

Braid ordering: history and connections with knots

Braid ordering: history and connections with knots

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, France

Braid ordering: history and connections with knots

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, France

Conference ILDT, Kyoto, May 21, 2015

Braid ordering: history and connections with knots

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, France

Conference ILDT, Kyoto, May 21, 2015

• An introduction to some of the many aspects of
the standard braid order, with an emphasis on the
known connections with knot theory.

Plan :

Plan :

• The Braid Order in Antiquity

Plan :

• The Braid Order in Antiquity

• The Braid Order in the Middle Ages

Plan :

• The Braid Order in Antiquity

• The Braid Order in the Middle Ages

• The Braid Order in Modern Times (Knot Applications)

I. The Braid Order in Antiquity:

I. The Braid Order in Antiquity: 1985-92

I. The Braid Order in Antiquity: 1985-92

- The set-theoretical roots

Braid groups

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔

≃≃≃ mapping class group of Dn (disk with n punctures):

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔

≃≃≃ mapping class group of Dn (disk with n punctures):

Dn

..

.

..

.

1

i

i+1

n

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔

≃≃≃ mapping class group of Dn (disk with n punctures):

Dn

..

.

..

.

1

i

i+1

n

σi ↔

The standard braid order

• Definition: A σ-positive braid diagram:

The standard braid order

• Definition: A σ-positive braid diagram:

···

The standard braid order

• Definition: A σ-positive braid diagram:

···
←all bottom crossings (= σi with minimal i)

are positive (no σ−1
i)

The standard braid order

• Definition: A σ-positive braid diagram:

···
←all bottom crossings (= σi with minimal i)

are positive (no σ−1
i)

• Theorem 1 (D. 1992): For β, β′ in Bn, declare β <D β′ if β−1β′ can be represented
by a σ-positive diagram.

The standard braid order

• Definition: A σ-positive braid diagram:

···
←all bottom crossings (= σi with minimal i)

are positive (no σ−1
i)

• Theorem 1 (D. 1992): For β, β′ in Bn, declare β <D β′ if β−1β′ can be represented
by a σ-positive diagram. Then < is a left-invariant linear ordering on Bn.

The standard braid order

• Definition: A σ-positive braid diagram:

···
←all bottom crossings (= σi with minimal i)

are positive (no σ−1
i)

• Theorem 1 (D. 1992): For β, β′ in Bn, declare β <D β′ if β−1β′ can be represented
by a σ-positive diagram. Then < is a left-invariant linear ordering on Bn.

↑
β <D β′ implies αβ <D αβ′

The standard braid order

• Definition: A σ-positive braid diagram:

···
←all bottom crossings (= σi with minimal i)

are positive (no σ−1
i)

• Theorem 1 (D. 1992): For β, β′ in Bn, declare β <D β′ if β−1β′ can be represented
by a σ-positive diagram. Then < is a left-invariant linear ordering on Bn.

↑
β <D β′ implies αβ <D αβ′

• Example: Let β = σ1, β
′ = σ2σ1.

The standard braid order

• Definition: A σ-positive braid diagram:

···
←all bottom crossings (= σi with minimal i)

are positive (no σ−1
i)

• Theorem 1 (D. 1992): For β, β′ in Bn, declare β <D β′ if β−1β′ can be represented
by a σ-positive diagram. Then < is a left-invariant linear ordering on Bn.

↑
β <D β′ implies αβ <D αβ′

• Example: Let β = σ1, β
′ = σ2σ1. Then β−1β′ = σ−1

1 σ2σ1

The standard braid order

• Definition: A σ-positive braid diagram:

···
←all bottom crossings (= σi with minimal i)

are positive (no σ−1
i)

• Theorem 1 (D. 1992): For β, β′ in Bn, declare β <D β′ if β−1β′ can be represented
by a σ-positive diagram. Then < is a left-invariant linear ordering on Bn.

↑
β <D β′ implies αβ <D αβ′

• Example: Let β = σ1, β
′ = σ2σ1. Then β−1β′ = σ−1

1 σ2σ1 = σ2σ1σ
−1
2 ,

The standard braid order

• Definition: A σ-positive braid diagram:

···
←all bottom crossings (= σi with minimal i)

are positive (no σ−1
i)

• Theorem 1 (D. 1992): For β, β′ in Bn, declare β <D β′ if β−1β′ can be represented
by a σ-positive diagram. Then < is a left-invariant linear ordering on Bn.

↑
β <D β′ implies αβ <D αβ′

• Example: Let β = σ1, β
′ = σ2σ1. Then β−1β′ = σ−1

1 σ2σ1 = σ2σ1σ
−1
2 , so β <D β′.

The standard braid order

• Definition: A σ-positive braid diagram:

···
←all bottom crossings (= σi with minimal i)

are positive (no σ−1
i)

• Theorem 1 (D. 1992): For β, β′ in Bn, declare β <D β′ if β−1β′ can be represented
by a σ-positive diagram. Then < is a left-invariant linear ordering on Bn.

↑
β <D β′ implies αβ <D αβ′

• Example: Let β = σ1, β
′ = σ2σ1. Then β−1β′ = σ−1

1 σ2σ1 = σ2σ1σ
−1
2 , so β <D β′.

• Question: Where does this order come from?

The standard braid order

• Definition: A σ-positive braid diagram:

···
←all bottom crossings (= σi with minimal i)

are positive (no σ−1
i)

• Theorem 1 (D. 1992): For β, β′ in Bn, declare β <D β′ if β−1β′ can be represented
by a σ-positive diagram. Then < is a left-invariant linear ordering on Bn.

↑
β <D β′ implies αβ <D αβ′

• Example: Let β = σ1, β
′ = σ2σ1. Then β−1β′ = σ−1

1 σ2σ1 = σ2σ1σ
−1
2 , so β <D β′.

• Question: Where does this order come from?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

The standard braid order

• Definition: A σ-positive braid diagram:

···
←all bottom crossings (= σi with minimal i)

are positive (no σ−1
i)

• Theorem 1 (D. 1992): For β, β′ in Bn, declare β <D β′ if β−1β′ can be represented
by a σ-positive diagram. Then < is a left-invariant linear ordering on Bn.

↑
β <D β′ implies αβ <D αβ′

• Example: Let β = σ1, β
′ = σ2σ1. Then β−1β′ = σ−1

1 σ2σ1 = σ2σ1σ
−1
2 , so β <D β′.

• Question: Where does this order come from?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

??????

Colorings

• Braid diagram colorings:

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors:

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

z

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

zx

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

zx

x ∗ y

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

zx

x ∗ y
y ∗ z

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

zx

x ∗ y
y ∗ z

x ∗ (y ∗ z)

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

zx

x ∗ y
y ∗ z

x ∗ (y ∗ z)

x

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

zx

x ∗ y
y ∗ z

x ∗ (y ∗ z)

x

x ∗ y

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

zx

x ∗ y
y ∗ z

x ∗ (y ∗ z)

x

x ∗ y
x ∗ y

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

zx

x ∗ y
y ∗ z

x ∗ (y ∗ z)

x

x ∗ y
x ∗ y

x ∗ z

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

zx

x ∗ y
y ∗ z

x ∗ (y ∗ z)

x

x ∗ y
x ∗ y

x ∗ z

(x ∗ y) ∗ (x ∗ z)

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

zx

x ∗ y
y ∗ z

x ∗ (y ∗ z)

x

x ∗ y
x ∗ y

x ∗ z

(x ∗ y) ∗ (x ∗ z)

Colorings

• Braid diagram colorings:
◮ start with a set S (“colors”),
◮ apply colors at the left ends of the strands in a braid diagram,
◮ propagate the colors to the right,
◮ compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
◮ permutation of colors: Bn →→ Sn

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

x

y x

x ∗ y where ∗ is a (fixed) binary operation on S.

• For an action of Bn on Sn, one needs compatibility with the braid relations:

x

y

z

x

y

zx

x ∗ y
y ∗ z

x ∗ (y ∗ z)

x

x ∗ y
x ∗ y

x ∗ z

(x ∗ y) ∗ (x ∗ z)

• Fact: One obtains an action of B+
n iff ∗ satisfies the left self-distributivity law (LD):

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y ,

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1,

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1, leads to Bn → Aut(Fn) (Artin representation)

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1, leads to Bn → Aut(Fn) (Artin representation)

◮ x ∗ y = (1− t)x + ty ,

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1, leads to Bn → Aut(Fn) (Artin representation)

◮ x ∗ y = (1− t)x + ty , leads to Bn → GLn(ZZZ[t, t−1]) (Burau representation)

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1, leads to Bn → Aut(Fn) (Artin representation)

◮ x ∗ y = (1− t)x + ty , leads to Bn → GLn(ZZZ[t, t−1]) (Burau representation)

Note: in these examples, x ∗ x = x always holds.

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1, leads to Bn → Aut(Fn) (Artin representation)

◮ x ∗ y = (1− t)x + ty , leads to Bn → GLn(ZZZ[t, t−1]) (Burau representation)

Note: in these examples, x ∗ x = x always holds.

• Definition: A shelf (S, ∗) is orderable

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1, leads to Bn → Aut(Fn) (Artin representation)

◮ x ∗ y = (1− t)x + ty , leads to Bn → GLn(ZZZ[t, t−1]) (Burau representation)

Note: in these examples, x ∗ x = x always holds.

