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v
e Finite objects with a simple description, discovered through set theory, with
combinatorial properties that (so far) are only established using unprovable large
cardinal hypotheses, and with (potential) applications in low-dimensional topology.
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The selfdistributivity law

e The (left) selfdistributivity law:

x*(y*z)=

(x*y) * (x*xz). (LD)
cf. associativity: X * (Y *z) = (x *y) * z.

e Classical examples:

- S arbitrary and x * y := y, or more generally x x y = f(y);
- E module and x xy := (1 — A)x + Ay;
- G group and x * Yy := XYyx

e Remark : These operations obey x * x = x (“idempotency”)

~~» monogenerated substructures are trivial.
e Q : Is conjugacy of a free group characterized by selfdistributivity and idempotency?
No (Drépal-Kepka-Musilek 1994, Larue 1999), it obeys

((x*xy)*y)* (x*z)

(x*y) * ((y*x)*2z),



A Laver table

e A binary operation on {1,2,3,4}: the four element Laver table

* |1 2 3
1|2 4 2
23 4 3
314 4 4
4|1 2 3

e Start with +1mod 4 in the first column,

and complete so as to obey the rule x * (y 1) = (

4x2=4x%(1x1)=(4%1)=*(
4x3=4%(2%1) = (4%2)=*(
4xd=4%(3%x1)=(4%3)=*(
3x2=3% (Llx1)=(3x1)sx(

xX*yY)*k(x*xl):

)=1%1=2,
)=2x%1=3,
) =31 =4,
) =4%x4=4,
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Laver tables
e The same construction works for every size

and it provides a selfdistributive structure for powers of 2:
{1, ..., N} satisfying

e Proposition (Laver).— (i) For every N, there exists a unique binary operation * on

Xx*1=x+1mod N and
xx(Yyxl) = (x%y)*(x*1).
(if) The operation thus obtained obeys the law

X*x(Yxz)=(x*y)* (x*z)
if and only if N is a power of 2.

(LD)

~~+ the Laver table with 1,2, 4,8, 16, 32,

elements.
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Laver tables: examples

Asl 1 2 3 45 6 7 8

28 a 12468 246 8

Al 1 2 2|13 47 83478

1|2 4 2 4 3|48 48 48 4 8

12 2 2|3 4 3 4 4|56 7 856 7 8

2] 1 2 3|4 4 4 4 5/6 86 8 6 8 6 8

4112 3 4 6|7 87 8787 8

7|88 8 8838 8 8

8|1 23 456 7 8
A; | 1 23 456 7 8 910111213 14 15 16
1 2121416 2 1214 16 2 12 14 16 2 12 14 16
2 3121516 3 1215 16 3 12 15 16 3 12 15 16
3 | 4 81216 4 8 1216 4 8 1216 4 8 1216
4 | 56 7 813141516 5 6 7 8 13 14 15 16
5 6 8 1416 6 8 1416 6 8 14 16 6 8 14 16
6 | 7 81516 7 8 1516 7 8 1516 7 8 15 16
7 | 8168 16 8 16 8 16 8 16 8 16 8 16 8 16
8 | 9 10111213 14 1516 9 10 11 12 13 14 15 16
9 | 10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16
10 | 11 12 15 16 11 12 15 16 11 12 15 16 11 12 15 16
11 | 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16
12 | 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16
13 | 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16
14 | 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16
15 | 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 | 1 23 456 7 8 9 1011 1213 14 15 16
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Properties
e Form >1 onehasl*1=2%1in Ay: not idempotent.

~» quite différent from group conjugacy and other classical LD-structures

sentation (1| I1pny = 1), with xpq = (...((x%x)*Xx)...)*x, kK terms.

e Proposition (Laver).— The LD-structure A, is generated by 1 and admits the pre-
product,

e Proposition (Drdpal).— There exists an (explicit) list of constructions L (direct
Laver tables using constructions from L.

.) such that every finite monogenerated LD-structure can be obtained from

~» think of Z/pZ in the associative world
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Periods

e Proposition (Laver).— For every p < 2™, there exists a number 7t (p), a power
of 2, such that the pth row in (the table of ) Ay is
the repetition of 7t,, (p) values increasing from p+1mod2™ to 2™.

