

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

• Finite objects with a simple description,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

• Finite objects with a simple description, discovered through set theory,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

• Finite objects with a simple description, discovered through set theory, with combinatorial properties that (so far) are only established using unprovable large cardinal hypotheses,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

• Finite objects with a simple description, discovered through set theory, with combinatorial properties that (so far) are only established using unprovable large cardinal hypotheses, and with (potential) applications in low-dimensional topology.

• 1. Combinatorial description of Laver tables

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory
- 3. Laver tables and low-dimensional topology

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory
- 3. Laver tables and low-dimensional topology

$$x * (y * z) = (x * y) * (x * z).$$
 (LD)

$$x*(y*z)=(x*y)*(x*z). \tag{LD}$$
 cf. associativity: $x*(y*z)=(x*y)*z.$

$$\mathbf{x}*(\mathbf{y}*z)=(\mathbf{x}*\mathbf{y})*(\mathbf{x}*z). \tag{LD}$$
 cf. associativity: $\mathbf{x}*(\mathbf{y}*z)=(\mathbf{x}*\mathbf{y})*z.$

• Classical examples:

$$\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * (\mathbf{x} * \mathbf{z}). \tag{LD}$$
 cf. associativity: $\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * \mathbf{z}.$

- Classical examples:
 - S arbitrary and x * y := y, or more generally x * y = f(y);

$$\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * (\mathbf{x} * \mathbf{z}). \tag{LD}$$
 cf. associativity: $\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * \mathbf{z}.$

- Classical examples:
 - S arbitrary and x * y := y, or more generally x * y = f(y);
 - E module and $x * y := (1 \lambda)x + \lambda y$;

$$\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * (\mathbf{x} * \mathbf{z}). \tag{LD}$$
 cf. associativity: $\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * \mathbf{z}.$

- Classical examples:
 - S arbitrary and x * y := y, or more generally x * y = f(y);
 - E module and $x * y := (1 \lambda)x + \lambda y$;
 - G group and $x * y := xyx^{-1}$.

$$\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * (\mathbf{x} * \mathbf{z}). \tag{LD}$$
 cf. associativity:
$$\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * \mathbf{z}.$$

- Classical examples:
 - S arbitrary and x * y := y, or more generally x * y = f(y);
 - E module and $x * y := (1 \lambda)x + \lambda y$;
 - G group and $x * y := xyx^{-1}$.
- Remark : These operations obey x * x = x ("idempotency")

$$\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * (\mathbf{x} * \mathbf{z}). \tag{LD}$$
 cf. associativity: $\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * \mathbf{z}.$

- Classical examples:
 - S arbitrary and x * y := y, or more generally x * y = f(y);
 - E module and $x * y := (1 \lambda)x + \lambda y$;
 - **G** group and $x * y := xyx^{-1}$.
- Remark : These operations obey x * x = x ("idempotency") monogenerated substructures are trivial.

$$\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * (\mathbf{x} * \mathbf{z}). \tag{LD}$$
 cf. associativity: $\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * \mathbf{z}.$

- Classical examples:
 - S arbitrary and x * y := y, or more generally x * y = f(y);
 - E module and $x * y := (1 \lambda)x + \lambda y$;
 - **G** group and $x * y := xyx^{-1}$.
- Remark : These operations obey x*x=x ("idempotency") \leadsto monogenerated substructures are trivial.
- Q : Is conjugacy of a free group characterized by selfdistributivity and idempotency?

$$\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * (\mathbf{x} * \mathbf{z}). \tag{LD}$$
 cf. associativity: $\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * \mathbf{z}.$

- Classical examples:
 - S arbitrary and x * y := y, or more generally x * y = f(y);
 - E module and $x * y := (1 \lambda)x + \lambda y$;
 - **G** group and $x * y := xyx^{-1}$.
- Remark : These operations obey x * x = x ("idempotency") → monogenerated substructures are trivial.

 Q: Is conjugacy of a free group characterized by selfdistributivity and idempotency? No (Drápal-Kepka-Musilek 1994, Larue 1999), it obeys

$$((x*y)*y)*(x*z) = (x*y)*((y*x)*z), ...$$

ullet A binary operation on $\{1,2,3,4\}$:

1	2	3	4
	1	1 2	1 2 3

*	1	2	3	4
1				
2				
3				
4				

*	1	2	3	4
1	2			
2				
3				
4				

*	1	2	3	4
1	2			
2	3			
3				
4				

*	1	2	3	4
1	2			
2	3			
3	4			
4				

*	1	2	3	4
1	2			
2	3			
3	4			
4	1			

*	1	2	3	4
1	2			
2	3			
3	4			
4	1			

*	1	2	3	4
1	2			
2	3			
3	4			
4	1			

$$4 * 2 =$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1			

$$4 * 2 = 4 * (1 * 1)$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1			

$$4 * 2 = 4 * (1 * 1) = (4 * 1) * (4 * 1)$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1			

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1			

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2$$
,

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2		

• Start with $+1 \mod 4$ in the first column, and complete so as to obey the rule x*(y*1)=(x*y)*(x*1) :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2$$
,

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2		

and complete so as to obey the rule
$$\mathbf{x}*(\mathbf{y}*\mathbf{1})=(\mathbf{x}*\mathbf{y})*(\mathbf{x}*\mathbf{1})$$
 :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2,$$

$$4 * 3$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2		

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2$$
,

$$4*3 = 4*(2*1)$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2		

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2,$$

 $4*3 = 4*(2*1) = (4*2)*(4*1)$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2		

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4*2=4*(1*1)=(4*1)*(4*1)=1*1=2,$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2		

• Start with $+1 \mod 4$ in the first column, and complete so as to obey the rule $\mathbf{x} * (\mathbf{y} * 1) = (\mathbf{x} * \mathbf{y}) * (\mathbf{x} * 1)$:

so as to obey the rule
$$x * (y * 1) = (x * y) * (x * 1)$$
.

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2,$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2	3	

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2,$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2	3	

• Start with $+1 \mod 4$ in the first column,

and complete so as to obey the rule
$$x * (y * 1) = (x * y) * (x * 1)$$
:

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2$$
,

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$$

4 * 4

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2	3	

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2,$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3$$
,

$$4 * 4 = 4 * (3 * 1)$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2	3	

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2,$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$$

$$4*4 = 4*(3*1) = (4*3)*(4*1)$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2	3	

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2,$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$$

$$4*4=4*(3*1)=(4*3)*(4*1)=3*1=4$$
.

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2	3	4

• Start with $+1 \mod 4$ in the first column, and complete so as to obey the rule x*(y*1)=(x*y)*(x*1) :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3.$$

$$4*4 = 4*(3*1) = (4*3)*(4*1) = 3*1 = 4$$

*	1	2	3	4
1	2			
2	3			
3	4			
4	1	2	3	4

and complete so as to obey the rule
$$x * (y * 1) = (x * y) * (x * 1)$$
:

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2,$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$$

$$4*4 = 4*(3*1) = (4*3)*(4*1) = 3*1 = 4$$

$$3*2 = 3*(1*1) = (3*1)*(3*1) = 4*4 = 4,...$$

*	1	2	3	4
1	2			
2	3			
3	4	4		
4	1	2	3	4

and complete so as to obey the rule
$$x * (y * 1) = (x * y) * (x * 1)$$
:

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2$$
,

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$$

$$4*4 = 4*(3*1) = (4*3)*(4*1) = 3*1 = 4$$

$$3*2 = 3*(1*1) = (3*1)*(3*1) = 4*4 = 4,...$$

*	1	2	3	4
1	2			
1 2 3	3			
	4	4	4	
4	1	2	3	4

• Start with $+1 \mod 4$ in the first column, and complete so as to obey the rule x*(y*1)=(x*y)*(x*1) :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2,$$

 $4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$
 $4*4 = 4*(3*1) = (4*3)*(4*1) = 3*1 = 4,$
 $3*2 = 3*(1*1) = (3*1)*(3*1) = 4*4 = 4,...$

