

Braid ordering: history and connections with knots Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

• An introduction to some of the many aspects of the standard braid order, with an emphasis on the known connections with knot theory.

Conference ILDT, Kyoto, May 21, 2015

<u> Plan</u> :

- The Braid Order in Antiquity
- The Braid Order in the Middle Ages
- The Braid Order in Modern Times (Knot Applications)

I. The Braid Order in Antiquity: 1985-92

- The set-theoretical roots

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation

$$\bigg\langle \sigma_1,...,\sigma_{n-1} \, \Big| \, \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{ for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{ for } |i-j| = 1 \end{array} \bigg\rangle.$$

 \simeq mapping class group of D_n (disk with *n* punctures):

• <u>Definition</u>: A σ-positive braid diagram:

 \leftarrow all bottom crossings (= σ_i with minimal i) are positive (no σ_i^{-1})

• Theorem 1 (D. 1992): For β, β' in B_n , declare $\beta <_D \beta'$ if $\beta^{-1}\beta'$ can be represented by a σ -positive diagram. Then < is a left-invariant linear ordering on B_n .

$$\uparrow \\ \beta <_{\mathsf{D}} \beta' \text{ implies } \alpha\beta <_{\mathsf{D}} \alpha\beta'$$

- Example: Let $\beta = \sigma_1$, $\beta' = \sigma_2 \sigma_1$. Then $\beta^{-1}\beta' = \sigma_1^{-1}\sigma_2\sigma_1 = \sigma_2\sigma_1\sigma_2^{-1}$, so $\beta <_{\mathsf{D}}\beta'$.
- Question: Where does this order come from?
- Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank, then the LD-structure of Iter(j) implies Π¹₁-determinacy.

- Braid diagram colorings:
 - ▶ start with a set S ("colors"),
 - ▶ apply colors at the left ends of the strands in a braid diagram,
 - ▶ propagate the colors to the right,
 - ▶ compare the initial and final colors.
- Option 1: Colors are preserved in crossings:

$$\bigvee_{x} \bigvee_{y} \bigvee_{y}$$
 permutation of colors: $B_n \to \mathfrak{S}_n$

• Option 2: (Joyce, Matveev, Brieskorn 1980s) Colors change under the rule

• For an action of B_n on S^n , one needs compatibility with the braid relations:

• Fact: One obtains an action of B_n^+ iff * satisfies the left self-distributivity law (LD): x * (y * z) = (x * y) * (x * z).

- Classical shelves (or LD-systems) (= sets with an operation obeying the LD-law):
 - \triangleright x * y = y, leads to $B_n \rightarrow \mathfrak{S}_n$.
 - ▶ $x * y = xyx^{-1}$, leads to $B_n \to Aut(F_n)$ (Artin representation)
 - $\star x * y = (1 t)x + ty$, leads to $B_n \to GL_n(\mathbb{Z}[t, t^{-1}])$ (Burau representation)

Note: in these examples, x * x = x always holds.

 <u>Definition</u>: A shelf (S,*) is <u>orderable</u> if there exists a (left-invariant) linear ordering < on S satisfying x < x * y for all x, y.

Note: (if they exist), orderable shelves are very different: $x < x * x \neq x$.

• Theorem $\frac{1}{2}$: Orderable shelves exist: free shelves are orderable.

• Claim: Theorem 1 (braid order) directly comes from Theorem $\frac{1}{2}$ (orderable LD).

- Claim: Theorem 1 (braid order) directly comes from Theorem $\frac{1}{2}$ (orderable shelf).
- ullet Ingredient 1 : A σ -positive braid word never represents 1.

• Ingredient 2: Any two braids are comparable.

Then $\beta \leq_{D} \beta'$ iff $(y_1, y_2, ...) \leq^{\text{Lex}} (z_1, z_2, ...)$

• Question: OK, but then, why to look for orderable shelves?

... because Set Theory told us!

