

Three termination problems

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

OQ **∢ ロ ▶ - (何)-** - (\equiv +

Three termination problems

Patrick Dehornoy

Laboratoire Preuves, Programmes, Systèmes Université Paris-Diderot

• Three unrelated termination problems : partial specific answers known, but no global understanding: can some general tools be useful?

• Plan :

- 1. The Polish Algorithm for Left-Selfdistributivity
- 2. Handle reduction of braids
- 3. Subword reversing for positively presented groups

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

1. The Polish Algorithm for Left-Selfdistributivity

- 2. Handle reduction of braids
- 3. Subword reversing for positively presented groups

(ロ) (@) (글) (글) = 글 = 990

- A "bi-term rewrite system" (????)
- The associativity law (A) : $x * (y * z) = (x * y) * z$,
	- ... and the corresponding Word Problem:

Given two terms t, t' , decide whether t and t' are A -equivalent.

 \bullet A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: " t_1t_2 *" for t_1*t_2 (no bracket needed) Example: In Polish, associativity is $x y z * * = x y * z *$.

KEL KAR KELKER E VAN

• Remember : in Polish, associativity is
$$
\begin{cases} xy z * * \\ xy * z * \end{cases}
$$
.

• Example: $t = x * (x * (x * x))$, $t' = ((x * x) * x) * x$, i.e., in Polish,

 $t_0 = x x x x ***$ $t_0^{\gamma} = xx*x*x*x*$ $t_1 = x x * x x * *$ $\bm{t}_1^{\prime} = xx*x*x*x*$ $t_2 = x x * x * x *$ $t_2^7 = xx*x*x*$ So $t_2 = t$ ϵ'_2 , hence \bm{t}_0 and \bm{t}'_0 are A -equivalent.

• "Theorem".— The Polish Algorithm works for associativity. (In particular, it terminates.) • Left-selfdistributivity (LD) : $x*(y*z)=(x*y)*(x*z)$, i.e., in Polish, $\begin{cases} xyz** \end{cases}$ $xyz**$ compare with associativity $\begin{cases} xyz** \\ xy*x** \end{cases}$ x y ∗x∗

• Polish Algorithm: the same as for associativity.

• Example: $t = x * ((x * x) * (x * x))$, $t' = (x * x) * (x * (x * x))$, i.e., in Polish, $\boldsymbol{t}_0 = \boldsymbol{x}\boldsymbol{x}\boldsymbol{x}*\boldsymbol{x}\boldsymbol{x}*\boldsymbol{*} *$ $t_0 = xx * xxx **$ $t_1 = x x * x x * * x x x * * *$ $t_1 = x x * x x * * x x x * * *$
 $t'_1 = x x * x x x * * * *$ (= t $_{0}^{\prime})$ $\boldsymbol{t}_2 = \, \boldsymbol{x}\boldsymbol{x} \ast \boldsymbol{x}\boldsymbol{x} \ast \ast \boldsymbol{x}\boldsymbol{x}\boldsymbol{x} \ast \ast \ast \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, (= \boldsymbol{t}_1)$ $t_2^7 = xx*xxx*xx**$ $***xxxx***$ $x\,$ $\boldsymbol{t}_3 = \boldsymbol{x}\boldsymbol{x}*\boldsymbol{x}\boldsymbol{x}*\boldsymbol{x}\boldsymbol{x}\boldsymbol{x}*\boldsymbol{*} \ast \boldsymbol{*} \qquad (=\boldsymbol{t}_2)$ $t'_3 = xx*xx**xx*x*x***$ $t_4 = x x * x x * x x * x x * * * *$ $t'_4 = xx*x*x*x*x*x** * (-t'_3)$ So $t_4=t'_4$, hence t_0 and t'_0 are LD -equivalent.

A DIA K FIRE A BILITARY A DIA K

• Conjecture.— The Polish Algorithm works for left-selfdistributivity.

• Known.— (i) If it terminates, the Polish Algorithm works for left-selfdistributivity. (ii) The smallest counter-example to termination (if any) is huge.