*	1	2	3	4
1	2			
2	3			
3	4	4	4	4
4	1	2	3	4

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4 * 2 = 4 * (1 * 1) = (4 * 1) * (4 * 1) = 1 * 1 = 2,$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$$

$$4*4 = 4*(3*1) = (4*3)*(4*1) = 3*1 = 4$$
,

$$3*2 = 3*(1*1) = (3*1)*(3*1) = 4*4 = 4,...$$

*	1	2	3	4
1	2			
2	3	4	3	4
1 2 3 4	2 3 4 1	4	4	4
4	1	2	3	4

 \bullet Start with $+1\,\text{mod}\,4$ in the first column,

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4 * 2 = 4 * (1 * 1) = (4 * 1) * (4 * 1) = 1 * 1 = 2,$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$$

$$4*4 = 4*(3*1) = (4*3)*(4*1) = 3*1 = 4$$
,

$$3*2 = 3*(1*1) = (3*1)*(3*1) = 4*4 = 4,...$$

*	1	2	3	4
1	2	4	2	4
2	3	4	3	4
3	4	4	4	4
4	1	2	3	4

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2,$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$$

$$4*4 = 4*(3*1) = (4*3)*(4*1) = 3*1 = 4$$
,

$$3*2 = 3*(1*1) = (3*1)*(3*1) = 4*4 = 4,...$$

• The same construction works for every size

 \bullet Proposition (Laver).— (i) For every N, there exists a unique binary operation * on $\{1,...,N\}$ satisfying

$$\begin{aligned} x*1 &= x+1 \text{ mod } N \text{ and} \\ x*(y*1) &= (x*y)*(x*1). \end{aligned}$$

 \bullet Proposition (Laver).— (i) For every N, there exists a unique binary operation * on $\{1,...,N\}$ satisfying

$$x * 1 = x + 1 \mod N$$
 and $x * (y * 1) = (x * y) * (x * 1)$.

(ii) The operation thus obtained obeys the law

$$x * (y * z) = (x * y) * (x * z)$$
 (LD)

if and only if N is a power of 2.

 \bullet Proposition (Laver).— (i) For every N, there exists a unique binary operation * on $\{1,...,N\}$ satisfying

$$x * 1 = x + 1 \mod N$$
 and $x * (y * 1) = (x * y) * (x * 1)$.

(ii) The operation thus obtained obeys the law

$$x * (y * z) = (x * y) * (x * z)$$
 (LD)

if and only if N is a power of 2.

→ the Laver table with 1.2.4.8.16.32.... elements.

\mathbf{A}_0	1
1	1

\mathbf{A}_0	1	\mathbf{A}_1	1	2
1	1	1	2	2
	1	2	1	2

						1			
\mathbf{A}_0	1	A_1	1 2 1	2	1	2 3 4 1	4	2	4
$\frac{A_0}{1}$	1	1	2	2	2	3	4	3	4
1	1	2	1	2	3	4	4	4	4
			•		4	1	2	3	4

		_			\mathbf{A}_2	1	2	3	4	
\mathbf{A}_0	1	A_1	1	2	1	2 3 4 1	4	2	4	
1	1	1	2	2	2	3	4	3	4	
-		2	1	2	3	4	4	4	4	
					4	1	2	3	4	

\mathbf{A}_3	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2	3	4	7	8	3	4	7	8
3	4	8	4	8	4	8	4	8
4	5	6	7	8	5	6	7	8
5	6	8	6	8	6	8	6	8
6	7	8	7	8	7	8	7	8
7	8	8	8	8	8	8	8	8
8	1	2	3	4	5	6	7	8

\mathbf{A}_0	1		1	
1		1 2	2	2

\mathbf{A}_2	1	2	3	4
1 2	2	4	2	4
2	3	4	3	4
3	4	4	4	4
4	1	2	3	4

\mathbf{A}_3	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2	3	4	7	8	3	4	7	8
3	4	8	4	8	4	8	4	8
4	5	6	7	8	5	6	7	8
5	6	8	6	8	6	8	6	8
6	7	8	7	8	7	8	7	8
7	8	8	8	8	8	8	8	8
8	1	2	3	4	5	6	7	8

A_4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	2	12	14	16	2	12	14	16	2	12	14	16	2	12	14	16
2	3	12	15	16	3	12	15	16	3	12	15	16	3	12	15	16
3	4	8	12	16	4	8	12	16	4	8	12	16	4	8	12	16
4	5	6	7	8	13	14	15	16	5	6	7	8	13	14	15	16
5	6	8	14	16	6	8	14	16	6	8	14	16	6	8	14	16
6	7	8	15	16	7	8	15	16	7	8	15	16	7	8	15	16
7	8	16	8	16	8	16	8	16	8	16	8	16	8	16	8	16
8	9	10	11	12	13	14	15	16	9	10	11	12	13	14	15	16
9	10	12	14	16	10	12	14	16	10	12	14	16	10	12	14	16
10	11	12	15	16	11	12	15	16	11	12	15	16	11	12	15	16
11	12	16	12	16	12	16	12	16	12	16	12	16	12	16	12	16
12	13	14	15	16	13	14	15	16	13	14	15	16	13	14	15	16
13	14	16	14	16	14	16	14	16	14	16	14	16	14	16	14	16
14	15	16	15	16	15	16	15	16	15	16	15	16	15	16	15	16
15	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

 \bullet For $n\geqslant 1,$ one has $1*1=2\neq 1$ in $A_n\colon$ not idempotent.

- For $n \geqslant 1$, one has $1 * 1 = 2 \neq 1$ in A_n : not idempotent.
 - --- quite différent from group conjugacy and other classical LD-structures

• For $n\geqslant 1$, one has $1*1=2\neq 1$ in A_n : not idempotent. \leadsto quite différent from group conjugacy and other classical LD-structures

• Proposition (Laver).— The LD-structure A_n is generated by 1 and admits the presentation $\langle 1 | 1_{[2^n]} = 1 \rangle$, with $x_{[k]} = (\dots ((x*x)*x)\dots)*x$, k terms.

- For $n \ge 1$, one has $1 * 1 = 2 \ne 1$ in A_n : not idempotent.
 - --- quite différent from group conjugacy and other classical LD-structures

- ullet Proposition (Laver).— The LD-structure A_n is generated by 1 and admits the presentation $\langle 1 \mid 1_{[2^n]} = 1 \rangle$, with $x_{[k]} = (...((x*x)*x)...)*x$, k terms.
- ullet Proposition (Drápal).— There exists an (explicit) list of constructions $\mathcal L$ (direct product, ...) such that every finite monogenerated LD-structure can be obtained from Laver tables using constructions from $\mathcal L$.

- For $n \ge 1$, one has $1 * 1 = 2 \ne 1$ in A_n : not idempotent.
 - → quite différent from group conjugacy and other classical LD-structures

- Proposition (Laver).— The LD-structure A_n is generated by 1 and admits the presentation $\langle 1 | 1_{[2^n]} = 1 \rangle$, with $x_{[k]} = (...((x*x)*x)...)*x$, k terms.
- ullet Proposition (Drápal).— There exists an (explicit) list of constructions $\mathcal L$ (direct product, ...) such that every finite monogenerated LD-structure can be obtained from Laver tables using constructions from $\mathcal L$.
 - \rightarrow think of $\mathbb{Z}/p\mathbb{Z}$ in the associative world

 \bullet Proposition (Laver).— For every $p\leqslant 2^n,$ there exists a number $\pi_n(p),$ a power of 2,

• Proposition (Laver).— For every $p\leqslant 2^n$, there exists a number $\pi_n(p)$, a power of 2, such that the pth row in (the table of) A_n

\mathbf{A}_3	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2	3	4	7	8	3	4	7	8
3	4	8	4	8	4	8	4	8
4	5	6	7	8	5	6	7	8
5	6	8	6	8	6	8	6	8
6	7	8	7	8	7	8	7	8
7	8	8	8	8	8	8	8	8
8	2 3 4 5 6 7 8 1	2	3	4	5	6	7	8

• Example :

