

Three termination problems

Three termination problems

Patrick Dehornoy

Three termination problems

Patrick Dehornoy

Laboratoire de Mathématiques

Nicolas Oresme, Université de Caen

Three termination problems

Patrick Dehornoy

Laboratoire Preuves, Programmes, Systèmes

Université Paris-Diderot

Three termination problems

Patrick Dehornoy

Laboratoire Preuves, Programmes, Systèmes

Université Paris-Diderot

• Three unrelated termination problems :

Three termination problems

Patrick Dehornoy

Laboratoire Preuves, Programmes, Systèmes

Université Paris-Diderot

• Three unrelated termination problems : partial specific answers known,

Three termination problems

Patrick Dehornoy

Laboratoire Preuves, Programmes, Systèmes

Université Paris-Diderot

• Three unrelated termination problems : partial specific answers known,
but no global understanding:

Three termination problems

Patrick Dehornoy

Laboratoire Preuves, Programmes, Systèmes

Université Paris-Diderot

• Three unrelated termination problems : partial specific answers known,
but no global understanding: can some general tools be useful?

• Plan :

• Plan :

1. The Polish Algorithm for Left-Selfdistributivity

• Plan :

1. The Polish Algorithm for Left-Selfdistributivity

2. Handle reduction of braids

• Plan :

1. The Polish Algorithm for Left-Selfdistributivity

2. Handle reduction of braids

3. Subword reversing for positively presented groups

• Plan :

1. The Polish Algorithm for Left-Selfdistributivity

2. Handle reduction of braids

3. Subword reversing for positively presented groups

1. The Polish Algorithm for Left-Selfdistributivity

2. Handle reduction of braids

3. Subword reversing for positively presented groups

The baby problem I

• A ”bi-term rewrite system”

The baby problem I

• A ”bi-term rewrite system” (????)

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: ”t1t2∗” for t1∗t2 (no bracket needed)

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: ”t1t2∗” for t1∗t2 (no bracket needed)
Example: In Polish, associativity is xy z ∗ ∗ = xy ∗ z ∗.

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: ”t1t2∗” for t1∗t2 (no bracket needed)
Example: In Polish, associativity is xy z ∗ ∗ = xy ∗ z ∗.

• Definition.— The Polish Algorithm for A:

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: ”t1t2∗” for t1∗t2 (no bracket needed)
Example: In Polish, associativity is xy z ∗ ∗ = xy ∗ z ∗.

• Definition.— The Polish Algorithm for A: starting with two terms t, t′ (in Polish):

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: ”t1t2∗” for t1∗t2 (no bracket needed)
Example: In Polish, associativity is xy z ∗ ∗ = xy ∗ z ∗.

• Definition.— The Polish Algorithm for A: starting with two terms t, t′ (in Polish):
- while t 6= t′ do

- p := first clash between t and t′ (pth letter of t 6= pth letter of t′)

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: ”t1t2∗” for t1∗t2 (no bracket needed)
Example: In Polish, associativity is xy z ∗ ∗ = xy ∗ z ∗.

• Definition.— The Polish Algorithm for A: starting with two terms t, t′ (in Polish):
- while t 6= t′ do

- p := first clash between t and t′ (pth letter of t 6= pth letter of t′)
- case type of p of

- ”variable vs. blank” : return NO;

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: ”t1t2∗” for t1∗t2 (no bracket needed)
Example: In Polish, associativity is xy z ∗ ∗ = xy ∗ z ∗.

• Definition.— The Polish Algorithm for A: starting with two terms t, t′ (in Polish):
- while t 6= t′ do

- p := first clash between t and t′ (pth letter of t 6= pth letter of t′)
- case type of p of

- ”variable vs. blank” : return NO;
- ”blank vs. variable” : return NO;

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: ”t1t2∗” for t1∗t2 (no bracket needed)
Example: In Polish, associativity is xy z ∗ ∗ = xy ∗ z ∗.

• Definition.— The Polish Algorithm for A: starting with two terms t, t′ (in Polish):
- while t 6= t′ do

- p := first clash between t and t′ (pth letter of t 6= pth letter of t′)
- case type of p of

- ”variable vs. blank” : return NO;
- ”blank vs. variable” : return NO;
- ”variable vs. variable” : return NO;

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: ”t1t2∗” for t1∗t2 (no bracket needed)
Example: In Polish, associativity is xy z ∗ ∗ = xy ∗ z ∗.

• Definition.— The Polish Algorithm for A: starting with two terms t, t′ (in Polish):
- while t 6= t′ do

- p := first clash between t and t′ (pth letter of t 6= pth letter of t′)
- case type of p of

- ”variable vs. blank” : return NO;
- ”blank vs. variable” : return NO;
- ”variable vs. variable” : return NO;
- ”variable vs. ∗” : apply A+ to t; (t1t2t3∗ ∗ → t1t2∗t3∗)

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: ”t1t2∗” for t1∗t2 (no bracket needed)
Example: In Polish, associativity is xy z ∗ ∗ = xy ∗ z ∗.

• Definition.— The Polish Algorithm for A: starting with two terms t, t′ (in Polish):
- while t 6= t′ do

- p := first clash between t and t′ (pth letter of t 6= pth letter of t′)
- case type of p of

- ”variable vs. blank” : return NO;
- ”blank vs. variable” : return NO;
- ”variable vs. variable” : return NO;
- ”variable vs. ∗” : apply A+ to t; (t1t2t3∗ ∗ → t1t2∗t3∗)
- ”∗ vs. variable” : apply A+ to t′; (t1t2t3∗ ∗ → t1t2∗t3∗)

The baby problem I

• A ”bi-term rewrite system” (????)

• The associativity law (A): x ∗ (y ∗ z) = (x ∗ y) ∗ z ,
... and the corresponding Word Problem:

Given two terms t, t′, decide whether t and t′ are A-equivalent.

• A trivial problem: t, t′ are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: ”t1t2∗” for t1∗t2 (no bracket needed)
Example: In Polish, associativity is xy z ∗ ∗ = xy ∗ z ∗.

