

Braid ordering: history and connections with knots

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

• An introduction to some of the many aspects of the standard braid order, with an emphasis on the known connections with knot theory.

Conference ILDT, Kyoto, May 21, 2015

Plan :

- The Braid Order in Antiquity
- The Braid Order in the Middle Ages
- The Braid Order in Modern Times (Knot Applications)

I. The Braid Order in Antiquity: 1985-92

- The set-theoretical roots

(ロ) (日) (ミ) (ミ) (ミ) - 글 - 9Q(*

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

$$
\left\langle \sigma_1, ..., \sigma_{n-1} \mid \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i - j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1 \end{array} \right\rangle.
$$

 \simeq mapping class group of D_n (disk with *n* punctures):

(ロ) (日) (모) (모) (모) 및 990

• <u>Theorem 1</u> (D. 1992): For β, β' in B_n , declare $\beta <_D \beta'$ if $\beta^{-1}\beta'$ can be represented by a σ -positive diagram. Then \langle is a left-invariant linear ordering on B_n .

$$
\uparrow
$$
\n
$$
\upbeta <_{\mathsf{D}} \upbeta' \text{ implies } \alpha \beta <_{\mathsf{D}} \alpha \beta'
$$

- Example: Let $\beta = \sigma_1$, $\beta' = \sigma_2 \sigma_1$. Then $\beta^{-1}\beta' = \sigma_1^{-1}\sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2^{-1}$, so $\beta <_{\mathsf{D}} \beta'$.
- Question: Where does this order come from?

• Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank, then the LD-structure of Iter(j) implies Π_1^1 -determinacy.

??????

- Braid diagram colorings:
	- \blacktriangleright start with a set S ("colors"),
	- \rightarrow apply colors at the left ends of the strands in a braid diagram.
	- \triangleright propagate the colors to the right,
	- \triangleright compare the initial and final colors.
- Option 1: Colors are preserved in crossings:


```
\cap permutation of colors: B_n \to \mathfrak{S}_n<br>y
```
- Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule x $y \sim x^x$ $x * y$ where \ast is a (fixed) binary operation on $S.$
- For an action of B_n on S^n , one needs compatibility with the braid relations:

 \bullet <u>Fact</u>: One obtains an action of B_n^+ iff \ast satisfies the left self-distributivity law (LD): $x * (y * z) = (x * y) * (x * z).$

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

• Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):

- ► $x * y = y$, leads to $B_n \rightarrow \mathfrak{S}_n$.
- ► $x * y = xyx^{-1}$, leads to $B_n \to \text{Aut}(F_n)$ (Artin representation)
- ► $x * y = (1-t)x + ty$, leads to $B_n \to GL_n(\mathbb{Z}[t, t^{-1}])$ (Burau representation)

Note: in these examples, $x * x = x$ always holds.

• Definition: A shelf $(S, *)$ is orderable if there exists a (left-invariant) linear ordering $<$ on S satisfying $x < x * y$ for all x, y. Note: (if they exist), orderable shelves are very different: $x < x * x \neq x$.

• Theorem $\frac{1}{2}$: Orderable shelves exist: free shelves are orderable.

• Claim: Theorem 1 (braid order) directly comes from Theorem $\frac{1}{2}$ (orderable LD).

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

 \bullet Claim: Theorem 1 (braid order) directly comes from Theorem $\frac{1}{2}$ (orderable shelf).

• Ingredient $1: A \sigma$ -positive braid word never represents 1.

• Ingredient 2 : Any two braids are comparable.

• Question: OK, but then, why to look for orderable shelves?

... because Set Theory told us!

- Set Theory is a theory of infinity:
	- ▶ Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incor
	- ▶ Some statements are neither provable, nor refutable from ZF (e.g., CH)
	- \blacktriangleright Hence: discover more properties of infinity and add further axioms to
- Typically, large cardinal axioms $=$ (various) solutions to

$$
\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.
$$

(inaccessible cardinals, measurable cardinals, etc.)

- General principle: "being self-similar implies being large".
	- A is infinite iff $\exists j : A \rightarrow A$ injective not bijective;

a (self-)embedding of A

- \blacktriangleright A is ultra-infinite ("self-similar") iff $\exists j : A \rightarrow A$ injective not bijective and preserving every notion that is definable from \in .
- Example: N is infinite, but not ultra-infinite: if $j : \mathbb{N} \to \mathbb{N}$ preserves every notion that is definable from \in , then j preserves 0, 1, 2, etc. hence j is the identity map.

• Definition: A rank is a set R such that $f: R \to R$ implies $f \in R$. ??????