\mathbf{A}_3	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2		4		8	3	4	7	8
3	4	8	4	8	4	8	4	8
4	5		7	8	5	6	7	8
5	6	8	6	8	6	8	6	8
6	7	8	7	8	7	8	7	8
7	8	8	8	8	8	8	8	8
8	1	2	3	4	5	6	7	8

 $\leftrightarrow \pi_3(8) = 8$

A 3	1		3	4	5	U	- /	0	
1	2	4	6	8	2	4	6	8	
2	3	4	7	8	3	4	7	8	
3	4	8	4	8	4	8	4	8	
4	5	6	7	8	5	6	7	8	
5	6	8	6	8	6	8	6	8	
6	7	8	7	8	7	8	7	8	
7				8			8		
8	1	2	3	4	5	6	7	8	

• Example :

1.112215670

\mathbf{A}_3	1	2	3	4	5	6	7	8	
1	2	4	6	8	2	4	6	8	
2	3	4	7	8	3	4	7	8	
3	4	8	4	8	4	8	4	8	
4	5	6	7	8	5	6	7	8	
5	6	8	6	8	6	8	6	8	
	7								~→
7	8	8	8	8	8	8	8	8	~→
8	1	2	3	4	5	6	7	8	~→

• Example :

4D > 4A > 4B > 4B > 4 A

 $\pi_3(6) = 2$ $\pi_3(7) = 1$ $\pi_3(8) = 8$

3	_						•		
1	2 3	4	6	8	2	4	6	8	
2	3	4	7	8	3	4	7	8	
3	4	8	4	8	4	8	4	8	
4	5	6	4 7	8	5	6	7	8	
5	6	8	6 7	8	6	8	6	8	
6	7	8	7	8	7	8	7	8	
7	8	8	8	8	8	8	8	8	
8	1	2	3	4	5	6	7	8	

• Example :

 $A_3 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8$

743	1		3	4	J	U	- 1	0	
1	2 3 4	4	6	8	2	4	6	8	
2	3	4	7	8	3	4	7	8	
3	4	8	4	8	4	8	4	8	
4	5	6	7	8	5	6	7	8	
5	6	8	6	8	6	8	6	8	
6	7	8	7	8	7	8	7	8	
7	8	8	8	8	8	8	8	8	
8	7 8 1	2	3	4	5	6	7	8	

• Example :

A 1 1 2 3 4 5 6 7 8

$$\rightarrow \pi_3(4) = 4$$

 $\rightarrow \pi_3(5) = 2$
 $\rightarrow \pi_3(6) = 2$
 $\rightarrow \pi_3(7) = 1$
 $\rightarrow \pi_3(8) = 8$

	ŏ	1	О	5	4	3	2	1	\mathbf{A}_3
	8	6	4	2	8	6	4		1
	8	7	4	3	8	7	4	3	2
~+	8	4	8	4	8	4	8	4	3
~	8	7	6	5	8	7	6	5	4
~	8	6	8	6	8	6	8	6	5
~	8	7	8	7	8	7	8	7	6
~							8		7
~	8	7	6	5	4	3	2	1	8

• Example :

	A_3	1	2	3	4	5	O	1	Ö	
	1	2	4	6	8	2	4	6	8	
	2	3	4	7	8	3	4	7	8	$\leftrightarrow \pi_3(2) =$
	3	4	8	4	8	4	8	4	8	$\leftrightarrow \pi_3(3) =$
Example :	4	5	6	7	8	5	6	7	8	$\leftrightarrow \pi_3(4) =$
	5	6	8	6	8	6	8	6	8	$\leftrightarrow \pi_3(5) =$
	6	7	8	7	8	7	8	7	8	$\leftrightarrow \pi_3(6) =$
	7	8	8	8	8	8	8	8	8	$ ightharpoonup \pi_3(7) =$
	8	1	2	3	4	5	6	7	8	$\leftrightarrow \pi_3(8) =$

\mathbf{A}_3	1	2	3	4	5	6	1	8	
1	2	4	6	8	2	4	6	8	$\rightarrow \pi_3(1) = 4$
2	3	4	7	8	3	4	7	8	
3	4	8	4	8	4	8	4	8	$\leftrightarrow \pi_3(3) = 2$
4	5	6	7	8	5	6	7	8	
5	6	8	6	8	6	8	6	8	
6	7	8	7	8	7	8	7	8	→ $\pi_3(6) = 2$
7	8	8	8	8	8	8	8	8	
8	1	2	3	4	5	6	7	8	

• Example :

ullet The map $x\mapsto x\ \mathsf{mod}\ 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .

ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .

 \leadsto the inverse limit of the A_n is an LD operation on 2-adic numbers;

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \rightarrow the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \leadsto the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	
$\pi_n(1)$ $\pi_n(2)$	
$\pi_n(2)$	

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \leadsto the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0
$\pi_n(1)$ $\pi_n(2)$	1
$\pi_n(2)$	

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \longrightarrow the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1					
$\pi_n(1)$ $\pi_n(2)$	1	1					
$\pi_n(2)$	_	2					

- ullet The map $x\mapsto x\ \mathsf{mod}\ 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \leadsto the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	
$\pi_n(1)$ $\pi_n(2)$	1	1	2	
$\pi_n(2)$	_	2	2	

- ullet The map $x\mapsto x\ \mathsf{mod}\ 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - ightharpoonup the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	
$\pi_n(1)$	1	1	2	4	
$\pi_n(2)$	_	2	2	4	

- ullet The map $x\mapsto x\ \mathsf{mod}\ 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \leadsto the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	4	
$\pi_n(1)$ $\pi_n(2)$	1	1	2	4	4	
$\pi_n(2)$	_	2	2	4	4	

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \longrightarrow the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	
$\pi_n(1)$	1	1	2	4	4	8	
$\pi_n(2)$	_	2	2	4	4	8	

- ullet The map $x\mapsto x\ \mathsf{mod}\ 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - ightharpoonup the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	6	
$\pi_{\mathbf{n}}(1)$	1	1	2	4	4	8	8	
$\pi_n(2)$	-	2	2	4	4	8	8	

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \leadsto the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	6	7			
$\pi_{\mathfrak{n}}(1)$ $\pi_{\mathfrak{n}}(2)$	1	1	2	4	4	8	8	8			
$\pi_n(2)$	_	2	2	4	4	8	8	16			

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \leadsto the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

$\frac{\mathfrak{n}}{\pi_{\mathfrak{n}}(1)}$ $\pi_{\mathfrak{n}}(2)$	0	1	2	3	4	5	6	7	8	
$\pi_n(1)$	1	1	2	4	4	8	8	8	8	
$\pi_n(2)$	_	2	2	4	4	8	8	16	16	

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \leadsto the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	6	7	8	9		
$\pi_n(1)$ $\pi_n(2)$	1	1	2	4	4	8	8	8	8	16		
$\pi_n(2)$	_	2	2	4	4	8	8	16	16	16		

ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .

 \longrightarrow the inverse limit of the A_n is an LD operation on 2-adic numbers;

 \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	6	7	8	9	10	
$\pi_n(1)$ $\pi_n(2)$	1	1	2	4	4	8	8	8	8	16	16	
$\pi_n(2)$	_	2	2	4	4	8	8	16	16	16	16	

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \leadsto the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	6	7	8	9	10	11	
$\pi_{\mathfrak{n}}(1)$ $\pi_{\mathfrak{n}}(2)$	1	1	2	4	4	8	8	8	8	16	16	16	
$\pi_n(2)$	_	2	2	4	4	8	8	16	16	16	16	16	

• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .

 \rightarrow the inverse limit of the A_n is an LD operation on 2-adic numbers;

 \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	6	7	8	9	10	11	
$\pi_n(1)$ $\pi_n(2)$	1	1	2	4	4	8	8	8	8	16	16	16	
$\pi_n(2)$	_	2	2	4	4	8	8	16	16	16	16	16	

• Question 1 : Does $\pi_n(2) \geqslant \pi_n(1)$ always hold?

