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connected with non-Noetherian Garside theory.

• Application: ordered groups whose space of orderings has an isolated point.
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• If G is (finite or) countable, then P(G) is metrizable.

• Proposition (Linnel).— A space LO(G) cannot be countably infinite.

• Corollary.— If G is countable and orderable, the space LO(G) is
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- or isomorphic to the Cantor space,
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         Can LO(G) be infinite with isolated points?



Isolated orderings

• Lemma.— (i) A left-invariant ordering 6 of G is isolated iff exists a finite subset
{g1, ...,gp} of G s.t. 6 is the only left-invariant ordering with 1 < g1, ..., 1 < gp.



Isolated orderings

• Lemma.— (i) A left-invariant ordering 6 of G is isolated iff exists a finite subset
{g1, ...,gp} of G s.t. 6 is the only left-invariant ordering with 1 < g1, ..., 1 < gp.
(ii) This is true in particular if the positive cone is finitely generated as a semigroup.



Isolated orderings

• Lemma.— (i) A left-invariant ordering 6 of G is isolated iff exists a finite subset
{g1, ...,gp} of G s.t. 6 is the only left-invariant ordering with 1 < g1, ..., 1 < gp.
(ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) {P6} = Ug
1
,...,g

p
,∅;



Isolated orderings

• Lemma.— (i) A left-invariant ordering 6 of G is isolated iff exists a finite subset
{g1, ...,gp} of G s.t. 6 is the only left-invariant ordering with 1 < g1, ..., 1 < gp.
(ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) {P6} = Ug
1
,...,g

p
,∅; (ii) if P6 is generated by g1, ...,gp,

then every cone that contains g1, ...,gp includes P6 ,



Isolated orderings

• Lemma.— (i) A left-invariant ordering 6 of G is isolated iff exists a finite subset
{g1, ...,gp} of G s.t. 6 is the only left-invariant ordering with 1 < g1, ..., 1 < gp.
(ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) {P6} = Ug
1
,...,g

p
,∅; (ii) if P6 is generated by g1, ...,gp,

then every cone that contains g1, ...,gp includes P6 , hence is equal to P6 . �



Isolated orderings

• Lemma.— (i) A left-invariant ordering 6 of G is isolated iff exists a finite subset
{g1, ...,gp} of G s.t. 6 is the only left-invariant ordering with 1 < g1, ..., 1 < gp.
(ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) {P6} = Ug
1
,...,g

p
,∅; (ii) if P6 is generated by g1, ...,gp,

then every cone that contains g1, ...,gp includes P6 , hence is equal to P6 . �

• Proposition.— Assume that the group G admits a positive presentation 〈S | R〉 with
S finite and 〈S | R〉+ of O-type. Then the subsemigroup of G generated by S is the
positive cone of an isolated left-invariant ordering of G.



Isolated orderings

• Lemma.— (i) A left-invariant ordering 6 of G is isolated iff exists a finite subset
{g1, ...,gp} of G s.t. 6 is the only left-invariant ordering with 1 < g1, ..., 1 < gp.
(ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) {P6} = Ug
1
,...,g

p
,∅; (ii) if P6 is generated by g1, ...,gp,

then every cone that contains g1, ...,gp includes P6 , hence is equal to P6 . �

• Proposition.— Assume that the group G admits a positive presentation 〈S | R〉 with
S finite and 〈S | R〉+ of O-type. Then the subsemigroup of G generated by S is the
positive cone of an isolated left-invariant ordering of G.

• Example: Z ⋊ Z



Isolated orderings

• Lemma.— (i) A left-invariant ordering 6 of G is isolated iff exists a finite subset
{g1, ...,gp} of G s.t. 6 is the only left-invariant ordering with 1 < g1, ..., 1 < gp.
(ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) {P6} = Ug
1
,...,g

p
,∅; (ii) if P6 is generated by g1, ...,gp,

then every cone that contains g1, ...,gp includes P6 , hence is equal to P6 . �

• Proposition.— Assume that the group G admits a positive presentation 〈S | R〉 with
S finite and 〈S | R〉+ of O-type. Then the subsemigroup of G generated by S is the
positive cone of an isolated left-invariant ordering of G.

• Example: Z ⋊ Z

= 〈a, b | ab = b−1a〉



Isolated orderings

• Lemma.— (i) A left-invariant ordering 6 of G is isolated iff exists a finite subset
{g1, ...,gp} of G s.t. 6 is the only left-invariant ordering with 1 < g1, ..., 1 < gp.
(ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) {P6} = Ug
1
,...,g

p
,∅; (ii) if P6 is generated by g1, ...,gp,

then every cone that contains g1, ...,gp includes P6 , hence is equal to P6 . �

• Proposition.— Assume that the group G admits a positive presentation 〈S | R〉 with
S finite and 〈S | R〉+ of O-type. Then the subsemigroup of G generated by S is the
positive cone of an isolated left-invariant ordering of G.

• Example: Z ⋊ Z

= 〈a, b | ab = b−1a〉
= 〈a, b | a = bab〉.