• Definition: A shelf (S, ∗) is orderable if
there exists a (left-invariant) linear ordering < on S

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1, leads to Bn → Aut(Fn) (Artin representation)

◮ x ∗ y = (1− t)x + ty , leads to Bn → GLn(ZZZ[t, t−1]) (Burau representation)

Note: in these examples, x ∗ x = x always holds.

• Definition: A shelf (S, ∗) is orderable if
there exists a (left-invariant) linear ordering < on S satisfying x < x ∗ y for all x , y .

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1, leads to Bn → Aut(Fn) (Artin representation)

◮ x ∗ y = (1− t)x + ty , leads to Bn → GLn(ZZZ[t, t−1]) (Burau representation)

Note: in these examples, x ∗ x = x always holds.

• Definition: A shelf (S, ∗) is orderable if
there exists a (left-invariant) linear ordering < on S satisfying x < x ∗ y for all x , y .

Note: (if they exist), orderable shelves are very different: x < x ∗ x 6= x .

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1, leads to Bn → Aut(Fn) (Artin representation)

◮ x ∗ y = (1− t)x + ty , leads to Bn → GLn(ZZZ[t, t−1]) (Burau representation)

Note: in these examples, x ∗ x = x always holds.

• Definition: A shelf (S, ∗) is orderable if
there exists a (left-invariant) linear ordering < on S satisfying x < x ∗ y for all x , y .

Note: (if they exist), orderable shelves are very different: x < x ∗ x 6= x .

• Theorem 1
2
: Orderable shelves exist

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1, leads to Bn → Aut(Fn) (Artin representation)

◮ x ∗ y = (1− t)x + ty , leads to Bn → GLn(ZZZ[t, t−1]) (Burau representation)

Note: in these examples, x ∗ x = x always holds.

• Definition: A shelf (S, ∗) is orderable if
there exists a (left-invariant) linear ordering < on S satisfying x < x ∗ y for all x , y .

Note: (if they exist), orderable shelves are very different: x < x ∗ x 6= x .

• Theorem 1
2
: Orderable shelves exist: free shelves are orderable.

Shelves

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

◮ x ∗ y = y , leads to Bn →→ Sn.

◮ x ∗ y = xyx−1, leads to Bn → Aut(Fn) (Artin representation)

◮ x ∗ y = (1− t)x + ty , leads to Bn → GLn(ZZZ[t, t−1]) (Burau representation)

Note: in these examples, x ∗ x = x always holds.

• Definition: A shelf (S, ∗) is orderable if
there exists a (left-invariant) linear ordering < on S satisfying x < x ∗ y for all x , y .

Note: (if they exist), orderable shelves are very different: x < x ∗ x 6= x .

• Theorem 1
2
: Orderable shelves exist: free shelves are orderable.

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable LD).

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···<

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···< <

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···< < <

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···< < < 6= x

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···< < < 6= x

• Ingredient 2 : Any two braids are comparable.

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···< < < 6= x

• Ingredient 2 : Any two braids are comparable.

β β′

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···< < < 6= x

• Ingredient 2 : Any two braids are comparable.

β β′

x1

x2

x3

x4

x1

x2

x3

x4

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···< < < 6= x

• Ingredient 2 : Any two braids are comparable.

β β′

x1

x2

x3

x4

x1

x2

x3

x4

y1

y2

y3

y4

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···< < < 6= x

• Ingredient 2 : Any two braids are comparable.

β β′

x1

x2

x3

x4

x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···< < < 6= x

• Ingredient 2 : Any two braids are comparable.

β β′

x1

x2

x3

x4

x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···< < < 6= x

• Ingredient 2 : Any two braids are comparable.

β β′

x1

x2

x3

x4

x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

Then β <D β′ iff (y1, y2, ...) <Lex (z1, z2, ...)

Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 1
2
(orderable shelf).

• Ingredient 1 : A σ-positive braid word never represents 1.

···

x

y1

x∗y1

y2

(x∗y1)∗y2 ···< < < 6= x

• Ingredient 2 : Any two braids are comparable.

β β′

x1

x2

x3

x4

x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

Then β <D β′ iff (y1, y2, ...) <Lex (z1, z2, ...)

• Question: OK, but then, why to look for orderable shelves?

Self-similar sets

... because Set Theory told us!

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922),

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms = (various) solutions to

ultra-infinite
infinite

= infinite
finite

.

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms = (various) solutions to

ultra-infinite
infinite

= infinite
finite

.

(inaccessible cardinals, measurable cardinals, etc.)

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms = (various) solutions to

ultra-infinite
infinite

= infinite
finite

.

(inaccessible cardinals, measurable cardinals, etc.)

• General principle: “being self-similar implies being large”.

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms = (various) solutions to

ultra-infinite
infinite

= infinite
finite

.

(inaccessible cardinals, measurable cardinals, etc.)

• General principle: “being self-similar implies being large”.
◮ A is infinite iff ∃j : A→ A injective not bijective;

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms = (various) solutions to

ultra-infinite
infinite

= infinite
finite

.

(inaccessible cardinals, measurable cardinals, etc.)

• General principle: “being self-similar implies being large”.
◮ A is infinite iff ∃j : A→ A injective not bijective;

◮ A is ultra-infinite (“self-similar”) iff ∃j : A→ A injective not bijective
and preserving every notion that is definable from ∈.

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms = (various) solutions to

ultra-infinite
infinite

= infinite
finite

.

(inaccessible cardinals, measurable cardinals, etc.)

• General principle: “being self-similar implies being large”.
◮ A is infinite iff ∃j : A→ A injective not bijective;

◮ A is ultra-infinite (“self-similar”) iff ∃j : A→ A injective not bijective
and preserving every notion that is definable from ∈.

a (self-)embedding of A
↓

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms = (various) solutions to

ultra-infinite
infinite

= infinite
finite

.

(inaccessible cardinals, measurable cardinals, etc.)

• General principle: “being self-similar implies being large”.
◮ A is infinite iff ∃j : A→ A injective not bijective;

◮ A is ultra-infinite (“self-similar”) iff ∃j : A→ A injective not bijective
and preserving every notion that is definable from ∈.

a (self-)embedding of A
↓

• Example: NNN is infinite, but not ultra-infinite:

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms = (various) solutions to

ultra-infinite
infinite

= infinite
finite

.

(inaccessible cardinals, measurable cardinals, etc.)

• General principle: “being self-similar implies being large”.
◮ A is infinite iff ∃j : A→ A injective not bijective;

◮ A is ultra-infinite (“self-similar”) iff ∃j : A→ A injective not bijective
and preserving every notion that is definable from ∈.

a (self-)embedding of A
↓

• Example: NNN is infinite, but not ultra-infinite: if j : NNN→ NNN preserves every notion
that is definable from ∈,

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms = (various) solutions to

ultra-infinite
infinite

= infinite
finite

.

(inaccessible cardinals, measurable cardinals, etc.)

• General principle: “being self-similar implies being large”.
◮ A is infinite iff ∃j : A→ A injective not bijective;

◮ A is ultra-infinite (“self-similar”) iff ∃j : A→ A injective not bijective
and preserving every notion that is definable from ∈.

a (self-)embedding of A
↓

• Example: NNN is infinite, but not ultra-infinite: if j : NNN→ NNN preserves every notion
that is definable from ∈, then j preserves 0, 1, 2, etc.

Self-similar sets

... because Set Theory told us!

• Set Theory is a theory of infinity;

◮ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incomplete:
◮ Some statements are neither provable, nor refutable from ZF (e.g., CH)
◮ Hence: discover more properties of infinity and add further axioms to ZF...

• Typically, large cardinal axioms = (various) solutions to

ultra-infinite
infinite

= infinite
finite

.

(inaccessible cardinals, measurable cardinals, etc.)

• General principle: “being self-similar implies being large”.
◮ A is infinite iff ∃j : A→ A injective not bijective;

◮ A is ultra-infinite (“self-similar”) iff ∃j : A→ A injective not bijective
and preserving every notion that is definable from ∈.

a (self-)embedding of A
↓

• Example: NNN is infinite, but not ultra-infinite: if j : NNN→ NNN preserves every notion
that is definable from ∈, then j preserves 0, 1, 2, etc. hence j is the identity map.

Self-similar ranks

• Definition: A rank

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R.

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

◮ If i , j are self-embeddings of R, then i : R → R and j ∈ R,

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

◮ If i , j are self-embeddings of R, then i : R → R and j ∈ R, hence
we can apply i to j ,

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

◮ If i , j are self-embeddings of R, then i : R → R and j ∈ R, hence
we can apply i to j , obtaining i(j);

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

◮ If i , j are self-embeddings of R, then i : R → R and j ∈ R, hence
we can apply i to j , obtaining i(j);

◮ “Being a self-embedding” is definable from ∈, so i(j) is a self-embedding:

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

◮ If i , j are self-embeddings of R, then i : R → R and j ∈ R, hence
we can apply i to j , obtaining i(j);

◮ “Being a self-embedding” is definable from ∈, so i(j) is a self-embedding:
(“application” is a binary operation on self-embeddings of R).

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

◮ If i , j are self-embeddings of R, then i : R → R and j ∈ R, hence
we can apply i to j , obtaining i(j);

◮ “Being a self-embedding” is definable from ∈, so i(j) is a self-embedding:
(“application” is a binary operation on self-embeddings of R).