• Definition.— The Polish Algorithm for A: starting with two terms t, t′ (in Polish):
- while t 6= t′ do

- p := first clash between t and t′ (pth letter of t 6= pth letter of t′)
- case type of p of

- ”variable vs. blank” : return NO;
- ”blank vs. variable” : return NO;
- ”variable vs. variable” : return NO;
- ”variable vs. ∗” : apply A+ to t; (t1t2t3∗ ∗ → t1t2∗t3∗)
- ”∗ vs. variable” : apply A+ to t′; (t1t2t3∗ ∗ → t1t2∗t3∗)

- return YES.

The baby problem II

• Remember : in Polish, associativity is

(

xy z ∗ ∗

xy ∗ z ∗
.

The baby problem II

• Remember : in Polish, associativity is

(

xy z ∗ ∗

xy ∗ z ∗
.

• Example: t = x∗(x∗(x∗x)), t′ = ((x∗x)∗x)∗x,

The baby problem II

• Remember : in Polish, associativity is

(

xy z ∗ ∗

xy ∗ z ∗
.

• Example: t = x∗(x∗(x∗x)), t′ = ((x∗x)∗x)∗x, i.e., in Polish,

t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗

The baby problem II

• Remember : in Polish, associativity is

(

xy z ∗ ∗

xy ∗ z ∗
.

• Example: t = x∗(x∗(x∗x)), t′ = ((x∗x)∗x)∗x, i.e., in Polish,

t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗
t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗

The baby problem II

• Remember : in Polish, associativity is

(

xy z ∗ ∗

xy ∗ z ∗
.

• Example: t = x∗(x∗(x∗x)), t′ = ((x∗x)∗x)∗x, i.e., in Polish,

t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗
t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗

t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗

The baby problem II

• Remember : in Polish, associativity is

(

xy z ∗ ∗

xy ∗ z ∗
.

• Example: t = x∗(x∗(x∗x)), t′ = ((x∗x)∗x)∗x, i.e., in Polish,

t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗
t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗

t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗
t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗

The baby problem II

• Remember : in Polish, associativity is

(

xy z ∗ ∗

xy ∗ z ∗
.

• Example: t = x∗(x∗(x∗x)), t′ = ((x∗x)∗x)∗x, i.e., in Polish,

t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗
t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗

t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗
t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗

t2 = xx∗x∗x∗
t′
2

= xx∗x∗x∗

The baby problem II

• Remember : in Polish, associativity is

(

xy z ∗ ∗

xy ∗ z ∗
.

• Example: t = x∗(x∗(x∗x)), t′ = ((x∗x)∗x)∗x, i.e., in Polish,

t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗
t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗

t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗
t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗

t2 = xx∗x∗x∗
t′
2

= xx∗x∗x∗ So t2 = t′
2
, hence t0 and t′

0
are A-equivalent.

The baby problem II

• Remember : in Polish, associativity is

(

xy z ∗ ∗

xy ∗ z ∗
.

• Example: t = x∗(x∗(x∗x)), t′ = ((x∗x)∗x)∗x, i.e., in Polish,

t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗
t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗

t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗
t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗

t2 = xx∗x∗x∗
t′
2

= xx∗x∗x∗ So t2 = t′
2
, hence t0 and t′

0
are A-equivalent.

• ”Theorem”.—

The baby problem II

• Remember : in Polish, associativity is

(

xy z ∗ ∗

xy ∗ z ∗
.

• Example: t = x∗(x∗(x∗x)), t′ = ((x∗x)∗x)∗x, i.e., in Polish,

t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗
t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗

t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗
t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗

t2 = xx∗x∗x∗
t′
2

= xx∗x∗x∗ So t2 = t′
2
, hence t0 and t′

0
are A-equivalent.

• ”Theorem”.— The Polish Algorithm works for associativity.

The baby problem II

• Remember : in Polish, associativity is

(

xy z ∗ ∗

xy ∗ z ∗
.

• Example: t = x∗(x∗(x∗x)), t′ = ((x∗x)∗x)∗x, i.e., in Polish,

t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗
t0 = xxxx∗ ∗ ∗
t′
0

= xx∗x∗x∗

t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗
t1 = xx∗xx∗ ∗
t′
1

= xx∗x∗x∗

t2 = xx∗x∗x∗
t′
2

= xx∗x∗x∗ So t2 = t′
2
, hence t0 and t′

0
are A-equivalent.

• ”Theorem”.— The Polish Algorithm works for associativity.
(In particular, it terminates.)

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)),

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)), i.e., in Polish,

t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)), i.e., in Polish,

t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗
t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)), i.e., in Polish,

t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗
t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗

t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗ (= t′0)

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)), i.e., in Polish,

t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗
t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗

t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗ (= t′0)
t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)), i.e., in Polish,

t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗
t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗

t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗ (= t′0)
t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗

t2 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t1)
t′2 = xx∗xx∗xx∗ ∗

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)), i.e., in Polish,

t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗
t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗

t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗ (= t′0)
t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗

t2 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t1)
t′2 = xx∗xx∗xx∗ ∗
t2 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′2 = xx∗xx∗xx∗ ∗

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)), i.e., in Polish,

t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗
t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗

t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗ (= t′0)
t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗

t2 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t1)
t′2 = xx∗xx∗xx∗ ∗
t2 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′2 = xx∗xx∗xx∗ ∗

t3 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t2)
t′3 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)), i.e., in Polish,

t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗
t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗

t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗ (= t′0)
t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗

t2 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t1)
t′2 = xx∗xx∗xx∗ ∗
t2 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′2 = xx∗xx∗xx∗ ∗

t3 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t2)
t′3 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗
t3 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′3 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)), i.e., in Polish,

t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗
t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗

t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗ (= t′0)
t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗

t2 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t1)
t′2 = xx∗xx∗xx∗ ∗
t2 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′2 = xx∗xx∗xx∗ ∗

t3 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t2)
t′3 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗
t3 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′3 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗

t4 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗
t′
4

= xx∗xx∗ ∗xx∗xx∗ ∗ ∗ (= t′
3
)