Isolated orderings

• Lemma.— (i) A left-invariant ordering 6 of G is isolated iff exists a finite subset
{g1, ...,gp} of G s.t. 6 is the only left-invariant ordering with 1 < g1, ..., 1 < gp.
(ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) {P6} = Ug
1
,...,g

p
,∅; (ii) if P6 is generated by g1, ...,gp,

then every cone that contains g1, ...,gp includes P6 , hence is equal to P6 . �
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• Definition.— A (positive) presentation is right-triangular if there exists an enumeration
(s1, s2, ...) of S such that R consists of relations s1 = s2w2, s2 = s3w3, ...

(w2, w3, ... words in S).

• Example: 〈a, b, c | a = bac, b = cba〉 is right-triangular and left-triangular.

• Key Lemma.— If (S, R) is right-triangular, then TFAE
(i) 〈S | R〉+ is of right-O-type;
(ii) any two elements of 〈S | R〉+ admit a common right-multiple.

• Proof: Right-reversing is necessarily complete; it necessarily provides a 4-relation. �



Triangular presentations

• Goal: Constructing finitely generated monoids of O-type.
         Here: consider presentations of a certain simple syntactic type.

• Definition.— A (positive) presentation is right-triangular if there exists an enumeration
(s1, s2, ...) of S such that R consists of relations s1 = s2w2, s2 = s3w3, ...

(w2, w3, ... words in S).

• Example: 〈a, b, c | a = bac, b = cba〉 is right-triangular and left-triangular.

• Key Lemma.— If (S, R) is right-triangular, then TFAE
(i) 〈S | R〉+ is of right-O-type;
(ii) any two elements of 〈S | R〉+ admit a common right-multiple.

• Proof: Right-reversing is necessarily complete; it necessarily provides a 4-relation. �

         How to prove the existence of common right-multiples?



Garside elements

• To prove that common right-multiples exist:



Garside elements

• To prove that common right-multiples exist: find a (right-pre)-Garside element.



Garside elements

• To prove that common right-multiples exist: find a (right-pre)-Garside element.

• Lemma.— Assume that M is a left-cancellative monoid and exists ∆ in M s.t.
(i) Every right-divisor of ∆ is a left-divisor of ∆,
(ii) The left-divisors of ∆ generate M.

Then any two elements of M admit a common right-multiple.



Garside elements

• To prove that common right-multiples exist: find a (right-pre)-Garside element.

• Lemma.— Assume that M is a left-cancellative monoid and exists ∆ in M s.t.
(i) Every right-divisor of ∆ is a left-divisor of ∆,
(ii) The left-divisors of ∆ generate M.

Then any two elements of M admit a common right-multiple.

• Proof: Every element of M left-divides ∆p for p large enough. �



Garside elements

• To prove that common right-multiples exist: find a (right-pre)-Garside element.

• Lemma.— Assume that M is a left-cancellative monoid and exists ∆ in M s.t.
(i) Every right-divisor of ∆ is a left-divisor of ∆,
(ii) The left-divisors of ∆ generate M.

Then any two elements of M admit a common right-multiple.

• Proof: Every element of M left-divides ∆p for p large enough. �

• Proposition.— Assume that M is a monoid that admits a right-triangular presenta-
tion 〈S | R〉+ and there exists ∆ in M satisfying s4∆ 4 s∆ for every s in S.

Then M is of right-O-type



Garside elements

• To prove that common right-multiples exist: find a (right-pre)-Garside element.

• Lemma.— Assume that M is a left-cancellative monoid and exists ∆ in M s.t.
(i) Every right-divisor of ∆ is a left-divisor of ∆,
(ii) The left-divisors of ∆ generate M.

Then any two elements of M admit a common right-multiple.

• Proof: Every element of M left-divides ∆p for p large enough. �

• Proposition.— Assume that M is a monoid that admits a right-triangular presenta-
tion 〈S | R〉+ and there exists ∆ in M satisfying s4∆ 4 s∆ for every s in S.

Then M is of right-O-type (and ∆ is a right-Garside element in M).



Garside elements

• To prove that common right-multiples exist: find a (right-pre)-Garside element.

• Lemma.— Assume that M is a left-cancellative monoid and exists ∆ in M s.t.
(i) Every right-divisor of ∆ is a left-divisor of ∆,
(ii) The left-divisors of ∆ generate M.

Then any two elements of M admit a common right-multiple.

• Proof: Every element of M left-divides ∆p for p large enough. �

• Proposition.— Assume that M is a monoid that admits a right-triangular presenta-
tion 〈S | R〉+ and there exists ∆ in M satisfying s4∆ 4 s∆ for every s in S.

Then M is of right-O-type (and ∆ is a right-Garside element in M).

• Proof: Construct an endomorphism φ of M s.t. g∆ = ∆φ(g) for every g. �



Garside elements

• To prove that common right-multiples exist: find a (right-pre)-Garside element.

• Lemma.— Assume that M is a left-cancellative monoid and exists ∆ in M s.t.
(i) Every right-divisor of ∆ is a left-divisor of ∆,
(ii) The left-divisors of ∆ generate M.

Then any two elements of M admit a common right-multiple.

