◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

• A simple scheme for constructing monoids in which left-divisibility is a linear ordering,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

• A simple scheme for constructing monoids in which left-divisibility is a linear ordering, connected with non-Noetherian Garside theory.

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

• A simple scheme for constructing monoids in which left-divisibility is a linear ordering, connected with non-Noetherian Garside theory.

• Application: ordered groups whose space of orderings has an isolated point.

シック 正 エル・エー・ キャー・

• Plan :

1. The space of orderings of an orderable group

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

• Plan :

1. The space of orderings of an orderable group

<ロ> <0</p>

2. Right-triangular presentations

• Plan :

1. The space of orderings of an orderable group

- 2. Right-triangular presentations
- 3. The case of braid groups

1. The space of orderings of an orderable group

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 = の � @

- 2. Right-triangular presentations
- 3. The case of braid groups

• Definition.— A group G is orderable if there exists a linear ordering \leq on G that is left-invariant, that is, $g \leq h$ implies $fg \leq fh$ for all f, g, h.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Definition.— A group G is orderable if there exists a linear ordering \leqslant on G that is left-invariant, that is, $g \leqslant h$ implies $fg \leqslant fh$ for all f, g, h.

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $P := \{g \in G \mid g > 1\}$ is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

• Definition.— A group G is orderable if there exists a linear ordering \leqslant on G that is left-invariant, that is, $g \leqslant h$ implies $fg \leqslant fh$ for all f, g, h.

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $P := \{g \in G \mid g > 1\}$ is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G. $\leftarrow P$: the positive cone of \leq .

• Definition.— A group G is orderable if there exists a linear ordering \leq on G that is left-invariant, that is, $g \leq h$ implies $fg \leq fh$ for all f, g, h.

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $P := \{g \in G \mid g > 1\}$ is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G. $\leftarrow P$: the positive cone of \leq . (ii) Conversely, if P is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G, then $g^{-1}h \in P$ defines a left-invariant linear ordering on G.

• Definition.— A group G is orderable if there exists a linear ordering \leq on G that is left-invariant, that is, $g \leq h$ implies $fg \leq fh$ for all f, g, h.

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $P := \{g \in G \mid g > 1\}$ is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G. $\leftarrow P$: the positive cone of \leq . (ii) Conversely, if P is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G, then $g^{-1}h \in P$ defines a left-invariant linear ordering on G.

• Definition.— A monoid M is of right-O-type if M is left-cancellative, has no nontrivial invertible element, and the left-divisibility relation \preccurlyeq is a linear ordering on M.

• Definition.— A group G is orderable if there exists a linear ordering \leq on G that is left-invariant, that is, $g \leq h$ implies $fg \leq fh$ for all f, g, h.

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $P := \{g \in G \mid g > 1\}$ is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G. $\leftarrow P$: the positive cone of \leq . (ii) Conversely, if P is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G, then $g^{-1}h \in P$ defines a left-invariant linear ordering on G.

• Definition.— A monoid M is of right-O-type if M is left-cancellative, has no nontrivial invertible element, and the left-divisibility relation \preccurlyeq is a linear ordering on M.

 $\boldsymbol{g} \preccurlyeq \boldsymbol{h} \text{ iff } \exists \boldsymbol{h}' \left(\boldsymbol{g} \boldsymbol{h}' = \boldsymbol{h} \right)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

• Definition.— A group G is orderable if there exists a linear ordering \leq on G that is left-invariant, that is, $g \leq h$ implies $fg \leq fh$ for all f, g, h.

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $P := \{g \in G \mid g > 1\}$ is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G. $\leftarrow P$: the positive cone of \leq . (ii) Conversely, if P is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G, then $g^{-1}h \in P$ defines a left-invariant linear ordering on G.

• Definition.— A monoid M is of right-O-type if M is left-cancellative, has no nontrivial invertible element, and the left-divisibility relation \preccurlyeq is a linear ordering on M.

 $g \preccurlyeq h \text{ iff } \exists h' (gh' = h)$

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $\{g \in G \mid g \ge 1\}$ is a monoid of *O*-type.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

• Definition.— A group G is orderable if there exists a linear ordering \leq on G that is left-invariant, that is, $g \leq h$ implies $fg \leq fh$ for all f, g, h.

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $P := \{g \in G \mid g > 1\}$ is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G. $\leftarrow P$: the positive cone of \leq . (ii) Conversely, if P is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G, then $g^{-1}h \in P$ defines a left-invariant linear ordering on G.

• Definition.— A monoid M is of right-O-type if M is left-cancellative, has no nontrivial invertible element, and the left-divisibility relation \preccurlyeq is a linear ordering on M.

 $\boldsymbol{g}\preccurlyeq\boldsymbol{h} \text{ iff } \exists \boldsymbol{h}' \left(\boldsymbol{g}\boldsymbol{h}'=\boldsymbol{h}\right)$

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $\{g \in G \mid g \ge 1\}$ is a monoid of O-type. \leftarrow right- and left-O-type • Definition.— A group G is orderable if there exists a linear ordering \leq on G that is left-invariant, that is, $g \leq h$ implies $fg \leq fh$ for all f, g, h.

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $P := \{g \in G \mid g > 1\}$ is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G. $\leftarrow P$: the positive cone of \leq . (ii) Conversely, if P is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G, then $g^{-1}h \in P$ defines a left-invariant linear ordering on G.

• Definition.— A monoid M is of right-O-type if M is left-cancellative, has no nontrivial invertible element, and the left-divisibility relation \preccurlyeq is a linear ordering on M.