◮ “Being the image of” is definable from ∈,

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

◮ If i , j are self-embeddings of R, then i : R → R and j ∈ R, hence
we can apply i to j , obtaining i(j);

◮ “Being a self-embedding” is definable from ∈, so i(j) is a self-embedding:
(“application” is a binary operation on self-embeddings of R).

◮ “Being the image of” is definable from ∈, so ℓ=j(k) implies i(ℓ)=i(j)(i(k)),

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

◮ If i , j are self-embeddings of R, then i : R → R and j ∈ R, hence
we can apply i to j , obtaining i(j);

◮ “Being a self-embedding” is definable from ∈, so i(j) is a self-embedding:
(“application” is a binary operation on self-embeddings of R).

◮ “Being the image of” is definable from ∈, so ℓ=j(k) implies i(ℓ)=i(j)(i(k)),
that is, i(j(k)) = i(j)(i(k)):

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

◮ If i , j are self-embeddings of R, then i : R → R and j ∈ R, hence
we can apply i to j , obtaining i(j);

◮ “Being a self-embedding” is definable from ∈, so i(j) is a self-embedding:
(“application” is a binary operation on self-embeddings of R).

◮ “Being the image of” is definable from ∈, so ℓ=j(k) implies i(ℓ)=i(j)(i(k)),
that is, i(j(k)) = i(j)(i(k)): the “application” operation satisfies the LD law.

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

◮ If i , j are self-embeddings of R, then i : R → R and j ∈ R, hence
we can apply i to j , obtaining i(j);

◮ “Being a self-embedding” is definable from ∈, so i(j) is a self-embedding:
(“application” is a binary operation on self-embeddings of R).

◮ “Being the image of” is definable from ∈, so ℓ=j(k) implies i(ℓ)=i(j)(i(k)),
that is, i(j(k)) = i(j)(i(k)): the “application” operation satisfies the LD law.

• Proposition: If j is a self-embedding of a self-similar rank, then Iter(j) is a shelf.

Self-similar ranks

• Definition: A rank is a set R such that f : R → R implies f ∈ R. ??????

• Assume that there exists a self-similar set
(= a set with a nontrivial self-embedding). Then:

◮ There exists a self-similar rank, say R;

◮ If i , j are self-embeddings of R, then i : R → R and j ∈ R, hence
we can apply i to j , obtaining i(j);

◮ “Being a self-embedding” is definable from ∈, so i(j) is a self-embedding:
(“application” is a binary operation on self-embeddings of R).

◮ “Being the image of” is definable from ∈, so ℓ=j(k) implies i(ℓ)=i(j)(i(k)),
that is, i(j(k)) = i(j)(i(k)): the “application” operation satisfies the LD law.

• Proposition: If j is a self-embedding of a self-similar rank, then Iter(j) is a shelf.

↑
closure of {j} under application: j(j), j(j)(j)...

Removing Set Theory

• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

Removing Set Theory

• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

• Proposition (D. 1989): If there exists at least one orderable shelf,
then the Word Problem for LD is solvable.

Removing Set Theory

• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

• Proposition (D. 1989): If there exists at least one orderable shelf,
then the Word Problem for LD is solvable.

↑
deciding whether two terms are equal modulo LD

Removing Set Theory

• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

• Proposition (D. 1989): If there exists at least one orderable shelf,
then the Word Problem for LD is solvable.

↑
deciding whether two terms are equal modulo LD

• Proposition (Laver 1989): If j is a self-embedding of a self-similar rank,
then Iter(j) is an orderable shelf.

Removing Set Theory

• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

• Proposition (D. 1989): If there exists at least one orderable shelf,
then the Word Problem for LD is solvable.

↑
deciding whether two terms are equal modulo LD

• Proposition (Laver 1989): If j is a self-embedding of a self-similar rank,
then Iter(j) is an orderable shelf.

• Corollary: If there exists a self-similar set, the Word Problem for LD is solvable.

Removing Set Theory

• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

• Proposition (D. 1989): If there exists at least one orderable shelf,
then the Word Problem for LD is solvable.

↑
deciding whether two terms are equal modulo LD

• Proposition (Laver 1989): If j is a self-embedding of a self-similar rank,
then Iter(j) is an orderable shelf.

• Corollary: If there exists a self-similar set, the Word Problem for LD is solvable.

• But the existence of a self-similar set is an unprovable axiom (Gödel),

Removing Set Theory

• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

• Proposition (D. 1989): If there exists at least one orderable shelf,
then the Word Problem for LD is solvable.

↑
deciding whether two terms are equal modulo LD

• Proposition (Laver 1989): If j is a self-embedding of a self-similar rank,
then Iter(j) is an orderable shelf.

• Corollary: If there exists a self-similar set, the Word Problem for LD is solvable.

• But the existence of a self-similar set is an unprovable axiom (Gödel),
so the corollary does not solve the Word Problem for LD.

Removing Set Theory

• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

• Proposition (D. 1989): If there exists at least one orderable shelf,
then the Word Problem for LD is solvable.

↑
deciding whether two terms are equal modulo LD

• Proposition (Laver 1989): If j is a self-embedding of a self-similar rank,
then Iter(j) is an orderable shelf.

• Corollary: If there exists a self-similar set, the Word Problem for LD is solvable.

• But the existence of a self-similar set is an unprovable axiom (Gödel),
so the corollary does not solve the Word Problem for LD.

◮ Construct another orderable shelf (a real one!):

Removing Set Theory

• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

• Proposition (D. 1989): If there exists at least one orderable shelf,
then the Word Problem for LD is solvable.

↑
deciding whether two terms are equal modulo LD

• Proposition (Laver 1989): If j is a self-embedding of a self-similar rank,
then Iter(j) is an orderable shelf.

• Corollary: If there exists a self-similar set, the Word Problem for LD is solvable.

• But the existence of a self-similar set is an unprovable axiom (Gödel),
so the corollary does not solve the Word Problem for LD.

◮ Construct another orderable shelf (a real one!): Theorem 1
2
(orderable shelf).

Removing Set Theory

• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

• Proposition (D. 1989): If there exists at least one orderable shelf,
then the Word Problem for LD is solvable.

↑
deciding whether two terms are equal modulo LD

• Proposition (Laver 1989): If j is a self-embedding of a self-similar rank,
then Iter(j) is an orderable shelf.

• Corollary: If there exists a self-similar set, the Word Problem for LD is solvable.

• But the existence of a self-similar set is an unprovable axiom (Gödel),
so the corollary does not solve the Word Problem for LD.

◮ Construct another orderable shelf (a real one!): Theorem 1
2
(orderable shelf).

◮ Done by investigating a certain “geometry group of LD”.

Removing Set Theory

• Remember the question: why to look for orderable shelves (Theorem 1
2
)?

• Proposition (D. 1989): If there exists at least one orderable shelf,
then the Word Problem for LD is solvable.

↑
deciding whether two terms are equal modulo LD

• Proposition (Laver 1989): If j is a self-embedding of a self-similar rank,
then Iter(j) is an orderable shelf.

• Corollary: If there exists a self-similar set, the Word Problem for LD is solvable.

• But the existence of a self-similar set is an unprovable axiom (Gödel),
so the corollary does not solve the Word Problem for LD.

◮ Construct another orderable shelf (a real one!): Theorem 1
2
(orderable shelf).

◮ Done by investigating a certain “geometry group of LD”.
◮ Because the latter extends Artin’s braid group: Theorem 1 (braid order).

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

◮ Formally, no: braids appear when sets disappear.

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

◮ Formally, no: braids appear when sets disappear.
◮ In essence, yes:

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

◮ Formally, no: braids appear when sets disappear.
◮ In essence, yes: orderable shelves have been investigated because

Set Theory showed they might exist and be involved in deep phenomena.

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

◮ Formally, no: braids appear when sets disappear.
◮ In essence, yes: orderable shelves have been investigated because

Set Theory showed they might exist and be involved in deep phenomena.

• Analogy:

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

◮ Formally, no: braids appear when sets disappear.
◮ In essence, yes: orderable shelves have been investigated because

Set Theory showed they might exist and be involved in deep phenomena.

• Analogy:

◮ In physics: using physical intuition and/or evidence,

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

◮ Formally, no: braids appear when sets disappear.
◮ In essence, yes: orderable shelves have been investigated because

Set Theory showed they might exist and be involved in deep phenomena.

• Analogy:

◮ In physics: using physical intuition and/or evidence,
guess some statement, then pass it to the mathematician for a formal proof.

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

◮ Formally, no: braids appear when sets disappear.
◮ In essence, yes: orderable shelves have been investigated because

Set Theory showed they might exist and be involved in deep phenomena.

• Analogy:

◮ In physics: using physical intuition and/or evidence,
guess some statement, then pass it to the mathematician for a formal proof.

◮ Here: using logical intuition and/or evidence

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

◮ Formally, no: braids appear when sets disappear.
◮ In essence, yes: orderable shelves have been investigated because

Set Theory showed they might exist and be involved in deep phenomena.

• Analogy:

◮ In physics: using physical intuition and/or evidence,
guess some statement, then pass it to the mathematician for a formal proof.

◮ Here: using logical intuition and/or evidence (∃ self-similar set),

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

◮ Formally, no: braids appear when sets disappear.
◮ In essence, yes: orderable shelves have been investigated because

Set Theory showed they might exist and be involved in deep phenomena.

• Analogy:

◮ In physics: using physical intuition and/or evidence,
guess some statement, then pass it to the mathematician for a formal proof.