1. The Polish Algorithm for Left-Selfdistributivity

- 2. Handle reduction of braids
- 3. Subword reversing for positively presented groups

(ロ) (@) (글) (글) = 글 = 990

KEL KAR KELKER E VAN

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
• Rewrite rules:
      - aA \rightarrow \varepsilon, Aa \rightarrow \varepsilon, bB \rightarrow \varepsilon, Bb \rightarrow \varepsilon (so far trivial: "free group reduction")
      - abA \rightarrow Bab, aBA \rightarrow BAb, Aba \rightarrow baB, ABa \rightarrow bAB.
and, more generally,
      - ab^iA \rightarrow Ba^i b, aB^iA \rightarrow BA^i b, Ab^i a \rightarrow ba^iB, AB^i a \rightarrow bA^iB for i \geq 1.
```
• Aim: obtain a word that does not contain both a and A.

• Example: $w_0 =$ aabAbbAA

 $w_1 =$ aBabbbAA $w_2 =$ aBBaa<u>abA</u>
 $w_3 =$ aBBaaBab.

 \rightarrow a word without A

 \Box

 \equiv OQ

イロト イ押ト イヨト イヨト

• Theorem.— The process terminates in quadratic time.

• Proof: (Length does not increase, but could cycle.) Associate with the sequence of reductions a rectangular grid (quadratic area). For the example:

 $w_0 =$ aabAbbAA $w_1 =$ aBabbbAA $w_2 = aBB$ aab A $w_3 =$ aBBaaBab

draw the grid:

• This is the braid handle reduction procedure: so far: case of "3-strand" braids; now: case of "4-strand" braids (case of " n strand" braids entirely similar for every n). \bullet Alphabet: a, b, c, A, B, C . • Rewrite rules: $-$ aA $\rightarrow \varepsilon$, Aa $\rightarrow \varepsilon$, bB $\rightarrow \varepsilon$, Bb $\rightarrow \varepsilon$, CC $\rightarrow \varepsilon$, Cc $\rightarrow \varepsilon$, (as above) - for \boldsymbol{w} in $\{ \texttt{b}, \texttt{c}, \texttt{C}\}^*$ or $\{ \texttt{B}, \texttt{c}, \texttt{C}\}^*$: a \boldsymbol{w} A $\rightarrow \phi_\mathtt{a}(\boldsymbol{w})$, A \boldsymbol{w} a $\rightarrow \phi_\mathtt{A}(\boldsymbol{w})$, with $\phi_a(w)$ obtained from w by b \rightarrow Bab and B \rightarrow BAb, and $\phi_{\mu}(\omega)$ obtained from ω by b \rightarrow baB and B \rightarrow bAB, - for \bm{w} in $\{\mathsf{c}\}^*$ or $\{\mathsf{C}\}^* \colon \bm{\mathrm{b}}\bm{w}$ B $\to \phi_\mathsf{b}(\bm{w})$, B $\bm{w}\mathsf{b} \to \phi_\mathsf{B}(\bm{w})$, with $\phi_b(w)$ obtained from w by c \rightarrow Cbc and C \rightarrow CBc, and $\phi_B(w)$ obtained from w by $c \rightarrow cbC$ and $C \rightarrow cBC$.

• Remark.— $ab^iA \rightarrow (Bab)^i \rightarrow Ba^i b$: extends the 3-strand case.

• Example:

abcbABABCBA BabcBabBABCBA BabcBaABCBA BabcBBCBA BaCbcBCBA BaCCbcCBA BaCCbBA BaCCA BCC

 \rightarrow Terminates: the final word does not contain both a and A (by the way: contains neither a nor A, and not both b and B.)

• A 4-strand braid diagram $= 2D$ -projection of a 3D-figure:

 \bullet isotopy = move the strands but keep the ends fixed:

• a $braid :=$ an isotopy class \leftrightarrow represented by 2D-diagram, but different 2D-diagrams may give rise to the same braid. • Product of two braids:

• Then well-defined with respect to isotopy), associative, admits a unit:

and inverses: isotopic to and inverses:

(ロ) (日) (모) (모) (모) 및 990

 \rightarrow For each n, the group B_n of n-strand braids (E.Artin, 1925).

• Artin generators of B_n :

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

 \bullet A $\sigma_{\!i}$ -handle:

• Reducing a handle:

• Handle reduction is an isotopy; It extends free group reduction; Terminal words cannot contain both σ_1 and σ_1^{-1} .

• Theorem.— Every sequence of handle reductions terminates.

- 1. The Polish Algorithm for Left-Selfdistributivity
- 2. Handle reduction of braids
- 3. Subword reversing for positively presented groups

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
	- $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction) $-$ Ab \rightarrow bA, Ba \rightarrow aB. ("reverse $-+$ patterns into $+-$ patterns")

• Aim: transforming an arbitrary signed word into a positive–negative word.

• Example: BBAbabb \rightarrow BBbAabb \rightarrow BAabb \rightarrow Bbb \rightarrow b.

• "Theorem".— It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

- Clear that reversing terminates with quadratic time upper bound (and linear space upper bound).
- Obviously: id. for any number of letters.

 $A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box C \rightarrow A \Box C$

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