 $\boldsymbol{g}\preccurlyeq \boldsymbol{h} ext{ iff } \exists \boldsymbol{h}' \left(\boldsymbol{g} \boldsymbol{h}' = \boldsymbol{h}
ight)$

Lemma.— (i) If ≤ is a left-invariant ordering on G, then {g ∈ G | g ≥ 1} is a monoid of O-type.
(ii) Conversely, if M is a monoid of O-type, then g⁻¹h ∈ M \ {1} defines a left-invariant linear ordering on the enveloping group of M.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Definition.— A group G is orderable if there exists a linear ordering \leqslant on G that is left-invariant, that is, $g \leqslant h$ implies $fg \leqslant fh$ for all f, g, h.

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $P := \{g \in G \mid g > 1\}$ is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G. $\leftarrow P$: the positive cone of \leq . (ii) Conversely, if P is a subsemigroup of G s.t. P, P^{-1} , $\{1\}$ partition G, then $g^{-1}h \in P$ defines a left-invariant linear ordering on G.

• Definition.— A monoid M is of right-O-type if M is left-cancellative, has no nontrivial invertible element, and the left-divisibility relation \preccurlyeq is a linear ordering on M.

 $\boldsymbol{g} \preccurlyeq \boldsymbol{h} \text{ iff } \exists \boldsymbol{h}' \left(\boldsymbol{g} \boldsymbol{h}' = \boldsymbol{h}
ight)$

• Lemma.— (i) If \leq is a left-invariant ordering on G, then $\{g \in G \mid g \geq 1\}$ is a monoid of O-type. (ii) Conversely, if M is a monoid of O-type, then $g^{-1}h \in M \setminus \{1\}$ defines a left-invariant linear ordering on the enveloping group of M.

 \rightsquigarrow constructing orderable groups \Leftrightarrow constructing monoids of O-type

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の � @

• Definition.— For *G* orderable group, LO(G) := the family of all positive cones of left-invariant orderings on *G*.

subsets of G

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

(日) (日) (日) (日) (日) (日) (日) (日)

• Proposition (Sikora).— The set LO(G) is a closed subspace of $\{0,1\}^{G \times G}$.

(日) (日) (日) (日) (日) (日) (日) (日)

• Proposition (Sikora).— The set LO(G) is a closed subspace of $\{0,1\}^{G \times G}$.

• Proof: - P belongs to LO(G) iff $P^2 \subseteq P$, and $P \cup P^{-1} \cup \{1\} = G$ and $P \cap P^{-1} = \emptyset$ and $1 \notin P$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Proposition (Sikora).— The set LO(G) is a closed subspace of $\{0,1\}^{G \times G}$.

• Proof: - P belongs to LO(G) iff $P^2 \subseteq P$, and $P \cup P^{-1} \cup \{1\} = G$ and $P \cap P^{-1} = \emptyset$ and $1 \notin P$. - P does not belong to LO(G) iff $\exists g, h \ (g \in P \& h \in P \& gh \notin P)$ or...

• Proposition (Sikora).— The set LO(G) is a closed subspace of $\{0,1\}^{G \times G}$.

• Proof: - P belongs to LO(G) iff $P^2 \subseteq P$, and $P \cup P^{-1} \cup \{1\} = G$ and $P \cap P^{-1} = \emptyset$ and $1 \notin P$. - P does not belong to LO(G) iff $\exists g, h \ (g \in P \& h \in P \& gh \notin P)$ or... - base of open sets

 $U_{\boldsymbol{g}_1,\ldots,\boldsymbol{g}_p\boldsymbol{h}_1,\ldots,\boldsymbol{h}_q} = \{\boldsymbol{X} \subseteq \boldsymbol{G} \mid \boldsymbol{g}_1,\ldots,\boldsymbol{g}_p \in \boldsymbol{X} \& \boldsymbol{h}_1,\ldots,\boldsymbol{h}_q \notin \boldsymbol{X}\}.$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

• Proposition (Sikora).— The set LO(G) is a closed subspace of $\{0,1\}^{G \times G}$.

• Proof: - P belongs to LO(G) iff $P^2 \subseteq P$, and $P \cup P^{-1} \cup \{1\} = G$ and $P \cap P^{-1} = \emptyset$ and $1 \notin P$. - P does not belong to LO(G) iff $\exists g, h \ (g \in P \& h \in P \& gh \notin P)$ or... - base of open sets U

$$U_{\boldsymbol{g}_1,\ldots,\boldsymbol{g}_p\boldsymbol{h}_1,\ldots,\boldsymbol{h}_q} = \{ \boldsymbol{X} \subseteq \boldsymbol{G} \mid \boldsymbol{g}_1,\ldots,\boldsymbol{g}_p \in \boldsymbol{X} \& \boldsymbol{h}_1,\ldots,\boldsymbol{h}_q \notin \boldsymbol{X} \}.$$

• If G is (finite or) countable, then $\mathfrak{P}(G)$ is metrizable.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 = の � @

• If G is (finite or) countable, then $\mathfrak{P}(G)$ is metrizable.

• Proposition (Linnel).— A space LO(G) cannot be countably infinite.

<□▶ < @ ▶ < E ▶ < E ▶ E のへぐ

• If G is (finite or) countable, then $\mathfrak{P}(G)$ is metrizable.

• Proposition (Linnel).— A space LO(G) cannot be countably infinite.

• Corollary.— If G is countable and orderable, the space LO(G) is - either finite,

• If G is (finite or) countable, then $\mathfrak{P}(G)$ is metrizable.

• Proposition (Linnel).— A space LO(G) cannot be countably infinite.

 \bullet Corollary.— If ${\boldsymbol{G}}$ is countable and orderable, the space ${\boldsymbol{L}}{\boldsymbol{O}}({\boldsymbol{G}})$ is

- either finite,
- or isomorphic to the Cantor space,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

• If G is (finite or) countable, then $\mathfrak{P}(G)$ is metrizable.

• Proposition (Linnel).— A space LO(G) cannot be countably infinite.

