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• Finite objects with a simple description, discovered through set theory, with
combinatorial properties that (so far) are only established using unprovable large
cardinal hypotheses, and with (potential) applications in low-dimensional topology.
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• The (left) selfdistributivity law:

x ∗ (y ∗ z) = (x ∗y) ∗ (x ∗ z). (LD)

cf. associativity: x ∗ (y ∗ z) = (x ∗y) ∗ z.

• Classical examples:

- S arbitrary and x ∗y := y, or more generally x ∗y = f(y);
- E module and x ∗y := (1 − λ)x+ λy;
- G group and x ∗y := xyx−1.

• Remark : These operations obey x ∗ x = x (“idempotency”)
         monogenerated substructures are trivial.

• Q : Is conjugacy of a free group characterized by selfdistributivity and idempotency?
No (Drápal-Kepka-Musilek 1994, Larue 1999), it obeys

((x ∗ y) ∗ y) ∗ (x ∗ z) = (x ∗ y) ∗ ((y ∗ x) ∗ z), ...
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         the Laver table with 1, 2, 4, 8, 16, 32,... elements.
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• Proposition (Drápal).— There exists an (explicit) list of constructions L (direct
product, ...) such that every finite monogenerated LD-structure can be obtained from
Laver tables using constructions from L.

         think of ZZZ/pZZZ in the associative world



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2,



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2, such that the pth row in (the table of) An



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2, such that the pth row in (the table of) An is

the repetition of πn(p) values increasing from p+1mod2n to 2n.



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2, such that the pth row in (the table of) An is

the repetition of πn(p) values increasing from p+1mod2n to 2n.

• Example :

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2, such that the pth row in (the table of) An is

the repetition of πn(p) values increasing from p+1mod2n to 2n.

• Example :

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8          π3(8) = 8



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2, such that the pth row in (the table of) An is

the repetition of πn(p) values increasing from p+1mod2n to 2n.

• Example :

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8          π3(8) = 8

         π3(7) = 1



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2, such that the pth row in (the table of) An is

the repetition of πn(p) values increasing from p+1mod2n to 2n.

• Example :

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8          π3(8) = 8

         π3(7) = 1
         π3(6) = 2



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2, such that the pth row in (the table of) An is

the repetition of πn(p) values increasing from p+1mod2n to 2n.

• Example :

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8          π3(8) = 8

         π3(7) = 1
         π3(6) = 2
         π3(5) = 2



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2, such that the pth row in (the table of) An is

the repetition of πn(p) values increasing from p+1mod2n to 2n.

• Example :

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8          π3(8) = 8

         π3(7) = 1
         π3(6) = 2
         π3(5) = 2
         π3(4) = 4



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2, such that the pth row in (the table of) An is

the repetition of πn(p) values increasing from p+1mod2n to 2n.

• Example :

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8          π3(8) = 8

         π3(7) = 1
         π3(6) = 2
         π3(5) = 2
         π3(4) = 4
         π3(3) = 2



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2, such that the pth row in (the table of) An is

the repetition of πn(p) values increasing from p+1mod2n to 2n.

• Example :

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8          π3(8) = 8

         π3(7) = 1
         π3(6) = 2
         π3(5) = 2
         π3(4) = 4
         π3(3) = 2
         π3(2) = 4



Periods

• Proposition (Laver).— For every p 6 2n, there exists a number πn(p), a power
of 2, such that the pth row in (the table of) An is

the repetition of πn(p) values increasing from p+1mod2n to 2n.

• Example :

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8          π3(8) = 8

         π3(7) = 1
         π3(6) = 2
         π3(5) = 2
         π3(4) = 4
         π3(3) = 2
         π3(2) = 4
         π3(1) = 4



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8

7

8

16



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8

7

8

16

8

8

16



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8

7

8

16

8

8

16

9

16

16



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8

7

8

16

8

8

16

9

16

16

10

16

16



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8

7

8

16

8

8

16

9

16

16

10

16

16

11

16

16

...

...

...



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8

7

8

16

8

8

16

9

16

16

10

16

16

11

16

16

...

...

...

• Question 1 : Does πn(2) > πn(1) always hold?



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8

7

8

16

8

8

16

9

16

16

10

16

16

11

16

16

...

...

...

• Question 1 : Does πn(2) > πn(1) always hold?
• Question 2 : Does πn(1) tend to ∞ with n ?



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8

7

8

16

8

8

16

9

16

16

10

16

16

11

16

16

...

...

...

• Question 1 : Does πn(2) > πn(1) always hold?
• Question 2 : Does πn(1) tend to ∞ with n ? Does it reach 32 ?



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8

7

8

16

8

8

16

9

16

16

10

16

16

11

16

16

...

...

...

• Question 1 : Does πn(2) > πn(1) always hold?
• Question 2 : Does πn(1) tend to ∞ with n ? Does it reach 32 ?

