(ロ) (個) (ミ) (ミ) = ウQ(^

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 글 │

 OQ

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Friday Seminar, Osaka State University, May 15, 2015

K ロ > K @ > K 경 > K 경 > 시 경

 OQ

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Friday Seminar, Osaka State University, May 15, 2015

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 OQ

• New normal form(s) for braid groups (and other Garside groups),

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Friday Seminar, Osaka State University, May 15, 2015

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 OQ

• New normal form(s) for braid groups (and other Garside groups), suitable for investigating order properties,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Friday Seminar, Osaka State University, May 15, 2015

 OQ

• New normal form(s) for braid groups (and other Garside groups), suitable for investigating order properties, and for applications to unprovability statements.

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Friday Seminar, Osaka State University, May 15, 2015

- New normal form(s) for braid groups (and other Garside groups), suitable for investigating order properties, and for applications to unprovability statements.
- An introduction for T. Ito's talk in IDLT...

 $\mathcal{A} \hspace{0.2cm}\Box \hspace{0.2cm} \mathbb{P} \hspace{0.2cm} \mathcal{A} \hspace{0.2cm} \overline{\boxtimes} \hspace{0.2cm} \mathbb{P} \hspace{0.2cm$

• 1. The alternating normal form

 $\mathcal{A} \Box \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \Box \overline{\partial} \rightarrow \mathcal{O} \, \mathcal{A} \, \mathcal{O}$

- 1. The alternating normal form
- 2. Connection with the standard braid order

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

- 1. The alternating normal form
- 2. Connection with the standard braid order

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

• 3. Application to unprovability statements

- 1. The alternating normal form
- 2. Connection with the standard braid order

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

- 3. Application to unprovability statements
- 4. The rotating normal form

- 1. The alternating normal form
- 2. Connection with the standard braid order

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- 3. Application to unprovability statements
- 4. The rotating normal form

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

(ロ) (個) (ミ) (ミ) = ミーのQQ

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation $\left\langle \sigma_{1},...,\sigma_{n-1}\right.\vert$ \backslash .

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation $\left\langle \sigma_{1},...,\sigma_{n-1}\right.\vert$ $\sigma_j \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geqslant 2$

(ロ) (個) (ミ) (ミ) = ミーのQQ

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

$$
\left\langle \sigma_1, ..., \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i - j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1 \end{array} \right\rangle.
$$

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

$$
\left\langle \sigma_1, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i - j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1 \end{array} \right\rangle.
$$

≃ { braid diagrams } / isotopy:

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

$$
\left\langle \sigma_1, ..., \sigma_{n-1} \mid \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i - j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1 \end{array} \right\rangle.
$$

≃ { braid diagrams } / isotopy:

$$
i+1
$$
\n
$$
i
$$

. n

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

$$
\left\langle \sigma_1, ..., \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i - j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1 \end{array} \right\rangle.
$$

n

.

≃ { braid diagrams } / isotopy:

$$
\sigma_i \qquad \leftrightarrow \qquad \begin{array}{c}\n \vdots \\
\downarrow \\
\circ \\
\hline\n \vdots \\
\circ \\
1\n \end{array}
$$

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

$$
\left\langle \sigma_1,...,\sigma_{n-1} \left| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right. \right\rangle.
$$

n

.

≃ { braid diagrams } / isotopy:

$$
\sigma_i \qquad \leftrightarrow \qquad \begin{array}{c}\n \vdots \\
\downarrow \\
\circ \\
\hline\n \vdots \\
\circ \\
1\n \end{array}
$$

 \simeq mapping class group of D_n (disk with *n* punctures):

(ロ) (日) (모) (모) (모) 및 990

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

$$
\left\langle \sigma_1,...,\sigma_{n-1} \; \Big| \; \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle.
$$

n

≃ { braid diagrams } / isotopy:

 \simeq mapping class group of D_n (disk with *n* punctures):

(ロ) (日) (모) (모) (모) 및 990

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

$$
\left\langle \sigma_1,...,\sigma_{n-1} \left| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right. \right\rangle.
$$

n

≃ { braid diagrams } / isotopy:

 \simeq mapping class group of D_n (disk with *n* punctures):

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

$$
\left\langle \sigma_1,...,\sigma_{n-1} \left| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right. \right\rangle.
$$

n

≃ { braid diagrams } / isotopy:

 \simeq mapping class group of D_n (disk with *n* punctures):

• <u>Definition</u>: $B_n^+ :=$ submonoid of B_n generated by $\sigma_1, ..., \sigma_{n-1}$ (positive braids).

(ロ) (日) (모) (모) (모) 및 990

• **Proposition:** B_n is a group of (left and right) fractions for B_n^+ .