• Assume that there exists a self-similar set

 $(= a \text{ set with a nontrivial self-embedding})$. Then:

- \blacktriangleright There exists a self-similar rank, say R;
- ► If *i*, *j* are self-embeddings of R, then $i : R \rightarrow R$ and $j \in R$, hence

we can apply *i* to *j*, obtaining $i(i)$;

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- ► "Being a self-embedding" is definable from \in , so $i(i)$ is a self-embedding: ("application" is a binary operation on self-embeddings of R).
- ► "Being the image of" is definable from \in , so $\ell = j(k)$ implies $i(\ell) = i(j)(i(k))$, that is, $i(j(k)) = i(j)(i(k))$: the "application" operation satisfies the LD law.

• Proposition: If j is a self-embedding of a self-similar rank, then $Iter(j)$ is a shelf.

↑ closure of $\{j\}$ under application: $j(j)$, $j(j)(j)$... • Remember the question: why to look for orderable shelves (Theorem $\frac{1}{2}$)?

• Proposition (D. 1989): If there exists at least one orderable shelf, then the Word Problem for LD is solvable.

↑ deciding whether two terms are equal modulo LD

• Proposition (Laver 1989): If j is a self-embedding of a self-similar rank, then Iter(i) is an orderable shelf.

• Corollary: If there exists a self-similar set, the Word Problem for LD is solvable.

• But the existence of a self-similar set is an unprovable axiom (Gödel),

so the corollary does not solve the Word Problem for LD.

- ► Construct another orderable shelf (a real one!): Theorem $\frac{1}{2}$ (orderable shelf).
- ▶ Done by investigating a certain "geometry group of LD".
- \triangleright Because the latter extends Artin's braid group: Theorem 1 (braid order).
- Question: Why care about $\text{Iter}(j)$ and prove the previous propositions?
- Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank, then the LD-structure of Iter(j) implies Π^1_1 -determinacy.

```
meaning: " the shelf \text{Iter}(i) is not trivial "
```
- Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).
- Question: Is the braid order an application of Set Theory?
	- \triangleright Formally, no: braids appear when sets disappear.
	- \triangleright In essence, yes: orderable shelves have been investigated because Set Theory showed they might exist and be involved in deep phenomena.
- Analogy:
	- \blacktriangleright In physics: using physical intuition and/or evidence, guess some statement, then pass it to the mathematician for a formal proof.
	- ► Here: using logical intuition and/or evidence (\exists self-similar set), guess some statement (∃ orderable shelf),

then pass it to the mathematician for a formal proof.

II. The Braid Order in the Middle Ages: 1992-2000

- Handle reduction

(ロ) (日) (ミ) (ミ) (ミ) - 글 - 9Q(*

• The braid order is a complicated object: non-Archimedian, non-Conradian, ...

 $\exists \beta, \beta' \rightarrow 1 \; \forall p \; (\beta^p <_{\text{D}} \beta')$ $\uparrow \ \exists \beta, \beta' \mathord{>} 1 \; \forall \rho \; (\beta < \beta' \beta^{\rho})$

• Theorems (Burckel, D., Dynnikov, Fenn, Fromentin, Funk, Greene, Larue, Rolfsen, Rourke, Short, Wiest, ...): "Many different approaches

lead to the same braid order".

• Theorems (Clay, Dubrovina-Dubrovin, Ito, Navas, Rolfsen, Short, Wiest, ...): "There exist many different braid orders making an interesting space".

KEL KALKELKEL E VAN

- \blacktriangleright Handle reduction is an isotopy;
- \blacktriangleright It extends free group reduction;
- \triangleright Words with no handle are: the empty word, σ -positive words, σ -negative words.

• Theorem (D. 1995): A braid β satisfies $\beta = 1$ (resp. $\beta > 1$) iff some/any sequence of handle reductions from some/any braid word representing β finishes with the empty word (resp. with a σ -positive word).

- Aim: Show that there is no infinite sequence of handle reductions.
- Cayley graph of B_n : vertices = braids; edge $\int_0^\beta \frac{\sigma_i}{\sigma} \frac{\beta'}{\sigma}$ for $\beta \sigma_i = \beta'.$
- Cayley (Δ_n^d) : restriction of the Cayley graph of B_n to the divisors of Δ_n^d (in the sense of the monoid B_n^+) ► Example: Cayley $(\Delta_3) = 1$ σ ₁ σ_2 ∆³ ► Braid word drawn in Cayley (Δ_n^d) from some prescribed vertex: $\sigma_1\sigma_2\sigma_2^{-1}$ is drawn from 1 in Cayley(Δ_3), but $\sigma_1\sigma_1$ is not.