The real problem I

• Left-selfdistributivity (LD) : x∗(y ∗ z) = (x∗ y)∗(x∗ z),

i.e., in Polish,

(

xy z ∗ ∗

xy ∗xz ∗ ∗
compare with associativity

(

xy z ∗ ∗

xy ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: t = x∗((x∗x)∗(x∗x)), t′ = (x∗x)∗(x∗(x∗x)), i.e., in Polish,

t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗
t0 = xxx∗xx∗ ∗ ∗
t′0 = xx∗xxx∗ ∗ ∗

t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗ (= t′0)
t1 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′1 = xx∗xxx∗ ∗ ∗

t2 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t1)
t′2 = xx∗xx∗xx∗ ∗
t2 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′2 = xx∗xx∗xx∗ ∗

t3 = xx∗xx∗ ∗xxx∗ ∗ ∗ (= t2)
t′3 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗
t3 = xx∗xx∗ ∗xxx∗ ∗ ∗
t′3 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗

t4 = xx∗xx∗ ∗xx∗xx∗ ∗ ∗
t′
4

= xx∗xx∗ ∗xx∗xx∗ ∗ ∗ (= t′
3
)

So t4 = t′
4
, hence t0 and t′

0
are LD-equivalent.

The real problem II

• Conjecture.— The Polish Algorithm works for left-selfdistributivity.

The real problem II

• Conjecture.— The Polish Algorithm works for left-selfdistributivity.

• Known.— (i) If it terminates, the Polish Algorithm works for left-selfdistributivity.

The real problem II

• Conjecture.— The Polish Algorithm works for left-selfdistributivity.

• Known.— (i) If it terminates, the Polish Algorithm works for left-selfdistributivity.
(ii) The smallest counter-example to termination (if any) is huge.

1. The Polish Algorithm for Left-Selfdistributivity

2. Handle reduction of braids

3. Subword reversing for positively presented groups

The baby problem I

• A true (but infinite) rewrite system.

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab,

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb,

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b,

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

• Aim: obtain a word that does not contain both a and A.

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

• Aim: obtain a word that does not contain both a and A.

• Example:
w0 = aabAbbAA

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

• Aim: obtain a word that does not contain both a and A.

• Example:
w0 = aabAbbAAaabAbbAA

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

• Aim: obtain a word that does not contain both a and A.

• Example:
w0 = aabAbbAAaabAbbAA

w1 = aBabbbAA

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

• Aim: obtain a word that does not contain both a and A.

• Example:
w0 = aabAbbAAaabAbbAA

w1 = aBabbbAAaBabbbAA

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

• Aim: obtain a word that does not contain both a and A.

• Example:
w0 = aabAbbAAaabAbbAA

w1 = aBabbbAAaBabbbAA

w2 = aBBaaabA

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

• Aim: obtain a word that does not contain both a and A.

• Example:
w0 = aabAbbAAaabAbbAA

w1 = aBabbbAAaBabbbAA

w2 = aBBaaabAaBBaaabA

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

• Aim: obtain a word that does not contain both a and A.

• Example:
w0 = aabAbbAAaabAbbAA

w1 = aBabbbAAaBabbbAA

w2 = aBBaaabAaBBaaabA

w3 = aBBaaBab,

The baby problem I

• A true (but infinite) rewrite system.

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε (so far trivial: ”free group reduction”)
- abA→ Bab, aBA→ BAb, Aba→ baB, ABa→ bAB,

and, more generally,
- abi

A→ Ba
i
b, aBi

A→ BA
i
b, Abi

a→ ba
i
B, ABi

a→ bA
i
B for i > 1.

• Aim: obtain a word that does not contain both a and A.

• Example:
w0 = aabAbbAAaabAbbAA

w1 = aBabbbAAaBabbbAA

w2 = aBBaaabAaBBaaabA

w3 = aBBaaBab, a word without A

The baby problem II

• Theorem.— The process terminates in quadratic time.

The baby problem II

• Theorem.— The process terminates in quadratic time.

• Proof: (Length does not increase, but could cycle.)

The baby problem II

• Theorem.— The process terminates in quadratic time.

• Proof: (Length does not increase, but could cycle.)
Associate with the sequence of reductions a rectangular grid (quadratic area).

The baby problem II

• Theorem.— The process terminates in quadratic time.

• Proof: (Length does not increase, but could cycle.)
Associate with the sequence of reductions a rectangular grid (quadratic area).

For the example:

w0 = aabAbbAA

w1 = aBabbbAA

w2 = aBBaaabA

w3 = aBBaaBab

draw the grid:

The baby problem II

• Theorem.— The process terminates in quadratic time.

• Proof: (Length does not increase, but could cycle.)
Associate with the sequence of reductions a rectangular grid (quadratic area).

For the example:

w0 = aabAbbAA

w1 = aBabbbAA

w2 = aBBaaabA

w3 = aBBaaBab

draw the grid:

a a b
a

b b
a

a

The baby problem II

• Theorem.— The process terminates in quadratic time.

• Proof: (Length does not increase, but could cycle.)
Associate with the sequence of reductions a rectangular grid (quadratic area).

For the example:

w0 = aabAbbAA

w1 = aBabbbAA

w2 = aBBaaabA

w3 = aBBaaBab

draw the grid:

a a b
a

b b
a

a

b

a a

The baby problem II

• Theorem.— The process terminates in quadratic time.

• Proof: (Length does not increase, but could cycle.)
Associate with the sequence of reductions a rectangular grid (quadratic area).

For the example:

w0 = aabAbbAA

w1 = aBabbbAA

w2 = aBBaaabA

w3 = aBBaaBab

draw the grid:

a a b
a

b b
a

a

b

a a
b

a a a b

The baby problem II

• Theorem.— The process terminates in quadratic time.

• Proof: (Length does not increase, but could cycle.)
Associate with the sequence of reductions a rectangular grid (quadratic area).

For the example:

w0 = aabAbbAA

w1 = aBabbbAA

w2 = aBBaaabA

w3 = aBBaaBab

draw the grid:

a a b
a

b b
a

a

b

a a
b

a a a b
b

a b

The baby problem II

• Theorem.— The process terminates in quadratic time.

• Proof: (Length does not increase, but could cycle.)
Associate with the sequence of reductions a rectangular grid (quadratic area).