(ロ) (日) (모) (모) (모) 및 990

 \bullet <u>Proposition</u>: B_n is a group of (left and right) fractions for B_n^+ .

every element of B_n can be expressed as $\beta\gamma^{-1}$ and $\beta'^{-1}\gamma'$ with $\beta, \gamma, \beta', \gamma' \in B_n^+$

 \bullet <u>Proposition</u>: B_n is a group of (left and right) fractions for B_n^+ .

every element of B_n can be expressed as $\beta\gamma^{-1}$ and $\beta'^{-1}\gamma'$ with $\beta, \gamma, \beta', \gamma' \in B_n^+$

 \bullet <u>Proposition</u>: B_n^+ is a Garside monoid with Garside element Δ_n :

KEL KAR KELKER E VAN

 \bullet <u>Proposition</u>: B_n is a group of (left and right) fractions for B_n^+ .

every element of B_n can be expressed as $\beta\gamma^{-1}$ and $\beta'^{-1}\gamma'$ with $\beta, \gamma, \beta', \gamma' \in B_n^+$

Garside's **half-turn** braid: $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1}\sigma_{n-1}...\sigma_1$ ↓

 \bullet <u>Proposition</u>: B_n^+ is a Garside monoid with Garside element Δ_n :

 \bullet <u>Proposition</u>: B_n is a group of (left and right) fractions for B_n^+ .

every element of B_n can be expressed as $\beta\gamma^{-1}$ and $\beta'^{-1}\gamma'$ with $\beta, \gamma, \beta', \gamma' \in B_n^+$

Garside's **half-turn** braid: $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1}\sigma_{n-1}...\sigma_1$ ↓

 \bullet <u>Proposition</u>: B_n^+ is a Garside monoid with Garside element Δ_n : every β in B_n^+ has a unique expression $\beta_p \cdots \beta_1$ with β_i maximal right-divisor of $\beta_p \cdots \beta_i$ lying in Div (Δ_n) .

 \bullet <u>Proposition</u>: B_n is a group of (left and right) fractions for B_n^+ .

every element of B_n can be expressed as $\beta\gamma^{-1}$ and $\beta'^{-1}\gamma'$ with $\beta, \gamma, \beta', \gamma' \in B_n^+$

Garside's **half-turn** braid: $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1}\sigma_{n-1}...\sigma_1$ ↓

 \bullet <u>Proposition</u>: B_n^+ is a Garside monoid with Garside element Δ_n : every β in B_n^+ has a unique expression $\beta_p \cdots \beta_1$ with β_i maximal right-divisor of $\beta_p \cdots \beta_i$ lying in Div (Δ_n) .

 β is a right-divisor of γ if $\exists \gamma'$ $(\gamma = \gamma' \beta)$

 $\mathbf{E} = \mathbf{A} \in \mathbb{R} \times \mathbf{A} \in \mathbb{R} \times \mathbb{R$

 OQ

 \bullet <u>Proposition</u>: B_n is a group of (left and right) fractions for B_n^+ .

every element of B_n can be expressed as $\beta\gamma^{-1}$ and $\beta'^{-1}\gamma'$ with $\beta, \gamma, \beta', \gamma' \in B_n^+$

Garside's **half-turn** braid: $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1}\sigma_{n-1}...\sigma_1$ ↓

 \bullet <u>Proposition</u>: B_n^+ is a Garside monoid with Garside element Δ_n : every β in B_n^+ has a unique expression $\beta_p \cdots \beta_1$ with β_i maximal right-divisor of $\beta_p \cdots \beta_i$ lying in Div (Δ_n) .

 β is a right-divisor of γ if $\exists \gamma'$ $(\gamma = \gamma' \beta)$

 $\mathbf{E} = \mathbf{A} \in \mathbb{R} \times \mathbf{A} \in \mathbb{R} \times \mathbb{R$

 000

 \bullet Corollary: Every β in B_n has a unique expression $\beta_p \cdots \beta_1 \gamma_1^{-1} \cdots \gamma_q^{-1}$ with β_1 , ..., β_p and γ_1 , ..., γ_q in Div(Δ_n) and gcd(β_1 , γ_1) = 1.

 \bullet <u>Proposition</u>: B_n is a group of (left and right) fractions for B_n^+ .

every element of B_n can be expressed as $\beta\gamma^{-1}$ and $\beta'^{-1}\gamma'$ with $\beta, \gamma, \beta', \gamma' \in B_n^+$

Garside's **half-turn** braid: $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1}\sigma_{n-1}...\sigma_1$ ↓

 \bullet <u>Proposition</u>: B_n^+ is a Garside monoid with Garside element Δ_n : every β in B_n^+ has a unique expression $\beta_p \cdots \beta_1$ with β_i maximal right-divisor of $\beta_p \cdots \beta_i$ lying in Div (Δ_n) .

 β is a right-divisor of γ if $\exists \gamma'$ $(\gamma = \gamma' \beta)$

- \bullet Corollary: Every β in B_n has a unique expression $\beta_p \cdots \beta_1 \gamma_1^{-1} \cdots \gamma_q^{-1}$ with $\beta_1, ..., \beta_p$ and $\gamma_1, ..., \gamma_q$ in Div(Δ_n) and gcd(β_1, γ_1) = 1.
- This (right) "greedy normal form" gives a bi-automatic structure on B_n , etc.