- Set Theory is a theory of infinity;
 - Axiomatized in the Zermelo-Fraenkel system ZF (1922), which is incor
 - ▶ Some statements are neither provable, nor refutable from ZF (e.g., Ch
 - ▶ Hence: discover more properties of infinity and add further axioms to
- Typically, large cardinal axioms = (various) solutions to
 ultra-infinite infinite = infinite finite.

(inaccessible cardinals, measurable cardinals, etc.)

- ▶ A is infinite iff $\exists j : A \rightarrow A$ injective not bijective;
 - a (self-)embedding of A
- ▶ A is ultra-infinite ("self-similar") iff $\exists_j^{\stackrel{\checkmark}{j}}: A \to A$ injective not bijective and preserving every notion that is definable from \in .
- Example: \mathbb{N} is infinite, but not ultra-infinite: if $j : \mathbb{N} \to \mathbb{N}$ preserves every notion that is definable from \in , then j preserves 0, 1, 2, etc. hence j is the identity map.

• <u>Definition</u>: A rank is a set R such that $f: R \to R$ implies $f \in R$.

- ??????
- Assume that there exists a self-similar set
 (= a set with a nontrivial self-embedding). Then:
 - ► There exists a self-similar rank, say R;
 - ▶ If i, j are self-embeddings of R, then $i: R \to R$ and $j \in R$, hence we can apply i to j, obtaining i(j);
 - ▶ "Being a self-embedding" is definable from \in , so i(j) is a self-embedding: ("application" is a binary operation on self-embeddings of R).
 - ▶ "Being the image of" is definable from \in , so $\ell = j(k)$ implies $i(\ell) = i(j)(i(k))$, that is, i(j(k)) = i(j)(i(k)): the "application" operation satisfies the LD law.
- Proposition: If j is a self-embedding of a self-similar rank, then Iter(j) is a shelf.
 - closure of $\{j\}$ under application: j(j), j(j)(j)...

- Remember the question: why to look for orderable shelves (Theorem $\frac{1}{2}$)?
- <u>Proposition</u> (D. 1989): If there exists at least one orderable shelf, then the Word Problem for LD is solvable.

deciding whether two terms are equal modulo LD

then Iter(i) is an orderable shelf.

• Proposition (Laver 1989): If j is a self-embedding of a self-similar rank,

• Corollary: If there exists a self-similar set, the Word Problem for LD is solvable.

- But the existence of a self-similar set is an unprovable axiom (Gödel),
 so the corollary does <u>not</u> solve the Word Problem for LD.
 - ▶ Construct another orderable shelf (a real one!): Theorem $\frac{1}{2}$ (orderable shelf).
 - ▶ Done by investigating a certain "geometry group of LD".
 - ▶ Because the latter extends Artin's braid group: Theorem 1 (braid order).

- Question: Why care about Iter(j) and prove the previous propositions?
- Theorem 0 (D. 1986): If j is a self-embedding of a self-similar rank, then the LD-structure of Iter(j) implies Π_1^1 -determinacy.

meaning: "the shelf lter(j) is <u>not</u> trivial"

- Thus: a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).
- Question: Is the braid order an application of Set Theory?
 - ▶ Formally, no: braids appear when sets disappear.
 - ▶ In essence, yes: orderable shelves have been investigated because Set Theory showed they might exist and be involved in deep phenomena.
- Analogy:
 - In physics: using physical intuition and/or evidence, guess some statement, then pass it to the mathematician for a formal proof.
 - ► Here: using logical intuition and/or evidence (∃ self-similar set), guess some statement (∃ orderable shelf),

then pass it to the mathematician for a formal proof.

II. The Braid Order in the Middle Ages: 1992-2000

- Handle reduction

• The braid order is a complicated object: non-Archimedian, non-Conradian, ...

$$\uparrow \qquad \uparrow \qquad \uparrow
\exists \beta, \beta' > 1 \, \forall p \, (\beta^p <_D \beta') \qquad \exists \beta, \beta' > 1 \, \forall p \, (\beta < \beta' \beta^p)$$

• <u>Theorems</u> (Burckel, D., Dynnikov, Fenn, Fromentin, Funk, Greene, Larue, Rolfsen, Rourke, Short, Wiest, ...):

"Many different approaches lead to the same braid order".