A3l 1 23 456 7 8
1|2 46 82 46 8 ~ 73(1) =4
2|13 4783478 ~ 3(2) =4
3|48 4848438 ~ T3(3) =2

e Example : 4156 7 856 7 8 ~ T13(4) =4
5/6 86 86 86 8 s 713(5) = 2
6|7 87 87 878 ~ 713(6) =2
7|8 88 88 88 8 ~ 3(7) =1
812345678 ~ 713(8) =8

o <& = = = 9ac



Asymptotic behaviour
e The map x — x mod 2™ 1 is a surjective homomorphism from A, to An_1.
P i

~» the inverse limit of the A, is an LD operation on 2-adic numbers;
~~» one always has 7t (p) > Th_1(p).

e A few values of the periods of 1 and 2:
n

0 1 2 3 4 5 6 7 8 9 10 11
Ttn (1) 1 1 2 4 4 8 8 8 8 16 16 16
T (2) | — 2 2 4 4 8 8 16 16 16 16 16
e Question 1 : Does 7t (2) > 7t (1) always hold?

e Question 2 : Does 71, (1) tend to co with n ? Does it reach 32 ?

® Theorem (Laver, 1995).— If there exists a selfsimilar set, then

the answer to the above questions is positive.

)
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e Set theory is a theory of infinity;

Large cardinals
it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incom
some statements are neither provable nor refutable from ZF (e.g., continuum h

~~ Discover more properties of infinity and complete ZF with further axio

ultra-infinite
infinite

e Typically, large cardinals axioms = various solutions to the equation
__ _infinite

finite -
Examples: inaccessible cardinals, measurable cardinals, etc.

e General principle: “being selfsimilar implies being large”.

- A is infinite iff 3j : A — A injective not bijective;

a (self)embedding of A

- A is ultra-infinite ( “selfsimilar”) iff 3 : A — A injective not bijective

and preserving every notion that is definable from €.
e Example: N infinite, but not ultra-infinite: if j : N — N preserves every notion

that is definable from €, then j preserves 0,1, 2, etc. hence j is the identity map.
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Selfsimilar ranks

e Definition.— A rank is a set R such that f: R—R implies f € R.
e Assume that there exists a selfsimilar set:
- then there exists a selfsimilar rank, say R;

(this exists...)
-if i, j are embeddings of R, then i: R — R and j € R,

- “being an embedding” is definable from &,

- “being the image of” is definable from €,

hence we can apply i to j;
hence i(j) is an embedding;
hence € = j(k) implies i(€)=1i(j)(i(k)), i.e, i(j(k))=1(j)(i(k)): LD-law.

Proposition.— If j is an embedding of a rank R,

then the iterates of j make an LD-structure Iter(j).

i
closure of {j} under the “apply” operation: j(j), j(i)(j)
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Laver tables: the return

e An embedding j maps every ordinal « to an ordinal j(«) > « ;

there exists a smallest ordinal « satisfying j () > o the critical ordinal crit(j).
e Recall: jp:=3j()(j)...(j), p terms.

e Proposition (Laver).— Assume that j is an embedding of a rank R.
For k, k' in Iter(j), declare k =, k' if
“k and k' coincide up to the level of crit(jjon;)’
Then =, is a congruence on Iter(j), it has 2™ classes,

which are those of j,j[p), ..., i[an], the latter also being the class of id.

exact definition of =, : VXGRY(k(x)ﬁRy:k’(X)ﬂRy) with v = crit(jpn)

e Hence Iter(j)/=n is an LD-structure with 2™ elements s.t. jip] * j = j[p41modon]-

e Corollary.— The quotient-structure Iter(j)/=n is (isomorphic to) the table A,. J




The period of 2

e Lemma 1.— If j is an embedding, then, for m < n and p < 2", TFAE
- the embedding j,) maps crit(jjom) to crit(jon)
- the period of p jumps from 2™ to 2™*! between A, and A, 1.

e Lemma 2.— If j is an embedding, then j(j) () < j() holds for every ordinal «. J

e Proof: There exists (3 satisfying j(3) > «, hence there exists a smallest such f3,
which therefore satisfies j(3) > « and

Yy < B (i(v) < ). (+)
Applying j to (*) gives
vy <j(B) GO)(v) <jl«)). ()
Taking v = o in (%) yields j(j) () < j(ox). O
e Proposition (Laver).— If there exists a selfsimilar set,
then 71, (2) > 7t (1) holds for every n. J




The period of 1

e Theorem (Steel, Laver).— If j is an embedding of a rank R,

then the sequence crit(jon;) is unbounded in R.

e Proposition (Laver).— If there exists a selfsimilar set,

the sequence of periods 7t (1) tends to co with n.

