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e An introduction to some of the many aspects of
the standard braid order, with an emphasis on the
known connections with knot theory.
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e Braid diagram colorings:
» start with a set S ,
» apply colors at the left ends of the strands in a braid diagram,
» propagate the colors to the right,
» compare the initial and final colors.
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e Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule
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Y\
X x X *y where x is a binary operation on S.
e For an action of B, on S", one needs compatibility with the braid relations:
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e Fact: One obtains an action of B; iff x satisfies the left self-distributivity law (LD):
x*(yxz)=(x*xy)*(x*2z).
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e Claim: Theorem 1 directly comes from Theorem %

e Ingredient 1 : A o-positive braid word never represents 1.

’1 Y2
/ /

X < xkyr < (xRyr)kyr < FE X

e Ingredient 2 : Any two braids are comparable.

X4 ya X4 24
X3 5 y3 X3 ﬁ/ z3
X2 y2 X2 2
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Then 8 <p B iff (y1,¥2,...) <" (z1, 22, ...)

e Question: OK, but then, why to look for orderable shelves?
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... because Set Theory told us!

e Set Theory is a theory of infinity; .
"

» Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incorg
» Some statements are neither provable, nor refutable from ZF (e.g., C
» Hence: discover more properties of infinity and add further axioms to I
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(inaccessible cardinals, measurable cardinals, etc.)

e General principle: “being self-similar implies being large” . l
» A is infinite iff 3j : A — A injective not bijective; Lo
a (self-)embedding of A ”

» A is ultra-infinite ( “self-similar”) iff 3 : A — A injective not bijective
and preserving every notion that is definable from €.

e Example: N is infinite, but not ultra-infinite: if j : N — N preserves every notion
that is definable from €, then j preserves 0, 1,2, etc. hence j is the identity map.
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. Then:
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closure of {j} under application: j(j), j(j)())..-
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e Remember the question: why to look for orderable shelves (Theorem %)7

e Proposition (D. 1989): If there exists at least one orderable shelf,
then the WordTProblem for LD is solvable.

deciding whether two terms are equal modulo LD

e Proposition (Laver 1989): If j is a self-embedding of a self-similar rank,
then lIter(j) is an orderable shelf.

o Corollary: If there exists a self-similar set, the Word Problem for LD is solvable.

e But the existence of a self-similar set is an unprovable axiom (Gddel),
so the corollary does not solve the Word Problem for LD.

» Construct another orderable shelf (a real onel): Theorem % (orderable shelf).

» Done by investigating a certain “geometry group of LD".
» Because the latter extends Artin's braid group: Theorem 1 (braid order).
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Many different approaches
e The braid order is a complicated object: non-Archimedian, non-Conradian,
3@3, ﬂ/>1 Vp (gp <p “8/)

38,B8'>1Vp (B < B'BP)
e Theorems (Burckel, D., Dynnikov, Fenn, Fro-
mentin, Funk, Greene, Larue, Rolfsen, Rourke,
Short, Wiest, ...):

“Many different approaches

lead to the same braid order”.

e Theorems (Clay, Dubrovina—Dubrovin, Ito,
Navas, Rolfsen, Short, Wiest, ...):

“There exist many different braid orders

making an interesting space”.
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e Aim: Show that there is no infinite sequence of handle reductions.
. i _ Al B O; B’ -
e Cayley graph of Bp: vertices = braids; edge o7 5o for So. = f3'.

o Cayley(AZ): restriction of the Cayley graph of B, to the divisors of A9
(in the sense of the monoid B;)

a \A3

‘72 N
» Braid word drawn in Cayley(AY) from some prescribed vertex:
0,050, ~ is drawn from 1 in Cayley(Az3), but o, 0; is not.

