

Garside families and germs

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

 $\mathbb{E} \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$

 \equiv

 \equiv

 OQ

• General principle:

"Garside families give all results about Garside groups at no extra cost."

• Here: two ways of characterizing Garside families:

- (extrinsic) recognizing that a subfamily of a category is a Garside family,
- (intrinsic) recognizing that a family generates a category

in which it embeds as a Garside family.

 $\mathsf{E} = \mathsf{E} + \mathsf{E} \mathsf{P} + \mathsf{E} \mathsf{P} + \mathsf{E} \mathsf{P} + \mathsf{E} \mathsf{P} + \mathsf{E} \mathsf{P}$

 000

• Text in progress, joint with F.Digne, E.Godelle, D.Krammer, J.Michel: www.math.unicaen/∼dehornoy/Books/Garside.pdf • Definition – A category is a monoid with a partial product, namely two families C and $Obj(C)$, plus two maps, source and target, of C to $Obj(C)$, plus a partial associative product: fg exists iff target(f) = source(g), plus a identity-element 1_x for each object x.

• Viewing elements as morphisms : $x \xrightarrow{f} y \xrightarrow{g} z$.

• Definition.— A category is left-cancellative if $fg = fg'$ implies $g = g'$.

P1 • Lemma – If C is left-cancellative, an element g of C has a left-inverse $(\exists f (fg = 1_y))$ iff it has a right-inverse $(\exists f (gf = 1_x))$.

• Notation.— \mathcal{C}^{\times} := all invertible elements of \mathcal{C} (=1 $_{\mathcal{C}}$ if no nontrivial invertible elements), For $S \subseteq \mathcal{C}$, $S^{\sharp} := SC^{\times} \cup C^{\times} =$ closure of S under right-multiplication by invertible elements (= $S \cup 1_C$ if no nontrivial invertible elements).

KEL KAR KELKER E VAN

```
• Definition – For f, g in a category C, say that f left-divides g,
        or g is a right-multiple of f, denoted f \preccurlyeq g, if fg' = g for some g'.
```
• Viewing elements as morphisms :

• Notation.— $g = x'$ if $\exists e \in C^{\times}$ $(g' = ge)$.

P2 • Lemma.— If C is left-cancellative, \preccurlyeq is a partial preordering on C, and the conjunction of $g \preccurlyeq g'$ and $g' \preccurlyeq g$ is equivalent to $g = \searrow g'$. • Definition.— Assume C left-cancellative and $S \subseteq \mathcal{C}$. For g_1, g_2 in C, say that (g_1, g_2) is S-greedy if g_1g_2 is defined and $\forall h \in S \; \forall f \in C \; (h \preccurlyeq fg_1g_2 \Rightarrow h \preccurlyeq fg_1).$ Say that (g_1, \ldots, g_p) is $\mathcal S\text{-greedy}$ if (g_i, g_{i+1}) is $\mathcal S\text{-greedy}$ for every $i.$

$$
f \downarrow \qquad \qquad \overbrace{\underbrace{\qquad \qquad }_{g_1} \qquad \qquad }^{h \in \mathcal{S}} \qquad \qquad \overbrace{\qquad \qquad }_{g_2}
$$

.

• In particular, (g_1, g_2) S-greedy implies $\forall h \in S$ ($h \preccurlyeq g_1 g_2 \Rightarrow h \preccurlyeq g_1$).

• Example.— Monoid $(\mathbb{N}^n, +)$. Then $f \preccurlyeq g$ iff $\forall i \leq n$ $(f(i) \leq g(i))$. - Let $S = \{f \mid \forall i (f(i) \leq 1)\}.$ - Then (g_1, g_2) is S-greedy iff $\forall i$ $(h(i) \leq f(i) + g_1(i) + g_2(i) \Rightarrow h(i) \leq f(i) + g_1(i)$ iff $\forall i$ ($g_1(i) = 0 \Rightarrow g_2(i) = 0$).

P3 • Lemma — S-greedy
$$
\Leftrightarrow
$$
 S[‡]-greedy.

• Definition — X closed under right-complement if $\forall f, g \in \mathcal{X} \ \forall h \in \mathcal{C} \ (f, g \preccurlyeq h \Rightarrow \exists f', g' \in \mathcal{X} \ (fg' = gf' \preccurlyeq h)).$

P4 • Lemma.— Assume C is left-cancellative, and S^{\sharp} generates C and is closed under right-complement. Then (g_1, g_2) is S-greedy iff $\forall h \in S$ $(h \preccurlyeq g_1 g_2 \Rightarrow h \preccurlyeq g_1)$.