 \bullet <u>Proposition</u>: B_n is a group of (left and right) fractions for B_n^+ .

every element of B_n can be expressed as $\beta\gamma^{-1}$ and $\beta'^{-1}\gamma'$ with $\beta, \gamma, \beta', \gamma' \in B_n^+$

Garside's **half-turn** braid: $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1}\sigma_{n-1}...\sigma_1$ ↓

 \bullet <u>Proposition</u>: B_n^+ is a Garside monoid with Garside element Δ_n : every β in B_n^+ has a unique expression $\beta_p \cdots \beta_1$ with β_i maximal right-divisor of $\beta_p \cdots \beta_i$ lying in Div (Δ_n) .

 β is a right-divisor of γ if $\exists \gamma'$ $(\gamma = \gamma' \beta)$

- \bullet Corollary: Every β in B_n has a unique expression $\beta_p \cdots \beta_1 \gamma_1^{-1} \cdots \gamma_q^{-1}$ with $\beta_1, ..., \beta_p$ and $\gamma_1, ..., \gamma_q$ in Div(Δ_n) and gcd(β_1, γ_1) = 1.
- This (right) "greedy normal form" gives a bi-automatic structure on B_n , etc.

• Other normal forms on B_n or B_n^+

that are not—or not directly—connected with the greedy normal form:
K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• Other normal forms on B_n or B_n^+

that are not—or not directly—connected with the greedy normal form:

▶ Type 1: Normal forms coming from combing (Artin, Markov-Ivanovsky).

- Other normal forms on B_n or B_n^+ that are not—or not directly—connected with the greedy normal form:
	- ▶ Type 1: Normal forms coming from combing (Artin, Markov-Ivanovsky).
	- ▶ Type 2: Normal forms coming from relaxation strategies

(Dynnikov–Wiest, Bressaud).

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

- Other normal forms on B_n or B_n^+ that are not—or not directly—connected with the greedy normal form:
	- \triangleright Type 1: Normal forms coming from combing (Artin, Markov–Ivanovsky).
	- ► Type 2: Normal forms coming from relaxation strategies (Dynnikov–Wiest, Bressaud).
	- ► Type 3: Normal forms coming from an order on braid words: $NF(x)$ defined to be the least word representing x.

- Other normal forms on B_n or B_n^+ that are not—or not directly—connected with the greedy normal form:
	- \triangleright Type 1: Normal forms coming from combing (Artin, Markov–Ivanovsky).
	- ► Type 2: Normal forms coming from relaxation strategies (Dynnikov–Wiest, Bressaud).
	- ► Type 3: Normal forms coming from an order on braid words: $NF(x)$ defined to be the least word representing x.
		- \triangleright Example 1 (Bronfman): lexicographical order of braid words;

- Other normal forms on B_n or B_n^+ that are not—or not directly—connected with the greedy normal form:
	- \triangleright Type 1: Normal forms coming from combing (Artin, Markov–Ivanovsky).
	- ► Type 2: Normal forms coming from relaxation strategies (Dynnikov–Wiest, Bressaud).
	- ▶ Type 3: Normal forms coming from an order on braid words: $NF(x)$ defined to be the least word representing x.
		- Example 1 (Bronfman): lexicographical order of braid words;
		- Example 2 (Burckel): associate with every braid word w

a certain finite tree, and use a well-ordering on trees.

- Other normal forms on B_n or B_n^+ that are not—or not directly—connected with the greedy normal form:
	- \triangleright Type 1: Normal forms coming from combing (Artin, Markov–Ivanovsky).
	- ► Type 2: Normal forms coming from relaxation strategies (Dynnikov–Wiest, Bressaud).
	- ► Type 3: Normal forms coming from an order on braid words: $NF(x)$ defined to be the least word representing x.
		- \triangleright Example 1 (Bronfman): lexicographical order of braid words;
		- Example 2 (Burckel): associate with every braid word w

a certain finite tree, and use a well-ordering on trees.

 \triangleright Type 4: Alternating (and rotating) normal forms coming from parabolic submonoids • Recall: β right-divisor of γ —equivalently: γ left-multiple of β — if $\exists \gamma' (\gamma = \gamma' \beta)$.

(ロ) (個) (ミ) (ミ) = ミーのQQ

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

• Recall: β right-divisor of γ —equivalently: γ left-multiple of β — if $\exists \gamma' (\gamma = \gamma' \beta)$.

 \bullet <u>Proposition</u> (Garside, 1969): Under (left- and right-) division, B_n^+ is a lattice: least common multiples (lcms) and greatest common divisors (gcds) exist.