» Example: Cayley(A3) =

e Lemma: (i) Every n-strand braid word is drawn in Cayley(Ad) for d >> 0.
(i) For every 8, the words drawn from 3 in Cayley(AZ) are closed under handle reduction.

e Hence: In a sequence of handle reductions,
all words remain drawn in some finite fragment of the Cayley graph of B,.
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e Aim: Show that there is no infinite sequence of handle reductions.

o Let W = (wp, wi, ...) be a sequence of handle reductions; all w; drawn in Cayley(A9).
» Point: Show that N := # reductions of the first o;-handle in W is finite.
» Reason: There exists a witness-word u, drawn in Cayley(A9),
s.t. u contains no letter Ufl, and exactly N letters oy

» Now: a path with no 01_1 cannot cross the same o;-edge twice,
» As #{o,-edges} in Cayley(AY) is finite, N must be finite. a

e Question: What is the complexity? Find the “real” convergence proof.
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- The floor (after Malyutin—Netstvetaev and |to)
- Conjugacy via the p function
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e Definition: For 8 in By, the floor | 3] is the unique m satisfying

The floor
A2M < B <p A2MT2
B
AFE Ayt A2 1 a2 | Al A8
| | | | | | |
| | | | U, %
Bl =1 (Bn, <p)
e Proposition (Malyutin—Netsvetaev, 2000):
(i) The floor is a quasi-character with defect 1 on By: ||_,6"yj — 18] - |_'yj| <1
(ii) If B and B’ are conjugate, then ||B] — |B']| < 1.

e Corollary: The stable floor | 3]s = limp|BP|/p is the only pseudo-character on B,

that is positive on braids >p 1 and is 1 on A%
e Principle for using the floor in knot theory:

If | L8]] is large, then the properties ofE can be read from those of B.
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» Then 8 ~ A,,'yanflA;l = sh(y')o;, where sh : g — Tiyq for each i.
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e Lemma: If||8]| > 1, then B admits no destabilisation.

+
(assuming BE€B,) B is conjugate to no braid 'ya 1 with v € By—1
e Proof: Assume 8 ~ o, _, with v € B, 1.

» Then 8 ~ A,,'yanflA;l = sh(y')o;, where sh : g — Tiyq for each i.

» Now 1 <p sh(v')a, since sh('y’)a1 is o-positive.
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+
(assuming S€B,) [ is conjugate to no braid 'ya 1 with v € B,_1
e Proof: Assume 8 ~ o, _, with v € B, 1.
» Then 8 ~ A,,'yanflA;l = sh(y')o;, where sh : g — Tiyq for each i.
» Now 1 <p sh(v')a, since sh('y’)a1 is o-positive.
» And sh(y")o; <p A2, since o, Lsh(y/~1)A2 = o “1A2sh(y/~1) is o-positive.
» Hence, 1 <p sh('y Jo, < Aj, that is, |_sh('y )o,] =0.
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Floor vs. stabilisation

e Lemma: If||8]| > 1, then B admits no destabilisation.

(assuming B€B,) [ is conjugate to no braid won;ll with v € B,_1

e Proof: Assume 8 ~ o, _, with v € B, 1.
» Then 5 ~ A,,",,UnilA,Tl =sh(y/)o;, where sh : 0. — o, for each i.
» Now 1 <p sh(y')ay, since sh(v')o; is o-positive.
> And sh(7/)a; <p A2, since o7 'sh(y' ~1)A2 = o7 ' A2sh(y/ 1) is o-positive.
> Hence, 1 <p sh(v')o; < A2, that is, [sh(y)o;] = 0.

» Hence, [|3]| < 1. Idem for 3 ~ 70’;11... O

e Proposition (Malyutin—Netsvetaev, Ito):
(i) If||B]] > 1, then B admits no exchange move.
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e Lemma: If||8]| > 1, then B admits no destabilisation.

(assuming B€B,) [ is conjugate to no braid ",V(Tn.711 with v € B,_1

e Proof: Assume 8 ~ o, _, with v € B, 1.
» Then 5 ~ A,,’\,,UnilA,Tl =sh(y/)o;, where sh : 0. — o, for each i.
» Now 1 <p sh(y')ay, since sh(v')o; is o-positive.
> And sh(7/)a; <p A2, since o7 'sh(y' ~1)A2 = o7 ' A2sh(y/ 1) is o-positive.
> Hence, 1 <p sh(v')o; < A2, that is, [sh(y)o;] = 0.