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \rightarrow the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	6	7	8	9	10	11	
$\pi_n(1)$ $\pi_n(2)$	1	1	2	4	4	8	8	8	8	16	16	16	
$\pi_n(2)$	_	2	2	4	4	8	8	16	16	16	16	16	•••

- Question 1 : Does $\pi_n(2) \geqslant \pi_n(1)$ always hold?
- Question 2 : Does $\pi_n(1)$ tend to ∞ with n ?

- The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \rightarrow the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	6	7	8	9	10	11	
$\pi_n(1)$ $\pi_n(2)$	1	1	2	4	4	8	8	8	8	16	16	16	
$\pi_n(2)$	_	2	2	4	4	8	8	16	16	16	16	16	•••

- Question 1 : Does $\pi_n(2) \geqslant \pi_n(1)$ always hold?
- Question 2 : Does $\pi_n(1)$ tend to ∞ with n? Does it reach 32 ?

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \leftrightarrow the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \leadsto one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	6	7	8	9	10	11	
$\pi_{\mathfrak{n}}(1)$ $\pi_{\mathfrak{n}}(2)$	1	1	2	4	4	8	8	8	8	16	16	16	
$\pi_n(2)$	_	2	2	4	4	8	8	16	16	16	16	16	•••

- Question 1 : Does $\pi_n(2) \geqslant \pi_n(1)$ always hold?
- Question 2 : Does $\pi_n(1)$ tend to ∞ with n? Does it reach 32 ?
- Theorem (Laver, 1995).—

the answer to the above questions is positive.

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \leftrightarrow the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \rightarrow one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	6	7	8	9	10	11	
$\pi_n(1)$ $\pi_n(2)$	1	1	2	4	4	8	8	8	8	16	16	16	
$\pi_n(2)$	-	2	2	4	4	8	8	16	16	16	16	16	•••

- Question 1 : Does $\pi_n(2) \geqslant \pi_n(1)$ always hold?
- Question 2 : Does $\pi_n(1)$ tend to ∞ with n? Does it reach 32 ?
- Theorem (Laver, 1995).— If there exists a selfsimilar set, then the answer to the above questions is positive.

Plan:

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory
- 3. Laver tables and low-dimensional topology

• Set theory is a theory of infinity;

• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system ZF (1922),

• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:

• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete: some statements are neither provable nor refutable from ZF

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete: some statements are neither provable nor refutable from ZF (e.g., continuum hypoth.)

• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete: some statements are neither provable nor refutable from ZF (e.g., continuum hypoth.)

→ Discover more properties of infinity and complete ZF with further axioms...

- Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete: some statements are neither provable nor refutable from ZF (e.g., continuum hypoth.)
 - → Discover more properties of infinity and complete ZF with further axioms...
- Typically, large cardinals axioms

- Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete: some statements are neither provable nor refutable from ZF (e.g., continuum hypoth.)
 - → Discover more properties of infinity and complete **ZF** with further axioms...
- Typically, large cardinals axioms

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomposome statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

• Typically, large cardinals axioms

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomp some statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

 \bullet Typically, large cardinals axioms = various solutions to the equation

<u>ultra-infinite</u> = <u>infinite</u> infinite = <u>finite</u> \bullet Set theory is a theory of infinity;

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomp some statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

• Typically, large cardinals axioms = various solutions to the equation

 $\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}$

Examples: inaccessible cardinals,

 \bullet Set theory is a theory of infinity;

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomposome statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

Typically, large cardinals axioms = various solutions to the equation

<u>ultra-infinite</u> = <u>infinite</u> infinite

Examples: inaccessible cardinals, measurable cardinals, etc.

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomposome statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

• Typically, large cardinals axioms = various solutions to the equation

Examples: inaccessible cardinals, measurable cardinals, etc.

• General principle: "being selfsimilar implies being large".

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomposome statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

• Typically, large cardinals axioms = various solutions to the equation

Examples: inaccessible cardinals, measurable cardinals, etc.

- General principle: "being selfsimilar implies being large".
 - A is infinite iff $\exists j : A \rightarrow A$ injective not bijective;

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomposome statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

• Typically, large cardinals axioms = various solutions to the equation $\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.$

Examples: inaccessible cardinals, measurable cardinals, etc.

- A is infinite iff $\exists j : A \rightarrow A$ injective not bijective;

- A is ultra-infinite ("selfsimilar") iff $\exists j: A \to A$ injective not bijective and preserving every notion that is definable from \in .

4□ → 4回 → 4 三 → 4 三 → 9 へ ○

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomp some statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

• Typically, large cardinals axioms = various solutions to the equation

 $\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}$

Examples: inaccessible cardinals, measurable cardinals, etc.

- A is infinite iff $\exists j: A \rightarrow A$ injective not bijective;

a (self)embedding of A

- A is ultra-infinite ("selfsimilar") iff $\exists \overset{\downarrow}{\mathbf{j}}: A \to A$ injective not bijective and preserving every notion that is definable from \in .

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomposome statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

Typically, large cardinals axioms = various solutions to the equation
 ultra-infinite = infinite finite.

Examples: inaccessible cardinals, measurable cardinals, etc.

- A is infinite iff $\exists j: A \rightarrow A$ injective not bijective;

a (self)embedding of A

- A is ultra-infinite ("selfsimilar") iff $\exists \overset{\downarrow}{\mathbf{j}}: A \to A$ injective not bijective and preserving every notion that is definable from \in .
- Example: N infinite, but not ultra-infinite:

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomposite some statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

Typically, large cardinals axioms = various solutions to the equation
 ultra-infinite = infinite finite.

Examples: inaccessible cardinals, measurable cardinals, etc.

- A is infinite iff $\exists j: A \rightarrow A$ injective not bijective;

a (self)embedding of A

- A is ultra-infinite ("selfsimilar") iff $\exists j$: $A \to A$ injective not bijective and preserving every notion that is definable from \in .
- Example: N infinite, but not ultra-infinite: if $j:N\to N$ preserves every notion that is definable from \in ,

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomposome statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

• Typically, large cardinals axioms = various solutions to the equation $\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.$

Examples: inaccessible cardinals, measurable cardinals, etc.

-
$$A$$
 is infinite iff $\exists j: A \rightarrow A$ injective not bijective;

a (self)embedding of A

- A is ultra-infinite ("selfsimilar") iff $\exists j$: $A \to A$ injective not bijective and preserving every notion that is definable from \in .
- Example: \mathbb{N} infinite, but not ultra-infinite: if $\mathbf{j} : \mathbb{N} \to \mathbb{N}$ preserves every notion that is definable from \in , then \mathbf{j} preserves 0, 1, 2, etc.

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomposome statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

• Typically, large cardinals axioms = various solutions to the equation $\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.$

Examples: inaccessible cardinals, measurable cardinals, etc.

- General principle: "being selfsimilar implies being large".
 - A is infinite iff $\exists j : A \rightarrow A$ injective not bijective;
 - a (self)embedding of A
 - A is ultra-infinite ("selfsimilar") iff $\exists j$: $A \to A$ injective not bijective and preserving every notion that is definable from \in .
- Example: \mathbb{N} infinite, but not ultra-infinite: if $j : \mathbb{N} \to \mathbb{N}$ preserves every notion that is definable from \in , then j preserves 0, 1, 2, etc. hence j is the identity map.

