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• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)), i.e., in Polish,

t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗
t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗

t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗ (= t′0)
t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗

t2 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t1)
t′2 = xx∗xx∗xx∗ ∗
t2 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′2 = xx∗xx∗xx∗ ∗

t3 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t2)
t′3 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗
t3 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′3 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗

t4 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗
t′
4

= xx∗xx∗ ∗xx∗xx∗ ∗ ∗ (= t′
3
)

So t4 = t′
4
, hence t0 and t′

0
are LD-equivalent.



The real problem II

• Conjecture.— The Polish Algorithm works for left-selfdistributivity.



The real problem II

• Conjecture.— The Polish Algorithm works for left-selfdistributivity.

• Known.— (i) If it terminates, the Polish Algorithm works for left-selfdistributivity.



The real problem II

• Conjecture.— The Polish Algorithm works for left-selfdistributivity.

• Known.— (i) If it terminates, the Polish Algorithm works for left-selfdistributivity.
(ii) The smallest counter-example to termination (if any) is huge.



1. The Polish Algorithm for Left-Selfdistributivity

2. Handle reduction of braids

3. Subword reversing for positively presented groups
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The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

• Aim: obtain a word that does not contain both a and A.

• Example:
w0 = aabAbbAAaabAbbAA

w1 = aBabbbAAaBabbbAA

w2 = aBBaaabAaBBaaabA

w3 = aBBaaBab,          a word without A
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The baby problem II

• Theorem.— The process terminates in quadratic time.

• Proof: (Length does not increase, but could cycle.)
Associate with the sequence of reductions a rectangular grid (quadratic area).

For the example:

w0 = aabAbbAA

w1 = aBabbbAA

w2 = aBBaaabA

w3 = aBBaaBab

draw the grid:

a a b
a

b b
a

a

b

a a
b

a a a b
b

a b

�
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The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.
• Rewrite rules:

- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε, cC→ ε, Cc→ ε, (as above)
- for w in {b, c, C}∗ or {B, c, C}∗: awA→ φa(w), Awa→ φA(w),

with φa(w) obtained from w by b→ Bab and B→ BAb,
and φA(w) obtained from w by b→ baB and B→ bAB,

- for w in {c}∗ or {C}∗: bwB→ φb(w), Bwb→ φB(w),
with φb(w) obtained from w by c→ Cbc and C→ CBc,
and φB(w) obtained from w by c→ cbC and C→ cBC.

• Remark.— ab
i
A→ (Bab)i → Ba

i
b: extends the 3-strand case.
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The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

BaCbcBCBA

BaCCbcCBA

BaCCbBA

BaCCA

BCC

         Terminates: the final word does not contain both a and A

(by the way: contains neither a nor A, and not both b and B.)

• Theorem.— Handle reduction always terminates in exponential time
(and id. for n-strand version).

• Experimental evidence.— It terminates in quadratic time (for every n).



Braids

• A 4-strand braid diagram



Braids

• A 4-strand braid diagram



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

• a braid := an isotopy class          represented by 2D-diagram,



Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

• a braid := an isotopy class          represented by 2D-diagram,
but different 2D-diagrams may give rise to the same braid.
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Braid groups

• Product of two braids:

∗ :=

• Then well-defined with respect to isotopy), associative, admits a unit:

∗ = ≈

↑

isotopic toand inverses:

 braid braid braid  braid∗ braid  braid  braid  braid∗ = braid  braid  braid  braid∗ = ≈

         For each n, the group Bn of n-strand braids (E.Artin, 1925).
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Handle reduction

• A σ
i
-handle:

i

i + 1

• Reducing a handle:

• Handle reduction is an isotopy; It extends free group reduction;
Terminal words cannot contain both σ

1
and σ−1

1
.

• Theorem.— Every sequence of handle reductions terminates.



1. The Polish Algorithm for Left-Selfdistributivity

2. Handle reduction of braids

3. Subword reversing for positively presented groups
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• Rewrite rules:
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• Aim: transforming an arbitrary signed word into a positive–negative word.
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(and linear space upper bound).

• Obviously: id. for any number of letters.
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• The only known facts:
- reduction to the baby case ⇒ termination;
- self-reproducing pattern ⇒ non-termination;

- if reversing is complete for (A, R), then it is terminating
iff any two elements of the monoid 〈A | R〉+ admit a common right-multiple.

• Question.— What can YOU say about reversing?
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