• Proof: Every element of M left-divides ∆p for p large enough. �

• Proposition.— Assume that M is a monoid that admits a right-triangular presenta-
tion 〈S | R〉+ and there exists ∆ in M satisfying s4∆ 4 s∆ for every s in S.

Then M is of right-O-type (and ∆ is a right-Garside element in M).

• Proof: Construct an endomorphism φ of M s.t. g∆ = ∆φ(g) for every g. �

         An easy criterion,



Garside elements

• To prove that common right-multiples exist: find a (right-pre)-Garside element.

• Lemma.— Assume that M is a left-cancellative monoid and exists ∆ in M s.t.
(i) Every right-divisor of ∆ is a left-divisor of ∆,
(ii) The left-divisors of ∆ generate M.

Then any two elements of M admit a common right-multiple.

• Proof: Every element of M left-divides ∆p for p large enough. �

• Proposition.— Assume that M is a monoid that admits a right-triangular presenta-
tion 〈S | R〉+ and there exists ∆ in M satisfying s4∆ 4 s∆ for every s in S.

Then M is of right-O-type (and ∆ is a right-Garside element in M).

• Proof: Construct an endomorphism φ of M s.t. g∆ = ∆φ(g) for every g. �

         An easy criterion, in particular well-fitted for computer experiments



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type;



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type,



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward;



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward; remains to check ∆ 4 b∆.



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward; remains to check ∆ 4 b∆.
Previous proposition ⇒ right-O-type;



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward; remains to check ∆ 4 b∆.
Previous proposition ⇒ right-O-type; for r = 1, everything is symmetric. �



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward; remains to check ∆ 4 b∆.
Previous proposition ⇒ right-O-type; for r = 1, everything is symmetric. �

• Particular cases:



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward; remains to check ∆ 4 b∆.
Previous proposition ⇒ right-O-type; for r = 1, everything is symmetric. �

• Particular cases:

- M1,1,1 a = bab: Klein bottle group;



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward; remains to check ∆ 4 b∆.
Previous proposition ⇒ right-O-type; for r = 1, everything is symmetric. �

• Particular cases:

- M1,1,1 a = bab: Klein bottle group;

- M1,2,1 a = ba2b: braid group B3 with a = σ1σ2, b = σ−1

2
,



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward; remains to check ∆ 4 b∆.
Previous proposition ⇒ right-O-type; for r = 1, everything is symmetric. �

• Particular cases:

- M1,1,1 a = bab: Klein bottle group;

- M1,2,1 a = ba2b: braid group B3 with a = σ1σ2, b = σ−1

2
,

         hence LO(B3) has an isolated point;



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward; remains to check ∆ 4 b∆.
Previous proposition ⇒ right-O-type; for r = 1, everything is symmetric. �

• Particular cases:

- M1,1,1 a = bab: Klein bottle group;

- M1,2,1 a = ba2b: braid group B3 with a = σ1σ2, b = σ−1

2
,

         hence LO(B3) has an isolated point;

- M1,3,1 a = ba3b: braid group B3 with a = σ
1
σ
2
σ
1
, b = σ−1

2
;



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward; remains to check ∆ 4 b∆.
Previous proposition ⇒ right-O-type; for r = 1, everything is symmetric. �

• Particular cases:

- M1,1,1 a = bab: Klein bottle group;

- M1,2,1 a = ba2b: braid group B3 with a = σ1σ2, b = σ−1

2
,

         hence LO(B3) has an isolated point;

- M1,3,1 a = ba3b: braid group B3 with a = σ
1
σ
2
σ
1
, b = σ−1

2
;

- Mp,q,1 xp+1 = yq+1



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward; remains to check ∆ 4 b∆.
Previous proposition ⇒ right-O-type; for r = 1, everything is symmetric. �

• Particular cases:

- M1,1,1 a = bab: Klein bottle group;

- M1,2,1 a = ba2b: braid group B3 with a = σ1σ2, b = σ−1

2
,

         hence LO(B3) has an isolated point;

- M1,3,1 a = ba3b: braid group B3 with a = σ
1
σ
2
σ
1
, b = σ−1

2
;

- Mp,q,1 xp+1 = yq+1 torus knot group.



Monoids of O-type: examples

• Proposition.— Let Mp,q,r := 〈a, b | a = b(apbr)q〉+ with ∆ = ap+1. Then Mp,q,r

is of right-O-type; for r = 1, it is of O-type, (and ∆ is a Garside element).

• Proof: Relations b 4 a 4∆ 4 a∆ straightforward; remains to check ∆ 4 b∆.
Previous proposition ⇒ right-O-type; for r = 1, everything is symmetric. �

• Particular cases:

- M1,1,1 a = bab: Klein bottle group;

- M1,2,1 a = ba2b: braid group B3 with a = σ1σ2, b = σ−1

2
,

         hence LO(B3) has an isolated point;

- M1,3,1 a = ba3b: braid group B3 with a = σ
1
σ
2
σ
1
, b = σ−1

2
;

- Mp,q,1 xp+1 = yq+1 torus knot group.



1. The space of orderings of an orderable group

2. Right-triangular presentations

3. The case of braid groups
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         many exotic (non-Noetherian) Garside structures on Bn.
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