 \bullet Corollary.— If ${\boldsymbol{G}}$ is countable and orderable, the space ${\boldsymbol{L}}{\boldsymbol{O}}({\boldsymbol{G}})$ is

- either finite,
- or isomorphic to the Cantor space,
- or isomorphic to a subspace of the Cantor space with isolated points.
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• If G is (finite or) countable, then $\mathfrak{P}(G)$ is metrizable.

• Proposition (Linnel).— A space LO(G) cannot be countably infinite.

 \bullet Corollary.— If ${\boldsymbol{G}}$ is countable and orderable, the space ${\boldsymbol{L}}{\boldsymbol{O}}({\boldsymbol{G}})$ is

- either finite,
- or isomorphic to the Cantor space,
- or isomorphic to a subspace of the Cantor space with isolated points.

• Examples:

- $LO(\pi_1(\text{Klein bottle})) (= LO(\mathbb{Z} \rtimes \mathbb{Z}))$ has 4 elements;

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• If G is (finite or) countable, then $\mathfrak{P}(G)$ is metrizable.

• Proposition (Linnel).— A space LO(G) cannot be countably infinite.

• Corollary.— If G is countable and orderable, the space LO(G) is

- either finite,
- or isomorphic to the Cantor space,
- or isomorphic to a subspace of the Cantor space with isolated points.

• Examples:

- $LO(\pi_1(Klein bottle))$ (= $LO(\mathbb{Z} \rtimes \mathbb{Z})$) has 4 elements;
- (Sikora) $LO(\mathbb{Z}^n)$ is a Cantor space;

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• If G is (finite or) countable, then $\mathfrak{P}(G)$ is metrizable.

• Proposition (Linnel).— A space LO(G) cannot be countably infinite.

• Corollary.— If G is countable and orderable, the space LO(G) is

- either finite,
- or isomorphic to the Cantor space,
- or isomorphic to a subspace of the Cantor space with isolated points.

• Examples:

- $LO(\pi_1(Klein bottle))$ (= $LO(\mathbb{Z} \rtimes \mathbb{Z})$) has 4 elements;
- (Sikora) $LO(\mathbb{Z}^n)$ is a Cantor space;
- (McCleary, Navas) $LO(F_n)$ is a Cantor space.

• If G is (finite or) countable, then $\mathfrak{P}(G)$ is metrizable.

• Proposition (Linnel).— A space LO(G) cannot be countably infinite.

• Corollary.— If \overline{G} is countable and orderable, the space LO(G) is

- either finite,
- or isomorphic to the Cantor space,
- or isomorphic to a subspace of the Cantor space with isolated points.

• Examples:

- $LO(\pi_1(Klein bottle))$ (= $LO(\mathbb{Z} \rtimes \mathbb{Z})$) has 4 elements;
- (Sikora) $LO(\mathbb{Z}^n)$ is a Cantor space;
- (McCleary, Navas) $LO(F_n)$ is a Cantor space.

 \rightsquigarrow Can LO(G) be infinite with isolated points?

• Lemma.— (i) A left-invariant ordering \leq of G is isolated iff exists a finite subset $\{g_1, ..., g_p\}$ of G s.t. \leq is the only left-invariant ordering with $1 < g_1, ..., 1 < g_p$.

• Lemma.— (i) A left-invariant ordering \leq of G is isolated iff exists a finite subset $\{g_1, ..., g_p\}$ of G s.t. \leq is the only left-invariant ordering with $1 < g_1, ..., 1 < g_p$. (ii) This is true in particular if the positive cone is finitely generated as a semigroup. • Lemma.— (i) A left-invariant ordering \leq of G is isolated iff exists a finite subset $\{g_1, ..., g_p\}$ of G s.t. \leq is the only left-invariant ordering with $1 < g_1, ..., 1 < g_p$. (ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) $\{P_{\leqslant}\} = U_{g_1,\dots,g_p,\emptyset};$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Lemma.— (i) A left-invariant ordering \leq of G is isolated iff exists a finite subset $\{g_1, ..., g_p\}$ of G s.t. \leq is the only left-invariant ordering with $1 < g_1, ..., 1 < g_p$. (ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) $\{P_{\leqslant}\} = U_{g_1,...,g_p,\emptyset}$; (ii) if P_{\leqslant} is generated by $g_1,...,g_p$, then every cone that contains $g_1,...,g_p$ includes P_{\leqslant} , • Lemma.— (i) A left-invariant ordering \leq of G is isolated iff exists a finite subset $\{g_1, ..., g_p\}$ of G s.t. \leq is the only left-invariant ordering with $1 < g_1, ..., 1 < g_p$. (ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) $\{P_{\leqslant}\} = U_{g_1,...,g_p,\emptyset}$; (ii) if P_{\leqslant} is generated by $g_1,...,g_p$, then every cone that contains $g_1,...,g_p$ includes P_{\leqslant} , hence is equal to P_{\leqslant} . • Lemma.— (i) A left-invariant ordering \leq of G is isolated iff exists a finite subset $\{g_1, ..., g_p\}$ of G s.t. \leq is the only left-invariant ordering with $1 < g_1, ..., 1 < g_p$. (ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) $\{P_{\leqslant}\} = U_{g_1,...,g_p,\emptyset}$; (ii) if P_{\leqslant} is generated by $g_1,...,g_p$, then every cone that contains $g_1,...,g_p$ includes P_{\leqslant} , hence is equal to P_{\leqslant} .

• Proposition.— Assume that the group G admits a positive presentation $\langle S | R \rangle$ with S finite and $\langle S | R \rangle^+$ of O-type. Then the subsemigroup of G generated by S is the positive cone of an isolated left-invariant ordering of G.

