

Laver tables

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

• Finite objects with a simple description, discovered through set theory, with combinatorial properties that (so far) are only established using unprovable large cardinal hypotheses, and with (potential) applications in low-dimensional topology.

Plan:

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory
- 3. Laver tables and low-dimensional topology

Plan:

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory
- 3. Laver tables and low-dimensional topology

• The (left) selfdistributivity law:

$$\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * (\mathbf{x} * \mathbf{z}). \tag{LD}$$
 cf. associativity: $\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * \mathbf{z}.$

- Classical examples:
 - S arbitrary and x * y := y, or more generally x * y = f(y);
 - E module and $x * y := (1 \lambda)x + \lambda y$;
 - **G** group and $x * y := xyx^{-1}$.
- Remark : These operations obey x * x = x ("idempotency") → monogenerated substructures are trivial.

 Q: Is conjugacy of a free group characterized by selfdistributivity and idempotency? No (Drápal-Kepka-Musilek 1994, Larue 1999), it obeys

$$((x*y)*y)*(x*z) = (x*y)*((y*x)*z), ...$$

• A binary operation on {1, 2, 3, 4}: the four element Laver table

*	1	2	3	4
1	2	4	2	4
2	3	4	3	4
3	4	4	4	4
4	1	2	3	4

• Start with $+1 \mod 4$ in the first column,

and complete so as to obey the rule
$$x*(y*1)=(x*y)*(x*1)$$
 :

$$4*2 = 4*(1*1) = (4*1)*(4*1) = 1*1 = 2,$$

$$4*3 = 4*(2*1) = (4*2)*(4*1) = 2*1 = 3,$$

$$4*4 = 4*(3*1) = (4*3)*(4*1) = 3*1 = 4$$

$$3*2 = 3*(1*1) = (3*1)*(3*1) = 4*4 = 4,...$$

• The same construction works for every size and it provides a selfdistributive structure for powers of 2:

 \bullet Proposition (Laver).— (i) For every N, there exists a unique binary operation * on $\{1,...,N\}$ satisfying

$$x * 1 = x + 1 \mod N$$
 and $x * (y * 1) = (x * y) * (x * 1)$.

(ii) The operation thus obtained obeys the law

$$x * (y * z) = (x * y) * (x * z)$$
 (LD)

if and only if N is a power of 2.

→ the Laver table with 1.2.4.8.16.32.... elements.

\mathbf{A}_0	1	\mathbf{A}_1	1	2
1	1	1 2	2 1	2 2

\mathbf{A}_2	1	2	3	4
1	2	4	2	4
2	3	4	3	4
3	4	4	4	4
4	1	2	3	4

\mathbf{A}_3	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2	3	4	7	8	3	4	7	8
3	4	8	4	8	4	8	4	8
4	5	6	7	8	5	6	7	8
5	6			8	6	8		8
6	7	8	7	8	7	8	7	8
7	8	8	8	8	8	8	8	8
8	1	2	3	4	5	6	7	8

A_4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	2	12	14	16	2	12	14	16	2	12	14	16	2	12	14	16
2	3	12	15	16	3	12	15	16	3	12	15	16	3	12	15	16
3	4	8	12	16	4	8	12	16	4	8	12	16	4	8	12	16
4	5	6	7	8	13	14	15	16	5	6	7	8	13	14	15	16
5	6	8	14	16	6	8	14	16	6	8	14	16	6	8	14	16
6	7	8	15	16	7	8	15	16	7	8	15	16	7	8	15	16
7	8	16	8	16	8	16	8	16	8	16	8	16	8	16	8	16
8	9	10	11	12	13	14	15	16	9	10	11	12	13	14	15	16
9	10	12	14	16	10	12	14	16	10	12	14	16	10	12	14	16
10	11	12	15	16	11	12	15	16	11	12	15	16	11	12	15	16
11	12	16	12	16	12	16	12	16	12	16	12	16	12	16	12	16
12	13	14	15	16	13	14	15	16	13	14	15	16	13	14	15	16
13	14	16	14	16	14	16	14	16	14	16	14	16	14	16	14	16
14	15	16	15	16	15	16	15	16	15	16	15	16	15	16	15	16
15	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