- Recall: β right-divisor of γ —equivalently: γ left-multiple of β if $\exists \gamma' (\gamma = \gamma' \beta)$.
- \bullet <u>Proposition</u> (Garside, 1969): Under (left- and right-) division, B_n^+ is a lattice: least common multiples (lcms) and greatest common divisors (gcds) exist.
- Lemma: If $S \subseteq B_n^+$ is closed under left-lcm and right-divisor,

- Recall: β right-divisor of γ —equivalently: γ left-multiple of β if $\exists \gamma' (\gamma = \gamma' \beta)$.
- \bullet <u>Proposition</u> (Garside, 1969): Under (left- and right-) division, B_n^+ is a lattice: least common multiples (lcms) and greatest common divisors (gcds) exist.
- Lemma: If $S \subseteq B_n^+$ is closed under left-lcm and right-divisor, then every β in B_n^+ admits a unique decomposition $\beta = \beta' \beta_1$ with β_1 a maximal right-divisor of β in S.

- Recall: β right-divisor of γ —equivalently: γ left-multiple of β if $\exists \gamma' (\gamma = \gamma' \beta)$.
- \bullet <u>Proposition</u> (Garside, 1969): Under (left- and right-) division, B_n^+ is a lattice: least common multiples (lcms) and greatest common divisors (gcds) exist.
- Lemma: If $S \subseteq B_n^+$ is closed under left-lcm and right-divisor, then every β in B_n^+ admits a unique decomposition $\beta = \beta' \beta_1$ with β_1 a maximal right-divisor of β in S.
- If S generates B_n^+ , iterating gives a unique normal form.

- Recall: β right-divisor of γ —equivalently: γ left-multiple of β if $\exists \gamma' (\gamma = \gamma' \beta)$.
- \bullet <u>Proposition</u> (Garside, 1969): Under (left- and right-) division, B_n^+ is a lattice: least common multiples (lcms) and greatest common divisors (gcds) exist.

• Lemma: If $S \subseteq B_n^+$ is closed under left-lcm and right-divisor, then every β in B_n^+ admits a unique decomposition $\beta = \beta' \beta_1$ with β_1 a maximal right-divisor of β in S.

• If S generates B_n^+ , iterating gives a unique normal form.

for instance, $S = Div(\Delta_n)$ gives the (right) greedy normal form

- Recall: β right-divisor of γ —equivalently: γ left-multiple of β if $\exists \gamma' (\gamma = \gamma' \beta)$.
- \bullet <u>Proposition</u> (Garside, 1969): Under (left- and right-) division, B_n^+ is a lattice: least common multiples (lcms) and greatest common divisors (gcds) exist.

• Lemma: If $S \subseteq B_n^+$ is closed under left-lcm and right-divisor, then every β in B_n^+ admits a unique decomposition $\beta = \beta' \beta_1$ with β_1 a maximal right-divisor of β in S.

• If S generates B_n^+ , iterating gives a unique normal form.

for instance, $S = Div(\Delta_n)$ gives the (right) greedy normal form

 \bullet <u>Lemma</u> (variant): If S is a submonoid of B_n^+ closed under left-lcm and right-divisor, then every β in B_n^+ admits a unique decomposition $\beta = \beta' \beta_1$ such that the only right-divisor of β' lying in S is 1.

- Recall: β right-divisor of γ —equivalently: γ left-multiple of β if $\exists \gamma' (\gamma = \gamma' \beta)$.
- \bullet <u>Proposition</u> (Garside, 1969): Under (left- and right-) division, B_n^+ is a lattice: least common multiples (lcms) and greatest common divisors (gcds) exist.

• Lemma: If $S \subseteq B_n^+$ is closed under left-lcm and right-divisor, then every β in B_n^+ admits a unique decomposition $\beta = \beta' \beta_1$ with β_1 a maximal right-divisor of β in S.

• If S generates B_n^+ , iterating gives a unique normal form.

for instance, $S = Div(\Delta_n)$ gives the (right) greedy normal form

 \bullet <u>Lemma</u> (variant): If S is a submonoid of B_n^+ closed under left-lcm and right-divisor, then every β in B_n^+ admits a unique decomposition $\beta = \beta' \beta_1$ such that the only right-divisor of β' lying in S is 1. " $β'$ right-coprime to S "

- Recall: β right-divisor of γ —equivalently: γ left-multiple of β if $\exists \gamma' (\gamma = \gamma' \beta)$.
- \bullet <u>Proposition</u> (Garside, 1969): Under (left- and right-) division, B_n^+ is a lattice: least common multiples (lcms) and greatest common divisors (gcds) exist.

• Lemma: If $S \subseteq B_n^+$ is closed under left-lcm and right-divisor, then every β in B_n^+ admits a unique decomposition $\beta = \beta' \beta_1$ with β_1 a maximal right-divisor of β in S.

• If S generates B_n^+ , iterating gives a unique normal form.

for instance, $S = Div(\Delta_n)$ gives the (right) greedy normal form

 \bullet <u>Lemma</u> (variant): If S is a submonoid of B_n^+ closed under left-lcm and right-divisor, then every β in B_n^+ admits a unique decomposition $\beta = \beta' \beta_1$ such that the only right-divisor of β' lying in S is 1. " $β'$ right-coprime to S "

• Definition: In the above framework, call β_1 the S-tail of β .