KEL KAR KELKER E VAN

• Definition — A sequence is *S-normal* if it is *S*-greedy and its entries lie in S^{\sharp} .

P6 • Proposition.— Assume that C is left-cancellative and $S \subseteq C$. Then any two S-normal decompositions of an element g are \mathcal{C}^\times -deformations of one another. ↑ a sequence (g_1, \ldots, g_p) satisfying $g = g_1 \dots g_p$ ↑ ∃ commutative diagram like that ↓ $g₁$ g'_1 $g₂$ g'_2 g_q g ′ q g_{q+1} 1_v g_p 1_v e_1 e −1 1 e_2 e_3 −1 2 e_q e −1 'q

P5 • Claim. — $(g_1, ..., g_p)$ S-greedy ⇒ $(g_1, g_2... g_p)$ S-greedy.

イロト イ押ト イヨト イヨト \equiv OQ

KEL KALKELKEL E VAN

P7 • Corollary.— Assume C left-cancellative and $S \subseteq C$. The number of non-invertible entries in an S -normal decomposition of an element g does not depend on the decomposition: the S-length $\|g\|_{\mathcal{S}}$ of g.

P9 • Proposition — Assume C left-cancellative and $S \subseteq C$. Then $\|g\|_{\mathcal{S}}\leqslant r$ holds for every g in $(\mathcal{S}^\sharp)'$ that admits an \mathcal{S} -normal decomposition.

P8 • Claim.— (g_1, g_2, g_3) S-greedy ⇒ (g_1g_2, g_3) S²-greedy.

KEL KALKELKEL E VAN

• Definition.— Assume C left-cancellative. A subfamily S of C is a Garside family in C if every element of C admits an S -normal decomposition.

- Example.— $\mathcal C$ is always Garside in $\mathcal C$.
	- *S* = {*f* | ∀*i* (*f*(*i*) ≤ 1}} is Garside in (\mathbb{N}^n , +):
the *S*-normal decomposition of *g* is (*g*₁, *g*₂, ...) with $g_k(i) = \begin{cases} 1 & \text{if } g(i) \geq k, \\ 0 & \text{otherwise.} \end{cases}$ 0 otherwise.

P10- If (M, Δ) is a Garside monoid, then $Div(\Delta)$ is a Garside family in M.

 $\begin{matrix} \uparrow \end{matrix}$ - M is cancellative,

- M admits least common multiples and greatest common divisors,
- there exists $N : M \to \mathbb{N}$ s.t. $g \neq 1 \Rightarrow N(g) \geq 1$ and $N(fg) \geq N(f) + N(g)$, $- Div(\Delta) = Div(\Delta)$, and generates M.

P14 • Proposition.— A subfamily S of a left-cancellative category C is a Garside family iff $(*)$ S^{\sharp} generates $\mathcal C$ and every element of $(S^{\sharp})^2$ admits an $\mathcal S$ -normal decomposition.

 $\mathsf{P}11\bullet\mathsf{Claim}\ 1$.— $(\texttt{\texttt{*}})\Rightarrow$ every element of $(\mathcal{S}^\sharp)^2$ admits an S -normal decomposition of length 2.

P13 • Claim 2.— $(*)$ \Rightarrow if g admits an $\mathcal S$ -normal decomposition of length p and $f \in \mathcal S^{\sharp},$ then fg admits an S-normal decomposition of length $p + 1$ when defined.

P15 • Scholium.— If S is a Garside family and f right-divides of g, then $||f||_S \le ||g||_S$. In particular, \mathcal{S}^{\sharp} is closed under right-divisor.

• Definition.— Say that g_1 is an S-head of g if $g_1 \in S$, $g_1 \preccurlyeq g$, and $\forall h \in S$ ($h \preccurlyeq g \Rightarrow h \preccurlyeq g_1$).

• Definition.— S closed under right-comultiple if $\forall f, g \in S \ \forall h \in C \ (f, g \preccurlyeq h \Rightarrow \exists h' \in S \ (f, g \preccurlyeq h' \preccurlyeq h)).$

• Proposition.— A subfamily S of a left-cancellative category C is a Garside family iff (**) S^{\sharp} generates C , is closed under right-complement, and every non-invertible element of $(\mathcal{S}^\sharp)^2$ admits an $\mathcal{S}\text{-}$ head, or (**bis) S^{\sharp} generates C , is closed under right-divisor and right-comultiple, and every element of $(\mathcal{S}^\sharp)^2$ admits a maximal left-divisor lying in $\mathcal{S}.$

- Want: $\mathcal S$ Garside \Rightarrow $\mathcal S^\sharp$ generates $\mathcal C$: OK
	- S^{\sharp} closed under right-divisor: OK
	- every element of $(\mathcal{S}^\sharp)^2$ admits an $\mathcal{S}\text{-}$ head.
	- S^{\sharp} closed under right-comultiple,
	- $\sim S^{\sharp}$ closed under right-complement,

P16 • Claim 1.— $g_1 \in S$ and (g_1, g_2) S-greedy $\Rightarrow g_1$ is an S-head of g_1g_2 .