)

e Corollary.— If there exists a selfsimilar set,

the substructure generated by (1,1,1,...) in the inverse limit of all A, is free.

)




Questions

e Did we answer the questions about Laver tables?

— No, because the existence of a selfsimilar set is a large cardinal axiom,

hence unprovable, and whose non-contradiction cannot be proved from ZF.

e Is the large cardinal assumption necessary?

— Probably not... So far, we cannot avoid it, but nothing indicates that it should
be necessary; and there is no systematic method for avoiding it.

e An attempt: Drdpal’'s program, three steps completed so far...

e A similar example: the orderability of free LD-structures, first established using a
selfsimilar set, then using a direct argument (based on braid groups).
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Diagrams

e Planar diagrams:

L) SO XK

~~ projections of curves embedded in R3

e Generic question: recognizing whether two diagrams are
isotopic figures
~~ find isotopy invariants.



Reidemeister moves

e Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type | : QN N-p
— — ~—

- type Il : N

- type Il : ///\/N <



Colorings

e Fix a set (of colors) S equipped with two operations =, *,
and color the strands in diagrams obeying the rules:

b\f:a
a - axb

e Action of Reidemeister moves on colors:

C b /} a
b= \b*c axb
a— ax(bxc)

b\-/> axb
a N> b .

c a

b\/a—/a*c/-» axb

a-—" (axb)x(axc)
axb

~» Hence: S-colorings invariant under Reidemeister move Il < (S, %) LD-structure



b

e |Idem for Reidemeister move II:

Racks and quandles

\,-\/-)ai(a*b) b =—> b b\b*&b
a—" N—a Qe—a  a N~ bx(bxa)
axb b
There exists * satisfying x * (x *y) =y andx* (x*xy) =y

iff the left-translations of (S, ) are bijections
~» Hence: S-colorings invariant under Reidemeister moves II+I1l <>

(S, *) is an LD-structure with bijective left-translations

a rack (Fenn—Rourke)
e |Idem for Reidemeister move I:
a

a

—

* A

L 2
axqa O —- (] a \§(1

~» Hence: S-colorings invariant under Reidemeister moves I+I11+11l <>

(S, *) is an idempotent rack

a quandle (Joyce)




Cocycles

e Theoretical (Joyce, Matveev): The “fundamental quandle” is
a complete invariant w.r.t. isotopy up to mirror symmetry.

e Practical (Carter, Kamada): use (co)-homology of LD-structures.

e Definition.— A 2-cocycle on an LD-systructure (S, *) is a map
§ : S? — Z satisfying ¢ (x,2) + p (x*y, x*xz) = d(y,z) + P (x, y*z).

e Every 2-cocycle provides an invariant w.r.t. Reidemeister move Ill (and more...):




Cocycles for Laver tables

e Laver tables are LD-structures, but neither racks (nor quandles):
~» not obvious to use them in topology, but possible (Przytycki, ...),
~~» step 1 : determine the associated cocycles.

e Proposition (D., Lebed).— The 2-cocycles for A, make a free Z-module of rank 2™,
with an explicit basis made of {0, 1}-valued functions.

W3] 12345678 12345678 Wg3| 12345678
2 2 A T
3 3 -1.1.1..
4 4 PP TR
5 5 1-1-1--
6 6 -1.1.1..
7 7| 1111111
8 gl ...
12345678

Moilodloflo

NGO A WN -

=] F = = =
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Cocycles for Laver tables (cont'd)

e These cocycles are not trivial: for instance, the “period” cocycle
s.t. P (x,y) = 1iff y is a multiple of the period of x in Ay.
Jdz (y =z *xx)

e Proofs: Relie on the right-divisiblity relation of Ay, which is a partial order:

10—
Ox 020 @@@ @1

e Analogous results for 3-cocycles.

e Question : What do these new positive braid invariants count?

e Conclusion : Reasonable hope of applying Laver tables in low-dimensional topology.



The role of set theory

- So far, yes;

e Are the properties of periods in Laver tables an application of set theory?

- In the future, formally no if one finds alternative proofs

- But, in any case, it is set theory that made the properties first accessible:

that do not use large cardinals.
even if one does not believe that large cardinals exist,

they can provide valuable intuitions and simple arguments.
e An analogy:

- In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.
- Here: using a logical intuition (existence of a selfsimiliar set),
guess statements (periods tend to oo in Laver tables),

then pass them to the mathematician for a formal proof.
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