• Definition.— A rank

 $\bullet \ \, \text{Definition.} \text{$-$ A rank is a set R such that $f\!:\!R\!\to\!R$ implies $f\in R$.}$

 $\bullet \ \, \text{Definition.} \ \, - \ \, \text{A rank is a set } R \ \, \text{such that } f \colon R \to R \ \, \text{implies} \ \, f \in R. \qquad (\text{this exists...})$

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;

- $\bullet \ \, \text{Definition.} \ \, \ \, \text{A rank is a set } R \ \, \text{such that } f \colon R \to R \ \, \text{implies} \ \, f \in R. \qquad (\text{this exists...})$
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if i, j are embeddings of R,

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if i, j are embeddings of R, then $i:R\to R$ and $j\in R$,

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if $i,\,j$ are embeddings of R, then $i:R\to R$ and $j\in R,$

hence we can apply i to j;

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if i, j are embeddings of R, then $i: R \to R$ and $j \in R$, hence we can apply i to j;
 - "being an embedding" is definable from \in ,

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if i, j are embeddings of R, then $i: R \to R$ and $j \in R$,
 - "being an embedding" is definable from €,
 - hence i(j) is an embedding;

hence we can apply i to j;

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if i, j are embeddings of R, then $i:R\to R$ and $j\in R$,
 - "being an embedding" is definable from €,
 - hence $\mathfrak{i}(\mathfrak{j})$ is an embedding;
 - "being the image of" is definable from €,

hence we can apply i to j;

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if i, j are embeddings of R, then $i: R \to R$ and $j \in R$, hence we can apply i to j;
 - "being an embedding" is definable from \in ,
 - hence $\mathfrak{i}(\mathfrak{j})$ is an embedding;
 - "being the image of" is definable from \in , hence $\ell=j(k)$ implies $i(\ell){=}i(j)(i(k))$,

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if i, j are embeddings of R, then $i: R \to R$ and $j \in R$, hence we can apply i to j;
 - "being an embedding" is definable from \in ,
 - hence $\mathfrak{i}(\mathfrak{j})$ is an embedding;
 - "being the image of" is definable from \in , hence $\ell = j(k)$ implies $i(\ell) = i(j)(i(k))$, i.e., i(j(k)) = i(j)(i(k)):

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if i, j are embeddings of R, then $i: R \to R$ and $j \in R$, hence we can apply i to j;
 - "being an embedding" is definable from ∈,
- hence $\mathbf{i}(\mathbf{j})$ is an embedding;
- "being the image of" is definable from \in , hence $\ell = j(k)$ implies $i(\ell) = i(j)(i(k))$, i.e., i(j(k)) = i(j)(i(k)): LD-law.

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if i, j are embeddings of R, then $i: R \to R$ and $j \in R$, hence we can apply i to j:
 - "being an embedding" is definable from ∈, hence i(j) is an embedding;
 - "being the image of" is definable from \in , hence $\ell = j(k)$ implies $i(\ell) = i(j)(i(k))$, i.e., i(j(k)) = i(j)(i(k)): LD-law.

ullet Proposition.— If j is an embedding of a rank R, then the iterates of j make an LD-structure Iter(j).

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if i, j are embeddings of R, then i: $R \to R$ and $j \in R$, hence we can apply i to i:
 - "being an embedding" is definable from ∈, hence i(j) is an embedding;
 - "being the image of" is definable from \in , hence $\ell = j(k)$ implies $i(\ell) = i(j)(i(k))$, i.e., i(j(k)) = i(j)(i(k)): LD-law.

 $\bullet \mbox{ Proposition.} \mbox{--} \mbox{ If } \mbox{\it j} \mbox{ is an embedding of a rank } R, \\ \mbox{then the iterates of } \mbox{\it j} \mbox{ make an LD-structure } \mbox{Iter}(\mbox{\it j}).$

closure of $\{j\}$ under the "apply" operation: j(j), j(j)(j)...

ullet An embedding $oldsymbol{\mathfrak{j}}$ maps every ordinal $oldsymbol{lpha}$ to an ordinal $oldsymbol{\mathfrak{j}}(lpha)\geqslant lpha$;

• An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$:

• An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).

- An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).
- Recall: $j_{[p]} := j(j)(j)...(j)$, p terms.

- An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).
- Recall: $j_{[p]} := j(j)(j)...(j)$, p terms.
- Proposition (Laver).— Assume that j is an embedding of a rank R.

- An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).
- Recall: $j_{[p]} := j(j)(j)...(j)$, p terms.
- Proposition (Laver).— Assume that j is an embedding of a rank R. For k, k' in Iter(j), declare $k \equiv_n k'$ if " k and k' coincide up to the level of $crit(j_{[2^n]})$ "

- An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).
- Recall: $j_{[p]} := j(j)(j)...(j)$, p terms.
- \bullet Proposition (Laver).— Assume that j is an embedding of a rank R. For k,k' in Iter(j), declare $k\equiv_n k'$ if

" k and k' coincide up to the level of $crit(\mathfrak{j}_{[2^{\mathfrak{n}}]})$ "

Then \equiv_n is a congruence on Iter(j),

- An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).
- Recall: $j_{[p]} := j(j)(j)...(j)$, p terms.
- Proposition (Laver).— Assume that j is an embedding of a rank R. For k, k' in Iter(j), declare $k \equiv_n k'$ if
 - " k and k' coincide up to the level of $crit(j_{[2^n]})$ "

Then \equiv_n is a congruence on $Iter(\mathfrak{j})$, it has 2^n classes,

- An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).
- Recall: $j_{[p]} := j(j)(j)...(j)$, p terms.
- \bullet Proposition (Laver).— Assume that j is an embedding of a rank R. For k,k' in Iter(j), declare $k\equiv_n k'$ if
 - " \mathbf{k} and \mathbf{k}' coincide up to the level of $\mathrm{crit}(\mathbf{j}_{\lceil 2^{\mathbf{n}} \rceil})$ "

Then \equiv_n is a congruence on Iter(j), it has 2^n classes, which are those of $j,j_{[2]},...,j_{[2^n]}$,

- An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).
- Recall: $j_{[p]} := j(j)(j)...(j)$, p terms.
- \bullet Proposition (Laver).— Assume that j is an embedding of a rank R. For k,k' in Iter(j), declare $k\equiv_n k'$ if
 - " k and k' coincide up to the level of $crit(\mathfrak{j}_{[2^{\mathfrak{n}}]})$ "

Then \equiv_n is a congruence on Iter(j), it has 2^n classes, which are those of $j, j_{[2]}, ..., j_{[2^n]}$, the latter also being the class of id.

- An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).
- Recall: $j_{[p]} := j(j)(j)...(j)$, p terms.
- Proposition (Laver).— Assume that j is an embedding of a rank R.

For k, k' in Iter(j), declare $k \equiv_n k'$ if

" k and k' coincide up to the level of $crit(\mathfrak{j}_{\lceil 2^n \rceil})$ "

Then \equiv_n is a congruence on $\mathrm{Iter}(j)$, it has 2^n classes, which are those of $j, j_{\{2\}}, ..., j_{\{2^n\}}$, the latter also being the class of id.

exact definition of \equiv_n : $\forall x \in R_\gamma(k(x) \cap R_\gamma = k'(x) \cap R_\gamma)$ with $\gamma = crit(\mathfrak{j}_{[2^n]})$

- An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).
- Recall: $j_{[p]} := j(j)(j)...(j)$, p terms.
- Proposition (Laver).— Assume that j is an embedding of a rank R. For k, k' in Iter(j), declare $k \equiv_n k'$ if

" k and k' coincide up to the level of $crit(j_{[2^n]})$ "

Then \equiv_n is a congruence on Iter(j), it has 2^n classes, which are those of $j, j_{[2]}, ..., j_{[2^n]}$, the latter also being the class of id.

exact definition of
$$\equiv_n$$
: $\forall x \in R_{\gamma}(k(x) \cap R_{\gamma} = k'(x) \cap R_{\gamma})$ with $\gamma = crit(j_{[2^n]})$

• Hence $Iter(j)/\equiv_n$ is an LD-structure with 2^n elements s.t. $j_{[p]}*j=j_{[p+1\text{mod }2^n]}$.

- An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).
- Recall: $j_{[p]} := j(j)(j)...(j)$, p terms.
- Proposition (Laver).— Assume that j is an embedding of a rank R.