P17 • Claim 2.— $\mathcal S$ Garside \Rightarrow $\mathcal C^{\times} \mathcal S^{\sharp} \subseteq \mathcal S^{\sharp}.$

P18 • Claim 3.— Every element admitting an S -decomposition admits one where all entries except maybe the last one belong to S .

P19 • Claim 4.— S Garside $\Rightarrow S^{\sharp}$ and S closed under right-comultiple.

P20 • Claim 5.— (S^{\sharp} closed under right-comultiple + under right-divisor) \Rightarrow \mathcal{S}^{\sharp} closed under right-complement; $(S^\sharp$ closed under right-complement $+ \, S^\sharp$ generates $\mathcal{C}) \Rightarrow S^\sharp$ closed under right-divisor.

 $\mathsf{E} = \mathsf{E} + \mathsf{E} \mathsf{P} + \mathsf{E} \mathsf{P} + \mathsf{E} \mathsf{P} + \mathsf{E} \mathsf{P} + \mathsf{E} \mathsf{P}$

• Want: - S^{\sharp} generates $C+$ closed under right-complement $+$ every element of $(\mathcal{S}^\sharp)^2$ admits an $\mathcal{S}\text{-}$ head \Rightarrow $\mathcal{S}\,$ Garside.

and: - \mathcal{S}^{\sharp} generates \mathcal{C} $+$ closed under right-comultiple $+$ closed under right-divisor $+$ every element of $(\mathcal{S}^\sharp)^2$ admits a maximal left-divisor in $\mathcal{S} \Rightarrow \mathcal{S}$ Garside.

P21 • Claim 1.— $(\mathcal{S}^\sharp$ closed under right-complement + \mathcal{S}^\sharp generates $\mathcal{C}) \Rightarrow$ every element of $(\mathcal{S}^{\sharp})^2$ admitting an $\mathcal{S}\text{-}$ head admits an $\mathcal{S}\text{-}$ normal decomposition.

P22 • Claim 2.— S^{\sharp} closed under right-comultiple \Rightarrow a maximal left-divisor in S is an S -head.

P23

P24 • Proposition.— A subfamily S of a left-cancellative right-Noetherian category C is a Garside family iff ${\cal S}^\sharp$ generates ${\cal C}$ and is closed under right-divisor and right-comultiple.

• Definition.— A category C admits right-lcm's if any two elements of C admit a least upper bound for \preccurlyeq .

P25 • Corollary. Assume that C is a left-cancellative category C that is right-Noetherian and admits right-lcm's. A subfamily S of C is a Garside family iff S^{\sharp} generates $\mathcal C$ and is closed under right-divisor and right-lcm.

 4 ロ) 4 何) 4 ヨ) 4 ヨ)

 \equiv

 OQ

• Definition.— A map $H: \mathcal{X} \subseteq \rightarrow \mathcal{C}$ satisfies the \mathcal{H} -law if $H(fg) = X H(fH(g)).$

• Proposition.— A subfamily S of a left-cancellative category C is a Garside family iff $(***)$ \mathcal{S}^{\sharp} generates $\mathcal{C}.$ and there exists $H:\mathcal{C}\backslash\mathcal{C}^{\times}\to\mathcal{S}$ such that $-H(g) \preccurlyeq g$ always holds, $-f \preccurlyeq g$ implies $H(f) \preccurlyeq H(g)$, $-g \in S$ implies $H(g) = x g$, - H satisfies the H -law.

P26 • Proof (\Rightarrow): S Garside \Rightarrow exists H satisfying...: Define $H(g) = 1$ st entry in an S-normal decomposition of S with 1st entry in S.

• Proof (\Leftarrow) : H satisfying... \Rightarrow S Garside:

P27 • Claim $1 - H(g)$ is an S-head of g.

P28 • Claim 2.— S^{\sharp} is closed under right-comultiple.

P29• Claim $3 - S^{\sharp}$ is closed under right-divisor.

• So far: C (the ambient category) is given, and $S \subseteq \mathcal{C}$.

• Now: S is given (no C), and look for conditions ensuring that there exists a category C s.t. $S \hookrightarrow C$ and S is a Garside family in C.