◮ Here: using logical intuition and/or evidence (∃ self-similar set),
guess some statement

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

◮ Formally, no: braids appear when sets disappear.
◮ In essence, yes: orderable shelves have been investigated because

Set Theory showed they might exist and be involved in deep phenomena.

• Analogy:

◮ In physics: using physical intuition and/or evidence,
guess some statement, then pass it to the mathematician for a formal proof.

◮ Here: using logical intuition and/or evidence (∃ self-similar set),
guess some statement (∃ orderable shelf),

An application of set theory?

• Question: Why care about Iter(j) and prove the previous propositions?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank,
then the LD-structure of Iter(j) implies Π1

1-determinacy.

meaning: “ the shelf Iter(j) is not trivial ”

• Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Question: Is the braid order an application of Set Theory?

◮ Formally, no: braids appear when sets disappear.
◮ In essence, yes: orderable shelves have been investigated because

Set Theory showed they might exist and be involved in deep phenomena.

• Analogy:

◮ In physics: using physical intuition and/or evidence,
guess some statement, then pass it to the mathematician for a formal proof.

◮ Here: using logical intuition and/or evidence (∃ self-similar set),
guess some statement (∃ orderable shelf),

then pass it to the mathematician for a formal proof.

II. The Braid Order in the Middle Ages:

II. The Braid Order in the Middle Ages: 1992–2000

II. The Braid Order in the Middle Ages: 1992–2000

- Handle reduction

Many different approaches

Many different approaches

• The braid order is a complicated object: non-Archimedian, non-Conradian, ...

Many different approaches

• The braid order is a complicated object: non-Archimedian, non-Conradian, ...
↑

∃β, β′>1 ∀p (βp <D β′)

Many different approaches

• The braid order is a complicated object: non-Archimedian, non-Conradian, ...
↑

∃β, β′>1 ∀p (βp <D β′)
↑

∃β, β′>1 ∀p (β < β′βp)

Many different approaches

• The braid order is a complicated object: non-Archimedian, non-Conradian, ...
↑

∃β, β′>1 ∀p (βp <D β′)
↑

∃β, β′>1 ∀p (β < β′βp)

• Theorems (Burckel, D., Dynnikov, Fenn, Fro-
mentin, Funk, Greene, Larue, Rolfsen, Rourke,
Short, Wiest, ...):

Many different approaches

• The braid order is a complicated object: non-Archimedian, non-Conradian, ...
↑

∃β, β′>1 ∀p (βp <D β′)
↑

∃β, β′>1 ∀p (β < β′βp)

• Theorems (Burckel, D., Dynnikov, Fenn, Fro-
mentin, Funk, Greene, Larue, Rolfsen, Rourke,
Short, Wiest, ...):

“Many different approaches
lead to the same braid order”.

Many different approaches

• The braid order is a complicated object: non-Archimedian, non-Conradian, ...
↑

∃β, β′>1 ∀p (βp <D β′)
↑

∃β, β′>1 ∀p (β < β′βp)

• Theorems (Burckel, D., Dynnikov, Fenn, Fro-
mentin, Funk, Greene, Larue, Rolfsen, Rourke,
Short, Wiest, ...):

“Many different approaches
lead to the same braid order”.

• Theorems (Clay, Dubrovina–Dubrovin, Ito,
Navas, Rolfsen, Short, Wiest, ...):

Many different approaches

• The braid order is a complicated object: non-Archimedian, non-Conradian, ...
↑

∃β, β′>1 ∀p (βp <D β′)
↑

∃β, β′>1 ∀p (β < β′βp)

• Theorems (Burckel, D., Dynnikov, Fenn, Fro-
mentin, Funk, Greene, Larue, Rolfsen, Rourke,
Short, Wiest, ...):

“Many different approaches
lead to the same braid order”.

• Theorems (Clay, Dubrovina–Dubrovin, Ito,
Navas, Rolfsen, Short, Wiest, ...):

“There exist many different braid orders
making an interesting space”.

Many different approaches

• The braid order is a complicated object: non-Archimedian, non-Conradian, ...
↑

∃β, β′>1 ∀p (βp <D β′)
↑

∃β, β′>1 ∀p (β < β′βp)

• Theorems (Burckel, D., Dynnikov, Fenn, Fro-
mentin, Funk, Greene, Larue, Rolfsen, Rourke,
Short, Wiest, ...):

“Many different approaches
lead to the same braid order”.

• Theorems (Clay, Dubrovina–Dubrovin, Ito,
Navas, Rolfsen, Short, Wiest, ...):

“There exist many different braid orders
making an interesting space”.

Handle reduction

• A σi -handle:

Handle reduction

• A σi -handle:

i

i + 1

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

7→

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

7→

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

7→

◮ Handle reduction is an isotopy;

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

7→

◮ Handle reduction is an isotopy;
◮ It extends free group reduction;

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

7→

◮ Handle reduction is an isotopy;
◮ It extends free group reduction;
◮ Words with no handle are: the empty word, σ-positive words, σ-negative words.

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

7→

◮ Handle reduction is an isotopy;
◮ It extends free group reduction;
◮ Words with no handle are: the empty word, σ-positive words, σ-negative words.

• Theorem (D. 1995): A braid β satisfies β = 1

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

7→

◮ Handle reduction is an isotopy;
◮ It extends free group reduction;
◮ Words with no handle are: the empty word, σ-positive words, σ-negative words.

• Theorem (D. 1995): A braid β satisfies β = 1 (resp. β > 1)

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

7→

◮ Handle reduction is an isotopy;
◮ It extends free group reduction;
◮ Words with no handle are: the empty word, σ-positive words, σ-negative words.

• Theorem (D. 1995): A braid β satisfies β = 1 (resp. β > 1) iff some/any sequence
of handle reductions from some/any braid word representing β finishes with the empty
word

Handle reduction

• A σi -handle:

i

i + 1

• Reducing a handle:

7→

◮ Handle reduction is an isotopy;
◮ It extends free group reduction;
◮ Words with no handle are: the empty word, σ-positive words, σ-negative words.

• Theorem (D. 1995): A braid β satisfies β = 1 (resp. β > 1) iff some/any sequence
of handle reductions from some/any braid word representing β finishes with the empty
word (resp. with a σ-positive word).

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn:

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn: vertices = braids;

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn: vertices = braids; edge
β σi β′

for βσi = β′.

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn: vertices = braids; edge
β σi β′

for βσi = β′.

• Cayley(∆d
n): restriction of the Cayley graph of Bn to the divisors of ∆d

n

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn: vertices = braids; edge
β σi β′

for βσi = β′.

• Cayley(∆d
n): restriction of the Cayley graph of Bn to the divisors of ∆d

n
(in the sense of the monoid B+++

n)

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn: vertices = braids; edge
β σi β′

for βσi = β′.

• Cayley(∆d
n): restriction of the Cayley graph of Bn to the divisors of ∆d

n
(in the sense of the monoid B+++

n)

◮ Example: Cayley(∆3) = 1

σ1

σ2

∆3

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn: vertices = braids; edge
β σi β′

for βσi = β′.

• Cayley(∆d
n): restriction of the Cayley graph of Bn to the divisors of ∆d

n
(in the sense of the monoid B+++

n)

◮ Example: Cayley(∆3) = 1

σ1

σ2

∆3

◮ Braid word drawn in Cayley(∆d
n) from some prescribed vertex:

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn: vertices = braids; edge
β σi β′

for βσi = β′.

• Cayley(∆d
n): restriction of the Cayley graph of Bn to the divisors of ∆d

n
(in the sense of the monoid B+++

n)

◮ Example: Cayley(∆3) = 1

σ1

σ2

∆3

◮ Braid word drawn in Cayley(∆d
n) from some prescribed vertex:

σ1σ2σ
−1
2 is drawn from 1 in Cayley(∆3),

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn: vertices = braids; edge
β σi β′

for βσi = β′.

• Cayley(∆d
n): restriction of the Cayley graph of Bn to the divisors of ∆d

n
(in the sense of the monoid B+++

n)

◮ Example: Cayley(∆3) = 1

σ1

σ2

∆3

◮ Braid word drawn in Cayley(∆d
n) from some prescribed vertex:

σ1σ2σ
−1
2 is drawn from 1 in Cayley(∆3), but σ1σ1 is not.

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn: vertices = braids; edge
β σi β′

for βσi = β′.

• Cayley(∆d
n): restriction of the Cayley graph of Bn to the divisors of ∆d

n
(in the sense of the monoid B+++

n)

◮ Example: Cayley(∆3) = 1

σ1

σ2

∆3

◮ Braid word drawn in Cayley(∆d
n) from some prescribed vertex:

σ1σ2σ
−1
2 is drawn from 1 in Cayley(∆3), but σ1σ1 is not.

• Lemma: (i) Every n-strand braid word is drawn in Cayley(∆d
n) for d >> 0.

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn: vertices = braids; edge
β σi β′

for βσi = β′.

• Cayley(∆d
n): restriction of the Cayley graph of Bn to the divisors of ∆d

n
(in the sense of the monoid B+++

n)

◮ Example: Cayley(∆3) = 1

σ1

σ2

∆3

◮ Braid word drawn in Cayley(∆d
n) from some prescribed vertex:

σ1σ2σ
−1
2 is drawn from 1 in Cayley(∆3), but σ1σ1 is not.

• Lemma: (i) Every n-strand braid word is drawn in Cayley(∆d
n) for d >> 0.