For the example:

w0 = aabAbbAA

w1 = aBabbbAA

w2 = aBBaaabA

w3 = aBBaaBab

draw the grid:

a a b
a

b b
a

a

b

a a
b

a a a b
b

a b

�

The real problem

• This is the braid handle reduction procedure;

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.
• Rewrite rules:

- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε, cC→ ε, Cc→ ε,

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.
• Rewrite rules:

- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε, cC→ ε, Cc→ ε, (as above)

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.
• Rewrite rules:

- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε, cC→ ε, Cc→ ε, (as above)
- for w in {b, c, C}∗ or {B, c, C}∗:

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.
• Rewrite rules:

- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε, cC→ ε, Cc→ ε, (as above)
- for w in {b, c, C}∗ or {B, c, C}∗: awA→ φa(w),

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.
• Rewrite rules:

- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε, cC→ ε, Cc→ ε, (as above)
- for w in {b, c, C}∗ or {B, c, C}∗: awA→ φa(w), Awa→ φA(w),

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.
• Rewrite rules:

- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε, cC→ ε, Cc→ ε, (as above)
- for w in {b, c, C}∗ or {B, c, C}∗: awA→ φa(w), Awa→ φA(w),

with φa(w) obtained from w by b→ Bab and B→ BAb,

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.
• Rewrite rules:

- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε, cC→ ε, Cc→ ε, (as above)
- for w in {b, c, C}∗ or {B, c, C}∗: awA→ φa(w), Awa→ φA(w),

with φa(w) obtained from w by b→ Bab and B→ BAb,
and φA(w) obtained from w by b→ baB and B→ bAB,

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.
• Rewrite rules:

- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε, cC→ ε, Cc→ ε, (as above)
- for w in {b, c, C}∗ or {B, c, C}∗: awA→ φa(w), Awa→ φA(w),

with φa(w) obtained from w by b→ Bab and B→ BAb,
and φA(w) obtained from w by b→ baB and B→ bAB,

- for w in {c}∗ or {C}∗: bwB→ φb(w), Bwb→ φB(w),

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.
• Rewrite rules:

- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε, cC→ ε, Cc→ ε, (as above)
- for w in {b, c, C}∗ or {B, c, C}∗: awA→ φa(w), Awa→ φA(w),

with φa(w) obtained from w by b→ Bab and B→ BAb,
and φA(w) obtained from w by b→ baB and B→ bAB,

- for w in {c}∗ or {C}∗: bwB→ φb(w), Bwb→ φB(w),
with φb(w) obtained from w by c→ Cbc and C→ CBc,
and φB(w) obtained from w by c→ cbC and C→ cBC.

The real problem

• This is the braid handle reduction procedure;
so far: case of ”3-strand” braids; now: case of ”4-strand” braids

(case of ”n strand” braids entirely similar for every n).

• Alphabet: a, b, c, A, B, C.
• Rewrite rules:

- aA→ ε, Aa→ ε, bB→ ε, Bb→ ε, cC→ ε, Cc→ ε, (as above)
- for w in {b, c, C}∗ or {B, c, C}∗: awA→ φa(w), Awa→ φA(w),

with φa(w) obtained from w by b→ Bab and B→ BAb,
and φA(w) obtained from w by b→ baB and B→ bAB,

- for w in {c}∗ or {C}∗: bwB→ φb(w), Bwb→ φB(w),
with φb(w) obtained from w by c→ Cbc and C→ CBc,
and φB(w) obtained from w by c→ cbC and C→ cBC.

• Remark.— ab
i
A→ (Bab)i → Ba

i
b: extends the 3-strand case.

The real problem

• Example:

The real problem

• Example:

abcbABABCBA

The real problem

• Example:

abcbABABCBAabcbABABCBA

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

BaCbcBCBA

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

BaCbcBCBA

BaCCbcCBA

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

BaCbcBCBA

BaCCbcCBA

BaCCbBA

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

BaCbcBCBA

BaCCbcCBA

BaCCbBA

BaCCA

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

BaCbcBCBA

BaCCbcCBA

BaCCbBA

BaCCA

BCC

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

BaCbcBCBA

BaCCbcCBA

BaCCbBA

BaCCA

BCC

 Terminates: the final word does not contain both a and A

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

BaCbcBCBA

BaCCbcCBA

BaCCbBA

BaCCA

BCC

 Terminates: the final word does not contain both a and A

(by the way: contains neither a nor A, and not both b and B.)

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

BaCbcBCBA

BaCCbcCBA

BaCCbBA

BaCCA

BCC

 Terminates: the final word does not contain both a and A

(by the way: contains neither a nor A, and not both b and B.)

• Theorem.— Handle reduction always terminates in exponential time

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

BaCbcBCBA

BaCCbcCBA

BaCCbBA

BaCCA

BCC

 Terminates: the final word does not contain both a and A

(by the way: contains neither a nor A, and not both b and B.)

• Theorem.— Handle reduction always terminates in exponential time
(and id. for n-strand version).

The real problem

• Example:

abcbABABCBAabcbABABCBA

BabcBabBABCBA

BabcBaABCBA

BabcBBCBA

BaCbcBCBA

BaCCbcCBA

BaCCbBA

BaCCA

BCC

 Terminates: the final word does not contain both a and A

(by the way: contains neither a nor A, and not both b and B.)

• Theorem.— Handle reduction always terminates in exponential time
(and id. for n-strand version).

• Experimental evidence.— It terminates in quadratic time (for every n).

Braids

• A 4-strand braid diagram

Braids

• A 4-strand braid diagram

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

• a braid := an isotopy class represented by 2D-diagram,

Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

←←←

• isotopy = move the strands but keep the ends fixed:

isotopic to

• a braid := an isotopy class represented by 2D-diagram,
but different 2D-diagrams may give rise to the same braid.