	- $-$ Aa $\rightarrow \varepsilon$, Bb $\rightarrow \varepsilon$ (free group reduction in one direction) $-$ Ab \rightarrow baBA, Ba \rightarrow abAB. ("reverse $-+$ into $+-$ ", but different rule)
		- Again: transforms an arbitrary signed word into a positive–negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb → BBbaBAabb → BaBAabb \rightarrow abABBAabb \rightarrow abABBbb \rightarrow abABb \rightarrow abA.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \rightarrow \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \rightarrow \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 OQ

• Reversing grid: same, but possibly smaller and smaller arrows.

• Theorem.— Reversing terminates in quadratic time (in this specific case).

• Proof: Return to the baby case = find a (finite) set of words S that includes the plubblet and closed under reversing alphabet and closed under reversing. $\mathop{\uparrow}\limits^{\mathop{\uparrow}\limits^{\mathop{\smile}}}_{\scriptstyle\mathop{\mathcal{M}}}$ all u,v in S , exist u',v' in S s.t. \exists reversing grid u $\overline{v'}$ \boldsymbol{u}' Here: works with $S = \{a, b, ab, ba\}$.

• Always like that? Not really...

• Example 3: Alphabet a, b, A, B, rules $Aa \rightarrow \varepsilon$, Bb $\rightarrow \varepsilon$, plus $Ab \rightarrow$ baba.......BABA, Ba \rightarrow abab.......ABAB. m letters m letters m letters m letters → Here : terminating in quadratic time and linear space • Example 4: Alphabet a, b, A, B, rules $Aa \rightarrow \varepsilon$, Bb $\rightarrow \varepsilon$, plus Ab \rightarrow abA, Ba \rightarrow aBA Start with Bab: Bab → aBAb → aBabA →aaBAbA →aaBabAA →aaaB<u>Ab</u>AA →aaaBabAAA →aaaaBAbAAA $\stackrel{\uparrow}{\bm{w}}$ $\mathop{\mathsf{d}}\limits^{\uparrow}$ a w A $\mathsf{a}^2 \overset{\!\uparrow}{w} \mathsf{A}^2$ \rightarrow Here : non-terminating • Example 5: Alphabet a, b, A, B, rules Aa $\rightarrow \varepsilon$, Bb $\rightarrow \varepsilon$, plus Ba \rightarrow abab²ab²abab. $BA \rightarrow BARAR^2AR^2AR$ Here : terminating in cubic time and quadratic space

• What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{a, b\}$, plus $\{aba = bab\}$. $\rightarrow \rightarrow$ monoid $\langle a, b | aba = bab\rangle^+$, group $\langle a, b | aba = bab\rangle$.

• Definition.— Assume (A, R) semigroup presentation and, for all $s \neq t$ in A , there is exactly one relation $s... = t...$ in R, say $sC(s, t) = tC(t, s)$. Then reversing is the rewrite system on $A\cup\overline{A}$ (a copy of A, here : capitalized letters) with rules $\overline{s}s \to \varepsilon$ and $\overline{s}t \to C(s,t)\overline{C(t,s)}$ for $s \neq t$ in A.

• Reversing does not change the element of the group that is represented; \rightarrow if it terminates, every element of the group is a fraction fg^{-1} with f, g positive.

- Example 1 = reversing for the free Abelian group: $\langle a, b | ab = ba \rangle$;
- Example 2 = reversing for the 3-strand braid group: $\langle a, b \rangle$ aba = bab);
- Example 3 = reversing for type $I_2(m+1)$ Artin group: $\langle a, b \mid abab... = baba... \rangle$;
- Example 4 = reversing for the Baumslag–Solitar group: $\langle a, b | ab^2 = ba \rangle$;
- Example 5 = reversing for the ordered group: $\langle a, b | a = babab^2ab^2abab \rangle$.

 ${m+1}$

 ${m+1}$

KEL KAR KELKER E VAN

- The only known facts:
	- reduction to the baby case \Rightarrow termination;
	- self-reproducing pattern ⇒ non-termination;
	- if reversing is complete for (A, R) , then it is terminating iff any two elements of the monoid $\langle A | R \rangle^+$ admit a common right-multiple.

• Question. - What can YOU say about reversing?

For the Polish Algorithm:

• P. Dehornoy, Braids and selfdistributivity, Progress in math. vol 192, Birkhaüser 2000 (Chapter VIII)

• O. Deiser, Notes on the Polish Algorithm, deiser@tum.de (Technishe Universität München)

For Handle Reduction of braids:

• P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Braid ordering, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. 2008 (Chapter V)

For reversing associated with a semigroup presentation:

• P. Dehornoy, with F. Digne, E. Godelle, D. Krammer, J. Michel, Foundations of Garside Theory, submitted www.math.unicaen.fr/∼dehornoy/ (Chapter II) ...venez au groupe de travail du vendredi !