For k,k' in $Iter(\mathfrak{j}),$ declare $k\equiv_{\mathfrak{n}} k'$ if

" k and k' coincide up to the level of $crit(\mathfrak{j}_{[2^{\mathfrak{n}}]})$ "

Then \equiv_n is a congruence on Iter(j), it has 2^n classes, which are those of $j, j_{[2]}, ..., j_{[2^n]}$, the latter also being the class of id.

exact definition of
$$\equiv_n$$
: $\forall x \in R_\gamma(k(x) \cap R_\gamma = k'(x) \cap R_\gamma)$ with $\gamma = crit(\mathfrak{j}_{[2^n]})$

- Hence $\mathrm{Iter}(\mathfrak{j})/\equiv_{\mathfrak{n}}$ is an LD-structure with $2^{\mathfrak{n}}$ elements s.t. $\mathfrak{j}_{[\mathfrak{p}]}*\mathfrak{j}=\mathfrak{j}_{[\mathfrak{p}+1\mathsf{mod}\,2^{\mathfrak{n}}]}.$
- ullet Corollary.— The quotient-structure $Iter(\mathfrak{j})/\equiv_n$ is (isomorphic to) the table A_n .

• Lemma 1.— If j is an embedding, then, for $m \le n$ and $p \le 2^n$, TFAE

 $\mbox{ Lemma 1.} \mbox{ -- If } j \mbox{ is an embedding, then, for } m\leqslant n \mbox{ and } p\leqslant 2^n, \mbox{ TFAE} \\ \mbox{ -- the embedding } j_{[p]} \mbox{ maps } crit(j_{[2^m]}) \mbox{ to } crit(j_{[2^n]})$

- \bullet Lemma 1.— If j is an embedding, then, for $m\leqslant n$ and $p\leqslant 2^n,$ TFAE
 - the embedding $\mathfrak{j}_{[p]}$ maps $crit(\mathfrak{j}_{[2^m]})$ to $crit(\mathfrak{j}_{[2^n]})$
 - the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} .

- \bullet Lemma 1.— If j is an embedding, then, for $m\leqslant n$ and $p\leqslant 2^n,$ TFAE
 - the embedding $j_{[p]}$ maps $crit(j_{[2^m]})$ to $crit(j_{[2^n]})$
 - the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} .
- Lemma 2.— If j is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal α .

- \bullet Lemma 1.— If j is an embedding, then, for $m\leqslant n$ and $p\leqslant 2^n,$ TFAE
 - the embedding $j_{[p]}$ maps $crit(j_{[2^m]})$ to $crit(j_{[2^n]})$
 - the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} .
- Lemma 2.— If j is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal α .
- Proof:

- \bullet Lemma 1.— If j is an embedding, then, for $m\leqslant n$ and $p\leqslant 2^n,$ TFAE
 - the embedding $j_{[p]}$ maps $crit(j_{[2^m]})$ to $crit(j_{[2^n]})$
 - the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} .
- Lemma 2.— If j is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal α .
- Proof: There exists β satisfying $\mathfrak{j}(\beta) > \alpha$,

- \bullet Lemma 1.— If j is an embedding, then, for $m\leqslant n$ and $p\leqslant 2^n,$ TFAE
 - the embedding $j_{[p]}$ maps $crit(j_{[2^m]})$ to $crit(j_{[2^n]})$
 - the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} .
- Lemma 2.— If j is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal α .
- Proof: There exists β satisfying $\mathfrak{j}(\beta) > \alpha$, hence there exists a smallest such β ,

- ullet Lemma 1.— If j is an embedding, then, for $m\leqslant n$ and $p\leqslant 2^n$, TFAE
 - the embedding $j_{[p]}$ maps $crit(j_{[2^m]})$ to $crit(j_{[2^n]})$
 - the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} .
- Lemma 2.— If j is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal α .
- Proof: There exists β satisfying $j(\beta) > \alpha$, hence there exists a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (\mathfrak{j}(\gamma) \leqslant \alpha). \tag{*}$$

- ullet Lemma 1.— If j is an embedding, then, for $m\leqslant n$ and $p\leqslant 2^n$, TFAE
 - the embedding $\mathfrak{j}_{[\mathfrak{p}]}$ maps $crit(\mathfrak{j}_{[2^{\mathfrak{m}}]})$ to $crit(\mathfrak{j}_{[2^{\mathfrak{n}}]})$
 - the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} .
- Lemma 2.— If j is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal α .
- Proof: There exists β satisfying $j(\beta) > \alpha$, hence there exists a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (\mathfrak{j}(\gamma) \leqslant \alpha).$$
 (*)

Applying j to (*) gives

$$\forall \gamma < \mathfrak{j}(\beta) \ (\mathfrak{j}(\mathfrak{j})(\gamma) \leqslant \mathfrak{j}(\alpha)). \tag{**}$$

- ullet Lemma 1.— If j is an embedding, then, for $m\leqslant n$ and $p\leqslant 2^n$, TFAE
 - the embedding $j_{[p]}$ maps $crit(j_{[2^m]})$ to $crit(j_{[2^n]})$
 - the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} .
- Lemma 2.— If j is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal α .
- Proof: There exists β satisfying $j(\beta) > \alpha$, hence there exists a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (\mathfrak{j}(\gamma) \leqslant \alpha).$$
 (*)

Applying j to (*) gives

$$\forall \gamma < \mathbf{j}(\beta) \ (\mathbf{j}(\mathbf{j})(\gamma) \leqslant \mathbf{j}(\alpha)). \tag{**}$$

Taking
$$\gamma = \alpha$$
 in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

- ullet Lemma 1.— If j is an embedding, then, for $m\leqslant n$ and $p\leqslant 2^n$, TFAE
 - the embedding $\mathfrak{j}_{[\mathfrak{p}]}$ maps $crit(\mathfrak{j}_{[2^{\mathfrak{m}}]})$ to $crit(\mathfrak{j}_{[2^{\mathfrak{n}}]})$
 - the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} .
- Lemma 2.— If j is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal α .
- Proof: There exists β satisfying $j(\beta) > \alpha$, hence there exists a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (\mathfrak{j}(\gamma) \leqslant \alpha).$$
 (*)

Applying j to (*) gives

$$\forall \gamma < \mathbf{j}(\beta) \ (\mathbf{j}(\mathbf{j})(\gamma) \leqslant \mathbf{j}(\alpha)). \tag{**}$$

Taking $\gamma = \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• Proposition (Laver).— If there exists a selfsimilar set, then $\pi_n(2) \geqslant \pi_n(1)$ holds for every n.

• Theorem (Steel, Laver).—

• Theorem (Steel, Laver).— If j is an embedding of a rank R,

• Theorem (Steel, Laver).— If j is an embedding of a rank R, then the sequence $crit(j_{[2^n]})$ is unbounded in R.

 $\bullet \ \ \, \text{Theorem (Steel, Laver)}. - \text{ If } j \text{ is an embedding of a rank } R, \\ \text{then the sequence } crit(j_{[2^n]}) \text{ is unbounded in } R.$

• Proposition (Laver).— If there exists a selfsimilar set,

• Theorem (Steel, Laver).— If j is an embedding of a rank R, then the sequence $crit(j_{\lfloor 2^n \rfloor})$ is unbounded in R.

ullet Proposition (Laver).— If there exists a selfsimilar set, the sequence of periods $\pi_n(1)$ tends to ∞ with n.

• Theorem (Steel, Laver).— If j is an embedding of a rank R, then the sequence $crit(j_{\lfloor 2n\rfloor})$ is unbounded in R.

 $\begin{array}{ll} \bullet \mbox{ Proposition (Laver).} \mbox{--} \mbox{ If there exists a selfsimilar set,} \\ & \mbox{the sequence of periods } \pi_n(1) \mbox{ tends to } \infty \mbox{ with } n. \end{array}$

• Corollary.— If there exists a selfsimilar set, the substructure generated by $(1,1,1,\ldots)$ in the inverse limit of all A_n is free.

• Did we answer the questions about Laver tables?

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom,

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable,

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.

• Is the large cardinal assumption necessary?

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.
- Is the large cardinal assumption necessary?
- Probably not... So far, we cannot avoid it, but nothing indicates that it should be necessary;

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.

- Is the large cardinal assumption necessary?
- Probably not... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.
- Is the large cardinal assumption necessary?
- Probably not... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.
- An attempt:

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.

- Is the large cardinal assumption necessary?
- Probably not... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.
- An attempt: Drápal's program,

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.