Braid groups

• Product of two braids:

Braid groups

• Product of two braids:

∗ :=

Braid groups

• Product of two braids:

∗ :=

Braid groups

• Product of two braids:

∗ :=

• Then well-defined with respect to isotopy), associative, admits a unit:

∗ =

Braid groups

• Product of two braids:

∗ :=

• Then well-defined with respect to isotopy), associative, admits a unit:

∗ =

Braid groups

• Product of two braids:

∗ :=

• Then well-defined with respect to isotopy), associative, admits a unit:

∗ = ≈

Braid groups

• Product of two braids:

∗ :=

• Then well-defined with respect to isotopy), associative, admits a unit:

∗ = ≈

↑

isotopic to

Braid groups

• Product of two braids:

∗ :=

• Then well-defined with respect to isotopy), associative, admits a unit:

∗ = ≈

↑

isotopic toand inverses:

 braid

Braid groups

• Product of two braids:

∗ :=

• Then well-defined with respect to isotopy), associative, admits a unit:

∗ = ≈

↑

isotopic toand inverses:

 braid braid

Braid groups

• Product of two braids:

∗ :=

• Then well-defined with respect to isotopy), associative, admits a unit:

∗ = ≈

↑

isotopic toand inverses:

 braid braid braid braid∗

Braid groups

• Product of two braids:

∗ :=

• Then well-defined with respect to isotopy), associative, admits a unit:

∗ = ≈

↑

isotopic toand inverses:

 braid braid braid braid∗ braid braid braid braid∗ =

Braid groups

• Product of two braids:

∗ :=

• Then well-defined with respect to isotopy), associative, admits a unit:

∗ = ≈

↑

isotopic toand inverses:

 braid braid braid braid∗ braid braid braid braid∗ = braid braid braid braid∗ = ≈

Braid groups

• Product of two braids:

∗ :=

• Then well-defined with respect to isotopy), associative, admits a unit:

∗ = ≈

↑

isotopic toand inverses:

 braid braid braid braid∗ braid braid braid braid∗ = braid braid braid braid∗ = ≈

 For each n, the group Bn of n-strand braids (E.Artin, 1925).

Artin presentation of Bn

• Artin generators of Bn :

Artin presentation of Bn

• Artin generators of Bn :

Artin presentation of Bn

• Artin generators of Bn :

=

Artin presentation of Bn

• Artin generators of Bn :

= ∗ ∗ ∗

Artin presentation of Bn

• Artin generators of Bn :

= ∗ ∗ ∗

σ
1

Artin presentation of Bn

• Artin generators of Bn :

= ∗ ∗ ∗

σ
1

σ
2

Artin presentation of Bn

• Artin generators of Bn :

= ∗ ∗ ∗

σ
1

σ
2

σ
3

Artin presentation of Bn

• Artin generators of Bn :

= ∗ ∗ ∗

σ
1

σ
2

σ
3

σ−1

1

Artin presentation of Bn

• Artin generators of Bn :

= ∗ ∗ ∗

σ
1

σ
2

σ
3

σ−1

1

• Theorem (Artin): The group Bn is generated by σ
1
, ..., σn−1

,

Artin presentation of Bn

• Artin generators of Bn :

= ∗ ∗ ∗

σ
1

σ
2

σ
3

σ−1

1

• Theorem (Artin): The group Bn is generated by σ
1
, ..., σn−1

,

subject to

 σ
i
σ

j
σ

i
= σ

j
σ

i
σ

j
for |i− j| = 1,

Artin presentation of Bn

• Artin generators of Bn :

= ∗ ∗ ∗

σ
1

σ
2

σ
3

σ−1

1

• Theorem (Artin): The group Bn is generated by σ
1
, ..., σn−1

,

subject to

 σ
i
σ

j
σ

i
= σ

j
σ

i
σ

j
for |i− j| = 1,

σ
i
σ

j
= σ

j
σ

i
for |i− j| > 2.

Artin presentation of Bn

• Artin generators of Bn :

= ∗ ∗ ∗

σ
1

σ
2

σ
3

σ−1

1

• Theorem (Artin): The group Bn is generated by σ
1
, ..., σn−1

,

subject to

 σ
i
σ

j
σ

i
= σ

j
σ

i
σ

j
for |i− j| = 1,

σ
i
σ

j
= σ

j
σ

i
for |i− j| > 2.

≈

σ
1

σ
2

σ
1

σ
2

σ
1

σ
2

Artin presentation of Bn

• Artin generators of Bn :

= ∗ ∗ ∗

σ
1

σ
2

σ
3

σ−1

1

• Theorem (Artin): The group Bn is generated by σ
1
, ..., σn−1

,

subject to

 σ
i
σ

j
σ

i
= σ

j
σ

i
σ

j
for |i− j| = 1,

σ
i
σ

j
= σ

j
σ

i
for |i− j| > 2.

≈

σ
1

σ
2

σ
1

σ
2

σ
1

σ
2

≈

σ
1

σ
3

σ
3

σ
1

Handle reduction

• A σ
i
-handle:

Handle reduction

• A σ
i
-handle:

i

i + 1

Handle reduction

• A σ
i
-handle:

i

i + 1

• Reducing a handle:

Handle reduction

• A σ
i
-handle:

i

i + 1

• Reducing a handle:

Handle reduction

• A σ
i
-handle:

i

i + 1

• Reducing a handle:

Handle reduction

• A σ
i
-handle:

i

i + 1

• Reducing a handle:

Handle reduction

• A σ
i
-handle:

i

i + 1

• Reducing a handle:

• Handle reduction is an isotopy;

Handle reduction

• A σ
i
-handle:

i

i + 1

• Reducing a handle:

• Handle reduction is an isotopy; It extends free group reduction;

Handle reduction

• A σ
i
-handle:

i

i + 1

• Reducing a handle:

• Handle reduction is an isotopy; It extends free group reduction;
Terminal words cannot contain both σ

1
and σ−1

1
.

Handle reduction

• A σ
i
-handle:

i

i + 1

• Reducing a handle:

• Handle reduction is an isotopy; It extends free group reduction;
Terminal words cannot contain both σ

1
and σ−1

1
.

• Theorem.— Every sequence of handle reductions terminates.

1. The Polish Algorithm for Left-Selfdistributivity

2. Handle reduction of braids

3. Subword reversing for positively presented groups

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε (”free group reduction” as usual, but only one direction)

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε (”free group reduction” as usual, but only one direction)
- Ab→ bA,

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε (”free group reduction” as usual, but only one direction)
- Ab→ bA, Ba→ aB.