- For $n \ge 1$, one has $1 * 1 = 2 \ne 1$ in A_n : not idempotent.
 - → quite différent from group conjugacy and other classical LD-structures

- Proposition (Laver).— The LD-structure A_n is generated by 1 and admits the presentation $\langle 1 | 1_{[2^n]} = 1 \rangle$, with $x_{[k]} = (...((x*x)*x)...)*x$, k terms.
- ullet Proposition (Drápal).— There exists an (explicit) list of constructions $\mathcal L$ (direct product, ...) such that every finite monogenerated LD-structure can be obtained from Laver tables using constructions from $\mathcal L$.
 - \rightarrow think of $\mathbb{Z}/p\mathbb{Z}$ in the associative world

• Proposition (Laver).— For every $p \leqslant 2^n$, there exists a number $\pi_n(p)$, a power of 2, such that the pth row in (the table of) A_n is the repetition of $\pi_n(p)$ values increasing from $p+1 \mod 2^n$ to 2^n .

\mathbf{A}_3	1	2	3	4	5	6	1	8	
1	2	4	6	8	2	4	6	8	
2	3	4	7	8	3	4	7	8	
3	4	8	4	8	4	8	4	8	
4	5	6	7	8	5	6	7	8	
5	6	8	6	8	6	8	6	8	
6	7	8	7	8	7	8	7	8	
7	8	8	8	8	8	8	8	8	
8	1	2	3	4	5	6	7	8	

• Example :

- ullet The map $x\mapsto x \mbox{ mod } 2^{n-1}$ is a surjective homomorphism from A_n to A_{n-1} .
 - \leftrightarrow the inverse limit of the A_n is an LD operation on 2-adic numbers;
 - \rightarrow one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.
- A few values of the periods of 1 and 2:

n	0	1	2	3	4	5	6	7	8	9	10	11	
$\pi_n(1)$ $\pi_n(2)$	1	1	2	4	4	8	8	8	8	16	16	16	
$\pi_n(2)$	-	2	2	4	4	8	8	16	16	16	16	16	•••

- Question 1 : Does $\pi_n(2) \geqslant \pi_n(1)$ always hold?
- Question 2 : Does $\pi_n(1)$ tend to ∞ with n ? Does it reach 32 ?
- Theorem (Laver, 1995).— If there exists a selfsimilar set, then the answer to the above questions is positive.

Plan:

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory
- 3. Laver tables and low-dimensional topology

• Set theory is a theory of infinity;

it was axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomposome statements are neither provable nor refutable from ZF (e.g., continuum h

→ Discover more properties of infinity and complete ZF with further axion

• Typically, large cardinals axioms = various solutions to the equation $\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.$

Examples: inaccessible cardinals, measurable cardinals, etc.

- General principle: "being selfsimilar implies being large".
 - A is infinite iff $\exists j: A \rightarrow A$ injective not bijective;
 - a (self)embedding of A
 - A is ultra-infinite ("selfsimilar") iff $\exists j$: $A \to A$ injective not bijective and preserving every notion that is definable from \in .
- Example: \mathbb{N} infinite, but not ultra-infinite: if $j : \mathbb{N} \to \mathbb{N}$ preserves every notion that is definable from \in , then j preserves 0, 1, 2, etc. hence j is the identity map.

- Definition.— A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (this exists...)
- Assume that there exists a selfsimilar set:
 - then there exists a selfsimilar rank, say R;
 - if i, j are embeddings of R, then i: $R \to R$ and $j \in R$, hence we can apply i to i:
 - "being an embedding" is definable from ∈,
 hence i(j) is an embedding;
 - "being the image of" is definable from \in , hence $\ell = j(k)$ implies $i(\ell) = i(j)(i(k))$, i.e., i(j(k)) = i(j)(i(k)): LD-law.
- $\begin{tabular}{ll} \bullet & {\sf Proposition.--} & {\sf If} \ j \ {\sf is} \ {\sf an} \ {\sf embedding} \ {\sf of} \ {\sf a} \ {\sf rank} \ R, \\ & {\sf then} \ {\sf thei} \ {\sf iterates} \ {\sf of} \ j \ {\sf make} \ {\sf an} \ {\sf LD-structure} \ {\sf Iter}(j). \\ \end{tabular}$

closure of $\{j\}$ under the "apply" operation: j(j), j(j)(j)...

