

Garside families and germs

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

• General principle:

"Garside families give all results about Garside groups at no extra cost."

- Here: two ways of characterizing Garside families:
 - (extrinsic) recognizing that a subfamily of a category is a Garside family,
 - (intrinsic) recognizing that a family generates a category

in which it embeds as a Garside family.

• Text in progress, joint with F.Digne, E.Godelle, D.Krammer, J.Michel: www.math.unicaen/~dehornoy/Books/Garside.pdf Definition.— A category is a monoid with a partial product, namely two families C and Obj(C), plus two maps, source and target, of C to Obj(C), plus a partial associative product: fg exists iff target(f) = source(g), plus a identity-element 1_x for each object x.

• Viewing elements as morphisms : $x \xrightarrow{f} y \xrightarrow{g} z$.

• Definition.— A category is left-cancellative if fg = fg' implies g = g'.

P1 • Lemma.— If C is left-cancellative, an element g of Chas a left-inverse $(\exists f(fg = 1_{\chi}))$ iff it has a right-inverse $(\exists f(gf = 1_{\chi}))$.

 Notation.— C[×] := all invertible elements of C (=1_C if no nontrivial invertible elements), For S ⊆ C, S[‡] := SC[×] ∪ C[×] = closure of S under right-multiplication by invertible elements (= S ∪ 1_C if no nontrivial invertible elements).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

```
• Definition.— For f, g in a category C, say that f left-divides g,
or g is a right-multiple of f, denoted f \preccurlyeq g, if fg' = g for some g'.
```

• Viewing elements as morphisms :

• Notation.— $g \stackrel{\times}{=} g'$ if $\exists e \in \mathcal{C}^{\times} (g' = ge)$.

 Definition.— Assume C left-cancellative and S ⊆ C.
For g₁, g₂ in C, say that (g₁, g₂) is S-greedy if g₁g₂ is defined and ∀h∈S ∀f∈C (h ≼ fg₁g₂ ⇒ h ≼ fg₁).
Say that (g₁,...,g_p) is S-greedy if (g_i, g_{i+1}) is S-greedy for every i.

• In particular, (g_1, g_2) S-greedy implies $\forall h \in S \ (h \preccurlyeq g_1 g_2 \Rightarrow h \preccurlyeq g_1)$.

• Example.— Monoid $(\mathbb{N}^n, +)$. Then $f \preccurlyeq g$ iff $\forall i \leqslant n(f(i) \leqslant g(i))$. - Let $S = \{f \mid \forall i (f(i) \leqslant 1)\}$. - Then (g_1, g_2) is S-greedy iff $\forall i (h(i) \leqslant f(i) + g_1(i) + g_2(i) \Rightarrow h(i) \leqslant f(i) + g_1(i))$ iff $\forall i (g_1(i) = 0 \Rightarrow g_2(i) = 0)$.

P3 • Lemma.— S-greedy
$$\Leftrightarrow S^{\sharp}$$
-greedy.

• Definition.— \mathcal{X} closed under right-complement if $\forall f, g \in \mathcal{X} \forall h \in \mathcal{C} (f, g \preccurlyeq h \Rightarrow \exists f', g' \in \mathcal{X} (fg' = gf' \preccurlyeq h)).$

P4 • Lemma.— Assume C is left-cancellative, and S^{\sharp} generates C and is closed under right-complement. Then (g_1, g_2) is S-greedy iff $\forall h \in S$ $(h \preccurlyeq g_1 g_2 \Rightarrow h \preccurlyeq g_1)$.

• Definition.— A sequence is *S*-normal if it is *S*-greedy and its entries lie in S^{\sharp} .

gq

 g_{q+1}

P5 • Claim.— $(g_1, \ldots, g_p) \mathcal{S}$ -greedy $\Rightarrow (g_1, g_2 \ldots g_p) \mathcal{S}$ -greedy.

g1

 g_2

g_p

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

P7 • Corollary.— Assume C left-cancellative and $S \subseteq C$. The number of non-invertible entries in an S-normal decomposition of an element g does not depend on the decomposition: the S-length $||g||_S$ of g.