(日) (日) (日) (日) (日) (日) (日) (日)

• Lemma.— (i) A left-invariant ordering \leq of G is isolated iff exists a finite subset $\{g_1, ..., g_p\}$ of G s.t. \leq is the only left-invariant ordering with $1 < g_1, ..., 1 < g_p$. (ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) $\{P_{\leqslant}\} = U_{g_1,...,g_p,\emptyset}$; (ii) if P_{\leqslant} is generated by $g_1,...,g_p$, then every cone that contains $g_1,...,g_p$ includes P_{\leqslant} , hence is equal to P_{\leqslant} .

• Proposition.— Assume that the group G admits a positive presentation $\langle S | R \rangle$ with S finite and $\langle S | R \rangle^+$ of O-type. Then the subsemigroup of G generated by S is the positive cone of an isolated left-invariant ordering of G.

• Example: $\mathbb{Z} \rtimes \mathbb{Z}$

(日) (日) (日) (日) (日) (日) (日) (日)

• Lemma.— (i) A left-invariant ordering \leq of G is isolated iff exists a finite subset $\{g_1, ..., g_p\}$ of G s.t. \leq is the only left-invariant ordering with $1 < g_1, ..., 1 < g_p$. (ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) $\{P_{\leqslant}\} = U_{g_1,...,g_p,\emptyset}$; (ii) if P_{\leqslant} is generated by $g_1,...,g_p$, then every cone that contains $g_1,...,g_p$ includes P_{\leqslant} , hence is equal to P_{\leqslant} .

• Proposition.— Assume that the group G admits a positive presentation $\langle S | R \rangle$ with S finite and $\langle S | R \rangle^+$ of O-type. Then the subsemigroup of G generated by S is the positive cone of an isolated left-invariant ordering of G.

• Example: $\mathbb{Z} \rtimes \mathbb{Z}$ = $\langle a, b \mid ab = b^{-1}a \rangle$

(日) (日) (日) (日) (日) (日) (日) (日)

• Lemma.— (i) A left-invariant ordering \leq of G is isolated iff exists a finite subset $\{g_1, ..., g_p\}$ of G s.t. \leq is the only left-invariant ordering with $1 < g_1, ..., 1 < g_p$. (ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) $\{P_{\leqslant}\} = U_{g_1,...,g_p,\emptyset}$; (ii) if P_{\leqslant} is generated by $g_1,...,g_p$, then every cone that contains $g_1,...,g_p$ includes P_{\leqslant} , hence is equal to P_{\leqslant} .

• Proposition.— Assume that the group G admits a positive presentation $\langle S | R \rangle$ with S finite and $\langle S | R \rangle^+$ of O-type. Then the subsemigroup of G generated by S is the positive cone of an isolated left-invariant ordering of G.

• Example: $\mathbb{Z} \rtimes \mathbb{Z}$ = $\langle a, b \mid ab = b^{-1}a \rangle$ = $\langle a, b \mid a = bab \rangle$. • Lemma.— (i) A left-invariant ordering \leq of G is isolated iff exists a finite subset $\{g_1, ..., g_p\}$ of G s.t. \leq is the only left-invariant ordering with $1 < g_1, ..., 1 < g_p$. (ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) $\{P_{\leqslant}\} = U_{g_1,...,g_p,\emptyset}$; (ii) if P_{\leqslant} is generated by $g_1,...,g_p$, then every cone that contains $g_1,...,g_p$ includes P_{\leqslant} , hence is equal to P_{\leqslant} .

• Proposition.— Assume that the group G admits a positive presentation $\langle S | R \rangle$ with S finite and $\langle S | R \rangle^+$ of O-type. Then the subsemigroup of G generated by S is the positive cone of an isolated left-invariant ordering of G.

1. The space of orderings of an orderable group

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- 2. Right-triangular presentations
- 3. The case of braid groups

 \leftrightarrow Here: consider presentations of a certain simple syntactic type.

↔ Here: consider presentations of a certain simple syntactic type.

• Definition.— A (positive) presentation is right-triangular

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Goal: Constructing finitely generated monoids of O-type.

↔ Here: consider presentations of a certain simple syntactic type.

 \bullet Definition.— A (positive) presentation is right-triangular if there exists an enumeration $(s_1,s_2,...)$ of S

• Goal: Constructing finitely generated monoids of O-type.

↔ Here: consider presentations of a certain simple syntactic type.

• Definition.— A (positive) presentation is right-triangular if there exists an enumeration $(s_1, s_2, ...)$ of S such that R consists of relations $s_1 = s_2 w_2$, $s_2 = s_3 w_3$, ...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

• Goal: Constructing finitely generated monoids of O-type.

↔ Here: consider presentations of a certain simple syntactic type.

• Definition.— A (positive) presentation is right-triangular if there exists an enumeration $(s_1, s_2, ...)$ of S such that R consists of relations $s_1 = s_2 w_2$, $s_2 = s_3 w_3$, ... $(w_2, w_3, ... words in S)$.

↔ Here: consider presentations of a certain simple syntactic type.

• Definition.— A (positive) presentation is right-triangular if there exists an enumeration $(s_1, s_2, ...)$ of S such that R consists of relations $s_1 = s_2 w_2$, $s_2 = s_3 w_3$, ... $(w_2, w_3, ... words in S)$.

• Example: $\langle a, b, c | a = bac, b = cba \rangle$ is right-triangular

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

• Goal: Constructing finitely generated monoids of O-type.

↔ Here: consider presentations of a certain simple syntactic type.

• Definition.— A (positive) presentation is right-triangular if there exists an enumeration $(s_1, s_2, ...)$ of S such that R consists of relations $s_1 = s_2 w_2$, $s_2 = s_3 w_3$, ... $(w_2, w_3, ... words in S)$.

• Example: $\langle a, b, c | a = bac, b = cba \rangle$ is right-triangular and left-triangular.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

• Goal: Constructing finitely generated monoids of O-type.

↔ Here: consider presentations of a certain simple syntactic type.

