
Garside families and germs

Patrick Dehornoy

Laboratoire de Mathématiques
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Abstract

• General principle:

“Garside families give all results about Garside groups at no extra cost.”

• Here: two ways of characterizing Garside families:

- (extrinsic) recognizing that a subfamily of a category is a Garside family,

- (intrinsic) recognizing that a family generates a category
in which it embeds as a Garside family.

• Text in progress, joint with F.Digne, E.Godelle, D.Krammer, J.Michel:
www.math.unicaen/∼dehornoy/Books/Garside.pdf



The category framework

• Definition.— A category is a monoid with a partial product, namely
two families C and Obj(C),

plus two maps, source and target, of C to Obj(C),
plus a partial associative product: fg exists iff target(f ) = source(g),
plus a identity-element 1x for each object x .

• Viewing elements as morphisms : x
f

y
g

z .

• Definition.— A category is left-cancellative if fg = fg ′ implies g = g ′.

P1 • Lemma.— If C is left-cancellative, an element g of C
has a left-inverse (∃f (fg = 1y )) iff it has a right-inverse (∃f (gf = 1x )).

• Notation.— C×:= all invertible elements of C (=1C if no nontrivial invertible elements),
For S ⊆ C, S♯ := SC× ∪ C× = closure of S under right-multiplication

by invertible elements ( = S ∪ 1C if no nontrivial invertible elements).



Left-divisibility

• Definition.— For f , g in a category C, say that f left-divides g ,
or g is a right-multiple of f , denoted f 4 g , if fg ′ = g for some g ′.

• Viewing elements as morphisms :

f

g

g ′

.

• Notation.— g =× g ′ if ∃e∈C× (g ′ = ge).

P2 • Lemma.— If C is left-cancellative, 4 is a partial preordering on C,
and the conjunction of g 4 g ′ and g ′ 4 g is equivalent to g =× g ′.



Greedy sequences

• Definition.— Assume C left-cancellative and S ⊆ C.
For g1, g2 in C, say that (g1, g2) is S-greedy if g1g2 is defined and

∀h∈S ∀f ∈C (h 4 fg1g2 ⇒ h 4 fg1).

Say that (g1, ... , gp) is S-greedy if (gi , gi+1) is S-greedy for every i .

• Viewing elements as morphisms :

g1 g2

h ∈ S

f
.

• In particular, (g1, g2) S-greedy implies ∀h∈S (h 4 g1g2 ⇒ h 4 g1).

• Example.— Monoid (Nn, +). Then f 4 g iff ∀i6n (f (i) 6 g(i)).
- Let S = {f | ∀i (f (i) 6 1)}.
- Then (g1, g2) is S-greedy iff ∀i (h(i) 6 f (i)+g1(i)+g2(i) ⇒ h(i) 6 f (i)+g1(i))

iff ∀i (g1(i) = 0 ⇒ g2(i) = 0).



Greedy sequences II

P3 • Lemma.— S-greedy ⇔ S♯-greedy.

• Definition.— X closed under right-complement if

∀f, g∈X ∀h∈C (f , g 4 h ⇒ ∃f ′, g ′∈X (fg ′ = gf ′ 4 h)).

• Viewing elements as morphisms :

g∈X

f ∈X

g ′∈X

f ′∈X

P4 • Lemma.— Assume C is left-cancellative, and S♯ generates C and is closed under
right-complement. Then (g1, g2) is S-greedy iff ∀h∈S (h 4 g1g2 ⇒ h 4 g1).



Normal sequences

• Definition.— A sequence is S-normal if it is S-greedy and its entries lie in S♯.

P6 • Proposition.— Assume that C is left-cancellative and S ⊆ C. Then any two
S-normal decompositions of an element g are C×-deformations of one another.

↑
a sequence (g1, ... , gp)
satisfying g = g1 ... gp

↑
∃ commutative diagram like that

↓

g1

g ′
1

g2

g ′
2

gq

g ′
q

gq+1

1y

gp

1y

e1 e−1
1 e2 e−1

2 eq e−1
q

P5 • Claim.— (g1, ... , gp) S-greedy ⇒ (g1, g2 ...gp) S-greedy.



S-length

P7 • Corollary.— Assume C left-cancellative and S ⊆ C.
The number of non-invertible entries in an S-normal decomposition of an element g

does not depend on the decomposition: the S-length ‖g‖S of g .