P9 • Proposition.— Assume C left-cancellative and S ⊆ C. Then $||g||_S ≤ r$ holds for every g in $(S^{\sharp})^r$ that admits an S-normal decomposition.

P8 • Claim.— (g_1, g_2, g_3) S-greedy \Rightarrow (g_1g_2, g_3) S²-greedy.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Definition.— Assume C left-cancellative. A subfamily S of C is a Garside family in C if every element of C admits an S-normal decomposition.

- Example.— C is always Garside in C.
 - $S = \{f \mid \forall i \ (f(i) \leq 1)\}$ is Garside in $(\mathbb{N}^n, +)$: the S-normal decomposition of g is $(g_1, g_2, ...)$ with $g_k(i) = \begin{cases} 1 & \text{if } g(i) \geq k, \\ 0 & \text{otherwise.} \end{cases}$

P10- If (M, Δ) is a Garside monoid, then $Div(\Delta)$ is a Garside family in M.

- M is cancellative,
- M admits least common multiples and greatest common divisors,
- there exists $N: M \to \mathbb{N}$ s.t. $g \neq 1 \Rightarrow N(g) \ge 1$ and $N(fg) \ge N(f) + N(g)$, - $Div(\Delta) = \widetilde{Div}(\Delta)$, and generates M.

P14 • Proposition.— A subfamily S of a left-cancellative category C is a Garside family iff (*) S^{\sharp} generates C and every element of $(S^{\sharp})^2$ admits an S-normal decomposition.

 $\begin{array}{l} \mathsf{P11} \bullet \mathsf{Claim} \ \mathbf{1}.-\!\!\!-\!(*) \Rightarrow \mathsf{every} \, \mathsf{element} \, \mathsf{of} \, (\mathcal{S}^{\sharp})^2 \\ & \mathsf{admits} \, \mathsf{an} \, \mathcal{S}\text{-normal} \, \mathsf{decomposition} \, \mathsf{of} \, \mathsf{length} \ 2. \end{array}$

P13 • Claim 2.— (*) \Rightarrow if g admits an S-normal decomposition of length p and $f \in S^{\sharp}$, then fg admits an S-normal decomposition of length p + 1 when defined.

P15 • Scholium.— If S is a Garside family and f right-divides of g, then $||f||_{S} \leq ||g||_{S}$. In particular, S^{\sharp} is closed under right-divisor. • Definition.— Say that g_1 is an S-head of g if $g_1 \in S$, $g_1 \preccurlyeq g$, and $\forall h \in S \ (h \preccurlyeq g \Rightarrow h \preccurlyeq g_1)$.

• Definition.— S closed under right-comultiple if $\forall f, g \in S \ \forall h \in C \ (f, g \preccurlyeq h \Rightarrow \exists h' \in S \ (f, g \preccurlyeq h' \preccurlyeq h)).$

Proposition.— A subfamily S of a left-cancellative category C is a Garside family iff
 (**) S[#] generates C, is closed under right-complement,
 and every non-invertible element of (S[#])² admits an S-head, or
 (**bis) S[#] generates C, is closed under right-divisor and right-comultiple,
 and every element of (S[#])² admits a maximal left-divisor lying in S.

- Want: S Garside \Rightarrow S^{\sharp} generates C: OK
 - \mathcal{S}^{\sharp} closed under right-divisor: OK
 - every element of $(\mathcal{S}^{\sharp})^2$ admits an \mathcal{S} -head.
 - \mathcal{S}^{\sharp} closed under right-comultiple,
 - S^{\sharp} closed under right-complement,

P16 • Claim 1.— $g_1 \in S$ and $(g_1, g_2) S$ -greedy $\Rightarrow g_1$ is an S-head of g_1g_2 .

P17 • Claim 2.— S Garside $\Rightarrow C^{\times}S^{\sharp} \subseteq S^{\sharp}$.

P18 • Claim 3.— Every element admitting an *S*-decomposition admits one where all entries except maybe the last one belong to *S*.

P19 • Claim 4.— S Garside \Rightarrow S^{\ddagger} and S closed under right-comultiple.