 $\mathcal{A} \hspace{0.2cm}\Box \hspace{0.2cm} \mathbb{P} \hspace{0.2cm} \mathcal{A} \hspace{0.2cm} \overline{\boxtimes} \hspace{0.2cm} \mathbb{P} \hspace{0.2cm$

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

(ロ) (個) (ミ) (ミ) = ミーのQQ

• Use two submonoids S_1 , S_2 that, together, generate B_n^+ ,

(ロ) (日) (모) (모) (모) 및 990

• Use two submonoids S_1 , S_2 that, together, generate B_n^+ ,

$$
\text{typically: } \mathsf{S}_1 = \mathsf{B}_{n-1}^+ = \langle \sigma_1,...,\sigma_{n-2} \rangle^+ , \ \mathsf{S}_2 = \langle \sigma_2,...,\sigma_{n-1} \rangle^+.
$$

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

• Use two submonoids S_1 , S_2 that, together, generate B_n^+ ,

typically: $S_1 = B_{n-1}^+ = \langle \sigma_1, ..., \sigma_{n-2} \rangle^+$, $S_2 = \langle \sigma_2, ..., \sigma_{n-1} \rangle^+$.

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

• Use two submonoids S_1 , S_2 that, together, generate B_n^+ ,

• Use two submonoids S_1 , S_2 that, together, generate B_n^+ ,

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

(ロ) (日) (모) (모) (모) 및 990

• Use two submonoids S_1 , S_2 that, together, generate B_n^+ ,

• Use two submonoids S_1 , S_2 that, together, generate B_n^+ ,

(ロ) (日) (모) (모) (모) 및 990

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

 \bullet <u>Fact</u>: B_n admits an automorphism Φ_n that exchanges σ_i and σ_{n-i} for each $i.$

- \bullet <u>Fact</u>: B_n admits an automorphism Φ_n that exchanges σ_i and σ_{n-i} for each $i.$
	- ▶ A horizontal symmetry in braid diagrams

.
K □ ▶ K □ ▶ K □ ▶ K □ ▶ X □ ▶ │ □ │ ◆ 9 Q (2)

- \bullet <u>Fact</u>: B_n admits an automorphism Φ_n that exchanges σ_i and σ_{n-i} for each $i.$
	- \blacktriangleright A horizontal symmetry in braid diagrams
	- ► The monoid $\langle \sigma_2,...\sigma_{n-1} \rangle^+$ is the image of B_{n-1}^+ under Φ_n .

- \bullet <u>Fact</u>: B_n admits an automorphism Φ_n that exchanges σ_i and σ_{n-i} for each $i.$
	- \triangleright A horizontal symmetry in braid diagrams
	- ► The monoid $\langle \sigma_2,...\sigma_{n-1} \rangle^+$ is the image of B_{n-1}^+ under Φ_n .
	- \blacktriangleright Hence a decomposition $\cdots \beta_4 \beta_3 \beta_2 \beta_1$ with $\beta_1, \beta_3, ...$ in B^+_{n-1} and $\beta_2, \beta_4, ...$ in $\langle \sigma_2, ...\sigma_{n-1} \rangle^{\pm}$ can also be written

- \bullet <u>Fact</u>: B_n admits an automorphism Φ_n that exchanges σ_i and σ_{n-i} for each $i.$
	- \triangleright A horizontal symmetry in braid diagrams
	- ► The monoid $\langle \sigma_2,...\sigma_{n-1} \rangle^+$ is the image of B_{n-1}^+ under Φ_n .
	- \blacktriangleright Hence a decomposition $\cdots \beta_4 \beta_3 \beta_2 \beta_1$ with $\beta_1, \beta_3, ...$ in B^+_{n-1} and $\beta_2, \beta_4, ...$ in $\langle \sigma_2, ...\sigma_{n-1} \rangle^{\pm}$ can also be written

with all β_i in B_{n-1}^+ .

- \bullet <u>Fact</u>: B_n admits an automorphism Φ_n that exchanges σ_i and σ_{n-i} for each $i.$
	- \triangleright A horizontal symmetry in braid diagrams
	- ► The monoid $\langle \sigma_2,...\sigma_{n-1} \rangle^+$ is the image of B_{n-1}^+ under Φ_n .
	- \blacktriangleright Hence a decomposition $\cdots \beta_4 \beta_3 \beta_2 \beta_1$ with $\beta_1, \beta_3, ...$ in B^+_{n-1} and $\beta_2, \beta_4, ...$ in $\langle \sigma_2, ...\sigma_{n-1} \rangle^{\pm}$ can also be written

• <u>Proposition</u>: Every braid β in B_n^+ admits a unique decomposition $\beta = \cdots \Phi_n(\beta_4) \cdot \beta_3 \cdot \Phi_n(\beta_2) \cdot \beta_1$ with $\beta_i \in B_{n-1}^+$ s.t., for $i \geqslant 2$, no σ_k with $k \geqslant 2$ right-divides \cdots $b_{i+2}\Phi_n(\beta_{i+1})\beta_i$.