 \bullet <u>Lemma</u>: (i) Every n-strand braid word is drawn in Cayley(Δ_n^d) for d $\gg 0$. (ii) For every β , the words drawn from β in Cayley(Δ_n^d) are closed under handle reduction.

• Hence: In a sequence of handle reductions, all words remain drawn in some finite fragment of the Cayley graph of B_n .

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- Aim: Show that there is no infinite sequence of handle reductions.
- Let $\vec{w} = (w_0, w_1, ...)$ be a sequence of handle reductions; all w_i drawn in Cayley (Δ_n^d) .
	- ► <u>Point</u>: Show that $N := #$ reductions of the first σ_1 -handle in \vec{w} is finite.
	- ► Reason: There exists a (transverse) witness-word u, drawn in Cayley(Δ_n^d),

s.t. *u* contains no letter σ_1^{-1} , and exactly N letters σ_1 :

► Now: a path with no σ_1^{-1} cannot cross the same σ_1^{-} -edge twice,

► As $\#\{\sigma_1$ -edges} in Cayley (Δ_n^d) is finite,N must be finite.

• Question: What is the complexity? Find the "real" convergence proof.

III. The Braid Order in Modern Times: 2000-...

- The floor (after Malyutin–Netstvetaev and Ito)

 OQ

- Conjugacy via the μ function

KEL KALKELKEL E VAN

- Proposition (Malyutin–Netsvetaev, 2000): (i) The floor is a quasi-character with defect 1 on B_n : $\left| \lfloor \beta \gamma \rfloor - \lfloor \beta \rfloor - \lfloor \gamma \rfloor \right| \leq 1$. (ii) If β and β' are conjugate, then $\lfloor |\beta| - \lfloor \beta' \rfloor \rfloor \leq 1$.
- Corollary: The stable floor $\lfloor \beta \rfloor_s = \lim_{p \mid \beta^p \rfloor / p}$ is the only pseudo-character on B_n that is positive on braids $>_D 1$ and is 1 on Δ^2_n .
- Principle for using the floor in knot theory:

If $||\beta||$ is large, then the properties of $\widehat{\beta}$ can be read from those of β .

KEL KALKELKEL E VAN

- Lemma: $|f|[\beta]| > 1$, then $\widehat{\beta}$ admits no destabilisation. ↑ (assuming $\beta \in B_n$) β is conjugate to no braid $\gamma \sigma_{n-1}^{\pm 1}$ with $\gamma \in B_{n-1}$
- Proof: Assume $\beta \sim \gamma \sigma_{n-1}$ with $\gamma \in B_{n-1}$.
	- ► Then $\beta \sim \Delta_n \gamma \sigma_{n-1} \Delta_n^{-1} = \hbox{sh}(\gamma') \sigma_{\!1}$, where $\hbox{sh} : \sigma_{\!i} \mapsto \sigma_{\!i+1}$ for each i .
	- \blacktriangleright Now $1 <_{\text{D}} \text{sh}(\gamma')\sigma_1$, since $\text{sh}(\gamma')\sigma_1$ is σ -positive.
	- And $\sin(\gamma')\sigma_1 <_{\mathbf{D}} \Delta_n^2$, since $\sigma_1^{-1}\sin(\gamma'^{-1})\Delta_n^2 = \sigma_1^{-1}\Delta_n^2 \sin(\gamma'^{-1})$ is σ -positive.
	- ► Hence, $1 \lt_{D} \sh(\gamma')\sigma_1 \leqslant \Delta_n^2$, that is, $\lfloor \sh(\gamma')\sigma_1 \rfloor = 0$.
	- ► Hence, $|\lfloor \beta \rfloor| \leqslant 1$. Idem for $\beta \sim \gamma \sigma_{n-1}^{-1}$...
- Proposition (Malyutin–Netsvetaev, Ito): (i) If $||\beta|| > 1$, then $\widehat{\beta}$ admits no exchange move. (ii) If $||\beta|| > 2$, then $\hat{\beta}$ admits no flype.

• Theorem (Malyutin-Netsvetaev, 2004) -If β satisfies $||\beta|| > 1$, then $\widehat{\beta}$ is prime, non-split, and nontrivial.