 $\begin{array}{l} \mathsf{P20} \bullet \mathsf{Claim} \ \mathsf{5.} \longrightarrow (\mathcal{S}^{\sharp} \ \mathsf{closed} \ \mathsf{under} \ \mathsf{right-comultiple} \ + \ \mathsf{under} \ \mathsf{right-divisor}) \\ & \Rightarrow \ \mathcal{S}^{\sharp} \ \mathsf{closed} \ \mathsf{under} \ \mathsf{right-complement}; \\ (\mathcal{S}^{\sharp} \ \mathsf{closed} \ \mathsf{under} \ \mathsf{right-complement} \ + \ \mathcal{S}^{\sharp} \ \mathsf{generates} \ \mathcal{C}) \ \Rightarrow \ \mathcal{S}^{\sharp} \ \mathsf{closed} \ \mathsf{under} \ \mathsf{right-divisor}. \end{array}$

(日) (日) (日) (日) (日) (日) (日) (日)

• Want: - S^{\sharp} generates C + closed under right-complement + every element of $(S^{\sharp})^2$ admits an S-head $\Rightarrow S$ Garside.

and: - S^{\sharp} generates C + closed under right-comultiple + closed under right-divisor + every element of $(S^{\sharp})^2$ admits a maximal left-divisor in $S \Rightarrow S$ Garside.

 $\begin{array}{l} \mbox{P21} \bullet \mbox{Claim 1.} \mbox{--} (\mathcal{S}^{\sharp} \mbox{ closed under right-complement } + \mathcal{S}^{\sharp} \mbox{ generates } \mathcal{C}) \Rightarrow \\ \mbox{ every element of } (\mathcal{S}^{\sharp})^2 \mbox{ admitting an } \mathcal{S}\mbox{-head admits an } \mathcal{S}\mbox{-normal decomposition.} \end{array}$

 $\begin{array}{l} \mathsf{P22} \bullet \mathsf{Claim} \ \mathsf{2}. \makebox{--} \mathcal{S}^{\sharp} \ \mathsf{closed} \ \mathsf{under} \ \mathsf{right-comultiple} \Rightarrow \\ & \mathsf{a} \ \mathsf{maxim}_{\underline{\mathbf{al}}} \ \mathsf{left-divisor} \ \mathsf{in} \ \mathcal{S} \ \mathsf{is} \ \mathsf{an} \ \mathcal{S}\text{-head}. \end{array}$

P23

P24 • Proposition.— A subfamily S of a left-cancellative right-Noetherian category C is a Garside family iff S^{\sharp} generates C and is closed under right-divisor and right-comultiple.

• Definition.— A category C admits right-lcm's if any two elements of C admit a least upper bound for \preccurlyeq .

P25 • Corollary.— Assume that C is a left-cancellative category C that is right-Noetherian and admits right-lcm's. A subfamily S of C is a Garside family iff S^{\sharp} generates C and is closed under right-divisor and right-lcm.

 \exists

nac

- Definition.— A map $H : \mathcal{X} \subseteq \rightarrow \mathcal{C}$ satisfies the \mathcal{H} -law if $H(fg) =^{\times} H(fH(g)).$
- Proposition.— A subfamily S of a left-cancellative category C is a Garside family iff (***) S^{\sharp} generates C, and there exists $H : C \setminus C^{\times} \to S$ such that
 - $H(g) \preccurlyeq g$ always holds,
 - $f \preccurlyeq g$ implies $H(f) \preccurlyeq H(g)$,
 - $g \in S$ implies $H(g) =^{\times} g$,
 - H satisfies the \mathcal{H} -law.

P26 • Proof (\Rightarrow): S Garside \Rightarrow exists H satisfying...: Define H(g) = 1st entry in an S-normal decomposition of S with 1st entry in S.

- Proof (\Leftarrow): *H* satisfying... $\Rightarrow S$ Garside:
- P27 Claim 1.— H(g) is an S-head of g.

P28 • Claim 2.— S^{\sharp} is closed under right-comultiple.

P29• Claim 3.— S^{\sharp} is closed under right-divisor.