P9 • Proposition.— Assume C left-cancellative and S ⊆ C.
Then ‖g‖S 6 r holds for every g in (S♯)r that admits an S-normal decomposition.

P8 • Claim.— (g1, g2, g3) S-greedy ⇒ (g1g2, g3) S2-greedy.



Garside families

• Definition.— Assume C left-cancellative. A subfamily S of C is a Garside family in C
if every element of C admits an S-normal decomposition.

• Example.— C is always Garside in C.

- S = {f | ∀i (f (i) 6 1)} is Garside in (Nn,+):

the S-normal decomposition of g is (g1, g2, ...) with gk(i) =

(
1 if g(i) > k,

0 otherwise.

P10- If (M,∆) is a Garside monoid, then Div(∆) is a Garside family in M.

↑
- M is cancellative,
- M admits least common multiples and greatest common divisors,
- there exists N : M → N s.t. g 6= 1 ⇒ N(g) > 1 and N(fg) > N(f ) + N(g),

- Div(∆) = gDiv(∆), and generates M.



Recognizing Garside families I

P14 • Proposition.— A subfamily S of a left-cancellative category C is a Garside family
iff (*) S♯ generates C and every element of (S♯)2 admits an S-normal decomposition.

P11 • Claim 1.— (*) ⇒ every element of (S♯)2

admits anS-normal decomposition of length 2.

P12 • Lemma (first domino rule).— Assume C left-cancellative and

g1 g2

g ′
1 g ′

2

f0 f1 f2 is commutative. If (g1, g2) and (g ′
1, f1) are S-greedy,

then so is (g ′
1, g

′
2).

P13 • Claim 2.— (*) ⇒ if g admits an S-normal decomposition of length p and f ∈ S♯,
then fg admits an S-normal decomposition of length p + 1 when defined.

P15 • Scholium.— If S is a Garside family and f right-divides of g , then ‖f ‖S 6 ‖g‖S .
In particular, S♯ is closed under right-divisor.



Recognizing Garside families II

• Definition.— Say that g1 is an S-head of g if g1 ∈ S, g1 4 g ,
and ∀h∈S (h 4 g ⇒ h 4 g1).

• Definition.— S closed under right-comultiple if

∀f, g∈S ∀h∈C (f , g 4 h ⇒ ∃h′∈S (f , g 4 h′ 4 h)).

• Viewing elements as morphisms :

g∈S

f ∈S
h′∈S

• Proposition.— A subfamily S of a left-cancellative category C is a Garside family iff

(**) S♯ generates C, is closed under right-complement,
and every non-invertible element of (S♯)2 admits an S-head, or

(**bis) S♯ generates C, is closed under right-divisor and right-comultiple,
and every element of (S♯)2 admits a maximal left-divisor lying in S.



Recognizing Garside families II: proof

• Want: S Garside ⇒ - S♯ generates C: OK
- S♯ closed under right-divisor: OK
- every element of (S♯)2 admits an S-head.
- S♯ closed under right-comultiple,
- S♯ closed under right-complement,

P16 • Claim 1.— g1 ∈ S and (g1, g2) S-greedy ⇒ g1 is an S-head of g1g2.

P17 • Claim 2.— S Garside ⇒ C×S♯ ⊆ S♯.

P18 • Claim 3.— Every element admitting an S-decomposition admits one where
all entries except maybe the last one belong to S.

P19 • Claim 4.— S Garside ⇒ S♯ and S closed under right-comultiple.

P20 • Claim 5.— (S♯ closed under right-comultiple + under right-divisor)
⇒ S♯ closed under right-complement;

(S♯ closed under right-complement + S♯ generates C) ⇒ S♯ closed under right-divisor.



Recognizing Garside families II: proof

• Want: - S♯ generates C + closed under right-complement
+ every element of (S♯)2 admits an S-head ⇒ S Garside.

and: - S♯ generates C + closed under right-comultiple + closed under right-divisor
+ every element of (S♯)2 admits a maximal left-divisor in S ⇒ S Garside.

P21 • Claim 1.— (S♯ closed under right-complement + S♯ generates C) ⇒
every element of (S♯)2 admitting an S-head admits an S-normal decomposition.

P22 • Claim 2.— S♯ closed under right-comultiple ⇒
a maximal left-divisor in S is an S-head.

