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Examples of LO spaces

e If Gis countable, then P(G) is metrizable.

e Proposition (Linnel).— A space LO(G) cannot be countably infinite.

e Corollary.— If G is countable and orderable, the space LO(G) is
- either finite,
- or isomorphic to the Cantor space,
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e Examples:
- LO(m (Klein bottle)) (= LO(Z % Z)) has 4 elements;
- (Sikora) LO(Z™) is a Cantor space;
- (McCleary, Navas) LO(F';,) is a Cantor space.

~» Can LO(G) be infinite with isolated points?
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e Goal: Constructing finitely generated monoids of O-type.
~» Here: consider presentations of a certain simple syntactic type.J

o Definition.— A (positive) presentation is right-triangular if there exists an enumeration
(81, 82,...) of S such that R consists of relations s; = ssw2, 83 = s3ws, ...

. words in S).
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Then M is of right-O-type (and A is a right-Garside element in M).

e Proof: Construct an endomorphism ¢ of M s.t. gA = A¢(g) for every g. O

~» An easy criterion, in particular well-fitted for computer experiments
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. The space of orderings of an orderable group

. Right-triangular presentations

. The case of braid groups
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e The D-ordering on B,,: a braid is larger than 1 if it admits an expression
in the generators o; s.t. the generator with least index occurs positively only.

o Proposition.— (Navas) The D-ordering is the limit of its conjugates.

~» hence not isolated in the space LO(B;,)

e Proposition.— (Dubrovina-Dubrovin) The submonoid B,; of B,, generated by
1

01050, _1, (0y-..0, 2 (040, 1)~ ", ... is of O-type.

~» hence isolated in the space LO(By,)

e The monoid BY admits the presentations (a,b | a = ba?b)* and (a,b | ba’b) ™.

~» = the monoids of O-type obtained above
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e Proposition.— The monoid b’l% admits no right-triangular presentation

with respect to the generators o, 0,05, (0 cx;,')*‘, [

~» many orderings escape to the current approach

e Definition.— An element A of a cancellative monoid M is a Garside element in M if
- the left- and right-divisors of A coincide,
- the divisors of A generate M,
- for every g in M, the elements g and A admit a left-gcd.

® Proposition.— Every submonoid of O-type of B;, admits Af‘,:g as a Garside element.

~» many exotic (non-Noetherian) Garside structures on By,.
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