- Is the large cardinal assumption necessary?
- Probably not... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.
- An attempt: Drápal's program, three steps completed so far...

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.

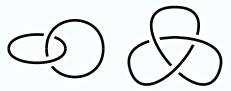
- Is the large cardinal assumption necessary?
- Probably not... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.
- An attempt: Drápal's program, three steps completed so far...
- A similar example: the orderability of free LD-structures, first established using a selfsimilar set,

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.

- Is the large cardinal assumption necessary?
- Probably not... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.
- An attempt: Drápal's program, three steps completed so far...
- A similar example: the orderability of free LD-structures, first established using a selfsimilar set, then using a direct argument (based on braid groups).

Plan:

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory
- 3. Laver tables and low-dimensional topology



ightharpoonup projections of curves embedded in \mathbb{R}^3

ightharpoonup projections of curves embedded in \mathbb{R}^3

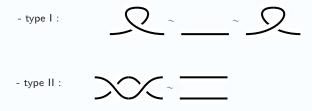
• Generic question: recognizing whether two diagrams are (projections of) isotopic figures

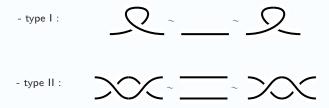
projections of curves embedded in \mathbb{R}^3

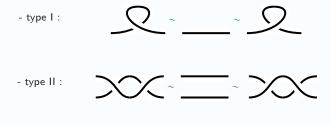
• Generic question: recognizing whether two diagrams are (projections of) isotopic figures → find isotopy invariants.

- type I:

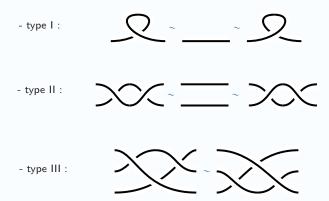
- type II:





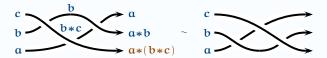


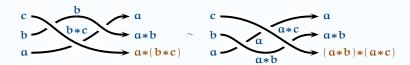
- type III:



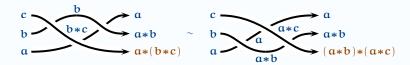
ullet Fix a set (of colors) S equipped with two operations $*, \bar{*}$,





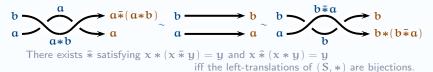


Action of Reidemeister moves on colors:



ightharpoonup Hence: S-colorings invariant under Reidemeister move III \Leftrightarrow (S, *) LD-structure

There exists $\bar{*}$ satisfying $x*(x\bar{*}y)=y$ and $x\bar{*}(x*y)=y$ iff the left-translations of (S,*) are bijections.



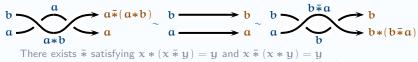
 $\hbox{$\longleftarrow$} \hbox{ Hence: S-colorings invariant under Reidemeister moves II+III} \Leftrightarrow \\ (S,*) \hbox{ is an LD-structure with bijective left-translations}$

iff the left-translations of (S,*) are bijections.

 $\hbox{$\longleftrightarrow$} \hbox{ Hence: S-colorings invariant under Reidemeister moves II+III} \Leftrightarrow \\ (S,*) \hbox{ is an LD-structure with bijective left-translations}$

a rack (Fenn-Rourke)

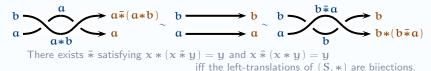
• Idem for Reidemeister move II:



iff the left-translations of (S, *) are bijections.

• Idem for Reidemeister move I:

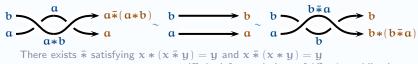
Idem for Reidemeister move II:



 $\hbox{ Hence: S-colorings invariant under Reidemeister moves II+III} \Leftrightarrow \\ (S,*) \hbox{ is an LD-structure with bijective left-translations}$

Idem for Reidemeister move I:

→ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔ (S,*) is an idempotent rack • Idem for Reidemeister move II:



iff the left-translations of (S,*) are bijections.

- - a rack (Fenn-Rourke)

• Idem for Reidemeister move I:

→ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔

(S, *) is an idempotent rack

a quandle (Joyce)

• Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.

• Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.

• Practical (Carter, Kamada): use (co)-homology of LD-structures.

- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.

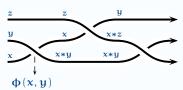
- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.

- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.

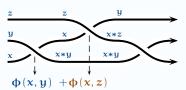
- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.

- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.

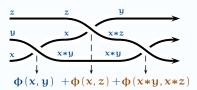
- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.



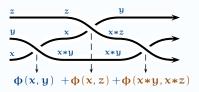
- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.



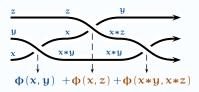
- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.



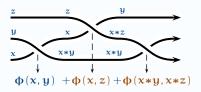
- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.

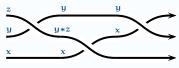


- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.

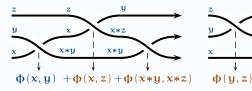


- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.

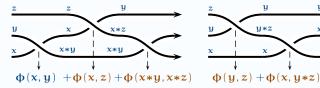


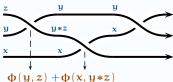


- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S,*) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x,z) + \phi(x*y,x*z) = \phi(y,z) + \phi(x,y*z)$.

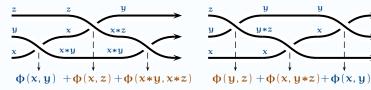


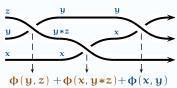
- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S, *) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x, z) + \phi(x*y, x*z) = \phi(y, z) + \phi(x, y*z)$.





- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S, *) is a map $\phi: S^2 \to \mathbb{Z}$ satisfying $\phi(x, z) + \phi(x*y, x*z) = \phi(y, z) + \phi(x, y*z)$.





• Laver tables are LD-structures, but neither racks (nor quandles):

- Laver tables are LD-structures, but neither racks (nor quandles):
 - → not obvious to use them in topology,

- Laver tables are LD-structures, but neither racks (nor quandles):
 - → not obvious to use them in topology, but possible (Przytycki, ...),

- Laver tables are LD-structures, but neither racks (nor quandles):
 - → not obvious to use them in topology, but possible (Przytycki, ...),
 - \longrightarrow step 1 : determine the associated cocycles.

- Laver tables are LD-structures, but neither racks (nor quandles):
 → not obvious to use them in topology, but possible (Przytycki, ...),
 → step 1 : determine the associated cocycles.
- ullet Proposition (D., Lebed).— The 2-cocycles for A_n make a free ${\bf Z}$ -module of rank 2^n ,

- Laver tables are LD-structures, but neither racks (nor quandles):
 not obvious to use them in topology, but possible (Przytycki, ...),
 - → step 1 : determine the associated cocycles.
- Proposition (D., Lebed).— The 2-cocycles for A_n make a free **Z**-module of rank 2^n , with an explicit basis made of $\{0,1\}$ -valued functions.

- Laver tables are LD-structures, but neither racks (nor quandles):
 - → not obvious to use them in topology, but possible (Przytycki, ...),
 - → step 1 : determine the associated cocycles.
- ullet Proposition (D., Lebed).— The 2-cocycles for A_n make a free \mathbb{Z} -module of rank 2^n , with an explicit basis made of $\{0,1\}$ -valued functions.