- \bullet <u>Fact</u>: B_n admits an automorphism Φ_n that exchanges σ_i and σ_{n-i} for each $i.$
	- \triangleright A horizontal symmetry in braid diagrams
	- ► The monoid $\langle \sigma_2,...\sigma_{n-1} \rangle^+$ is the image of B_{n-1}^+ under Φ_n .
	- \blacktriangleright Hence a decomposition $\cdots \beta_4 \beta_3 \beta_2 \beta_1$ with $\beta_1, \beta_3, ...$ in B^+_{n-1} and $\beta_2, \beta_4, ...$ in $\langle \sigma_2, ...\sigma_{n-1} \rangle^{\pm}$ can also be written

• <u>Proposition</u>: Every braid β in B_n^+ admits a unique decomposition $\beta = \dots \Phi_n(\beta_4) \cdot \beta_3 \cdot \Phi_n(\beta_2) \cdot \beta_1 \quad \leftarrow \text{the } \Phi\text{-splitting of } \beta$ with $\beta_i \in B_{n-1}^+$ s.t., for $i \geqslant 2$, no σ_k with $k \geqslant 2$ right-divides \cdots $b_{i+2}\Phi_n(\beta_{i+1})\beta_i$.

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

• Iterate to obtain a unique normal form:

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• Iterate to obtain a unique normal form: construct a tree for each positive braid
K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

$$
\Delta_4^2 \qquad \qquad \leftarrow \text{in } B_4^+
$$

(ロ) (個) (ミ) (ミ) = ミーのQQ

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

(ロ) (日) (모) (모) (모) 및 990

(ロ) (個) (差) (差)

 \equiv 990

 $\mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{F} \quad \mathcal{F}$

 \equiv 990

 $\mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{F} \quad \mathcal{F}$

 \equiv \curvearrowleft a \curvearrowright

• Iterate to obtain a unique normal form: construct a tree for each positive braid

► the alternating normal form of Δ_4^2 is $\sigma_3 \sigma_2 \sigma_1^2 \sigma_2 \sigma_3 \sigma_2 \sigma_1^2 \sigma_2 \sigma_1^2$.

 \bullet <u>Proposition</u>: Every braid in B_n^+ admits a unique alternating normal form, which can be computed in quadratic time.

(ロ) (日) (모) (모) (모) 및 990

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

 \bullet <u>Proposition</u>: Every braid in B_n^+ admits a unique alternating normal form, which can be computed in quadratic time. Alternating normal words are recognized by a finite state automaton.

• A "bizarre" normal form, very different from the greedy normal form:

KEL KAR KELKER E VAN

- A "bizarre" normal form, very different from the greedy normal form:
	- ► Example: the greedy NF of Δ_3^p is $\Delta_3|\cdots|\Delta_3$ (p entries)

(ロ) (日) (모) (모) (모) 모 | ⊙Q (◇

 \bullet <u>Proposition</u>: Every braid in B_n^+ admits a unique alternating normal form, which can be computed in quadratic time. Alternating normal words are recognized by a finite state automaton.

- A "bizarre" normal form, very different from the greedy normal form:
	- ► Example: the greedy NF of Δ_3^p is $\Delta_3|\cdots|\Delta_3$ (p entries) its alternating NF is $\sigma_1 |\sigma_2^2 | \cdots |\sigma_2^2 | \sigma_1^2 | \sigma_2 | \sigma_1^p$ for odd p,

 $p + 3$ entries

- A "bizarre" normal form, very different from the greedy normal form:
	- ► Example: the greedy NF of Δ_3^p is $\Delta_3|\cdots|\Delta_3$ (p entries) its alternating NF is $\frac{\sigma_1 |\sigma_2^2| \cdots |\sigma_2^2| \sigma_1^2 | \sigma_2| \sigma_1^p}{p+3 \text{ entries}}$ for odd p, $\frac{\sigma_2 |\sigma_1^2| \cdots |\sigma_2^2| \sigma_1^2 | \sigma_2 | \sigma_1^p}{p+3}$ entries for even p.

- A "bizarre" normal form, very different from the greedy normal form:
	- ► Example: the greedy NF of Δ_3^p is $\Delta_3|\cdots|\Delta_3$ (p entries) its alternating NF is $\frac{\sigma_1 |\sigma_2^2| \cdots |\sigma_2^2 | \sigma_1^2 | \sigma_2 | \sigma_1^p}{\sigma_1 |\sigma_2| \sigma_1^p}$ $p + 3$ entries for odd p, $\frac{\sigma_2 |\sigma_1^2| \cdots |\sigma_2^2 | \sigma_1^2 | \sigma_2 | \sigma_1^p}{n+2 \text{ entries}}$ $p + 3$ entries for even p.
- \bullet <u>Proposition</u>: A positive 3-strand braid word $\sigma_i^{e_p}\cdots\sigma_1^{e_3}\sigma_2^{e_2}\sigma_1^{e_1}$ is alternating-normal ifl $e_n \geq 1$, $e_{n-1} \geq 2$, ..., $e_3 \geq 2$, $e_2 \geq 1$, $e_1 \geq 0$.