(ii) For every β, the words drawn from β in Cayley(∆d
n) are closed under handle reduction.

Convergence of handle reduction (1)

• Aim: Show that there is no infinite sequence of handle reductions.

• Cayley graph of Bn: vertices = braids; edge
β σi β′

for βσi = β′.

• Cayley(∆d
n): restriction of the Cayley graph of Bn to the divisors of ∆d

n
(in the sense of the monoid B+++

n)

◮ Example: Cayley(∆3) = 1

σ1

σ2

∆3

◮ Braid word drawn in Cayley(∆d
n) from some prescribed vertex:

σ1σ2σ
−1
2 is drawn from 1 in Cayley(∆3), but σ1σ1 is not.

• Lemma: (i) Every n-strand braid word is drawn in Cayley(∆d
n) for d >> 0.

(ii) For every β, the words drawn from β in Cayley(∆d
n) are closed under handle reduction.

• Hence: In a sequence of handle reductions,
all words remain drawn in some finite fragment of the Cayley graph of Bn.

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions;

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n).

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n).

◮ Point: Show that N := # reductions of the first σ1-handle in −→w is finite.

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n).

◮ Point: Show that N := # reductions of the first σ1-handle in −→w is finite.

◮ Reason: There exists a (transverse) witness-word u, drawn in Cayley(∆d
n),

s.t. u contains no letter σ−1
1 , and exactly N letters σ1:

1 ∆d
n

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n).

◮ Point: Show that N := # reductions of the first σ1-handle in −→w is finite.

◮ Reason: There exists a (transverse) witness-word u, drawn in Cayley(∆d
n),

s.t. u contains no letter σ−1
1 , and exactly N letters σ1:

1 ∆d
n

w0

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n).

◮ Point: Show that N := # reductions of the first σ1-handle in −→w is finite.

◮ Reason: There exists a (transverse) witness-word u, drawn in Cayley(∆d
n),

s.t. u contains no letter σ−1
1 , and exactly N letters σ1:

1 ∆d
n

w0
w1

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n).

◮ Point: Show that N := # reductions of the first σ1-handle in −→w is finite.

◮ Reason: There exists a (transverse) witness-word u, drawn in Cayley(∆d
n),

s.t. u contains no letter σ−1
1 , and exactly N letters σ1:

1 ∆d
n

w0
w1

w2

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n).

◮ Point: Show that N := # reductions of the first σ1-handle in −→w is finite.

◮ Reason: There exists a (transverse) witness-word u, drawn in Cayley(∆d
n),

s.t. u contains no letter σ−1
1 , and exactly N letters σ1:

1 ∆d
n

w0
w1

w2 ...

u

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n).

◮ Point: Show that N := # reductions of the first σ1-handle in −→w is finite.

◮ Reason: There exists a (transverse) witness-word u, drawn in Cayley(∆d
n),

s.t. u contains no letter σ−1
1 , and exactly N letters σ1:

1 ∆d
n

w0
w1

w2 ...

u

◮ Now: a path with no σ−1
1 cannot cross the same σ1-edge twice,

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n).

◮ Point: Show that N := # reductions of the first σ1-handle in −→w is finite.

◮ Reason: There exists a (transverse) witness-word u, drawn in Cayley(∆d
n),

s.t. u contains no letter σ−1
1 , and exactly N letters σ1:

1 ∆d
n

w0
w1

w2 ...

u

◮ Now: a path with no σ−1
1 cannot cross the same σ1-edge twice,

◮ As #{σ1-edges} in Cayley(∆d
n) is finite,

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n).

◮ Point: Show that N := # reductions of the first σ1-handle in −→w is finite.

◮ Reason: There exists a (transverse) witness-word u, drawn in Cayley(∆d
n),

s.t. u contains no letter σ−1
1 , and exactly N letters σ1:

1 ∆d
n

w0
w1

w2 ...

u

◮ Now: a path with no σ−1
1 cannot cross the same σ1-edge twice,

◮ As #{σ1-edges} in Cayley(∆d
n) is finite,N must be finite. �

• Question: What is the complexity?

Convergence of handle reduction (2)

• Aim: Show that there is no infinite sequence of handle reductions.

• Let −→w = (w0,w1, ...) be a sequence of handle reductions; all wi drawn in Cayley(∆d
n).

◮ Point: Show that N := # reductions of the first σ1-handle in −→w is finite.

◮ Reason: There exists a (transverse) witness-word u, drawn in Cayley(∆d
n),

s.t. u contains no letter σ−1
1 , and exactly N letters σ1:

1 ∆d
n

w0
w1

w2 ...

u

◮ Now: a path with no σ−1
1 cannot cross the same σ1-edge twice,

◮ As #{σ1-edges} in Cayley(∆d
n) is finite,N must be finite. �

• Question: What is the complexity? Find the “real” convergence proof.

III. The Braid Order in Modern Times:

III. The Braid Order in Modern Times: 2000-...

III. The Braid Order in Modern Times: 2000-...

- The floor (after Malyutin–Netstvetaev and Ito)

- Conjugacy via the µ function

The floor

The floor

• Definition: For β in Bn, the floor ⌊β⌋ is the unique m satisfying

∆2m
n 6D β <D ∆2m+2

n .

The floor

• Definition: For β in Bn, the floor ⌊β⌋ is the unique m satisfying

∆2m
n 6D β <D ∆2m+2

n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn, <D)

The floor

• Definition: For β in Bn, the floor ⌊β⌋ is the unique m satisfying

∆2m
n 6D β <D ∆2m+2

n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn, <D)

β

The floor

• Definition: For β in Bn, the floor ⌊β⌋ is the unique m satisfying

∆2m
n 6D β <D ∆2m+2

n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn, <D)

β

⌊β⌋ = 1

The floor

• Definition: For β in Bn, the floor ⌊β⌋ is the unique m satisfying

∆2m
n 6D β <D ∆2m+2

n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn, <D)

β

⌊β⌋ = 1

• Proposition (Malyutin–Netsvetaev, 2000):

The floor

• Definition: For β in Bn, the floor ⌊β⌋ is the unique m satisfying

∆2m
n 6D β <D ∆2m+2

n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn, <D)

β

⌊β⌋ = 1

• Proposition (Malyutin–Netsvetaev, 2000):
(i) The floor is a quasi-character with defect 1 on Bn:

The floor

• Definition: For β in Bn, the floor ⌊β⌋ is the unique m satisfying

∆2m
n 6D β <D ∆2m+2

n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn, <D)

β

⌊β⌋ = 1

• Proposition (Malyutin–Netsvetaev, 2000):
(i) The floor is a quasi-character with defect 1 on Bn:

∣∣⌊βγ⌋ − ⌊β⌋ − ⌊γ⌋
∣∣ 6 1.

The floor

• Definition: For β in Bn, the floor ⌊β⌋ is the unique m satisfying

∆2m
n 6D β <D ∆2m+2

n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn, <D)

β

⌊β⌋ = 1

• Proposition (Malyutin–Netsvetaev, 2000):
(i) The floor is a quasi-character with defect 1 on Bn:

∣∣⌊βγ⌋ − ⌊β⌋ − ⌊γ⌋
∣∣ 6 1.

(ii) If β and β′ are conjugate, then |⌊β⌋ − ⌊β′⌋| 6 1.

The floor

• Definition: For β in Bn, the floor ⌊β⌋ is the unique m satisfying

∆2m
n 6D β <D ∆2m+2

n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn, <D)

β

⌊β⌋ = 1

• Proposition (Malyutin–Netsvetaev, 2000):
(i) The floor is a quasi-character with defect 1 on Bn:

∣∣⌊βγ⌋ − ⌊β⌋ − ⌊γ⌋
∣∣ 6 1.

(ii) If β and β′ are conjugate, then |⌊β⌋ − ⌊β′⌋| 6 1.

• Corollary: The stable floor ⌊β⌋s = limp⌊βp⌋/p is the only pseudo-character on Bn

that is positive on braids >D 1 and is 1 on ∆2
n.

The floor

• Definition: For β in Bn, the floor ⌊β⌋ is the unique m satisfying

∆2m
n 6D β <D ∆2m+2

n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn, <D)

β

⌊β⌋ = 1

• Proposition (Malyutin–Netsvetaev, 2000):
(i) The floor is a quasi-character with defect 1 on Bn:

∣∣⌊βγ⌋ − ⌊β⌋ − ⌊γ⌋
∣∣ 6 1.

(ii) If β and β′ are conjugate, then |⌊β⌋ − ⌊β′⌋| 6 1.

• Corollary: The stable floor ⌊β⌋s = limp⌊βp⌋/p is the only pseudo-character on Bn

that is positive on braids >D 1 and is 1 on ∆2
n.

• Principle for using the floor in knot theory:

The floor

• Definition: For β in Bn, the floor ⌊β⌋ is the unique m satisfying

∆2m
n 6D β <D ∆2m+2

n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn, <D)

β

⌊β⌋ = 1

• Proposition (Malyutin–Netsvetaev, 2000):
(i) The floor is a quasi-character with defect 1 on Bn:

∣∣⌊βγ⌋ − ⌊β⌋ − ⌊γ⌋
∣∣ 6 1.

(ii) If β and β′ are conjugate, then |⌊β⌋ − ⌊β′⌋| 6 1.