• <u>Theorems</u> (Clay, Dubrovina–Dubrovin, Ito, Navas, Rolfsen, Short, Wiest, ...):

"There exist many different braid orders making an interesting space".

• A σ_i -handle:

• Reducing a handle:

- ► Handle reduction is an isotopy;
- ▶ It extends free group reduction;
- ▶ Words with no handle are: the empty word, σ -positive words, σ -negative words.
- Theorem (D. 1995): A braid β satisfies $\beta = 1$ (resp. $\beta > 1$) iff some/any sequence of handle reductions from some/any braid word representing β finishes with the empty word (resp. with a σ -positive word).

- Aim: Show that there is no infinite sequence of handle reductions.
- Cayley graph of B_n : vertices = braids; edge $\overset{\beta}{\circ} \xrightarrow{\sigma_i} \overset{\beta'}{\circ}$ for $\beta \sigma_i = \beta'$.
- Cayley(Δ_n^d): restriction of the Cayley graph of B_n to the divisors of Δ_n^d (in the sense of the monoid B_n^+)
 - Fixample: Cayley(Δ_3) = $1 \circ 0$
 - ▶ Braid word drawn in Cayley(Δ_n^d) from some prescribed vertex: $\sigma_1 \sigma_2 \sigma_2^{-1}$ is drawn from 1 in Cayley(Δ_3), but $\sigma_1 \sigma_1$ is not.
- <u>Lemma</u>: (i) Every n-strand braid word is drawn in Cayley(Δ_n^d) for $d \gg 0$. (ii) For every β , the words drawn from β in Cayley(Δ_n^d) are closed under handle reduction.
- Hence: In a sequence of handle reductions,
 all words remain drawn in some finite fragment of the Cayley graph of B_n.

- Aim: Show that there is no infinite sequence of handle reductions.
- Let $\overrightarrow{w} = (w_0, w_1, ...)$ be a sequence of handle reductions; all w_i drawn in Cayley (Δ_n^d) .
 - ▶ Point: Show that N := # reductions of the first σ_1 -handle in \overrightarrow{w} is finite.
 - ► Reason: There exists a (transverse) witness-word u, drawn in Cayley(Δ_n^d), s.t. u contains no letter σ_1^{-1} , and exactly N letters σ_1 :

- ▶ Now: a path with no σ_1^{-1} cannot cross the same σ_1 -edge twice,
- ▶ As $\#\{\sigma_1\text{-edges}\}\$ in Cayley (Δ_n^d) is finite,N must be finite.
- Question: What is the complexity? Find the "real" convergence proof.

III. The Braid Order in Modern Times: 2000-...

- The floor (after Malyutin-Netstvetaev and Ito)
- Conjugacy via the $\boldsymbol{\mu}$ function

• <u>Definition</u>: For β in B_n , the floor $\lfloor \beta \rfloor$ is the unique m satisfying

$$\Delta_n^{2m} \leqslant_{\mathsf{D}} \beta <_{\mathsf{D}} \Delta_n^{2m+2}$$
.

- Proposition (Malyutin-Netsvetaev, 2000):
 - (i) The floor is a quasi-character with defect 1 on B_n : $|\lfloor \beta \gamma \rfloor \lfloor \beta \rfloor \lfloor \gamma \rfloor| \leq 1$.
 - (ii) If β and β' are conjugate, then $|\lfloor \beta \rfloor \lfloor \beta' \rfloor| \leq 1$.
- Corollary: The stable floor $\lfloor \beta \rfloor_s = \lim_p \lfloor \beta^p \rfloor / p$ is the only pseudo-character on B_n that is positive on braids $>_D 1$ and is 1 on Δ_n^2 .
- Principle for using the floor in knot theory:

If $||\beta||$ is large, then the properties of $\hat{\beta}$ can be read from those of β .