- A "bizarre" normal form, very different from the greedy normal form:
	- ► Example: the greedy NF of Δ_3^p is $\Delta_3|\cdots|\Delta_3$ (p entries) its alternating NF is $\frac{\sigma_1 |\sigma_2^2| \cdots |\sigma_2^2 | \sigma_1^2 | \sigma_2 | \sigma_1^p}{\sigma_1 |\sigma_2| \sigma_1^p}$ $p + 3$ entries for odd p, $\frac{\sigma_2 |\sigma_1^2| \cdots |\sigma_2^2 | \sigma_1^2 | \sigma_2 | \sigma_1^p}{n+2 \text{ entries}}$ $p + 3$ entries for even p.
- \bullet <u>Proposition</u>: A positive 3-strand braid word $\sigma_i^{e_p}\cdots\sigma_1^{e_3}\sigma_2^{e_2}\sigma_1^{e_1}$ is alternating-normal ifl $e_n \geq 1$, $e_{n-1} \geq 2$, ..., $e_3 \geq 2$, $e_2 \geq 1$, $e_1 \geq 0$.
- Remarks:
	- \blacktriangleright The normal form can be extended to B_n using fractions.

- A "bizarre" normal form, very different from the greedy normal form:
	- ► Example: the greedy NF of Δ_3^p is $\Delta_3|\cdots|\Delta_3$ (p entries) its alternating NF is $\frac{\sigma_1 |\sigma_2^2| \cdots |\sigma_2^2 | \sigma_1^2 | \sigma_2 | \sigma_1^p}{\sigma_1 |\sigma_2| \sigma_1^p}$ $p + 3$ entries for odd p, $\frac{\sigma_2 |\sigma_1^2| \cdots |\sigma_2^2 | \sigma_1^2 | \sigma_2 | \sigma_1^p}{n+2 \text{ entries}}$ $p + 3$ entries for even p.
- \bullet <u>Proposition</u>: A positive 3-strand braid word $\sigma_i^{e_p}\cdots\sigma_1^{e_3}\sigma_2^{e_2}\sigma_1^{e_1}$ is alternating-normal ifl $e_n \geq 1$, $e_{n-1} \geq 2$, ..., $e_3 \geq 2$, $e_2 \geq 1$, $e_1 \geq 0$.
- Remarks:
	- \blacktriangleright The normal form can be extended to B_n using fractions.
	- ► Works in every "locally Garside" monoid, in particular every Artin–Tits monoid.

- A "bizarre" normal form, very different from the greedy normal form:
	- ► Example: the greedy NF of Δ_3^p is $\Delta_3|\cdots|\Delta_3$ (p entries) its alternating NF is $\frac{\sigma_1 |\sigma_2^2| \cdots |\sigma_2^2 | \sigma_1^2 | \sigma_2 | \sigma_1^p}{\sigma_1 |\sigma_2| \sigma_1^p}$ $p + 3$ entries for odd p, $\frac{\sigma_2 |\sigma_1^2| \cdots |\sigma_2^2 | \sigma_1^2 | \sigma_2 | \sigma_1^p}{n+2 \text{ entries}}$ $p + 3$ entries for even p.
- \bullet <u>Proposition</u>: A positive 3-strand braid word $\sigma_i^{e_p}\cdots\sigma_1^{e_3}\sigma_2^{e_2}\sigma_1^{e_1}$ is alternating-normal ifl $e_n \geq 1$, $e_{n-1} \geq 2$, ..., $e_3 \geq 2$, $e_2 \geq 1$, $e_1 \geq 0$.
- Remarks:
	- \blacktriangleright The normal form can be extended to B_n using fractions.
	- ► Works in every "locally Garside" monoid, in particular every Artin–Tits monoid.
	- ▶ NB: The alternating normal form is not connected with an automatic structure.

Plan:

- 1. The alternating normal form
- 2. Connection with the standard braid order

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- 3. Application to unprovability statements
- 4. The rotating normal form

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• <u>Definition</u>: For x, x' in B_{∞} , declare $x <_D x'$ if, among all braid words that represent $x^{-1}x'$, at least one is such that the generator σ_i with highest index appears positively only.

• <u>Definition</u>: For x, x' in B_{∞} , declare $x <_D x'$ if, among all braid words that represent $x^{-1}x'$, at least one is such that the generator σ_i with highest index appears positively only.

 σ_i occurs, σ_i^{-1} does not

- <u>Definition</u>: For x, x' in B_{∞} , declare $x <_D x'$ if, among all braid words that represent $x^{-1}x'$, at least one is such that the generator σ_i with highest index appears positively only.
- σ_i occurs, σ_i^{-1} does not
- \bullet <u>Example</u>: $\sigma_2 <$ D $\sigma_1 \sigma_2$ holds, because $\sigma_2^{-1} \sigma_1 \sigma_2$

- <u>Definition</u>: For x, x' in B_{∞} , declare $x <_D x'$ if, among all braid words that represent $x^{-1}x'$, at least one is such that the generator σ_i with highest index appears positively only.
- σ_i occurs, σ_i^{-1} does not
- <u>Example</u>: $\sigma_2 <$ _D $\sigma_1 \sigma_2$ holds, because $\sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1}$, and, in the latter word, $\sigma_{\!\!2}$ appears positively only.