• Analysis: If $S \subseteq C$, the operation of C induces a partial operation on S: $f \bullet g = h$ whenever $fg = h$ and $f, g, h \in S$. ւ "a germ"

 \rightarrow Investigate the structure (S, \bullet) .

• Lemma.— If S is a subfamily of a left-cancellative category and includes $1_{\mathcal{S}}$, then • obeys the rules

(1) If $f \cdot g$ exists, the target of f is the source of g ; (2) If $f \in S(x, y)$, then $1_x \cdot f = f = f \cdot 1_y$; (3) If $f \cdot g$ and $g \cdot h$ exist, then $f \cdot (g \cdot h)$ exists iff $(f \cdot g) \cdot h$ does, and then equal. Moreover, if S is closed under right-divisor in C , then P30 (4) If $(f \cdot g) \cdot h$ exists, then $g \cdot h$ does.

• Definition.— A germ is a triple $(S, 1_S, \bullet)$ where S is a precategory and \bullet is a partial binary operation on S satisfying (1) , (2) , (3) .

- It is called left-associative if, in addition, (4) is satisfied.

• For S a precategory, $S^* =$ the free category generated by S $=$ the category of all S-paths.

• Definition.— For $\mathcal S$ a germ, the category $\mathcal{C}\mathit{at}(\mathcal S)$ associated with $\mathcal S$ is $\mathcal S^*/\equiv$ where \equiv is the congruence generated by all relations $f | g = h$ for $f \cdot g = h$ in S.

P32 • Proposition.— If S is a Garside family in a left-cancellative category C and $\mathcal{S}^{\sharp}=\mathcal{S}$ holds, then $\mathcal{C}\cong \mathsf{Cat}(\mathcal{S}).$

P31 • Claim.— S Garside in $C \Rightarrow C$ presented by the relations $fg = h$ with $f, g, h \in S^{\sharp}$.

P34 • Proposition — If S is a left-associative germ, then S embeds in $Cat(S)$ as a subfamily that is closed under right-divisor.

P33 • Claim.— Define $\Pi : S^* \to S$ (partial) by $\Pi(\varepsilon_x) = 1_x$ and $\Pi(g \mid w) = g \bullet \Pi(w)$ whenever defined. Then $w \equiv w' \Rightarrow \Pi(w)$ defined iff $\Pi(w')$ defined, and then equal.

• Definition.— A germ S is a Garside germ if there exists a left-cancellative category $\mathcal C$ such that S embeds in C and S is a dense Garside family in C .

> ↑ generates the category and is closed under right-divisor

 \bullet Definition — A ${\cal J}$ -function for a germ ${\cal S}$ is a map J : ${\cal S}^{[2]}\to{\cal S}$ s.t., for every (g_1,g_2) , $J(g_1, g_2) \in \{h \in S \mid g_1 \bullet h \text{ is defined and } h \preccurlyeq_S g_2\}.$

 $\mathcal{J}(\mathcal{g}_1, \mathcal{g}_2)$

• Proposition.— A germ is a Garside germ iff it is left-associative, left-cancellative, and there exists a J -function J that satisfies the J -law:

 $g = g_1 \bullet g_2$ implies $J(g_1, g_2 \bullet J(g_2, g_3)) = g_2 \bullet J(g, g_3)$.

P36 • Proof (\Rightarrow) : Assume S is a Garside germ.

P35 • Claim.— Exists a sharp *S*-head function: $g = x' g' \Rightarrow H(g) = H(g')$.

• Define $J(g_1, g_2)$ by $g_1 \bullet J(g_1, g_2) = H(g_1 g_2)$. Then $g = g_1 \bullet g_2$ implies $H(g_1(g_2g_3)) = H(g_1H(g_2g_3))$, which translates to $J(g_1, g_2 \bullet J(g_2, g_3)) = g_2 \bullet J(g, g_3)$. the H -law the 7 -law

イロト イ押ト イヨト イヨト

 \equiv OQ

- Proof (\Leftarrow) : Assume S is a left-associative, left-cancellative germ that admits a J -function J satisfying the J -law.
- Aim: Show that $Cat(S)$ is left-cancellative and S is a Garside family in $Cat(S)$.

• Claim 1.— Define $K: S^{[2]} \to S$, $\Theta: S^* \to S$ and $\Omega: S^* \to S^*$ by $g_2 = J(g_1, g_2) \cdot K(g_1, g_2),$ $\Theta(\varepsilon_{x}) = 1_{x}$ and $\Theta(g \mid w) = g \bullet J(g, \Theta(w)),$ $\Omega(\varepsilon_{x}) = \varepsilon_{x}$ and $\Omega(g \mid w) = K(g, \Theta(w)) \mid \Omega(w)$. Then Θ and Ω are compatible with \equiv , and $w\equiv\Theta(w)\,|\,\Omega(w)$ always holds.