• Lemma: If $|\lfloor \beta \rfloor| > 1$, then $\widehat{\beta}$ admits no destabilisation.

(assuming $\beta \in B_n$) β is conjugate to no braid $\gamma \sigma_{n-1}^{\pm 1}$ with $\gamma \in B_{n-1}$

- Proof: Assume $\beta \sim \gamma \sigma_{n-1}$ with $\gamma \in B_{n-1}$.
 - ▶ Then $\beta \sim \Delta_n \gamma \sigma_{n-1} \Delta_n^{-1} = \text{sh}(\gamma') \sigma_1$, where sh : $\sigma_i \mapsto \sigma_{i+1}$ for each i.
 - ▶ Now $1 <_{D} \operatorname{sh}(\gamma')\sigma_{1}$, since $\operatorname{sh}(\gamma')\sigma_{1}$ is σ -positive.
 - ▶ And $\operatorname{sh}(\gamma')\sigma_1 <_D \Delta_n^2$, since $\sigma_1^{-1}\operatorname{sh}(\gamma'^{-1})\Delta_n^2 = \sigma_1^{-1}\Delta_n^2\operatorname{sh}(\gamma'^{-1})$ is σ -positive.
 - ▶ Hence, $1 <_{D} \operatorname{sh}(\gamma')\sigma_{1} \leq \Delta_{n}^{2}$, that is, $\lfloor \operatorname{sh}(\gamma')\sigma_{1} \rfloor = 0$.
 - ▶ Hence, $|\lfloor \beta \rfloor| \leq 1$. Idem for $\beta \sim \gamma \sigma_{n-1}^{-1}$...

- Proposition (Malyutin-Netsvetaev, Ito):
 - (i) If $|\lfloor \beta \rfloor| > 1$, then $\widehat{\beta}$ admits no exchange move.
 - (ii) If $|\lfloor \beta \rfloor| > 2$, then $\widehat{\beta}$ admits no flype.

- Theorem (Malyutin–Netsvetaev, 2004).—
 If β satisfies $|\lfloor \beta \rfloor| > 1$, then $\widehat{\beta}$ is prime, non-split, and nontrivial.
- Proof: For χ a pseudo-character on B_n satisfying $\chi|_{B_{n-1}}=0$, then $|\chi(\beta)|> \operatorname{defect}(\chi)$ implies that $\widehat{\beta}$ is prime. Apply to $|\ |_{\mathcal{S}}$. \square
- Theorem (Malyutin–Netsvetaev, 2004).— For every n, there exists r(n) such that for every β in B_n with $|\lfloor \beta \rfloor| \geqslant r(n)$, $\widehat{\beta}$ is represented by a unique conjugacy class in B_n .

$$\forall \beta, \beta' \in B_n \ (\widehat{\beta}' \approx \widehat{\beta} \Rightarrow \beta' \sim \beta)$$

- ullet Proof: For each template move M, there exists r s.t. $|\lfloor \beta \rfloor| > r(n) \ \text{implies that} \ \widehat{\beta} \ \text{is not eligible for} \ M.$ By the Birman-Menasco MTWS theory, \exists finitely template moves for each n. \Box
- (M.-N., 2000) $r(3) \leqslant 3$; (Matsuda, 2008) $r(4) \leqslant 4$; (Ito, 2009) r(3) = 2. conjectured (Ito) $r(n) \leqslant n-1$ for each n.

• Theorem (Ito, 2012): For every β in B_n :

$$|\lfloor\beta\rfloor|\leqslant \frac{4\cdot \mathsf{genus}(\widehat{\beta})}{n+2}-\frac{2}{n+2}+\frac{3}{2}\leqslant \mathsf{genus}(\widehat{\beta})+1.$$

"The closure of a large braid is a complicated knot"

- Theorem (Ito, 2012): If β satisfies $|\lfloor \beta \rfloor| \geqslant 2$ and $\widehat{\beta}$ is a knot, then
 - \blacktriangleright β is periodic iff $\widehat{\beta}$ is a torus knot,
 - \blacktriangleright β is reducible iff $\widehat{\beta}$ is a satellite knot,
 - ightharpoonup eta is pseudo-Anosov iff $\widehat{\beta}$ is hyperbolic.