• Definition.— A (positive) presentation is right-triangular if there exists an enumeration $(s_1, s_2, ...)$ of S such that R consists of relations $s_1 = s_2 w_2$, $s_2 = s_3 w_3$, ... $(w_2, w_3, ... words in S)$.

• Example: $\langle a, b, c | a = bac, b = cba \rangle$ is right-triangular and left-triangular.

 Key Lemma.— If (S, R) is right-triangular, then TFAE (i) (S | R)⁺ is of right-O-type;

• Goal: Constructing finitely generated monoids of *O*-type.

↔ Here: consider presentations of a certain simple syntactic type.

• Definition.— A (positive) presentation is right-triangular if there exists an enumeration $(s_1, s_2, ...)$ of S such that R consists of relations $s_1 = s_2 w_2$, $s_2 = s_3 w_3$, ... $(w_2, w_3, ... words in S)$.

• Example: $\langle a, b, c | a = bac, b = cba \rangle$ is right-triangular and left-triangular.

Key Lemma.— If (S, R) is right-triangular, then TFAE

 (i) ⟨S | R⟩⁺ is of right-O-type;
 (ii) any two elements of ⟨S | R⟩⁺ admit a common right-multiple.

• Goal: Constructing finitely generated monoids of O-type.

↔ Here: consider presentations of a certain simple syntactic type.

• Definition.— A (positive) presentation is right-triangular if there exists an enumeration $(s_1, s_2, ...)$ of S such that R consists of relations $s_1 = s_2 w_2$, $s_2 = s_3 w_3$, ... $(w_2, w_3, ... words in S)$.

• Example: $\langle a, b, c | a = bac, b = cba \rangle$ is right-triangular and left-triangular.

Key Lemma.— If (S, R) is right-triangular, then TFAE
(i) (S | R)⁺ is of right-O-type;
(ii) any two elements of (S | R)⁺ admit a common right-multiple.

• Proof: Right-reversing is necessarily complete;

• Goal: Constructing finitely generated monoids of O-type.

↔ Here: consider presentations of a certain simple syntactic type.

• Definition.— A (positive) presentation is right-triangular if there exists an enumeration $(s_1, s_2, ...)$ of S such that R consists of relations $s_1 = s_2 w_2$, $s_2 = s_3 w_3$, ... $(w_2, w_3, ... words in S)$.

• Example: $\langle a, b, c | a = bac, b = cba \rangle$ is right-triangular and left-triangular.

Key Lemma.— If (S, R) is right-triangular, then TFAE
(i) ⟨S | R⟩⁺ is of right-O-type;
(ii) any two elements of ⟨S | R⟩⁺ admit a common right-multiple.

ullet Proof: Right-reversing is necessarily complete; it necessarily provides a \preccurlyeq -relation. \Box

↔ Here: consider presentations of a certain simple syntactic type.

• Definition.— A (positive) presentation is right-triangular if there exists an enumeration $(s_1, s_2, ...)$ of S such that R consists of relations $s_1 = s_2 w_2$, $s_2 = s_3 w_3$, ... $(w_2, w_3, ... words in S)$.

• Example: $\langle a, b, c | a = bac, b = cba \rangle$ is right-triangular and left-triangular.

• Proof: Right-reversing is necessarily complete; it necessarily provides a ≼-relation. □

↔ How to prove the existence of common right-multiples?

• To prove that common right-multiples exist:

• To prove that common right-multiples exist: find a (right-pre)-Garside element.

Lemma.— Assume that *M* is a left-cancellative monoid and exists Δ in *M* s.t.
(i) Every right-divisor of Δ is a left-divisor of Δ,
(ii) The left-divisors of Δ generate *M*.

Then any two elements of M admit a common right-multiple.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

• To prove that common right-multiples exist: find a (right-pre)-Garside element.

Lemma.— Assume that *M* is a left-cancellative monoid and exists Δ in *M* s.t.
(i) Every right-divisor of Δ is a left-divisor of Δ,
(ii) The left-divisors of Δ generate *M*.
Then any two elements of *M* admit a common right-multiple.

• Proof: Every element of M left-divides Δ^p for p large enough.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

• To prove that common right-multiples exist: find a (right-pre)-Garside element.

Lemma.— Assume that *M* is a left-cancellative monoid and exists Δ in *M* s.t.
(i) Every right-divisor of Δ is a left-divisor of Δ,
(ii) The left-divisors of Δ generate *M*.
Then any two elements of *M* admit a common right-multiple.

• Proof: Every element of M left-divides Δ^p for p large enough.

• Proposition.— Assume that M is a monoid that admits a right-triangular presentation $\langle S | R \rangle^+$ and there exists Δ in M satisfying $s \preccurlyeq \Delta \preccurlyeq s \Delta$ for every s in S. Then M is of right-O-type

Lemma.— Assume that *M* is a left-cancellative monoid and exists Δ in *M* s.t.
(i) Every right-divisor of Δ is a left-divisor of Δ,
(ii) The left-divisors of Δ generate *M*.
Then any two elements of *M* admit a common right-multiple.

• Proof: Every element of M left-divides Δ^p for p large enough.

• Proposition.— Assume that M is a monoid that admits a right-triangular presentation $\langle S | R \rangle^+$ and there exists Δ in M satisfying $s \preccurlyeq \Delta \preccurlyeq s \Delta$ for every s in S. Then M is of right-O-type (and Δ is a right-Garside element in M).

Lemma.— Assume that *M* is a left-cancellative monoid and exists Δ in *M* s.t.
(i) Every right-divisor of Δ is a left-divisor of Δ,
(ii) The left-divisors of Δ generate *M*.
Then any two elements of *M* admit a common right-multiple.

• Proof: Every element of M left-divides Δ^p for p large enough.