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε (”free group reduction” as usual, but only one direction)
- Ab→ bA, Ba→ aB. (”reverse −+ patterns into +− patterns”)

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε (”free group reduction” as usual, but only one direction)
- Ab→ bA, Ba→ aB. (”reverse −+ patterns into +− patterns”)

• Aim: transforming an arbitrary signed word into a positive–negative word.

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε (”free group reduction” as usual, but only one direction)
- Ab→ bA, Ba→ aB. (”reverse −+ patterns into +− patterns”)

• Aim: transforming an arbitrary signed word into a positive–negative word.

• Example: BBAbabb

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε (”free group reduction” as usual, but only one direction)
- Ab→ bA, Ba→ aB. (”reverse −+ patterns into +− patterns”)

• Aim: transforming an arbitrary signed word into a positive–negative word.

• Example: BBAbabb

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε (”free group reduction” as usual, but only one direction)
- Ab→ bA, Ba→ aB. (”reverse −+ patterns into +− patterns”)

• Aim: transforming an arbitrary signed word into a positive–negative word.

• Example: BBAbabb→ BBbAabb

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε (”free group reduction” as usual, but only one direction)
- Ab→ bA, Ba→ aB. (”reverse −+ patterns into +− patterns”)

• Aim: transforming an arbitrary signed word into a positive–negative word.

• Example: BBAbabb→ BBbAabb→ BAabb

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε (”free group reduction” as usual, but only one direction)
- Ab→ bA, Ba→ aB. (”reverse −+ patterns into +− patterns”)

• Aim: transforming an arbitrary signed word into a positive–negative word.

• Example: BBAbabb→ BBbAabb→ BAabb→ Bbb

The baby problem I

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

• Rewrite rules:
- Aa→ ε, Bb→ ε (”free group reduction” as usual, but only one direction)
- Ab→ bA, Ba→ aB. (”reverse −+ patterns into +− patterns”)

• Aim: transforming an arbitrary signed word into a positive–negative word.

• Example: BBAbabb→ BBbAabb→ BAabb→ Bbb→ b.

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious).

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

b a b b

a

b

b

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

b a b b

a

b

b

a

b

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

b a b b

a

b

b

a

b

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

b a b b

a

b

b

a

b

b

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

b a b b

a

b

b

a

b

b

a

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

b a b b

a

b

b

a

b

b

a

b b

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

b a b b

a

b

b

a

b

b

a

b b

b b

b

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

b a b b

a

b

b

a

b

b

a

b b

b b

bb

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

b a b b

a

b

b

a

b

b

a

b b

b b

bb

b

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

b a b b

a

b

b

a

b

b

a

b b

b b

bb

b

 Clear that reversing terminates with quadratic time upper bound
(and linear space upper bound).

The baby problem II

• ”Theorem”.— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

b a b b

a

b

b

a

b

b

a

b b

b b

bb

b

 Clear that reversing terminates with quadratic time upper bound
(and linear space upper bound).

• Obviously: id. for any number of letters.

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA,

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB.

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)
 Again: transforms an arbitrary signed word into a positive–negative word.

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)
 Again: transforms an arbitrary signed word into a positive–negative word.

• Termination? Not clear: length may increase...

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)
 Again: transforms an arbitrary signed word into a positive–negative word.

• Termination? Not clear: length may increase...

• Example: BBAbabb

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)
 Again: transforms an arbitrary signed word into a positive–negative word.

• Termination? Not clear: length may increase...

• Example: BBAbabb

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)
 Again: transforms an arbitrary signed word into a positive–negative word.

• Termination? Not clear: length may increase...

• Example: BBAbabb→ BBbaBAabb

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)
 Again: transforms an arbitrary signed word into a positive–negative word.

• Termination? Not clear: length may increase...

• Example: BBAbabb→ BBbaBAabb→ BaBAabb

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)
 Again: transforms an arbitrary signed word into a positive–negative word.

• Termination? Not clear: length may increase...

• Example: BBAbabb→ BBbaBAabb→ BaBAabb

→ abABBAabb

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)
 Again: transforms an arbitrary signed word into a positive–negative word.

• Termination? Not clear: length may increase...

• Example: BBAbabb→ BBbaBAabb→ BaBAabb

→ abABBAabb→ abABBbb

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)
 Again: transforms an arbitrary signed word into a positive–negative word.

• Termination? Not clear: length may increase...

• Example: BBAbabb→ BBbaBAabb→ BaBAabb

→ abABBAabb→ abABBbb→ abABb

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)
 Again: transforms an arbitrary signed word into a positive–negative word.

• Termination? Not clear: length may increase...

• Example: BBAbabb→ BBbaBAabb→ BaBAabb

→ abABBAabb→ abABBbb→ abABb→ abA.

The real problem I

• Example 2:
• Same alphabet: a, b, A, B

• Rewrite rules:
- Aa→ ε, Bb→ ε (free group reduction in one direction)
- Ab→ baBA, Ba→ abAB. (”reverse −+ into +−”, but different rule)
 Again: transforms an arbitrary signed word into a positive–negative word.

• Termination? Not clear: length may increase...

• Example: BBAbabb→ BBbaBAabb→ BaBAabb

→ abABBAabb→ abABBbb→ abABb→ abA.

The real problem III

• Reversing grid:

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

a

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

a
b b

b

b

a

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

a
b b

b

b

a

b

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

a
b b

b

b

a

b
b

b

a

b

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

a
b b

b

b

a

b
b

b

a

b

b

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

a
b b

b

b

a

b
b

b

a

b

b

a

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

a
b b

b

b

a

b
b

b

a

b

b

a

• Theorem.— Reversing terminates in quadratic time (in this specific case).

• Proof:

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

a
b b

b

b

a

b
b

b

a

b

b

a

• Theorem.— Reversing terminates in quadratic time (in this specific case).

• Proof: Return to the baby case

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

a
b b

b

b

a

b
b

b

a

b

b

a

• Theorem.— Reversing terminates in quadratic time (in this specific case).

• Proof: Return to the baby case = find a (finite) set of words S that includes the
alphabet and closed under reversing.

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

a
b b

b

b

a

b
b

b

a

b

b

a

• Theorem.— Reversing terminates in quadratic time (in this specific case).

• Proof: Return to the baby case = find a (finite) set of words S that includes the
alphabet and closed under reversing.