False in general: the trefoil knot is the closure of σ_1^3 (periodic), of $\sigma_1 \sigma_2 \sigma_3 \sigma_1 \sigma_2$ (reducible), and of $\sigma_1^3 \sigma_2^{-1}$ (pseudo-Anosov).

- Theorem (Ito, 2014): If H is a nontrivial, non-central normal subgroup of B_n , then, for every γ in B_n , the set $\{\widehat{\beta\gamma} \mid \beta \in H\}$ contains infinitely many (hyperbolic) knots.
- Proof (sketch):
 - ▶ The subgroup H is unbounded with respect to $<_D$: $\forall \gamma \in B_n \ \exists \beta \in H \ (\gamma <_D \beta)$. nontrivial: uses the alternating normal form of braids...
 - ▶ Then $\{\beta\gamma \mid \beta \in H\}$ is also unbounded.
 - ▶ Hence, $\{\widehat{\beta\gamma} \mid \beta \in H\}$ contains knots of arbitrarily high genus, hence certainly infinitely many knots.
 - \blacktriangleright Moreover, one may assume β pseudo-Anosov, hence $\widehat{\beta}$ hyperbolic.
- <u>Corollary</u> (Ito, 2014): Let $\rho_1,...,\rho_k$ be non-faithful quantum representations of B_n . Then, for every isotopy type τ , there exist infinitely many hyperbolic knots of type τ on which the invariants derived from $\rho_1,...,\rho_k$ agree.
- <u>Corollary</u> (Ito, 2014): If the <u>Burau representation</u> of B₄ is not faithful, then there exists a nontrivial knot with trivial <u>Jones polynomial</u>.

- Theorem (Laver, 1995): For every braid β and every i, one has $\beta^{-1}\sigma_i\beta >_D 1$.
- Corollary: The restriction of the braid order to B_n^+ is a well-ordering.

the submonoid of
$$B_n$$
 generated by $\sigma_1,...,\sigma_{n-1}$ \uparrow every nonempty subset has a minimal element

• Definition: For β in B_n^+ , put

$$\mu(\beta) = \min\{\beta' \in B_n^+ \mid \beta' \text{ conjugate to } \beta\}.$$

Useful only if it can be computed...

• <u>Conjecture</u> (D., Fromentin, Gebhardt, 2009): For β in B_3^+ , $\mu(\beta \Delta_2^2) = \sigma_1 \sigma_2^2 \sigma_1 \cdot \mu(\beta) \cdot \sigma_1^2$.

...more generally, a reasonable hope of computing
$$\mu$$
 using the alternating normal form, and its analog for the dual braid monoid (Fromentin's rotating normal form).

• If successful for conjugacy, try the same approach for Markov equivalence...

- P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids
 Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)
- <u>A. Malyutin</u> and <u>N. Netsvetaev</u>, Dehornoy's ordering on the braid group and braid moves, *St. Peterburg Math.* J. 15 (2004) 437-448.
- T. Ito, Braid ordering and knot genus, J. Knot Th. Ramif. 20 (2011) 1311-1323.
- T. Ito, Braid ordering and the geometry of closed braids, Geom. Topol. 15 (2011) 473-498.
- <u>T. Ito</u>, Kernel of braid representation and knot polynomial, Math. Zeitschr. (2015) to appear DOI 10 1007/s 00209-015-1426-7
- J. Fromentin, Every braid admits a short sigma-definite expression,
 J. Europ. Math. Soc. 13 (2011) 1591-1631.

www.math.unicaen.fr/~dehornoy