• Proposition.— Assume that M is a monoid that admits a right-triangular presentation $\langle S | R \rangle^+$ and there exists Δ in M satisfying $s \preccurlyeq \Delta \preccurlyeq s \Delta$ for every s in S. Then M is of right-O-type (and Δ is a right-Garside element in M).

• Proof: Construct an endomorphism ϕ of M s.t. $g\Delta = \Delta \phi(g)$ for every g.

Lemma.— Assume that *M* is a left-cancellative monoid and exists Δ in *M* s.t.
(i) Every right-divisor of Δ is a left-divisor of Δ,
(ii) The left-divisors of Δ generate *M*.
Then any two elements of *M* admit a common right-multiple.

• Proof: Every element of M left-divides Δ^p for p large enough.

• Proposition.— Assume that M is a monoid that admits a right-triangular presentation $\langle S | R \rangle^+$ and there exists Δ in M satisfying $s \preccurlyeq \Delta \preccurlyeq s \Delta$ for every s in S. Then M is of right-O-type (and Δ is a right-Garside element in M).

• Proof: Construct an endomorphism ϕ of M s.t. $g\Delta = \Delta \phi(g)$ for every g.

↔ An easy criterion,
• To prove that common right-multiples exist: find a (right-pre)-Garside element.

Lemma.— Assume that *M* is a left-cancellative monoid and exists Δ in *M* s.t.
(i) Every right-divisor of Δ is a left-divisor of Δ,
(ii) The left-divisors of Δ generate *M*.
Then any two elements of *M* admit a common right-multiple.

• Proof: Every element of M left-divides Δ^p for p large enough.

• Proposition.— Assume that M is a monoid that admits a right-triangular presentation $\langle S | R \rangle^+$ and there exists Δ in M satisfying $s \preccurlyeq \Delta \preccurlyeq s \Delta$ for every s in S. Then M is of right-O-type (and Δ is a right-Garside element in M).

• Proof: Construct an endomorphism ϕ of M s.t. $g\Delta = \Delta \phi(g)$ for every g.

↔ An easy criterion, in particular well-fitted for computer experiments

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

• Proposition — Let $M_{p,q,r} := \langle a, b \mid a = b(a^p b^r)^q \rangle^+$ with $\Delta = a^{p+1}$. Then $M_{p,q,r}$ is of right-O-type;

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Proposition.— Let $M_{p,q,r} := \langle a, b | a = b(a^p b^r)^q \rangle^+$ with $\Delta = a^{p+1}$. Then $M_{p,q,r}$ is of right-O-type; for r = 1, it is of O-type, (and Δ is a Garside element).

• Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Proposition.— Let $M_{p,q,r} := \langle a, b | a = b(a^p b^r)^q \rangle^+$ with $\Delta = a^{p+1}$. Then $M_{p,q,r}$ is of right-O-type; for r = 1, it is of O-type, (and Δ is a Garside element).

• Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward; remains to check $\Delta \preccurlyeq b\Delta$.

• Proposition.— Let $M_{p,q,r} := \langle a, b | a = b(a^p b^r)^q \rangle^+$ with $\Delta = a^{p+1}$. Then $M_{p,q,r}$ is of right-O-type; for r = 1, it is of O-type, (and Δ is a Garside element).

• Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward; remains to check $\Delta \preccurlyeq b\Delta$. Previous proposition \Rightarrow right-*O*-type; • Proposition.— Let $M_{p,q,r} := \langle a, b | a = b(a^p b^r)^q \rangle^+$ with $\Delta = a^{p+1}$. Then $M_{p,q,r}$ is of right-O-type; for r = 1, it is of O-type, (and Δ is a Garside element).

• Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward; remains to check $\Delta \preccurlyeq b\Delta$. Previous proposition \Rightarrow right-*O*-type; for r = 1, everything is symmetric.

- Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward; remains to check $\Delta \preccurlyeq b\Delta$. Previous proposition \Rightarrow right-*O*-type; for r = 1, everything is symmetric.
- Particular cases:

- Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward; remains to check $\Delta \preccurlyeq b\Delta$. Previous proposition \Rightarrow right-*O*-type; for r = 1, everything is symmetric.
- Particular cases:
 - $M_{1,1,1}$ a = bab: Klein bottle group;

- Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward; remains to check $\Delta \preccurlyeq b\Delta$. Previous proposition \Rightarrow right-*O*-type; for r = 1, everything is symmetric.
- Particular cases:
 - $M_{1,1,1}$ a = bab: Klein bottle group;
 - $M_{1,2,1}$ a = ba²b: braid group B_3 with a = $\sigma_1 \sigma_2$, b = σ_2^{-1} ,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward; remains to check $\Delta \preccurlyeq b\Delta$. Previous proposition \Rightarrow right-*O*-type; for r = 1, everything is symmetric.
- Particular cases:
 - $M_{1,1,1}$ a = bab: Klein bottle group;
 - $M_{1,2,1}$ a = ba²b: braid group B_3 with a = $\sigma_1 \sigma_2$, b = σ_2^{-1} , \leftrightarrow hence $LO(B_3)$ has an isolated point;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Proposition.— Let $M_{p,q,r} := \langle a, b | a = b(a^p b^r)^q \rangle^+$ with $\Delta = a^{p+1}$. Then $M_{p,q,r}$ is of right-O-type; for r = 1, it is of O-type, (and Δ is a Garside element).

- Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward; remains to check $\Delta \preccurlyeq b\Delta$. Previous proposition \Rightarrow right-*O*-type; for r = 1, everything is symmetric.
- Particular cases:
 - $M_{1,1,1}$ a = bab: Klein bottle group;
 - $M_{1,2,1}$ a = ba²b: braid group B_3 with a = $\sigma_1 \sigma_2$, b = σ_2^{-1} , \leftrightarrow hence $LO(B_3)$ has an isolated point;

- $M_{1,3,1}$ a = ba³b: braid group B_3 with a = $\sigma_1 \sigma_2 \sigma_1$, b = σ_2^{-1} ;

• Proposition.— Let $M_{p,q,r} := \langle a, b | a = b(a^p b^r)^q \rangle^+$ with $\Delta = a^{p+1}$. Then $M_{p,q,r}$ is of right-O-type; for r = 1, it is of O-type, (and Δ is a Garside element).

- Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward; remains to check $\Delta \preccurlyeq b\Delta$. Previous proposition \Rightarrow right-*O*-type; for r = 1, everything is symmetric.
- Particular cases:
 - $M_{1,1,1}$ a = bab: Klein bottle group;
 - $M_{1,2,1}$ a = ba²b: braid group B_3 with a = $\sigma_1 \sigma_2$, b = σ_2^{-1} , \leftrightarrow hence $LO(B_3)$ has an isolated point;
 - $M_{1,3,1}$ a = ba³b: braid group B_3 with a = $\sigma_1 \sigma_2 \sigma_1$, b = σ_2^{-1} ;
 - $M_{p,q,1}$ $\mathbf{x}^{p+1} = \mathbf{y}^{q+1}$

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ○ ● ● ●

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward; remains to check $\Delta \preccurlyeq b\Delta$. Previous proposition \Rightarrow right-*O*-type; for r = 1, everything is symmetric.
- Particular cases:
 - $M_{1,1,1}$ a = bab: Klein bottle group;
 - $M_{1,2,1}$ a = ba²b: braid group B_3 with a = $\sigma_1 \sigma_2$, b = σ_2^{-1} , \leftrightarrow hence $LO(B_3)$ has an isolated point;
 - $M_{1,3,1}$ a = ba³b: braid group B_3 with a = $\sigma_1 \sigma_2 \sigma_1$, b = σ_2^{-1} ;
 - $M_{p,q,1}$ $\mathbf{x}^{p+1} = \mathbf{y}^{q+1}$ torus knot group.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Proof: Relations $b \preccurlyeq a \preccurlyeq \Delta \preccurlyeq a\Delta$ straightforward; remains to check $\Delta \preccurlyeq b\Delta$. Previous proposition \Rightarrow right-*O*-type; for r = 1, everything is symmetric.
- Particular cases:
 - $M_{1,1,1}$ a = bab: Klein bottle group;
 - $M_{1,2,1}$ a = ba²b: braid group B_3 with a = $\sigma_1 \sigma_2$, b = σ_2^{-1} , \leftrightarrow hence $LO(B_3)$ has an isolated point;
 - $M_{1,3,1}$ a = ba³b: braid group B_3 with a = $\sigma_1 \sigma_2 \sigma_1$, b = σ_2^{-1} ;
 - $M_{p,q,1}$ $\mathbf{x}^{p+1} = \mathbf{y}^{q+1}$ torus knot group.

1. The space of orderings of an orderable group

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- 2. Right-triangular presentations
- 3. The case of braid groups

• Proposition.— (Navas) The D-ordering is the limit of its conjugates.

• Proposition.— (Navas) The D-ordering is the limit of its conjugates.

 \leftrightarrow hence not isolated in the space $LO(B_n)$

• Proposition.— (Dubrovina-Dubrovin) The submonoid B_n^{\oplus} of B_n generated by $\sigma_1 \sigma_2 ... \sigma_{n-1}, (\sigma_2 ... \sigma_{n-1})^{-1}, \sigma_3 ... \sigma_{n-1}, (\sigma_4 ... \sigma_{n-1})^{-1}, ...$ is of *O*-type.

• Proposition.— (Navas) The D-ordering is the limit of its conjugates.

 \leftrightarrow hence not isolated in the space $LO(B_n)$

• Proposition.— (Dubrovina-Dubrovin) The submonoid B_n^{\oplus} of B_n generated by $\sigma_1 \sigma_2 ... \sigma_{n-1}, (\sigma_2 ... \sigma_{n-1})^{-1}, \sigma_3 ... \sigma_{n-1}, (\sigma_4 ... \sigma_{n-1})^{-1}, ...$ is of *O*-type.

 \checkmark hence isolated in the space $LO(B_n)$

• Proposition.— (Navas) The D-ordering is the limit of its conjugates.

 \leftrightarrow hence not isolated in the space $LO(B_n)$

• Proposition.— (Dubrovina-Dubrovin) The submonoid B_n^{\oplus} of B_n generated by $\sigma_1 \sigma_2 ... \sigma_{n-1}, (\sigma_2 ... \sigma_{n-1})^{-1}, \sigma_3 ... \sigma_{n-1}, (\sigma_4 ... \sigma_{n-1})^{-1}, ...$ is of *O*-type.

 \leftrightarrow hence isolated in the space $LO(B_n)$

(日) (日) (日) (日) (日) (日) (日) (日)

• The monoid B_3^{\oplus} admits the presentations $\langle a, b \mid a = ba^2b \rangle^+$ and $\langle a, b \mid ba^3b \rangle^+$.

• Proposition.— (Navas) The D-ordering is the limit of its conjugates.

 \leftrightarrow hence not isolated in the space $LO(B_n)$

• Proposition.— (Dubrovina-Dubrovin) The submonoid B_n^{\oplus} of B_n generated by $\sigma_1 \sigma_2 ... \sigma_{n-1}, (\sigma_2 ... \sigma_{n-1})^{-1}, \sigma_3 ... \sigma_{n-1}, (\sigma_4 ... \sigma_{n-1})^{-1}, ...$ is of *O*-type.

 \checkmark hence isolated in the space $LO(B_n)$

• The monoid B_3^{\oplus} admits the presentations $\langle a, b \mid a = ba^2b \rangle^+$ and $\langle a, b \mid ba^3b \rangle^+$.

