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Université de Caen



Subword Reversing and Ordered Groups

Patrick Dehornoy
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• Use subword reversing to constructing examples of ordered groups.



Abstract



Abstract

• Subword Reversing is a combinatorial method



Abstract

• Subword Reversing is a combinatorial method (≈ rewrite rule on words)



Abstract

• Subword Reversing is a combinatorial method (≈ rewrite rule on words)
for investigating (certain) concrete positive group presentations.



Abstract

• Subword Reversing is a combinatorial method (≈ rewrite rule on words)
for investigating (certain) concrete positive group presentations.

↑
all relations of the form w = w ′ with no s−1 in w , w ′



Abstract

• Subword Reversing is a combinatorial method (≈ rewrite rule on words)
for investigating (certain) concrete positive group presentations.

↑
all relations of the form w = w ′ with no s−1 in w , w ′

• Here, case of triangular presentations:



Abstract

• Subword Reversing is a combinatorial method (≈ rewrite rule on words)
for investigating (certain) concrete positive group presentations.

↑
all relations of the form w = w ′ with no s−1 in w , w ′

• Here, case of triangular presentations: construct monoids in which
the left-divisibility relation is a linear ordering.



Abstract

• Subword Reversing is a combinatorial method (≈ rewrite rule on words)
for investigating (certain) concrete positive group presentations.

↑
all relations of the form w = w ′ with no s−1 in w , w ′

• Here, case of triangular presentations: construct monoids in which
the left-divisibility relation is a linear ordering.

↑
all relations of the form si ri = si+1, with ri a positive word



Abstract

• Subword Reversing is a combinatorial method (≈ rewrite rule on words)
for investigating (certain) concrete positive group presentations.

↑
all relations of the form w = w ′ with no s−1 in w , w ′

• Here, case of triangular presentations: construct monoids in which
the left-divisibility relation is a linear ordering.

↑
all relations of the form si ri = si+1, with ri a positive word

• (Modest) output:



Abstract

• Subword Reversing is a combinatorial method (≈ rewrite rule on words)
for investigating (certain) concrete positive group presentations.

↑
all relations of the form w = w ′ with no s−1 in w , w ′

• Here, case of triangular presentations: construct monoids in which
the left-divisibility relation is a linear ordering.

↑
all relations of the form si ri = si+1, with ri a positive word

• (Modest) output: a very simple (self-contained) proof of

• Proposition (Navas, Ito).—



Abstract

• Subword Reversing is a combinatorial method (≈ rewrite rule on words)
for investigating (certain) concrete positive group presentations.

↑
all relations of the form w = w ′ with no s−1 in w , w ′

• Here, case of triangular presentations: construct monoids in which
the left-divisibility relation is a linear ordering.

↑
all relations of the form si ri = si+1, with ri a positive word

• (Modest) output: a very simple (self-contained) proof of

• Proposition (Navas, Ito).— For n, m > 1, the group 〈x , y | xm = yn〉 is left-orderable
with isolated points in the LO space.



Abstract

• Subword Reversing is a combinatorial method (≈ rewrite rule on words)
for investigating (certain) concrete positive group presentations.

↑
all relations of the form w = w ′ with no s−1 in w , w ′

• Here, case of triangular presentations: construct monoids in which
the left-divisibility relation is a linear ordering.

↑
all relations of the form si ri = si+1, with ri a positive word

• (Modest) output: a very simple (self-contained) proof of

• Proposition (Navas, Ito).— For n, m > 1, the group 〈x , y | xm = yn〉 is left-orderable
with isolated points in the LO space.

(and a new proof of the orderability of the braid group B3)
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What is subword reversing?

• A strategy for constructing Kampen diagrams
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Subword reversing in a triangular context

• Construct monoids in which the left-divibility relation is a linear ordering,
thus leading to ordered groups of fractions.

• Definition.— For M a monoid and f , g in M, say that f is a left-divisor of g ,
or g is a right-multiple of f , denoted f 4 g , if we have fg ′ = g for some g ′ (of M).
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• Recall: Interested in the case when the left-divisibility relation 4— which in general
is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S, R) is a triangular presentation. Then any two elements f , g
of 〈S | R〉+ that admit a common right-multiple are comparable for 4.

• Proof. Choose words u, v in S∗ that represent f and g . The assumption is that
uv ′ ≡+

R
vu′ holds for some u′, v ′.

Step 1: Reversing

v

u must terminate in finitely many steps.

Indeed: by completeness, we must have

v u′

u

v ′

y
R

y
R

y
R

y
R

.
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• The aim is to prove that the left-divisibility relation 4 is (possibly) a linear ordering.
By the lemma, it is enough to prove that any two elements admit a common
right-multiple. How to prove that property?

• Lemma.— Assume that M is a monoid generated by S and δ is a central element of M

that is a right-multiple of every element of S. Then every element of M left-divides δr

for r large enough.

• Proof. Show using induction on r that h ∈ S r implies h 4 δr . By assumption, true
for r = 1. Assume h ∈ S r with r > 1. Write h = fg , f ∈ Sp, g ∈ Sq and p + q = r .
By IH, there exists f ′, g ′ s.t. ff ′ = δp , gg ′ = δq . Then
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• ...(under the same hypotheses) any two elements of M admit a common right-multiple.
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...The orderability of braid groups is 20 years old this week.
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• Computing µ or µ∗ would give a solution (of a totally new type)
for the Conjugacy Problem of Bn.
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realistic ways of investigating the order <D .

• Conjecture (D., Fromentin, Gebhardt, 2009).— For β in B+
3 ,

µ(β∆2
3) = σ1σ

2
2 σ1 · µ(β) · σ2

2 .
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