• Proof: For χ a pseudo-character on B_n satisfying $\chi|_{B_{n-1}} = 0$, then $|\chi(\beta)| >$ defect (χ) implies that $\widehat{\beta}$ is prime. Apply to $|\zeta|$, \square

• Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists $r(n)$ such that for every β in B_n with $||\beta|| \ge r(n)$, $\widehat{\beta}$ is represented by a unique conjugacy class in B_n .

```
\forall \beta, \beta' \in B_n \; (\widehat{\beta'} \approx \widehat{\beta} \Rightarrow \beta' \sim \beta)
```
• Proof: For each template move M , there exists r s.t. $||\beta|| > r(n)$ implies that $\widehat{\beta}$ is not eligible for M. By the Birman-Menasco MTWS theory, \exists finitely template moves for each n. \square

• (M.-N., 2000) $r(3) \le 3$; (Matsuda, 2008) $r(4) \le 4$; (Ito, 2009) $r(3) = 2$. conjectured (Ito) $r(n) \leq n - 1$ for each n.

• Theorem (lto, 2012): *For every*
$$
\beta
$$
 in B_n :

$$
||\beta|| \leq \frac{4 \cdot \text{genus}(\widehat{\beta})}{n+2} - \frac{2}{n+2} + \frac{3}{2} \leq \text{genus}(\widehat{\beta}) + 1.
$$

"The closure of a large braid is a complicated knot"

• Theorem (Ito, 2012): If β satisfies $||\beta|| \geq 2$ and $\widehat{\beta}$ is a knot, then

- ρ is periodic iff $\widehat{\beta}$ is a torus knot,
- \triangleright β is reducible iff $\widehat{\beta}$ is a satellite knot,
- \triangleright β is pseudo-Anosov iff $\widehat{\beta}$ is hyperbolic.

False in general: the trefoil knot is the closure of σ_1^3 (periodic), of $\sigma_1 \sigma_2 \sigma_3 \sigma_1 \sigma_2$ (reducible), and of $\sigma_1^3 \sigma_2^{-1}$ (pseudo-Anosov). • Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of B_n , then, for every γ in B_n , the set $\{\widehat{\beta\gamma}\mid \beta \in H\}$ contains infinitely many (hyperbolic) knots.

• Proof (sketch):

- ► The subgroup H is unbounded with respect to \lt_{D} : $\forall \gamma \in B_n$ $\exists \beta \in H$ ($\gamma \lt_{D} \beta$). nontrivial: uses the alternating normal form of braids...
- \blacktriangleright Then $\{\beta\gamma \mid \beta \in H\}$ is also unbounded.
- Hence, $\{\widehat{\beta\gamma} \mid \beta \in H\}$ contains knots of arbitrarily high genus,
- hence certainly infinitely many knots. \blacktriangleright Moreover, one may assume β pseudo-Anosov, hence $\widehat{\beta}$ hyperbolic.

• Corollary (Ito, 2014): Let $\rho_1, ..., \rho_k$ be non-faithful quantum representations of B_n . Then, for every isotopy type τ , there exist infinitely many hyperbolic knots of type τ on which the invariants derived from $\rho_1, ..., \rho_k$ agree.

• Corollary (Ito, 2014): If the Burau representation of B_4 is not faithful, then there exists a nontrivial knot with trivial Jones polynomial.

 \bullet <u>Theorem</u> (Laver, 1995): *For every braid* β *and every i, one has* $\beta^{-1}\sigma_{i}\beta>_{D} 1$ *.*

 \bullet Corollary: The restriction of the braid order to B_n^+ is a well-ordering.

the submonoid of B_n generated by $\sigma_1, ..., \sigma_{n-1}$ ↑ every nonempty subset has a minimal element

• <u>Definition</u>: For β in B_n^+ , put $\mu(\beta) = \min\{\beta' \in B_n^+ \mid \beta' \text{ conjugate to } \beta\}.$ Useful only if it can be computed...

• <u>Conjecture</u> (D., Fromentin, Gebhardt, 2009): For β in B_3^+ , $\mu(\beta \Delta_3^2) = \sigma_1 \sigma_2^2 \sigma_1 \cdot \mu(\beta) \cdot \sigma_1^2$.

...more generally, a reasonable hope of computing μ using the alternating normal form, and its analog for the dual braid monoid (Fromentin's rotating normal form).

• If successful for conjugacy, try the same approach for Markov equivalence...

- P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)
- A. Malyutin and N. Netsvetaev, Dehornoy's ordering on the braid group and braid moves, St. Peterburg Math. J. 15 (2004) 437-448.
- T. Ito, Braid ordering and knot genus. J. Knot Th. Ramif. 20 (2011) 1311-1323.
- T. Ito, Braid ordering and the geometry of closed braids, Geom. Topol. 15 (2011) 473-498.
- T. Ito, Kernel of braid representation and knot polynomial, Math. Zeitschr. (2015) to appear DOI 10 1007/s 00209-015-1426-7
- J. Fromentin, Every braid admits a short sigma-definite expression, J. Europ. Math. Soc. 13 (2011) 1591-1631.

www.math.unicaen.fr/∼dehornoy