> the congruence that defines $\mathcal{C}\mathit{at}(\mathcal{S})$ from \mathcal{S}^* = the congruence generated by the relations $f | g = h$ with $f \cdot g = h$

• Claim $2 - w \equiv J(g, \Theta(w)) \cdot \Omega(g \mid w)$.

• Claim $3 - Cat(S)$ is left-cancellative.

• Claim 4.— Θ induces an S-head function on S.

 $\mathcal{A} \square \rightarrow \mathcal{A} \boxplus \mathcal{B} \rightarrow \mathcal{A} \boxplus \mathcal{B} \rightarrow \mathcal{A} \boxplus \mathcal{B}$

 \equiv

 OQ

• Definition.— A \mathcal{J} -function J for a germ \mathcal{S} is called maximum if $\forall h \in \mathcal{J}(g_1, g_2)$ $(h \preccurlyeq J(g_1, g_2))$.

• Proposition.— A germ is a Garside germ iff it is left-associative, left-cancellative, and admits a maximum J -function.

• Proof: (\Rightarrow) The J-function deduced from an S-head function is maximum. (\Leftarrow) A maximum J almost satisfies the J -law.

• Claim 1.— A maximum \mathcal{J} -function J satisfies the weak \mathcal{J} -law $g = g_1 \bullet g_2$ implies $J(g_1, g_2 \bullet J(g_2, g_3)) =_S^\times g_2 \bullet J(g, g_3)$.

• Definition.— An *I*-function is ... $\in \{g \in S \mid \exists h \ (g = g_1 \bullet h \text{ and } h \preccurlyeq_S g_2) \}.$

• Claim 2.— A maximum \mathcal{I} -function I satisfies the weak \mathcal{I} -law $g = g_1 \bullet g_2$ implies $I(g_1, I(g_2, g_3)) = g' \setminus I(g, g_3)$.

• Claim 3.— \exists function satisfying the weak \mathcal{I} -law \Rightarrow \exists function satisfying the \mathcal{I} -law.

• Definition — A germ S is right-Noetherian if right-divisibility is a well-founded relation on S . ↑

every nonempty subfamily has a least element

• Proposition.— A right-Noetherian germ S is a Garside germ iff it is left-associative, left-cancellative, and, for every (g_1,g_2) in ${\cal S}^{[2]}$, any two elements of ${\cal J}(g_1,g_2)$ have a common right-multiple in $\mathcal{J}(g_1, g_2)$.

• Corollary.— For a germ S to be a Garside germ, it is sufficient that S is left-associative, left-cancellative, right-Noetherian, admits right-lcm's, and satisfies (*) If $g_1 \bullet h$ and $g_1 \bullet h'$ are defined, then $g_1 \bullet \text{ lcm}(h, h')$ is defined. If S is right-associative, $(*)$ is necessarily satisfied.

• Definition – For G a group and Σ positively generating G: $- (g_1, ..., g_r)$ is Σ -tight if $||g_1 ... g_r||_{\Sigma} = ||g_1||_{\Sigma} + ... + ||g_r||_{\Sigma};$ - *f* is a Σ-prefix of g if $(f, f^{-1}g)$ is Σ-tight (resp. Σ-suffix ... (gf^{-1}, f) ...).

• Definition.— For G a group, Σ positively generating G, and $H \subseteq G$, the derived germ $H_{\sqrt{\sum}}$ is $(H, 1, \bullet)$ where $f \bullet g = h$ is $fg = h$ and (f, g) is Σ -tight.

• Lemma.— $H_{\sqrt{2}}$ is a cancellative and Noetherian germ; it is left-associative (resp. right-associative) whenever H is closed under Σ -suffix (resp. prefix) in G.

• Proposition.— Assume G is a group, Σ positively generates G, and $H \subseteq G$ is closed under Σ -suffix and Σ -prefix in G. If any two elements of H admits a least common Σ-prefix, then $H_{\sqrt{2}}$ is a Garside germ.

• Example — $G = \mathfrak{S}_n$ with $\Sigma = \{(i, i+1) \mid i < n\}.$ Then $G_{/\Sigma} = Div(\Delta_n)$ is a Garside germ, and $Cat(H_{/\Sigma}) = B_n^+$.

> $\mathbf{E} = \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E}$ OQ