$\psi_{1,3}$	12345678	$\psi_{2,3}$	12345678	ψ3,3	12345678	ψ4,3	12345678
1	1	1	.1	1	1 - 1 - 1	1	1
2	1	2	11 1	2	1	2	1
3	1	3	11 1	3	1 - 1 - 1	3	· 1 · 1 · 1 · ·
4	1	4	.1	4	1	4	1
5	1 · · · · · ·	5	11 · · 1 · · ·	5	1 · 1 · 1 · · ·	5	· 1 · 1 · 1 · ·
6	1 · · · · · ·	6	11 · · 1 · · ·	6	1 · 1 · 1 · · ·	6	· 1 · 1 · 1 · ·
7	1 · · · · · ·	7	11 - 1	7	1 - 1 - 1	7	11111111
8		8		8		8	

- Laver tables are LD-structures, but neither racks (nor quandles):
 - → not obvious to use them in topology, but possible (Przytycki, ...),
 - → step 1 : determine the associated cocycles.
- Proposition (D., Lebed).— The 2-cocycles for A_n make a free \mathbb{Z} -module of rank 2^n , with an explicit basis made of $\{0,1\}$ -valued functions.

ψ1,3	12345678	ψ2,3	12345678	ψ3,3	12345678	ψ4,3	12345678
1	1	1	-1	1	1 - 1 - 1	1	1
2	1	2	111	2	1	2	1
3	1	3	111	3	$1 \cdot 1 \cdot 1 \cdot \cdots$	3	· 1 · 1 · 1 · ·
4	1	4	.1	4	1	4	1
5	1	5	11 - 1	5	$1 \cdot 1 \cdot 1 \cdot \cdot \cdot$	5	· 1 · 1 · 1 · ·
6	1	6	11 - 1	6	$1 \cdot 1 \cdot 1 \cdot \cdot \cdot$	6	· 1 · 1 · 1 · ·
7	1 · · · · · ·	7	$11 \cdots 1 \cdots$	7	$1 \cdot 1 \cdot 1 \cdot \cdot \cdot$	7	1111111
8		8		8		8	
	Ψ5,3	12345678	ψ6,3	12345678	ψ7,3	12345678	
	1	1 · · · 1 · · ·	1	.11	1	1 - 1 - 1 - 1 -	_
	2	1 · · · 1 · · ·	2	$\cdot 1 \cdot \cdot \cdot 1 \cdot \cdot$	2		
	3	1 · · · 1 · · ·	3	111 - 1111 -	3	$1 \cdot 1 \cdot 1 \cdot 1$	
	4		4		4		
	5	$1 \cdot \cdot \cdot 1 \cdot \cdot \cdot$	5	\cdot 1 \cdot \cdot 1 \cdot \cdot	5	$1\cdot 1\cdot 1\cdot 1\cdot$	
	6	$1 \cdot \cdot \cdot 1 \cdot \cdot \cdot$	6	\cdot 1 \cdot \cdot 1 \cdot \cdot	6		
	7	$1 \cdot \cdot \cdot 1 \cdot \cdot \cdot$	7	111 - 111 -	7	$1\cdot 1\cdot 1\cdot 1\cdot$	
	8		8		8		

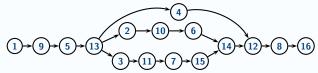
• These cocycles are not trivial:

$$\exists z (y = z * x)$$

• Proofs: Relie on the right-divisibility relation of A_n ,

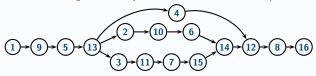
$$\exists z \, (y = z * x)$$

• Proofs: Relie on the right-divisibility relation of A_n , which is a partial order:



$$\exists z \, (y = z * x)$$

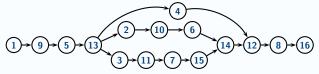
• Proofs: Relie on the right-divisibility relation of A_n , which is a partial order:



• Analogous results for 3-cocycles.

$$\exists z \, (y = z * x)$$

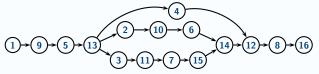
• Proofs: Relie on the right-divisibility relation of A_n , which is a partial order:



- Analogous results for 3-cocycles.
- Question : What do these new positive braid invariants count?

$$\exists z \, (y = z * x)$$

• Proofs: Relie on the right-divisibility relation of A_n , which is a partial order:



- Analogous results for 3-cocycles.
- Question: What do these new positive braid invariants count?

• Conclusion : Reasonable hope of applying Laver tables in low-dimensional topology.

• Are the properties of periods in Laver tables an application of set theory?

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs

that do not use large cardinals.

- But, in any case, it is set theory that made the properties first accessible:

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.
 - But, in any case, it is set theory that made the properties first accessible:

 even if one does not **believe** that large cardinals exist,

 they can provide valuable intuitions and simple arguments.

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.
 - But, in any case, it is set theory that made the properties first accessible:

 even if one does not **believe** that large cardinals exist,

 they can provide valuable intuitions and simple arguments.
- An analogy:

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.
 - But, in any case, it is set theory that made the properties first accessible:

 even if one does not **believe** that large cardinals exist,

 they can provide valuable intuitions and simple arguments.

- An analogy:
 - In physics: using a physical intuition,

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.
 - But, in any case, it is set theory that made the properties first accessible:

 even if one does not **believe** that large cardinals exist,

 they can provide valuable intuitions and simple arguments.

- An analogy:
 - In physics: using a physical intuition, guess statements,

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.
 - But, in any case, it is set theory that made the properties first accessible:

 even if one does not **believe** that large cardinals exist,

 they can provide valuable intuitions and simple arguments.

- An analogy:
 - In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.
 - But, in any case, it is set theory that made the properties first accessible:
 even if one does not believe that large cardinals exist,
 they can provide valuable intuitions and simple arguments.

- An analogy:
 - In physics: using a physical intuition, guess statements,
 then pass them to the mathematician for a formal proof.
 - Here: using a logical intuition

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.
 - But, in any case, it is set theory that made the properties first accessible:
 even if one does not believe that large cardinals exist,
 they can provide valuable intuitions and simple arguments.

- An analogy:
 - In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.
 - Here: using a logical intuition (existence of a selfsimiliar set),

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.
 - But, in any case, it is set theory that made the properties first accessible:
 even if one does not believe that large cardinals exist,
 they can provide valuable intuitions and simple arguments.

- An analogy:
 - In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.
 - Here: using a logical intuition (existence of a selfsimiliar set), guess statements

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.
 - But, in any case, it is set theory that made the properties first accessible:
 even if one does not believe that large cardinals exist,
 they can provide valuable intuitions and simple arguments.

- An analogy:
 - In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.
 - Here: using a logical intuition (existence of a selfsimiliar set), guess statements (periods tend to ∞ in Laver tables),

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.
 - But, in any case, it is set theory that made the properties first accessible:

 even if one does not **believe** that large cardinals exist,

 they can provide valuable intuitions and simple arguments.

An analogy:

- In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.
- Here: using a logical intuition (existence of a selfsimiliar set), guess statements (periods tend to ∞ in Laver tables), then pass them to the mathematician for a formal proof.

Richard Laver (1942-2012)

Richard Laver (1942-2012)

• R. Laver, On the algebra of elementary embeddings of a rank into itself,

Advances in Math. 110 (1995) 334–346

Richard Laver (1942-2012)

- R. Laver, On the algebra of elementary embeddings of a rank into itself,

 Advances in Math. 110 (1995) 334–346
- P. Dehornoy, Braids and self-distributivity,
 Progress in math. vol 192, Birkhaüser (1999), chapters X and XIII

Richard Laver (1942-2012)

- R. Laver, On the algebra of elementary embeddings of a rank into itself,

 Advances in Math. 110 (1995) 334–346
- P. Dehornoy, Braids and self-distributivity,
 Progress in math. vol 192, Birkhaüser (1999), chapters X and XIII
- P. Dehornoy & V. Lebed, Two- and three-cocycles for Laver tables,
 J. Knot Theory and Ramifications, to appear, arXiv:1401.2335

4D + 4B + 4B + B + 900

Richard Laver (1942-2012)

- R. Laver, On the algebra of elementary embeddings of a rank into itself,

 Advances in Math. 110 (1995) 334–346
- P. Dehornoy, Braids and self-distributivity,
 Progress in math. vol 192, Birkhaüser (1999), chapters X and XIII
- P. Dehornoy & V. Lebed, Two- and three-cocycles for Laver tables,
 J. Knot Theory and Ramifications, to appear, arXiv:1401.2335

 $www.math.unicaen.fr/{\sim}dehornoy$