• Corollary: The stable floor ⌊β⌋s = limp⌊βp⌋/p is the only pseudo-character on Bn

that is positive on braids >D 1 and is 1 on ∆2
n.

• Principle for using the floor in knot theory:

If |⌊β⌋||⌊β⌋||⌊β⌋| is large, then the properties of β̂̂β̂β can be read from those of βββ.

Floor vs. stabilisation

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

• Proof: Assume β ∼ γσn−1 with γ ∈ Bn−1.

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

• Proof: Assume β ∼ γσn−1 with γ ∈ Bn−1.

◮ Then β ∼ ∆nγσn−1∆
−1
n

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

• Proof: Assume β ∼ γσn−1 with γ ∈ Bn−1.

◮ Then β ∼ ∆nγσn−1∆
−1
n = sh(γ′)σ1, where sh : σi 7→ σi+1 for each i .

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

• Proof: Assume β ∼ γσn−1 with γ ∈ Bn−1.

◮ Then β ∼ ∆nγσn−1∆
−1
n = sh(γ′)σ1, where sh : σi 7→ σi+1 for each i .

◮ Now 1 <D sh(γ′)σ1, since sh(γ′)σ1 is σ-positive.

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

• Proof: Assume β ∼ γσn−1 with γ ∈ Bn−1.

◮ Then β ∼ ∆nγσn−1∆
−1
n = sh(γ′)σ1, where sh : σi 7→ σi+1 for each i .

◮ Now 1 <D sh(γ′)σ1, since sh(γ′)σ1 is σ-positive.

◮ And sh(γ′)σ1 <D ∆2
n, since σ−1

1 sh(γ′−1)∆2
n = σ−1

1 ∆2
nsh(γ

′−1) is σ-positive.

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

• Proof: Assume β ∼ γσn−1 with γ ∈ Bn−1.

◮ Then β ∼ ∆nγσn−1∆
−1
n = sh(γ′)σ1, where sh : σi 7→ σi+1 for each i .

◮ Now 1 <D sh(γ′)σ1, since sh(γ′)σ1 is σ-positive.

◮ And sh(γ′)σ1 <D ∆2
n, since σ−1

1 sh(γ′−1)∆2
n = σ−1

1 ∆2
nsh(γ

′−1) is σ-positive.

◮ Hence, 1 <D sh(γ′)σ1 6 ∆2
n,

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

• Proof: Assume β ∼ γσn−1 with γ ∈ Bn−1.

◮ Then β ∼ ∆nγσn−1∆
−1
n = sh(γ′)σ1, where sh : σi 7→ σi+1 for each i .

◮ Now 1 <D sh(γ′)σ1, since sh(γ′)σ1 is σ-positive.

◮ And sh(γ′)σ1 <D ∆2
n, since σ−1

1 sh(γ′−1)∆2
n = σ−1

1 ∆2
nsh(γ

′−1) is σ-positive.

◮ Hence, 1 <D sh(γ′)σ1 6 ∆2
n, that is, ⌊sh(γ′)σ1⌋ = 0.

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

• Proof: Assume β ∼ γσn−1 with γ ∈ Bn−1.

◮ Then β ∼ ∆nγσn−1∆
−1
n = sh(γ′)σ1, where sh : σi 7→ σi+1 for each i .

◮ Now 1 <D sh(γ′)σ1, since sh(γ′)σ1 is σ-positive.

◮ And sh(γ′)σ1 <D ∆2
n, since σ−1

1 sh(γ′−1)∆2
n = σ−1

1 ∆2
nsh(γ

′−1) is σ-positive.

◮ Hence, 1 <D sh(γ′)σ1 6 ∆2
n, that is, ⌊sh(γ′)σ1⌋ = 0.

◮ Hence, |⌊β⌋| 6 1.

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

• Proof: Assume β ∼ γσn−1 with γ ∈ Bn−1.

◮ Then β ∼ ∆nγσn−1∆
−1
n = sh(γ′)σ1, where sh : σi 7→ σi+1 for each i .

◮ Now 1 <D sh(γ′)σ1, since sh(γ′)σ1 is σ-positive.

◮ And sh(γ′)σ1 <D ∆2
n, since σ−1

1 sh(γ′−1)∆2
n = σ−1

1 ∆2
nsh(γ

′−1) is σ-positive.

◮ Hence, 1 <D sh(γ′)σ1 6 ∆2
n, that is, ⌊sh(γ′)σ1⌋ = 0.

◮ Hence, |⌊β⌋| 6 1. Idem for β ∼ γσ−1
n−1... �

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

• Proof: Assume β ∼ γσn−1 with γ ∈ Bn−1.

◮ Then β ∼ ∆nγσn−1∆
−1
n = sh(γ′)σ1, where sh : σi 7→ σi+1 for each i .

◮ Now 1 <D sh(γ′)σ1, since sh(γ′)σ1 is σ-positive.

◮ And sh(γ′)σ1 <D ∆2
n, since σ−1

1 sh(γ′−1)∆2
n = σ−1

1 ∆2
nsh(γ

′−1) is σ-positive.

◮ Hence, 1 <D sh(γ′)σ1 6 ∆2
n, that is, ⌊sh(γ′)σ1⌋ = 0.

◮ Hence, |⌊β⌋| 6 1. Idem for β ∼ γσ−1
n−1... �

• Proposition (Malyutin–Netsvetaev, Ito):

(i) If |⌊β⌋| > 1, then β̂ admits no exchange move.

Floor vs. stabilisation

• Lemma: If |⌊β⌋| > 1, then β̂ admits no destabilisation.
↑

(assuming β∈Bn) β is conjugate to no braid γσ±1
n−1 with γ ∈ Bn−1

• Proof: Assume β ∼ γσn−1 with γ ∈ Bn−1.

◮ Then β ∼ ∆nγσn−1∆
−1
n = sh(γ′)σ1, where sh : σi 7→ σi+1 for each i .

◮ Now 1 <D sh(γ′)σ1, since sh(γ′)σ1 is σ-positive.

◮ And sh(γ′)σ1 <D ∆2
n, since σ−1

1 sh(γ′−1)∆2
n = σ−1

1 ∆2
nsh(γ

′−1) is σ-positive.

◮ Hence, 1 <D sh(γ′)σ1 6 ∆2
n, that is, ⌊sh(γ′)σ1⌋ = 0.

◮ Hence, |⌊β⌋| 6 1. Idem for β ∼ γσ−1
n−1... �

• Proposition (Malyutin–Netsvetaev, Ito):

(i) If |⌊β⌋| > 1, then β̂ admits no exchange move.

(ii) If |⌊β⌋| > 2, then β̂ admits no flype.

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1,

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime.

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �

• Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists r(n) such that

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �

• Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists r(n) such that

for every β in Bn with |⌊β⌋| > r(n), β̂ is represented by a unique conjugacy class in Bn.

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �

• Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists r(n) such that

for every β in Bn with |⌊β⌋| > r(n), β̂ is represented by a unique conjugacy class in Bn.

∀β, β′∈Bn (β̂′ ≈ β̂ ⇒ β′ ∼ β)

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �

• Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists r(n) such that

for every β in Bn with |⌊β⌋| > r(n), β̂ is represented by a unique conjugacy class in Bn.

∀β, β′∈Bn (β̂′ ≈ β̂ ⇒ β′ ∼ β)

• Proof: For each template move M, there exists r s.t.
|⌊β⌋| > r(n) implies that β̂ is not eligible for M.

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �

• Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists r(n) such that

for every β in Bn with |⌊β⌋| > r(n), β̂ is represented by a unique conjugacy class in Bn.

∀β, β′∈Bn (β̂′ ≈ β̂ ⇒ β′ ∼ β)

• Proof: For each template move M, there exists r s.t.
|⌊β⌋| > r(n) implies that β̂ is not eligible for M.

By the Birman-Menasco MTWS theory, ∃ finitely template moves for each n. �

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �

• Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists r(n) such that

for every β in Bn with |⌊β⌋| > r(n), β̂ is represented by a unique conjugacy class in Bn.

∀β, β′∈Bn (β̂′ ≈ β̂ ⇒ β′ ∼ β)

• Proof: For each template move M, there exists r s.t.
|⌊β⌋| > r(n) implies that β̂ is not eligible for M.

By the Birman-Menasco MTWS theory, ∃ finitely template moves for each n. �

• (M.-N., 2000) r(3) 6 3;

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �

• Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists r(n) such that

for every β in Bn with |⌊β⌋| > r(n), β̂ is represented by a unique conjugacy class in Bn.

∀β, β′∈Bn (β̂′ ≈ β̂ ⇒ β′ ∼ β)

• Proof: For each template move M, there exists r s.t.
|⌊β⌋| > r(n) implies that β̂ is not eligible for M.

By the Birman-Menasco MTWS theory, ∃ finitely template moves for each n. �

• (M.-N., 2000) r(3) 6 3; (Matsuda, 2008) r(4) 6 4;

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �

• Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists r(n) such that

for every β in Bn with |⌊β⌋| > r(n), β̂ is represented by a unique conjugacy class in Bn.

∀β, β′∈Bn (β̂′ ≈ β̂ ⇒ β′ ∼ β)

• Proof: For each template move M, there exists r s.t.
|⌊β⌋| > r(n) implies that β̂ is not eligible for M.

By the Birman-Menasco MTWS theory, ∃ finitely template moves for each n. �

• (M.-N., 2000) r(3) 6 3; (Matsuda, 2008) r(4) 6 4; (Ito, 2009) r(3) = 2.