- An embedding j maps every ordinal α to an ordinal $j(\alpha) \geqslant \alpha$; there exists a smallest ordinal α satisfying $j(\alpha) > \alpha$: the critical ordinal crit(j).
- Recall: $j_{[p]} := j(j)(j)...(j)$, p terms.
- Proposition (Laver).— Assume that j is an embedding of a rank R. For k, k' in Iter(j), declare $k \equiv_n k'$ if

" k and k' coincide up to the level of $crit(j_{[2n]})$ "

Then $\equiv_{\mathfrak{n}}$ is a congruence on $\operatorname{Iter}(\mathfrak{j}),$ it has $2^{\mathfrak{n}}$ classes,

which are those of j, $j_{[2]}, ..., j_{[2^n]}$, the latter also being the class of id.

exact definition of
$$\equiv_n$$
 :
$$\forall x \in R_\gamma(k(x) \cap R_\gamma = k'(x) \cap R_\gamma) \text{ with } \gamma = \text{crit}(\mathfrak{j}_{[2^n]})$$

- Hence $\mathrm{Iter}(\mathfrak{j})/\equiv_{\mathfrak{n}}$ is an LD-structure with $2^{\mathfrak{n}}$ elements s.t. $\mathfrak{j}_{[\mathfrak{p}]}*\mathfrak{j}=\mathfrak{j}_{[\mathfrak{p}+1\mathsf{mod}\,2^{\mathfrak{n}}]}.$
- Corollary.— The quotient-structure $Iter(\mathfrak{j})/\equiv_n$ is (isomorphic to) the table A_n .

- ullet Lemma 1.— If j is an embedding, then, for $m\leqslant n$ and $p\leqslant 2^n$, TFAE
 - the embedding $j_{[p]}$ maps $crit(j_{[2^m]})$ to $crit(j_{[2^n]})$
 - the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} .
- Lemma 2.— If j is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal α .
- Proof: There exists β satisfying $j(\beta) > \alpha$, hence there exists a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (\mathfrak{j}(\gamma) \leqslant \alpha).$$
 (*)

Applying j to (*) gives

$$\forall \gamma < \mathbf{j}(\beta) \ (\mathbf{j}(\mathbf{j})(\gamma) \leqslant \mathbf{j}(\alpha)). \tag{**}$$

Taking $\gamma = \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• Proposition (Laver).— If there exists a selfsimilar set, then $\pi_n(2) \geqslant \pi_n(1)$ holds for every n.

 $\bullet \ \ \, \text{Theorem (Steel, Laver)}. - \text{ If } j \text{ is an embedding of a rank } R, \\ \text{then the sequence } \operatorname{crit}(j_{\lfloor 2^n \rfloor}) \text{ is unbounded in } R.$

 $\begin{array}{ll} \bullet \mbox{ Proposition (Laver).} \mbox{--} \mbox{ If there exists a selfsimilar set,} \\ & \mbox{the sequence of periods } \pi_n(1) \mbox{ tends to } \infty \mbox{ with } n. \end{array}$

• Corollary.— If there exists a selfsimilar set, the substructure generated by $(1,1,1,\ldots)$ in the inverse limit of all A_n is free.

- Did we answer the questions about Laver tables?
 - No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.

- Is the large cardinal assumption necessary?
- Probably not... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.
- An attempt: Drápal's program, three steps completed so far...
- A similar example: the orderability of free LD-structures, first established using a selfsimilar set, then using a direct argument (based on braid groups).

Plan:

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory
- 3. Laver tables and low-dimensional topology

• Planar diagrams:

 \longrightarrow projections of curves embedded in \mathbb{R}^3

 $\boldsymbol{\leadsto}$ find isotopy invariants.

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

Fix a set (of colors) S equipped with two operations *, *,
 and color the strands in diagrams obeying the rules:

Action of Reidemeister moves on colors:

ightharpoonup Hence: S-colorings invariant under Reidemeister move III \Leftrightarrow (S, *) LD-structure

• Idem for Reidemeister move II:

iff the left-translations of (S,st) are bijections.

