_3$, ...

• The problem : Compute μ and/or μ^* effectively (at least for 3 or 4 strands).

• Computing μ or μ^* would give a solution (of a totally new type) for the Conjugacy Problem of B_n .

- Definition.— For β in B^+_{∞} (resp. in B^{+*}_{∞}), put $\mu(\beta) = \min_{<_D} \{ \beta' \in B^+_{\infty} \mid \beta' \text{ conjugate to } \beta \}$ (resp. $\mu^*(\beta) = \min_{<_D} \{ \beta' \in B^{+*}_{\infty} \mid \beta' \text{ conjugate to } \beta \}$).
- Makes sense because $<_D$ is a well-ordering on B^+_{∞} and B^{+*}_{∞} .
- Example: $\mu(\sigma_1) = \mu(\sigma_2) = ... = \sigma_1, \ \mu(\Delta_3) = \Delta_3, \ ...$

• The problem : Compute μ and/or μ^* effectively (at least for 3 or 4 strands).

• Computing μ or μ^* would give a solution (of a totally new type)

for the Conjugacy Problem of B_n .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

• Remark (good news):

for the Conjugacy Problem of B_n .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

- Definition.— For β in B^+_{∞} (resp. in B^{+*}_{∞}), put $\mu(\beta) = \min_{<_D} \{ \beta' \in B^+_{\infty} \mid \beta' \text{ conjugate to } \beta \}$ (resp. $\mu^*(\beta) = \min_{<_D} \{ \beta' \in B^{+*}_{\infty} \mid \beta' \text{ conjugate to } \beta \}$).
- Makes sense because $<_D$ is a well-ordering on B^+_{∞} and B^{+*}_{∞} .
- Example: $\mu(\sigma_1) = \mu(\sigma_2) = ... = \sigma_1, \ \mu(\Delta_3) = \Delta_3, \ ...$

• The problem : Compute μ and/or μ^* effectively (at least for 3 or 4 strands).

- Computing μ or μ^* would give a solution (of a totally new type)
- Remark (good news): The (alternating and) rotating normal forms now give realistic ways of investigating the order <_D.

- Definition.— For β in B_{∞}^+ (resp. in B_{∞}^{+*}), put $\mu(\beta) = \min_{<_D} \{ \beta' \in B_{\infty}^+ \mid \beta' \text{ conjugate to } \beta \}$ (resp. $\mu^*(\beta) = \min_{<_D} \{ \beta' \in B_{\infty}^{+*} \mid \beta' \text{ conjugate to } \beta \}$).
- Makes sense because $<_D$ is a well-ordering on B^+_{∞} and B^{+*}_{∞} .
- Example: $\mu(\sigma_1) = \mu(\sigma_2) = \ldots = \sigma_1$, $\mu(\Delta_3) = \Delta_3$, ...

• The problem : Compute μ and/or μ^* effectively (at least for 3 or 4 strands).

- Computing μ or μ^* would give a solution (of a totally new type)
- for the Conjugacy Problem of B_n.
 Remark (good news): The (alternating and) rotating normal forms now give realistic ways of investigating the order <_D.

• Conjecture (D., Fromentin, Gebhardt, 2009).— For β in B_3^+ , $\mu(\beta \Delta_3^2) = \sigma_1 \sigma_2^2 \sigma_1 \cdot \mu(\beta) \cdot \sigma_2^2.$

• A. Navas, A remarkable family of left-ordered groups: central extensions of Hecke groups, J. Algebra, 328 (2011) 31-42.

• T. Ito, Dehornoy-like left-orderings and isolated left-orderings, arXiv:1103.4669.

- T. Ito, Dehornoy-like left-orderings and isolated left-orderings, arXiv:1103.4669.
- T. Ito, Construction of isolated left-orderings via partially central cyclic amalgamation arXiv:1107.0545.

- T. Ito, Dehornoy-like left-orderings and isolated left-orderings, arXiv:1103.4669.
- T. Ito, Construction of isolated left-orderings via partially central cyclic amalgamation arXiv:1107.0545.
- P. Dehornoy, The subword reversing method, Intern. J. Alg. and Comput. 21 (2011) 71–118

▲ロト ▲局ト ▲ヨト ▲ヨト ヨー のの⊙

- T. Ito, Dehornoy-like left-orderings and isolated left-orderings, arXiv:1103.4669.
- T. Ito, Construction of isolated left-orderings via partially central cyclic amalgamation arXiv:1107.0545.
- P. Dehornoy, The subword reversing method, Intern. J. Alg. and Comput. 21 (2011) 71–118
- P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering Braids, Mathematical Surveys and Monographs vol. 148, Amer. Math. Soc. (2008).

- T. Ito, Dehornoy-like left-orderings and isolated left-orderings, arXiv:1103.4669.
- T. Ito, Construction of isolated left-orderings via partially central cyclic amalgamation arXiv:1107.0545.
- P. Dehornoy, The subword reversing method, Intern. J. Alg. and Comput. 21 (2011) 71–118
- P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering Braids, Mathematical Surveys and Monographs vol. 148, Amer. Math. Soc. (2008).
- J. Fromentin, Every braid admits a short sigma-definite expression, J. Europ. Math. Soc. 13 (2011) 1591–1631.

 A. Navas, A remarkable family of left-ordered groups: central extensions of Hecke groups,
 J. Algebra, 328 (2011) 31-42.

- T. Ito, Dehornoy-like left-orderings and isolated left-orderings, arXiv:1103.4669.
- T. Ito, Construction of isolated left-orderings via partially central cyclic amalgamation arXiv:1107.0545.
- P. Dehornoy, The subword reversing method, Intern. J. Alg. and Comput. 21 (2011) 71–118
- P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering Braids, Mathematical Surveys and Monographs vol. 148, Amer. Math. Soc. (2008).
- J. Fromentin, Every braid admits a short sigma-definite expression, J. Europ. Math. Soc. 13 (2011) 1591–1631.

www.math.unicaen.fr/~dehornoy