Large braids

• Theorem (Malyutin–Netsvetaev, 2004).—

If β satisfies |⌊β⌋| > 1, then β̂ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on Bn satisfying χ|Bn−1
= 0, then

|χ(β)| > defect(χ) implies that β̂ is prime. Apply to ⌊ ⌋s . �

• Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists r(n) such that

for every β in Bn with |⌊β⌋| > r(n), β̂ is represented by a unique conjugacy class in Bn.

∀β, β′∈Bn (β̂′ ≈ β̂ ⇒ β′ ∼ β)

• Proof: For each template move M, there exists r s.t.
|⌊β⌋| > r(n) implies that β̂ is not eligible for M.

By the Birman-Menasco MTWS theory, ∃ finitely template moves for each n. �

• (M.-N., 2000) r(3) 6 3; (Matsuda, 2008) r(4) 6 4; (Ito, 2009) r(3) = 2.
conjectured (Ito) r(n) 6 n − 1 for each n.

Genus and Nielsen-Thurston classification

Genus and Nielsen-Thurston classification

• Theorem (Ito, 2012): For every β in Bn:

|⌊β⌋| 6
4 · genus(β̂)

n + 2
−

2

n + 2
+

3

2
6 genus(β̂) + 1.

Genus and Nielsen-Thurston classification

• Theorem (Ito, 2012): For every β in Bn:

|⌊β⌋| 6
4 · genus(β̂)

n + 2
−

2

n + 2
+

3

2
6 genus(β̂) + 1.

“The closure of a large braid is a complicated knot”

Genus and Nielsen-Thurston classification

• Theorem (Ito, 2012): For every β in Bn:

|⌊β⌋| 6
4 · genus(β̂)

n + 2
−

2

n + 2
+

3

2
6 genus(β̂) + 1.

“The closure of a large braid is a complicated knot”

• Theorem (Ito, 2012): If β satisfies |⌊β⌋| > 2 and β̂ is a knot, then

Genus and Nielsen-Thurston classification

• Theorem (Ito, 2012): For every β in Bn:

|⌊β⌋| 6
4 · genus(β̂)

n + 2
−

2

n + 2
+

3

2
6 genus(β̂) + 1.

“The closure of a large braid is a complicated knot”

• Theorem (Ito, 2012): If β satisfies |⌊β⌋| > 2 and β̂ is a knot, then

◮ β is periodic iff β̂ is a torus knot,

Genus and Nielsen-Thurston classification

• Theorem (Ito, 2012): For every β in Bn:

|⌊β⌋| 6
4 · genus(β̂)

n + 2
−

2

n + 2
+

3

2
6 genus(β̂) + 1.

“The closure of a large braid is a complicated knot”

• Theorem (Ito, 2012): If β satisfies |⌊β⌋| > 2 and β̂ is a knot, then

◮ β is periodic iff β̂ is a torus knot,

◮ β is reducible iff β̂ is a satellite knot,

Genus and Nielsen-Thurston classification

• Theorem (Ito, 2012): For every β in Bn:

|⌊β⌋| 6
4 · genus(β̂)

n + 2
−

2

n + 2
+

3

2
6 genus(β̂) + 1.

“The closure of a large braid is a complicated knot”

• Theorem (Ito, 2012): If β satisfies |⌊β⌋| > 2 and β̂ is a knot, then

◮ β is periodic iff β̂ is a torus knot,

◮ β is reducible iff β̂ is a satellite knot,

◮ β is pseudo-Anosov iff β̂ is hyperbolic.

Genus and Nielsen-Thurston classification

• Theorem (Ito, 2012): For every β in Bn:

|⌊β⌋| 6
4 · genus(β̂)

n + 2
−

2

n + 2
+

3

2
6 genus(β̂) + 1.

“The closure of a large braid is a complicated knot”

• Theorem (Ito, 2012): If β satisfies |⌊β⌋| > 2 and β̂ is a knot, then

◮ β is periodic iff β̂ is a torus knot,

◮ β is reducible iff β̂ is a satellite knot,

◮ β is pseudo-Anosov iff β̂ is hyperbolic.

False in general: the trefoil knot is the closure of σ3
1 (periodic),

Genus and Nielsen-Thurston classification

• Theorem (Ito, 2012): For every β in Bn:

|⌊β⌋| 6
4 · genus(β̂)

n + 2
−

2

n + 2
+

3

2
6 genus(β̂) + 1.

“The closure of a large braid is a complicated knot”

• Theorem (Ito, 2012): If β satisfies |⌊β⌋| > 2 and β̂ is a knot, then

◮ β is periodic iff β̂ is a torus knot,

◮ β is reducible iff β̂ is a satellite knot,

◮ β is pseudo-Anosov iff β̂ is hyperbolic.

False in general: the trefoil knot is the closure of σ3
1 (periodic),

of σ1σ2σ3σ1σ2 (reducible),

Genus and Nielsen-Thurston classification

• Theorem (Ito, 2012): For every β in Bn:

|⌊β⌋| 6
4 · genus(β̂)

n + 2
−

2

n + 2
+

3

2
6 genus(β̂) + 1.

“The closure of a large braid is a complicated knot”

• Theorem (Ito, 2012): If β satisfies |⌊β⌋| > 2 and β̂ is a knot, then

◮ β is periodic iff β̂ is a torus knot,

◮ β is reducible iff β̂ is a satellite knot,

◮ β is pseudo-Anosov iff β̂ is hyperbolic.

False in general: the trefoil knot is the closure of σ3
1 (periodic),

of σ1σ2σ3σ1σ2 (reducible), and of σ3
1 σ

−1
2 (pseudo-Anosov).

Normal subgroups and quantum representations

• Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of Bn, then,

for every γ in Bn, the set {β̂γ | β ∈ H} contains infinitely many (hyperbolic) knots.

Normal subgroups and quantum representations

• Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of Bn, then,

for every γ in Bn, the set {β̂γ | β ∈ H} contains infinitely many (hyperbolic) knots.

Normal subgroups and quantum representations

• Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of Bn, then,

for every γ in Bn, the set {β̂γ | β ∈ H} contains infinitely many (hyperbolic) knots.

• Proof (sketch):

◮ The subgroup H is unbounded with respect to <D:

Normal subgroups and quantum representations

• Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of Bn, then,

for every γ in Bn, the set {β̂γ | β ∈ H} contains infinitely many (hyperbolic) knots.

• Proof (sketch):

◮ The subgroup H is unbounded with respect to <D: ∀γ∈Bn ∃β∈H (γ <D β).

Normal subgroups and quantum representations

• Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of Bn, then,

for every γ in Bn, the set {β̂γ | β ∈ H} contains infinitely many (hyperbolic) knots.

• Proof (sketch):

◮ The subgroup H is unbounded with respect to <D: ∀γ∈Bn ∃β∈H (γ <D β).
nontrivial: uses the alternating normal form of braids...

Normal subgroups and quantum representations

• Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of Bn, then,

for every γ in Bn, the set {β̂γ | β ∈ H} contains infinitely many (hyperbolic) knots.

• Proof (sketch):

◮ The subgroup H is unbounded with respect to <D: ∀γ∈Bn ∃β∈H (γ <D β).
nontrivial: uses the alternating normal form of braids...

◮ Then {βγ | β ∈ H} is also unbounded.

Normal subgroups and quantum representations

• Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of Bn, then,

for every γ in Bn, the set {β̂γ | β ∈ H} contains infinitely many (hyperbolic) knots.

• Proof (sketch):

◮ The subgroup H is unbounded with respect to <D: ∀γ∈Bn ∃β∈H (γ <D β).
nontrivial: uses the alternating normal form of braids...

◮ Then {βγ | β ∈ H} is also unbounded.

◮ Hence, {β̂γ | β ∈ H} contains knots of arbitrarily high genus,

Normal subgroups and quantum representations

• Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of Bn, then,

for every γ in Bn, the set {β̂γ | β ∈ H} contains infinitely many (hyperbolic) knots.

• Proof (sketch):

◮ The subgroup H is unbounded with respect to <D: ∀γ∈Bn ∃β∈H (γ <D β).
nontrivial: uses the alternating normal form of braids...

◮ Then {βγ | β ∈ H} is also unbounded.

◮ Hence, {β̂γ | β ∈ H} contains knots of arbitrarily high genus,
hence certainly infinitely many knots.

Normal subgroups and quantum representations

• Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of Bn, then,

for every γ in Bn, the set {β̂γ | β ∈ H} contains infinitely many (hyperbolic) knots.

• Proof (sketch):

◮ The subgroup H is unbounded with respect to <D: ∀γ∈Bn ∃β∈H (γ <D β).
nontrivial: uses the alternating normal form of braids...

◮ Then {βγ | β ∈ H} is also unbounded.

◮ Hence, {β̂γ | β ∈ H} contains knots of arbitrarily high genus,
hence certainly infinitely many knots.

◮ Moreover, one may assume β pseudo-Anosov, hence β̂ hyperbolic. �

Normal subgroups and quantum representations

• Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of Bn, then,

for every γ in Bn, the set {β̂γ | β ∈ H} contains infinitely many (hyperbolic) knots.

• Proof (sketch):

◮ The subgroup H is unbounded with respect to <D: ∀γ∈Bn ∃β∈H (γ <D β).
nontrivial: uses the alternating normal form of braids...

◮ Then {βγ | β ∈ H} is also unbounded.