• Theorem (Laver, 1995).—
the answer to the above questions is positive.



Asymptotic behaviour

• The map x 7→ xmod 2n−1 is a surjective homomorphism from An to An−1.

         the inverse limit of the An is an LD operation on 2-adic numbers;
         one always has πn(p) > πn−1(p).

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8

7

8

16

8

8

16

9

16

16

10

16

16

11

16

16

...

...

...
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the answer to the above questions is positive.

If there exists a selfsimilar set, then
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• 1. Combinatorial description of Laver tables

• 2. Laver tables and set theory

• 3. Laver tables and low-dimensional topology
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• Set theory is a theory of infinity;
it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
some statements are neither provable nor refutable from ZF (e.g., continuum hypoth.)

         Discover more properties of infinity and complete ZF with further axioms...
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it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
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• General principle: “being selfsimilar implies being large”.
- A is infinite iff ∃j :A→A injective not bijective;

- A is ultra-infinite (“selfsimilar”) iff ∃j :A→A injective not bijective
and preserving every notion that is definable from ∈.

a (self)embedding of A
↓

• Example: NNN infinite, but not ultra-infinite: if j : NNN → NNN preserves every notion
that is definable from ∈, then j preserves 0, 1, 2, etc. hence j is the identity map.
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• Definition.— A rank is a set R such that f :R→R implies f ∈ R. (this exists...)

• Assume that there exists a selfsimilar set:
- then there exists a selfsimilar rank, say R;
- if i, j are embeddings of R, then i : R→ R and j ∈ R,

hence we can apply i to j;
- “being an embedding” is definable from ∈,

hence i(j) is an embedding;
- “being the image of” is definable from ∈,

hence ℓ = j(k) implies i(ℓ)=i(j)(i(k)), i.e., i(j(k))=i(j)(i(k)): LD-law.

• Proposition.— If j is an embedding of a rank R,
then the iterates of j make an LD-structure Iter(j).

↑
closure of {j} under the “apply” operation: j(j), j(j)(j)...
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there exists a smallest ordinal α satisfying j(α) > α: the critical ordinal crit(j).

• Recall: j[p] := j(j)(j)...(j), p terms.

• Proposition (Laver).— Assume that j is an embedding of a rank R.
For k,k ′ in Iter(j), declare k ≡n k

′ if

“ k and k ′ coincide up to the level of crit(j[2n]) ”

Then ≡n is a congruence on Iter(j), it has 2n classes,
which are those of j, j[2], ..., j[2n], the latter also being the class of id.

exact definition of ≡n : ∀x∈Rγ(k(x)∩Rγ=k ′(x)∩Rγ) with γ = crit(j[2n])

• Hence Iter(j)/≡n is an LD-structure with 2n elements s.t. j[p] ∗ j = j[p+1mod 2n].

• Corollary.— The quotient-structure Iter(j)/≡n is (isomorphic to) the table An.
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• Proposition (Laver).— If there exists a selfsimilar set,
then πn(2) > πn(1) holds for every n.
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The period of 1

• Theorem (Steel, Laver).— If j is an embedding of a rank R,
then the sequence crit(j[2n]) is unbounded in R.

• Proposition (Laver).— If there exists a selfsimilar set,
the sequence of periods πn(1) tends to ∞ with n.

• Corollary.— If there exists a selfsimilar set,
the substructure generated by (1, 1, 1, ...) in the inverse limit of all An is free.
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Questions...

• Did we answer the questions about Laver tables?
— No, because the existence of a selfsimilar set is a large cardinal axiom,

hence unprovable, and whose non-contradiction cannot be proved from ZF.

• Is the large cardinal assumption necessary?
— Probably not... So far, we cannot avoid it, but nothing indicates that it should

be necessary; and there is no systematic method for avoiding it.

• An attempt: Drápal’s program, three steps completed so far...

• A similar example: the orderability of free LD-structures, first established using a
selfsimilar set, then using a direct argument (based on braid groups).



Plan :

• 1. Combinatorial description of Laver tables

• 2. Laver tables and set theory

• 3. Laver tables and low-dimensional topology
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• Planar diagrams:

         projections of curves embedded in RRR
3

• Generic question: recognizing whether two diagrams are
(projections of) isotopic figures

         find isotopy invariants.
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• These cocycles are not trivial: for instance, the “period” cocycle ψn
s.t. ψn(x,y) = 1 iff y is a multiple of the period of x in An.

∃z (y = z ∗ x)
↓

• Proofs: Relie on the right-divisiblity relation of An, which is a partial order:

1 9 5 13

3 11 7 15

14 12 8 16

2 10 6

4

• Analogous results for 3-cocycles.

• Question : What do these new positive braid invariants count?

• Conclusion : Reasonable hope of applying Laver tables in low-dimensional topology.
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