P23



Particular cases

• Definition.— A category C is right-Noetherian
if right-divisibility is a well-founded relation.

↑
every nonempty subfamily has a least element

P23 • Lemma.— A left-cancellative category C is right-Noetherian
iff there is no infinite bounded ≺-increasing sequence.

↑
g1 ≺ g2 ≺ ... ≺ g

P24 • Proposition.— A subfamily S of a left-cancellative right-Noetherian category C is
a Garside family iff S♯ generates C and is closed under right-divisor and right-comultiple.

• Definition.— A category C admits right-lcm’s if any two elements of C admit a least
upper bound for 4.

P25 • Corollary.— Assume that C is a left-cancellative category C that is right-
Noetherian and admits right-lcm’s. A subfamily S of C is a Garside family

iff S♯ generates C and is closed under right-divisor and right-lcm.



Recognizing Garside families III

• Definition.— A map H : X ⊆→ C satisfies the H-law if

H(fg) =× H(fH(g)).

• Proposition.— A subfamily S of a left-cancellative category C is a Garside family iff

(***) S♯ generates C, and there exists H : C\C× → S such that
- H(g) 4 g always holds,
- f 4 g implies H(f ) 4H(g),
- g ∈ S implies H(g) =× g ,
- H satisfies the H-law.

P26 • Proof (⇒): S Garside ⇒ exists H satisfying...:
Define H(g) = 1st entry in an S-normal decomposition of S with 1st entry in S.

• Proof (⇐): H satisfying... ⇒ S Garside:

P27 • Claim 1.— H(g) is an S-head of g .

P28 • Claim 2.— S♯ is closed under right-comultiple.

P29• Claim 3.— S♯ is closed under right-divisor.



Germs

• So far: C (the ambient category) is given, and S ⊆ C.
• Now: S is given (no C), and look for conditions ensuring that there exists a
category C s.t. S →֒ C and S is a Garside family in C.

• Analysis: If S ⊆ C, the operation of C induces a partial operation on S:

f • g = h whenever fg = h and f , g , h ∈ S.

 Investigate the structure (S, •).
ւ
“a germ”

• Lemma.— If S is a subfamily of a left-cancellative category and includes 1S , then •

obeys the rules
(1) If f • g exists, the target of f is the source of g ;
(2) If f ∈ S(x , y), then 1x • f = f = f • 1y ;
(3) If f • g and g • h exist, then f • (g • h) exists iff (f • g) • h does, and then equal.

Moreover, if S is closed under right-divisor in C, then
P30 (4) If (f • g) • h exists, then g • h does.

• Definition.— A germ is a triple (S, 1S , •) where S is a precategory and • is a partial
binary operation on S satisfying (1), (2), (3).

- It is called left-associative if, in addition, (4) is satisfied.



The embedding problem

• For S a precategory, S∗ = the free category generated by S
= the category of all S-paths.

• Definition.— For S a germ, the category Cat(S) associated with S is S∗/ ≡
where ≡ is the congruence generated by all relations f | g = h for f • g = h in S.

P32 • Proposition.— If S is a Garside family in a left-cancellative category C
and S♯ = S holds, then C ∼= Cat(S).

P31 • Claim.— S Garside in C ⇒ C presented by the relations fg = h with f , g , h ∈ S♯.

P34 • Proposition.— If S is a left-associative germ,
then S embeds in Cat(S) as a subfamily that is closed under right-divisor.

P33 • Claim.— Define Π : S∗→S (partial) by Π(εx ) = 1x and Π(g | w) = g • Π(w)
whenever defined. Then w ≡ w ′ ⇒ Π(w) defined iff Π(w ′) defined, and then equal.



Garside germ

• Definition.— A germ S is a Garside germ if there exists a left-cancellative category C
such that S embeds in C and S is a dense Garside family in C.

↑
generates the category and is closed under right-divisor

• Definition.— A J -function for a germ S is a map J : S [2] → S s.t., for every (g1, g2),

J(g1, g2) ∈ {h ∈ S | g1 • h is defined and h4S g2}.

↑
J (g1, g2)

• Proposition.— A germ is a Garside germ iff it is left-associative, left-cancellative, and
there exists a J -function J that satisfies the J -law:

g = g1 • g2 implies J(g1, g2 • J(g2, g3)) = g2 • J(g , g3).