↑
for all u, v in S, exist u′, v′ in S s.t. ∃ reversing grid

v

u

v′

u′

The real problem III

• Reversing grid: same, but possibly smaller and smaller arrows.

b a b b

a

b

b

a

b
b a

a

b

a b

b

a

a
b b

b

b

a

b
b

b

a

b

b

a

• Theorem.— Reversing terminates in quadratic time (in this specific case).

• Proof: Return to the baby case = find a (finite) set of words S that includes the
alphabet and closed under reversing.

↑
for all u, v in S, exist u′, v′ in S s.t. ∃ reversing grid

v

u

v′

u′

Here: works with S = {a, b, ab, ba}. �

Many more real problems

• Always like that?

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B,

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε,

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B,

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε,

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab:

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA →aaaBAbAA

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA →aaaBAbAA →aaaBabAAA

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA →aaaBAbAA →aaaBabAAA →aaaaBAbAAA

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA →aaaBAbAA →aaaBabAAA →aaaaBAbAAA

↑
w

↑
awA

↑
a
2wA

2

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA →aaaBAbAA →aaaBabAAA →aaaaBAbAAA

↑
w

↑
awA

↑
a
2wA

2

 Here : non-terminating

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA →aaaBAbAA →aaaBabAAA →aaaaBAbAAA

↑
w

↑
awA

↑
a
2wA

2

 Here : non-terminating

• Example 5:
Alphabet a, b, A, B,

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA →aaaBAbAA →aaaBabAAA →aaaaBAbAAA

↑
w

↑
awA

↑
a
2wA

2

 Here : non-terminating

• Example 5:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε,

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA →aaaBAbAA →aaaBabAAA →aaaaBAbAAA

↑
w

↑
awA

↑
a
2wA

2

 Here : non-terminating

• Example 5:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ba→ abab

2
ab

2
abab,

Ba→ BABAB
2
AB

2
ABA,

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA →aaaBAbAA →aaaBabAAA →aaaaBAbAAA

↑
w

↑
awA

↑
a
2wA

2

 Here : non-terminating

• Example 5:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ba→ abab

2
ab

2
abab,

Ba→ BABAB
2
AB

2
ABA,

 Here : terminating in cubic time and quadratic space

Many more real problems

• Always like that? Not really...

• Example 3:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ baba...

| {z }

m letters

...BABA
| {z }

m letters

, Ba→ abab...
| {z }

m letters

...ABAB
| {z }

m letters

.

 Here : terminating in quadratic time and linear space

• Example 4:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ab→ abA, Ba→ aBA

Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA →aaaBAbAA →aaaBabAAA →aaaaBAbAAA

↑
w

↑
awA

↑
a
2wA

2

 Here : non-terminating

• Example 5:
Alphabet a, b, A, B, rules Aa→ ε, Bb→ ε, plus Ba→ abab

2
ab

2
abab,

Ba→ BABAB
2
AB

2
ABA,

 Here : terminating in cubic time and quadratic space

Reversing: connection with monoids and groups

• What are we doing?

Reversing: connection with monoids and groups

• What are we doing? We are working with a semigroup presentation
and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations,

Reversing: connection with monoids and groups

• What are we doing? We are working with a semigroup presentation
and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g.,
{a, b}, plus {aba = bab}.

Reversing: connection with monoids and groups

• What are we doing? We are working with a semigroup presentation
and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g.,
{a, b}, plus {aba = bab}. monoid 〈a, b | aba = bab〉+,

Reversing: connection with monoids and groups

• What are we doing? We are working with a semigroup presentation
and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g.,
{a, b}, plus {aba = bab}. monoid 〈a, b | aba = bab〉+, group 〈a, b | aba = bab〉.

Reversing: connection with monoids and groups

• What are we doing? We are working with a semigroup presentation
and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g.,
{a, b}, plus {aba = bab}. monoid 〈a, b | aba = bab〉+, group 〈a, b | aba = bab〉.

• Definition.— Assume (A, R) semigroup presentation and, for all s 6= t in A,
there is exactly one relation s... = t... in R, say sC(s, t) = tC(t, s).

Then reversing is the rewrite system on A∪A (a copy of A, here : capitalized letters)

with rules ss→ ε and st→ C(s, t)C(t, s) for s 6= t in A.

• Reversing does not change the element of the group that is represented;

Reversing: connection with monoids and groups

• What are we doing? We are working with a semigroup presentation
and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g.,
{a, b}, plus {aba = bab}. monoid 〈a, b | aba = bab〉+, group 〈a, b | aba = bab〉.

• Definition.— Assume (A, R) semigroup presentation and, for all s 6= t in A,
there is exactly one relation s... = t... in R, say sC(s, t) = tC(t, s).

Then reversing is the rewrite system on A∪A (a copy of A, here : capitalized letters)

with rules ss→ ε and st→ C(s, t)C(t, s) for s 6= t in A.

• Reversing does not change the element of the group that is represented;
 if it terminates, every element of the group is a fraction fg−1 with f, g positive.

• Example 1 = reversing for the free Abelian group: 〈a, b | ab = ba〉;

Reversing: connection with monoids and groups

• What are we doing? We are working with a semigroup presentation
and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g.,
{a, b}, plus {aba = bab}. monoid 〈a, b | aba = bab〉+, group 〈a, b | aba = bab〉.

• Definition.— Assume (A, R) semigroup presentation and, for all s 6= t in A,
there is exactly one relation s... = t... in R, say sC(s, t) = tC(t, s).

Then reversing is the rewrite system on A∪A (a copy of A, here : capitalized letters)

with rules ss→ ε and st→ C(s, t)C(t, s) for s 6= t in A.

• Reversing does not change the element of the group that is represented;
 if it terminates, every element of the group is a fraction fg−1 with f, g positive.

• Example 1 = reversing for the free Abelian group: 〈a, b | ab = ba〉;
• Example 2 = reversing for the 3-strand braid group: 〈a, b | aba = bab〉;

Reversing: connection with monoids and groups

• What are we doing? We are working with a semigroup presentation
and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g.,
{a, b}, plus {aba = bab}. monoid 〈a, b | aba = bab〉+, group 〈a, b | aba = bab〉.