◮ Hence, {β̂γ | β ∈ H} contains knots of arbitrarily high genus,
hence certainly infinitely many knots.

◮ Moreover, one may assume β pseudo-Anosov, hence β̂ hyperbolic. �

• Corollary (Ito, 2014): Let ρ1, ..., ρk be non-faithful quantum representations of Bn.
Then, for every isotopy type τ , there exist infinitely many hyperbolic knots of type τ
on which the invariants derived from ρ1, ..., ρk agree.

Normal subgroups and quantum representations

• Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of Bn, then,

for every γ in Bn, the set {β̂γ | β ∈ H} contains infinitely many (hyperbolic) knots.

• Proof (sketch):

◮ The subgroup H is unbounded with respect to <D: ∀γ∈Bn ∃β∈H (γ <D β).
nontrivial: uses the alternating normal form of braids...

◮ Then {βγ | β ∈ H} is also unbounded.

◮ Hence, {β̂γ | β ∈ H} contains knots of arbitrarily high genus,
hence certainly infinitely many knots.

◮ Moreover, one may assume β pseudo-Anosov, hence β̂ hyperbolic. �

• Corollary (Ito, 2014): Let ρ1, ..., ρk be non-faithful quantum representations of Bn.
Then, for every isotopy type τ , there exist infinitely many hyperbolic knots of type τ
on which the invariants derived from ρ1, ..., ρk agree.

• Corollary (Ito, 2014): If the Burau representation of B4 is not faithful, then there
exists a nontrivial knot with trivial Jones polynomial.

The µ function

• Theorem (Laver, 1995): For every braid β and every i , one has β−1σiβ >D 1.

The µ function

• Theorem (Laver, 1995): For every braid β and every i , one has β−1σiβ >D 1.

• Corollary: The restriction of the braid order to B+++
n is a well-ordering.

The µ function

• Theorem (Laver, 1995): For every braid β and every i , one has β−1σiβ >D 1.

• Corollary: The restriction of the braid order to B+++
n is a well-ordering.
↑

the submonoid of Bn generated by σ1, ..., σn−1

The µ function

• Theorem (Laver, 1995): For every braid β and every i , one has β−1σiβ >D 1.

• Corollary: The restriction of the braid order to B+++
n is a well-ordering.
↑

the submonoid of Bn generated by σ1, ..., σn−1
↑

every nonempty subset has a minimal element

The µ function

• Theorem (Laver, 1995): For every braid β and every i , one has β−1σiβ >D 1.

• Corollary: The restriction of the braid order to B+++
n is a well-ordering.
↑

the submonoid of Bn generated by σ1, ..., σn−1
↑

every nonempty subset has a minimal element

• Definition: For β in B+++
n , put

The µ function

• Theorem (Laver, 1995): For every braid β and every i , one has β−1σiβ >D 1.

• Corollary: The restriction of the braid order to B+++
n is a well-ordering.
↑

the submonoid of Bn generated by σ1, ..., σn−1
↑

every nonempty subset has a minimal element

• Definition: For β in B+++
n , put

µ(β) = min{β′ ∈ B+++
n | β

′ conjugate to β}.

The µ function

• Theorem (Laver, 1995): For every braid β and every i , one has β−1σiβ >D 1.

• Corollary: The restriction of the braid order to B+++
n is a well-ordering.
↑

the submonoid of Bn generated by σ1, ..., σn−1
↑

every nonempty subset has a minimal element

• Definition: For β in B+++
n , put

µ(β) = min{β′ ∈ B+++
n | β

′ conjugate to β}.

Useful only if it can be computed...

The µ function

• Theorem (Laver, 1995): For every braid β and every i , one has β−1σiβ >D 1.

• Corollary: The restriction of the braid order to B+++
n is a well-ordering.
↑

the submonoid of Bn generated by σ1, ..., σn−1
↑

every nonempty subset has a minimal element

• Definition: For β in B+++
n , put

µ(β) = min{β′ ∈ B+++
n | β

′ conjugate to β}.

Useful only if it can be computed...

• Conjecture (D., Fromentin, Gebhardt, 2009): For β in B+++
3 ,

µ(β∆2
3) = σ1σ

2
2 σ1 · µ(β) · σ

2
1 .

The µ function

• Theorem (Laver, 1995): For every braid β and every i , one has β−1σiβ >D 1.

• Corollary: The restriction of the braid order to B+++
n is a well-ordering.
↑

the submonoid of Bn generated by σ1, ..., σn−1
↑

every nonempty subset has a minimal element

• Definition: For β in B+++
n , put

µ(β) = min{β′ ∈ B+++
n | β

′ conjugate to β}.

Useful only if it can be computed...

• Conjecture (D., Fromentin, Gebhardt, 2009): For β in B+++
3 ,

µ(β∆2
3) = σ1σ

2
2 σ1 · µ(β) · σ

2
1 .

...more generally, a reasonable hope of computing µ using the alternating normal form,
and its analog for the dual braid monoid (Fromentin’s rotating normal form).

The µ function

• Theorem (Laver, 1995): For every braid β and every i , one has β−1σiβ >D 1.

• Corollary: The restriction of the braid order to B+++
n is a well-ordering.
↑

the submonoid of Bn generated by σ1, ..., σn−1
↑

every nonempty subset has a minimal element

• Definition: For β in B+++
n , put

µ(β) = min{β′ ∈ B+++
n | β

′ conjugate to β}.

Useful only if it can be computed...

• Conjecture (D., Fromentin, Gebhardt, 2009): For β in B+++
3 ,

µ(β∆2
3) = σ1σ

2
2 σ1 · µ(β) · σ

2
1 .

...more generally, a reasonable hope of computing µ using the alternating normal form,
and its analog for the dual braid monoid (Fromentin’s rotating normal form).

• If successful for conjugacy, try the same approach for Markov equivalence...

References

• P.Dehornoy, with I. Dynnikov, D. Rolfsen, B.Wiest, Ordering braids
Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

References

• P.Dehornoy, with I. Dynnikov, D. Rolfsen, B.Wiest, Ordering braids
Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

• A.Malyutin and N.Netsvetaev, Dehornoy’s ordering on the braid group and braid moves,
St. Peterburg Math. J. 15 (2004) 437-448.

References

• P.Dehornoy, with I. Dynnikov, D. Rolfsen, B.Wiest, Ordering braids
Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

• A.Malyutin and N.Netsvetaev, Dehornoy’s ordering on the braid group and braid moves,
St. Peterburg Math. J. 15 (2004) 437-448.

• T. Ito, Braid ordering and knot genus, J. Knot Th. Ramif. 20 (2011) 1311-1323.

References

• P.Dehornoy, with I. Dynnikov, D. Rolfsen, B.Wiest, Ordering braids
Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

• A.Malyutin and N.Netsvetaev, Dehornoy’s ordering on the braid group and braid moves,
St. Peterburg Math. J. 15 (2004) 437-448.

• T. Ito, Braid ordering and knot genus, J. Knot Th. Ramif. 20 (2011) 1311-1323.

• T. Ito, Braid ordering and the geometry of closed braids, Geom. Topol. 15 (2011) 473-498.

References

• P.Dehornoy, with I. Dynnikov, D. Rolfsen, B.Wiest, Ordering braids
Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

• A.Malyutin and N.Netsvetaev, Dehornoy’s ordering on the braid group and braid moves,
St. Peterburg Math. J. 15 (2004) 437-448.

• T. Ito, Braid ordering and knot genus, J. Knot Th. Ramif. 20 (2011) 1311-1323.

• T. Ito, Braid ordering and the geometry of closed braids, Geom. Topol. 15 (2011) 473-498.

• T. Ito, Kernel of braid representation and knot polynomial, Math. Zeitschr. (2015) to appear
DOI 10 1007/s 00209-015-1426-7

References

• P.Dehornoy, with I. Dynnikov, D. Rolfsen, B.Wiest, Ordering braids
Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

• A.Malyutin and N.Netsvetaev, Dehornoy’s ordering on the braid group and braid moves,
St. Peterburg Math. J. 15 (2004) 437-448.

• T. Ito, Braid ordering and knot genus, J. Knot Th. Ramif. 20 (2011) 1311-1323.

• T. Ito, Braid ordering and the geometry of closed braids, Geom. Topol. 15 (2011) 473-498.

• T. Ito, Kernel of braid representation and knot polynomial, Math. Zeitschr. (2015) to appear
DOI 10 1007/s 00209-015-1426-7

• J. Fromentin, Every braid admits a short sigma-definite expression,
J. Europ. Math. Soc. 13 (2011) 1591-1631.

References

• P.Dehornoy, with I. Dynnikov, D. Rolfsen, B.Wiest, Ordering braids
Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

• A.Malyutin and N.Netsvetaev, Dehornoy’s ordering on the braid group and braid moves,
St. Peterburg Math. J. 15 (2004) 437-448.

• T. Ito, Braid ordering and knot genus, J. Knot Th. Ramif. 20 (2011) 1311-1323.

• T. Ito, Braid ordering and the geometry of closed braids, Geom. Topol. 15 (2011) 473-498.

• T. Ito, Kernel of braid representation and knot polynomial, Math. Zeitschr. (2015) to appear
DOI 10 1007/s 00209-015-1426-7

• J. Fromentin, Every braid admits a short sigma-definite expression,
J. Europ. Math. Soc. 13 (2011) 1591-1631.

www.math.unicaen.fr/∼dehornoy