P36 • Proof (⇒): Assume S is a Garside germ.

P35 • Claim.— Exists a sharp S-head function: g =× g ′ ⇒ H(g) = H(g ′).

• Define J(g1, g2) by g1 • J(g1, g2) = H(g1g2). Then g = g1 • g2 implies
H(g1(g2g3)) = H(g1H(g2g3)),

the H-law
which translates to J(g1, g2 • J(g2, g3)) = g2 • J(g , g3).

the J -law



Using the J -law

• Proof (⇐): Assume S is a left-associative, left-cancellative germ
that admits a J -function J satisfying the J -law.

• Aim: Show that Cat(S) is left-cancellative and S is a Garside family in Cat(S).

• Claim 1.— Define K : S [2] → S, Θ : S∗ → S and Ω : S∗ → S∗ by

g2 = J(g1, g2) • K(g1, g2),

Θ(εx ) = 1x and Θ(g | w) = g • J(g , Θ(w)),

Ω(εx ) = εx and Ω(g | w) = K(g , Θ(w)) | Ω(w).

Then Θ and Ω are compatible with ≡,

↑
the congruence that defines Cat(S) from S∗

= the congruence generated by the relations f | g = h with f • g = h

and w ≡ Θ(w) | Ω(w) always holds.

• Claim 2.— w ≡ J(g , Θ(w)) • Ω(g | w).

• Claim 3.— Cat(S) is left-cancellative.

• Claim 4.— Θ induces an S-head function on S.



Maximum J -function

• Definition.— A J -function J for a germ S is called maximum if

∀h ∈ J (g1, g2) (h 4 J(g1, g2)).

• Proposition.— A germ is a Garside germ iff it is left-associative, left-cancellative,
and admits a maximum J -function.

• Proof: (⇒) The J-function deduced from an S-head function is maximum.
(⇐) A maximum J almost satisfies the J -law.

• Claim 1.— A maximum J -function J satisfies the weak J -law

g = g1 • g2 implies J(g1, g2 • J(g2, g3)) =×
S

g2 • J(g , g3).

• Definition.— An I-function is ... ∈ {g ∈ S | ∃h (g = g1 • h and h4S g2)}.

• Claim 2.— A maximum I-function I satisfies the weak I-law

g = g1 • g2 implies I (g1, I (g2, g3)) =×
S

I (g , g3).

• Claim 3.— ∃ function satisfying the weak I-law ⇒ ∃ function satisfying the I-law.



Particular cases

• Definition.— A germ S is right-Noetherian
if right-divisibility is a well-founded relation on S.

↑
every nonempty subfamily has a least element

• Proposition.— A right-Noetherian germ S is a Garside germ iff it is left-associative,
left-cancellative, and, for every (g1, g2) in S [2], any two elements of J (g1, g2) have a
common right-multiple in J (g1, g2).

g1 g2
h

∈ S

h′

∈ S

∈ S

• Corollary.— For a germ S to be a Garside germ, it is sufficient that S is left-associative,
left-cancellative, right-Noetherian, admits right-lcm’s, and satisfies

(*) If g1 • h and g1 • h′ are defined, then g1 • lcm(h, h′) is defined.

If S is right-associative, (*) is necessarily satisfied.



An application: derived germ

• Definition.— For G a group and Σ positively generating G :
- (g1, ... , gr ) is Σ-tight if ‖g1 ...gr‖Σ = ‖g1‖Σ + ... + ‖gr‖Σ;
- f is a Σ-prefix of g if (f , f −1g) is Σ-tight (resp. Σ-suffix ... (gf −1, f ) ...).

• Definition.— For G a group, Σ positively generating G , and H ⊆ G , the derived
germ H/Σ is (H, 1, •) where f • g = h is fg = h and (f , g) is Σ-tight.

• Lemma.— H/Σ is a cancellative and Noetherian germ; it is left-associative (resp.
right-associative) whenever H is closed under Σ-suffix (resp. prefix) in G .

• Proposition.— Assume G is a group, Σ positively generates G , and H ⊆ G is closed
under Σ-suffix and Σ-prefix in G . If any two elements of H admits a least common
Σ-prefix, then H/Σ is a Garside germ.

• Example.— G = Sn with Σ = {(i , i + 1) | i < n}.
Then G/Σ = Div(∆n) is a Garside germ, and Cat(H/Σ) = B+

n .