 \rightarrow = the monoids of *O*-type obtained above

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 - のへぐ

↔ many orderings escape to the current approach

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 - のへぐ

↔ many orderings escape to the current approach

• Definition.— An element Δ of a cancellative monoid ${m M}$ is a Garside element in ${m M}$ if

 \rightsquigarrow many orderings escape to the current approach

• Definition.— An element Δ of a cancellative monoid M is a Garside element in M if - the left- and right-divisors of Δ coincide,

 \rightsquigarrow many orderings escape to the current approach

ullet Definition.— An element Δ of a cancellative monoid ${\boldsymbol{M}}$ is a Garside element in ${\boldsymbol{M}}$ if

- the left- and right-divisors of Δ coincide,
- the divisors of Δ generate $oldsymbol{M}$,

↔ many orderings escape to the current approach

 \bullet Definition.— An element Δ of a cancellative monoid ${\boldsymbol{M}}$ is a Garside element in ${\boldsymbol{M}}$ if

- the left- and right-divisors of Δ coincide,
- the divisors of Δ generate M,
- for every g in M, the elements g and Δ admit a left-gcd.

↔ many orderings escape to the current approach

 \bullet Definition.— An element Δ of a cancellative monoid ${\boldsymbol{M}}$ is a Garside element in ${\boldsymbol{M}}$ if

- the left- and right-divisors of Δ coincide,
- the divisors of Δ generate $oldsymbol{M}$,
- for every g in M, the elements g and Δ admit a left-gcd.

• Proposition.— Every submonoid of *O*-type of B_n admits $\Delta_n^{\pm 2}$ as a Garside element.

(日) (日) (日) (日) (日) (日) (日) (日)

↔ many orderings escape to the current approach

 \bullet Definition.— An element Δ of a cancellative monoid ${\boldsymbol{M}}$ is a Garside element in ${\boldsymbol{M}}$ if

- the left- and right-divisors of Δ coincide,
- the divisors of Δ generate $oldsymbol{M}$,
- for every g in M, the elements g and Δ admit a left-gcd.

• Proposition.— Every submonoid of *O*-type of B_n admits $\Delta_n^{\pm 2}$ as a Garside element.

• Proof: The generators σ_i are pairwise conjugated under roots of Δ_n^{2p} .

↔ many orderings escape to the current approach

 \bullet Definition.— An element Δ of a cancellative monoid ${\boldsymbol{M}}$ is a Garside element in ${\boldsymbol{M}}$ if

- the left- and right-divisors of Δ coincide,
- the divisors of Δ generate $oldsymbol{M}$,
- for every g in M, the elements g and Δ admit a left-gcd.

• Proposition.— Every submonoid of *O*-type of B_n admits $\Delta_n^{\pm 2}$ as a Garside element.

• Proof: The generators σ_i are pairwise conjugated under roots of Δ_n^{2p} .

 \leftrightarrow many exotic (non-Noetherian) Garside structures on B_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For isolated orderings:

• A. Navas, A remarkable family of left-ordered groups: central extensions of Hecke groups, J. Algebra, 328 (2011) 31-42

For isolated orderings:

- A. Navas, A remarkable family of left-ordered groups: central extensions of Hecke groups, J. Algebra, 328 (2011) 31-42
- T. Ito, Dehornoy-like left-orderings and isolated left-orderings,

J. Algebra, 374 (2013) 42-58

For isolated orderings:

- A. Navas, A remarkable family of left-ordered groups: central extensions of Hecke groups, J. Algebra, 328 (2011) 31-42
- T. Ito, Dehornoy-like left-orderings and isolated left-orderings,
 - J. Algebra, 374 (2013) 42-58

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

• T. Ito, Construction of isolated left-orderings via partially central cyclic amalgamation, arXiv:1107.0545

For isolated orderings:

- A. Navas, A remarkable family of left-ordered groups: central extensions of Hecke groups, J. Algebra, 328 (2011) 31-42
- T. Ito, Dehornoy-like left-orderings and isolated left-orderings,

J. Algebra, 374 (2013) 42-58

• T. Ito, Construction of isolated left-orderings via partially central cyclic amalgamation, arXiv:1107.0545

For monoids of O-type and right-triangular presentations:

• P. Dehornoy; Monoids of O-type, subword reversing, and ordered groups;

arXiv:1204.3211

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙
For isolated orderings:

- A. Navas, A remarkable family of left-ordered groups: central extensions of Hecke groups, J. Algebra, 328 (2011) 31-42
- T. Ito, Dehornoy-like left-orderings and isolated left-orderings,

J. Algebra, 374 (2013) 42-58

• T. Ito, Construction of isolated left-orderings via partially central cyclic amalgamation, arXiv:1107.0545

For monoids of O-type and right-triangular presentations:

• P. Dehornoy; Monoids of O-type, subword reversing, and ordered groups;

arXiv:1204.3211

▲ロト ▲□ ト ▲目 ト ▲目 ト ▲□ ト

For orderings on the braid groups:

 P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Braid ordering, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. 2008

For isolated orderings:

- A. Navas, A remarkable family of left-ordered groups: central extensions of Hecke groups, J. Algebra, 328 (2011) 31-42
- T. Ito, Dehornoy-like left-orderings and isolated left-orderings,

J. Algebra, 374 (2013) 42-58

• T. Ito, Construction of isolated left-orderings via partially central cyclic amalgamation, arXiv:1107.0545

For monoids of O-type and right-triangular presentations:

• P. Dehornoy; Monoids of O-type, subword reversing, and ordered groups;

arXiv:1204.3211

For orderings on the braid groups:

 P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Braid ordering, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. 2008

For non-Noetherian Garside structures:

• P. Dehornoy, with F. Digne, E. Godelle, D. Krammer, J. Michel, Foundations of Garside Theory, submitted, www.math.unicaen.fr/~dehornoy/