• Definition.— Assume (A, R) semigroup presentation and, for all s 6= t in A,
there is exactly one relation s... = t... in R, say sC(s, t) = tC(t, s).

Then reversing is the rewrite system on A∪A (a copy of A, here : capitalized letters)

with rules ss→ ε and st→ C(s, t)C(t, s) for s 6= t in A.

• Reversing does not change the element of the group that is represented;
 if it terminates, every element of the group is a fraction fg−1 with f, g positive.

• Example 1 = reversing for the free Abelian group: 〈a, b | ab = ba〉;
• Example 2 = reversing for the 3-strand braid group: 〈a, b | aba = bab〉;
• Example 3 = reversing for type I2(m + 1) Artin group: 〈a, b | abab...

| {z }

m+1

= baba...
| {z }

m+1

〉;

Reversing: connection with monoids and groups

• What are we doing? We are working with a semigroup presentation
and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g.,
{a, b}, plus {aba = bab}. monoid 〈a, b | aba = bab〉+, group 〈a, b | aba = bab〉.

• Definition.— Assume (A, R) semigroup presentation and, for all s 6= t in A,
there is exactly one relation s... = t... in R, say sC(s, t) = tC(t, s).

Then reversing is the rewrite system on A∪A (a copy of A, here : capitalized letters)

with rules ss→ ε and st→ C(s, t)C(t, s) for s 6= t in A.

• Reversing does not change the element of the group that is represented;
 if it terminates, every element of the group is a fraction fg−1 with f, g positive.

• Example 1 = reversing for the free Abelian group: 〈a, b | ab = ba〉;
• Example 2 = reversing for the 3-strand braid group: 〈a, b | aba = bab〉;
• Example 3 = reversing for type I2(m + 1) Artin group: 〈a, b | abab...

| {z }

m+1

= baba...
| {z }

m+1

〉;

• Example 4 = reversing for the Baumslag–Solitar group: 〈a, b | ab2 = ba〉;

Reversing: connection with monoids and groups

• What are we doing? We are working with a semigroup presentation
and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g.,
{a, b}, plus {aba = bab}. monoid 〈a, b | aba = bab〉+, group 〈a, b | aba = bab〉.

• Definition.— Assume (A, R) semigroup presentation and, for all s 6= t in A,
there is exactly one relation s... = t... in R, say sC(s, t) = tC(t, s).

Then reversing is the rewrite system on A∪A (a copy of A, here : capitalized letters)

with rules ss→ ε and st→ C(s, t)C(t, s) for s 6= t in A.

• Reversing does not change the element of the group that is represented;
 if it terminates, every element of the group is a fraction fg−1 with f, g positive.

• Example 1 = reversing for the free Abelian group: 〈a, b | ab = ba〉;
• Example 2 = reversing for the 3-strand braid group: 〈a, b | aba = bab〉;
• Example 3 = reversing for type I2(m + 1) Artin group: 〈a, b | abab...

| {z }

m+1

= baba...
| {z }

m+1

〉;

• Example 4 = reversing for the Baumslag–Solitar group: 〈a, b | ab2 = ba〉;
• Example 5 = reversing for the ordered group: 〈a, b | a = babab

2
ab

2
abab〉.

Reversing: questions

• The only known facts:

Reversing: questions

• The only known facts:
- reduction to the baby case ⇒ termination;

Reversing: questions

• The only known facts:
- reduction to the baby case ⇒ termination;
- self-reproducing pattern ⇒ non-termination;

Reversing: questions

• The only known facts:
- reduction to the baby case ⇒ termination;
- self-reproducing pattern ⇒ non-termination;

- if reversing is complete for (A, R), then it is terminating
iff any two elements of the monoid 〈A | R〉+ admit a common right-multiple.

Reversing: questions

• The only known facts:
- reduction to the baby case ⇒ termination;
- self-reproducing pattern ⇒ non-termination;

- if reversing is complete for (A, R), then it is terminating
iff any two elements of the monoid 〈A | R〉+ admit a common right-multiple.

• Question.— What can YOU say about reversing?

References

For the Polish Algorithm:

• P. Dehornoy, Braids and selfdistributivity, Progress in math. vol 192, Birkhaüser
2000 (Chapter VIII)

• O. Deiser, Notes on the Polish Algorithm, deiser@tum.de (Technishe Universität
München)

References

For the Polish Algorithm:

• P. Dehornoy, Braids and selfdistributivity, Progress in math. vol 192, Birkhaüser
2000 (Chapter VIII)

• O. Deiser, Notes on the Polish Algorithm, deiser@tum.de (Technishe Universität
München)

For Handle Reduction of braids:

• P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Braid ordering, Math. Surveys
and Monographs vol. 148, Amer. Math. Soc. 2008 (Chapter V)

References

For the Polish Algorithm:

• P. Dehornoy, Braids and selfdistributivity, Progress in math. vol 192, Birkhaüser
2000 (Chapter VIII)

• O. Deiser, Notes on the Polish Algorithm, deiser@tum.de (Technishe Universität
München)

For Handle Reduction of braids:

• P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Braid ordering, Math. Surveys
and Monographs vol. 148, Amer. Math. Soc. 2008 (Chapter V)

For reversing associated with a semigroup presentation:

• P. Dehornoy, with F. Digne, E. Godelle, D. Krammer, J. Michel, Foundations of
Garside Theory, submitted www.math.unicaen.fr/∼dehornoy/ (Chapter II)

References

For the Polish Algorithm:

• P. Dehornoy, Braids and selfdistributivity, Progress in math. vol 192, Birkhaüser
2000 (Chapter VIII)

• O. Deiser, Notes on the Polish Algorithm, deiser@tum.de (Technishe Universität
München)

For Handle Reduction of braids:

• P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Braid ordering, Math. Surveys
and Monographs vol. 148, Amer. Math. Soc. 2008 (Chapter V)

For reversing associated with a semigroup presentation:

• P. Dehornoy, with F. Digne, E. Godelle, D. Krammer, J. Michel, Foundations of
Garside Theory, submitted www.math.unicaen.fr/∼dehornoy/ (Chapter II)

...venez au groupe de travail du vendredi !