- - a rack (Fenn-Rourke)

• Idem for Reidemeister move I:

→ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔

(S,*) is an idempotent rack

a quandle (Joyce)

- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.
- Practical (Carter, Kamada): use (co)-homology of LD-structures.
- Definition.— A 2-cocycle on an LD-systructure (S, *) is a map $\Phi: S^2 \to \mathbb{Z}$ satisfying $\Phi(x, z) + \Phi(x*y, x*z) = \Phi(y, z) + \Phi(x, y*z)$.

• Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):

- Laver tables are LD-structures, but neither racks (nor quandles):
 - → not obvious to use them in topology, but possible (Przytycki, ...),
 - → step 1 : determine the associated cocycles.
- Proposition (D., Lebed).— The 2-cocycles for A_n make a free \mathbb{Z} -module of rank 2^n , with an explicit basis made of $\{0,1\}$ -valued functions.

ψ1,3	12345678	ψ2,3	12345678	ψ3,3	12345678	Ψ4,3	12345678
1	1	1	.1	1	1 - 1 - 1	1	1
2	1	2	111	2	1	2	1
3	1	3	111	3	1 · 1 · 1 · · ·	3	·1·1·1·
4	1	4	.1	4	1	4	1
5	1	5	11 - 1	5	1 · 1 · 1 · · ·	5	· 1 · 1 · 1 · ·
6	1	6	11 - 1	6	1 · 1 · 1 · · ·	6	· 1 · 1 · 1 · ·
7	1 · · · · · ·	7	$11 \cdots 1 \cdots$	7	$1 \cdot 1 \cdot 1 \cdot \cdot \cdot$	7	11111111
8		8		8		8	
	Ψ5,3	12345678	ψ6,3	12345678	ψ7,3	12345678	
	1	1 · · · 1 · · ·	1	.11	1	1 - 1 - 1 - 1 -	_
	2	1 · · · 1 · · ·	2	$+1 \cdot \cdot \cdot 1 \cdot \cdot$	2		
	3	1 · · · 1 · · ·	3	111 - 111 -	3	$-1\cdot 1\cdot 1\cdot 1\cdot$	
	4		4		4		
	5	$1 \cdot \cdot \cdot 1 \cdot \cdot \cdot$	5	\cdot 1 \cdot \cdot 1 \cdot \cdot	5	$1\cdot 1\cdot 1\cdot 1\cdot$	
	6	$1 \cdot \cdot \cdot 1 \cdot \cdot \cdot$	6	\cdot 1 \cdot \cdot 1 \cdot \cdot	6		
	7	$1 \cdot \cdot \cdot 1 \cdot \cdot \cdot$	7	111 - 111 -	7	$1\cdot 1\cdot 1\cdot 1\cdot$	
	8		8		8		

• These cocycles are not trivial: for instance, the "period" cocycle ψ_n s.t. $\psi_n(x,y)=1$ iff y is a multiple of the period of x in $A_n.$

$$\exists z \, (y = z * x)$$

• Proofs: Relie on the right-divisibility relation of A_n , which is a partial order:

- Analogous results for 3-cocycles.
- Question: What do these new positive braid invariants count?
- Conclusion: Reasonable hope of applying Laver tables in low-dimensional topology.

- Are the properties of periods in Laver tables an application of set theory?
 - So far, yes;
 - In the future, formally no if one finds alternative proofs that do not use large cardinals.
 - But, in any case, it is set theory that made the properties first accessible:

 even if one does not **believe** that large cardinals exist,

 they can provide valuable intuitions and simple arguments.

- An analogy:
 - In physics: using a physical intuition, guess statements,
 then pass them to the mathematician for a formal proof.
 - Here: using a logical intuition (existence of a selfsimiliar set), guess statements (periods tend to ∞ in Laver tables), then pass them to the mathematician for a formal proof.

Richard Laver (1942-2012)

- R. Laver, On the algebra of elementary embeddings of a rank into itself,

 Advances in Math. 110 (1995) 334–346
- P. Dehornoy, Braids and self-distributivity,
 Progress in math. vol 192, Birkhaüser (1999), chapters X and XIII
- P. Dehornoy & V. Lebed, Two- and three-cocycles for Laver tables,
 J. Knot Theory and Ramifications, to appear, arXiv:1401.2335

 $www.math.unicaen.fr/{\sim}dehornoy$