• So far: C (the ambient category) is given, and $S \subseteq C$.

• Now: S is given (no C), and look for conditions ensuring that there exists a category C s.t. $S \hookrightarrow C$ and S is a Garside family in C.

• Analysis: If $S \subseteq C$, the operation of C induces a partial operation on S: $f \cdot g = h$ whenever fg = h and $f, g, h \in S$. \rightarrow Investigate the structure (S, \bullet) .

 \bullet Lemma.— If ${\cal S}$ is a subfamily of a left-cancellative category and includes $1_{{\cal S}},$ then \bullet obeys the rules

(1) If f • g exists, the target of f is the source of g;
(2) If f ∈ S(x, y), then 1_x • f = f = f • 1_y;
(3) If f • g and g • h exist, then f • (g • h) exists iff (f • g) • h does, and then equal. Moreover, if S is closed under right-divisor in C, then
P30 (4) If (f • g) • h exists, then g • h does.

Definition.— A germ is a triple (S, 1_S, •) where S is a precategory and • is a partial binary operation on S satisfying (1), (2), (3).
 It is called left-associative if, in addition, (4) is satisfied.

• For S a precategory, $S^* =$ the free category generated by S = the category of all S-paths.

 Definition.— For S a germ, the category Cat(S) associated with S is S*/ ≡ where ≡ is the congruence generated by all relations f | g = h for f • g = h in S.

P32 • Proposition.— If S is a Garside family in a left-cancellative category Cand $S^{\sharp} = S$ holds, then $C \cong Cat(S)$.

P31 • Claim.— S Garside in $C \Rightarrow C$ presented by the relations fg = h with $f, g, h \in S^{\sharp}$.

P34 • Proposition.— If S is a left-associative germ, then S embeds in Cat(S) as a subfamily that is closed under right-divisor.

P33 • Claim.— Define $\Pi : S^* \to S$ (partial) by $\Pi(\varepsilon_x) = 1_x$ and $\Pi(g \mid w) = g \bullet \Pi(w)$ whenever defined. Then $w \equiv w' \Rightarrow \Pi(w)$ defined iff $\Pi(w')$ defined, and then equal.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Definition.— A germ S is a Garside germ if there exists a left-cancellative category C such that S embeds in C and S is a dense Garside family in C.

generates the category and is closed under right-divisor

• Definition.— A \mathcal{J} -function for a germ S is a map $J : S^{[2]} \to S$ s.t., for every (g_1, g_2) , $J(g_1, g_2) \in \{h \in S \mid g_1 \bullet h \text{ is defined and } h \preccurlyeq_S g_2\}.$

 $\mathcal{J}(g_1,g_2)$

• Proposition.— A germ is a Garside germ iff it is left-associative, left-cancellative, and there exists a \mathcal{J} -function J that satisfies the \mathcal{J} -law:

 $g = g_1 \bullet g_2$ implies $J(g_1, g_2 \bullet J(g_2, g_3)) = g_2 \bullet J(g, g_3)$.

P36 • Proof (\Rightarrow): Assume S is a Garside germ.

P35 • Claim.— Exists a sharp S-head function: $g \stackrel{\times}{=} g' \Rightarrow H(g) = H(g')$.

• Define $J(g_1, g_2)$ by $g_1 \bullet J(g_1, g_2) = H(g_1g_2)$. Then $g = g_1 \bullet g_2$ implies $H(g_1(g_2g_3)) = H(g_1H(g_2g_3))$, which translates to $J(g_1, g_2 \bullet J(g_2, g_3)) = g_2 \bullet J(g, g_3)$. the \mathcal{H} -law the \mathcal{J} -law

- Proof (⇐): Assume S is a left-associative, left-cancellative germ that admits a *J*-function J satisfying the *J*-law.
- Aim: Show that Cat(S) is left-cancellative and S is a Garside family in Cat(S).

