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• An introduction to some of the many aspects of
the standard braid order, with an emphasis on the
known connections with knot theory.
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• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

• Proposition (D. 1989): If there exists at least one orderable shelf,
then the Word Problem for LD is solvable.

↑
deciding whether two terms are equal modulo LD

• Proposition (Laver 1989): If j is a self-embedding of a self-similar rank,
then Iter(j) is an orderable shelf.

• Corollary: If there exists a self-similar set, the Word Problem for LD is solvable.

• But the existence of a self-similar set is an unprovable axiom (Gödel),
so the corollary does not solve the Word Problem for LD.

◮ Construct another orderable shelf (a real one!): Theorem 1
2
(orderable shelf).

◮ Done by investigating a certain “geometry group of LD”.
◮ Because the latter extends Artin’s braid group: Theorem 1 (braid order).
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• A σi -handle:

i

i + 1

• Reducing a handle:

7→

◮ Handle reduction is an isotopy;
◮ It extends free group reduction;
◮ Words with no handle are: the empty word, σ-positive words, σ-negative words.

• Theorem (D. 1995): A braid β satisfies β = 1 (resp. β > 1) iff some/any sequence
of handle reductions from some/any braid word representing β finishes with the empty
word (resp. with a σ-positive word).
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• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n ).

◮ Point: Show that N := # reductions of the first σ1-handle in −→w is finite.
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s.t. u contains no letter σ−1
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w2 ...
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◮ Now: a path with no σ−1
1 cannot cross the same σ1-edge twice,

◮ As #{σ1-edges} in Cayley(∆d
n ) is finite,N must be finite. �

• Question: What is the complexity? Find the “real” convergence proof.
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- The floor (after Malyutin–Netstvetaev and Ito)

- Conjugacy via the µ function
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• Corollary: The stable floor ⌊β⌋s = limp⌊βp⌋/p is the only pseudo-character on Bn
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(ii) If |⌊β⌋| > 2, then β̂ admits no flype.



Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1,



Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.



Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime.



Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �



Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �

• Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists r(n) such that



Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �
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• Corollary (Ito, 2014): Let ρ1, ..., ρk be non-faithful quantum representations of Bn.
Then, for every isotopy type τ , there exist infinitely many hyperbolic knots of type τ
on which the invariants derived from ρ1, ..., ρk agree.

• Corollary (Ito, 2014): If the Burau representation of B4 is not faithful, then there
exists a nontrivial knot with trivial Jones polynomial.
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...more generally, a reasonable hope of computing µ using the alternating normal form,
and its analog for the dual braid monoid (Fromentin’s rotating normal form).

• If successful for conjugacy, try the same approach for Markov equivalence...
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