» Hence, [|3]| < 1. Idem for 3 ~ 7(7,;11... O

e Proposition (Malyutin—Netsvetaev, Ito):
(i) If||B]] > 1, then B admits no exchange move.
(ii) If || B]] > 2, then 3 admits no flype.
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Large braids

e Theorem (Malyutin—Netsvetaev, 2004).—
If B satisfies ||B]| > 1, then [ is prime, non-split, and nontrivial. J
e Proof: For x a pseudo-character on B, satisfying x|g,_, = 0, then

[x(B)| > defect(x) implies that Bis prime. Apply to | |s. O

e Theorem (Malyutin—Netsvetaev, 2004) — For every n, there exists r(n) such that
for every 3 in B, with ||B]| = r(n), B is represented by a unique conjugacy class in Bp. J

VB,B'€By (B! ~ B = ' ~ B)

e Proof: For each template move M, there exjsts rs.t.
[LB]] > r(n) implies that 3 is not eligible for M.
By the Birman-Menasco MTWS theory, 3 finitely template moves for each n. O

e (M.-N., 2000) r(3) < 3; (Matsuda, 2008) r(4) < 4; (Ito, 2009) r(3) = 2.
conjectured (Ito) r(n) < n— 1 for each n.
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Genus and Nielsen-Thurston classification

e Theorem (lto, 2012): For every f3 in Bp:

4~genus(3) 2
Blls =% a2

3 PN
+ 2 < genus(B) + 1.

“The closure of a large braid is a complicated knot”

e Theorem (lto, 2012): If 3 satisfies ||| > 2 and B is a knot, then
» (3 is periodic iff B is a torus knot,
» [ is reducible iff ,§ is a satellite knot,
» [ is pseudo-Anosov iff B is hyperbolic.

False in general: the trefoil knot is the closure of o (periodic),
of 0,0,030,0, (reducible), and of o305 1 (pseudo-Anosov).
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e Theorem (lto, 2014): If H is a nontrivial, non-central normal subgroup of B, then,
for every v in By, the set {8~ | B € H} contains infinitely many (hyperbolic) knots.

» The subgroup H is unbounded with respect to <p: Vy€B, 3B€H (v <p B).
nontrivial: uses the alternating normal form of braids...
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e Theorem (lto, 2014): If H is a nontrivial, non-central normal subgroup of B, then,
for every v in By, the set {8~ | B € H} contains infinitely many (hyperbolic) knots. J

e Proof (sketch):
» The subgroup H is unbounded with respect to <p: Vy€B, 3B€H (v <p B).
nontrivial: uses the alternating normal form of braids...
» Then {#v | 8 € H} is also unbounded.
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Then, for every isotopy type T, there exist infinitely many hyperbolic knots of type T
on which the invariants derived from p1, ..., px agree.



Normal subgroups and quantum representations

e Theorem (lto, 2014): If H is a nontrivial, non-central normal subgroup of B, then,
for every v in By, the set {8~ | B € H} contains infinitely many (hyperbolic) knots. J

e Proof (sketch):
» The subgroup H is unbounded with respect to <p: Vy€B, IB€H (v <p B).
nontrivial: uses the alternating normal form of braids...
» Then {8~ | B € H} is also unbounded.
» Hence, {; | B € H} contains knots of arbitrarily high genus,
hence certainly infinitely many knots.
» Moreover, one may assume /3 pseudo-Anosov, hence B hyperbolic. ]

o Corollary (lto, 2014): Let p1, ..., px be non-faithful quantum representations of By.
Then, for every isotopy type T, there exist infinitely many hyperbolic knots of type T
on which the invariants derived from p1, ..., px agree.

o Corollary (Ito, 2014): If the Burau representation of By is not faithful, then there
exists a nontrivial knot with trivial Jones polynomial.
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The p function

e Theorem (Laver, 1995): For every braid 3 and every i, one has ﬂ_lcriﬁ >p 1. J

o Corollary: The restriction of the braid order to Bf is a well-ordering.
the submonoid of B, generated by oy, ...,0, T

every nonempty subset has a minimal element

e Definition: For 8 in B}, put
1(B) = min{B’ € B} | B’ conjugate to B}.
Useful only if it can be computed...

e Conjecture (D., Fromentin, Gebhardt, 2009): For 3 in B;r,
N(/BAg) = ‘71‘722‘71 - (B) - ‘712-

...more generally, a reasonable hope of computing p using the alternating normal form,
and its analog for the dual braid monoid (Fromentin's rotating normal form).

e If successful for conjugacy, try the same approach for Markov equivalence...
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