• Claim 1.— Define $K : S^{[2]} \to S, \Theta : S^* \to S$ and $\Omega : S^* \to S^*$ by $g_2 = J(g_1, g_2) \bullet K(g_1, g_2),$ $\Theta(\varepsilon_x) = 1_x$ and $\Theta(g \mid w) = g \bullet J(g, \Theta(w)),$ $\Omega(\varepsilon_x) = \varepsilon_x$ and $\Omega(g \mid w) = K(g, \Theta(w)) \mid \Omega(w).$ Then Θ and Ω are compatible with \equiv , and $w \equiv \Theta(w) \mid \Omega(w)$ always holds. \uparrow the congruence that defines Cat(S) from S^*

= the congruence generated by the relations $f \mid g = h$ with $f \bullet g = h$

• Claim 2.— $w \equiv J(g, \Theta(w)) \bullet \Omega(g \mid w)$.

• Claim 3.— Cat(S) is left-cancellative.

• Claim 4.— Θ induces an S-head function on S.

• Definition.— A \mathcal{J} -function J for a germ \mathcal{S} is called maximum if $\forall h \in \mathcal{J}(g_1, g_2) \ (h \preccurlyeq J(g_1, g_2)).$

• Proof: (\Rightarrow) The *J*-function deduced from an *S*-head function is maximum. (\Leftarrow) A maximum *J* almost satisfies the *J*-law.

• Claim 1.— A maximum \mathcal{J} -function J satisfies the weak \mathcal{J} -law $g = g_1 \bullet g_2$ implies $J(g_1, g_2 \bullet J(g_2, g_3)) \stackrel{=}{\longrightarrow} g_2 \bullet J(g, g_3).$

• Definition.— An \mathcal{I} -function is ... $\in \{g \in S \mid \exists h \ (g = g_1 \bullet h \text{ and } h \preccurlyeq_S g_2)\}.$

• Claim 2.— A maximum \mathcal{I} -function I satisfies the weak \mathcal{I} -law $g = g_1 \bullet g_2$ implies $I(g_1, I(g_2, g_3)) = \stackrel{\vee}{_S} I(g, g_3).$

• Claim 3.— \exists function satisfying the weak \mathcal{I} -law $\Rightarrow \exists$ function satisfying the \mathcal{I} -law.

• Definition.— A germ S is right-Noetherian if right-divisibility is a well-founded relation on S.

every nonempty subfamily has a least element

• Proposition.— A right-Noetherian germ S is a Garside germ iff it is left-associative, left-cancellative, and, for every (g_1, g_2) in $S^{[2]}$, any two elements of $\mathcal{J}(g_1, g_2)$ have a common right-multiple in $\mathcal{J}(g_1, g_2)$.

Corollary.— For a germ S to be a Garside germ, it is sufficient that S is left-associative, left-cancellative, right-Noetherian, admits right-lcm's, and satisfies
(*) If g₁ • h and g₁ • h' are defined, then g₁ • lcm(h, h') is defined.
If S is right-associative, (*) is necessarily satisfied.

Definition.— For G a group and Σ positively generating G:
- (g₁,...,g_r) is Σ-tight if ||g₁...g_r||_Σ = ||g₁||_Σ + ... + ||g_r||_Σ;
- f is a Σ-prefix of g if (f, f⁻¹g) is Σ-tight (resp. Σ-suffix ... (gf⁻¹, f) ...).

• Definition.— For G a group, Σ positively generating G, and $H \subseteq G$, the derived germ $H_{/\Sigma}$ is $(H, 1, \bullet)$ where $f \bullet g = h$ is fg = h and (f, g) is Σ -tight.

• Lemma.— H_{Σ} is a cancellative and Noetherian germ; it is left-associative (resp. right-associative) whenever H is closed under Σ -suffix (resp. prefix) in G.

• Proposition.— Assume G is a group, Σ positively generates G, and $H \subseteq G$ is closed under Σ -suffix and Σ -prefix in G. If any two elements of H admits a least common Σ -prefix, then $H_{/\Sigma}$ is a Garside germ.

• Example.— $G = \mathfrak{S}_n$ with $\Sigma = \{(i, i+1) \mid i < n\}$. Then $G_{/\Sigma} = Div(\Delta_n)$ is a Garside germ, and $Cat(H_{/\Sigma}) = B_n^+$.