- <u>Definition</u>: For x, x' in B_{∞} , declare $x <_D x'$ if, among all braid words that represent $x^{-1}x'$, at least one is such that the generator σ_i with highest index appears positively only.
- σ_i occurs, σ_i^{-1} does not
- <u>Example</u>: $\sigma_2 <$ _D $\sigma_1 \sigma_2$ holds, because $\sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1}$, and, in the latter word, $\sigma_{\!\!2}$ appears positively only.

• Theorem

(i) (D, 1992): The relation \lt_0 is a left-invariant linear order on B_∞ .

• <u>Definition</u>: For x, x' in B_{∞} , declare $x <_D x'$ if, among all braid words that represent $x^{-1}x'$, at least one is such that the generator σ_i with highest index appears positively only.

 σ_i occurs, σ_i^{-1} does not

• <u>Example</u>: $\sigma_2 <$ _D $\sigma_1 \sigma_2$ holds, because $\sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1}$, and, in the latter word, $\sigma_{\!\!2}$ appears positively only.

• Theorem

(i) (D, 1992): The relation $\lt_ D$ is a left-invariant linear order on B_{∞} .

(ii) (Laver, 1994): The restriction of $\lt_ D$ to B^+_{∞} is a well-order;

• <u>Definition</u>: For x, x' in B_{∞} , declare $x <_D x'$ if, among all braid words that represent $x^{-1}x'$, at least one is such that the generator σ_i with highest index appears positively only.

 σ_i occurs, σ_i^{-1} does not

• <u>Example</u>: $\sigma_2 <$ _D $\sigma_1 \sigma_2$ holds, because $\sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1}$, and, in the latter word, $\sigma_{\!\!2}$ appears positively only.

```
• Theorem
(i) (D, 1992): The relation \lt_0 is a left-invariant linear order on B_\infty.
(ii) (Laver, 1994): The restriction of \lt_ D to B^+_{\infty} is a well-order;
(iii) (Burckel, 1997): The restriction of \lt_{D} to B_{n}^{+}is the initial interval [1,\sigma_{\!n}) of (B_\infty^+,\lt_{{\mathbb D}}) and has length \omega^{\omega^{n-2}}.
```
• <u>Definition</u>: For x, x' in B_{∞} , declare $x <_D x'$ if, among all braid words that represent $x^{-1}x'$, at least one is such that the generator σ_i with highest index appears positively only.

 σ_i occurs, σ_i^{-1} does not

• <u>Example</u>: $\sigma_2 <$ _D $\sigma_1 \sigma_2$ holds, because $\sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1}$, and, in the latter word, σ_2 appears positively only.

```
• Theorem
(i) (D, 1992): The relation \lt_0 is a left-invariant linear order on B_\infty.
(ii) (Laver, 1994): The restriction of \lt_ D to B^+_{\infty} is a well-order;
(iii) (Burckel, 1997): The restriction of \lt_{D} to B_{n}^{+}is the initial interval [1,\sigma_{\!n}) of (B_\infty^+,\lt_{{\mathbb D}}) and has length \omega^{\omega^{n-2}}.
```
• Remark: replacing "maximal index" with "minimal index" in the definition amounts to flipping the order: for β, γ in B_n , $\beta <'_D \gamma$ iff $\Phi_n(\beta) <_D \Phi_n(\gamma)$.

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

• The braid order is effective (there is an algorithm deciding $\langle D \rangle$), but complicated.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• The braid order is effective (there is an algorithm deciding $\langle D \rangle$, but complicated.

• In particular: The well-order property gives a distinguished element $(_D-smallest elt)$ in every nonempty subset of B_n^+ (e.g., in each conjugacy class)

• The braid order is effective (there is an algorithm deciding $\lt_ D$), but complicated.

• In particular: The well-order property gives a distinguished element $(_p-smallest e^lt)$ in every nonempty subset of B_n^+ (e.g., in each conjugacy class) but cannot be computed in practice (?).

• The braid order is effective (there is an algorithm deciding $\lt_ D$), but complicated.

• In particular: The well-order property gives a distinguished element $(_p-smallest e_l)$ in every nonempty subset of B_n^+ (e.g., in each conjugacy class) but cannot be computed in practice (?).

- Typically: \lt_D is not well connected with the greedy normal form:
	- ► If β , γ are divisors of Δ_n , then $\beta <_{\mathsf{D}} \gamma$ iff perm $(\beta) <^{\mathsf{Lex}}$ perm (γ) ,

• The braid order is effective (there is an algorithm deciding $\lt_ D$), but complicated.

• In particular: The well-order property gives a distinguished element $(_p-smallest e_l)$ in every nonempty subset of B_n^+ (e.g., in each conjugacy class) but cannot be computed in practice (?).

- Typically: \lt_D is not well connected with the greedy normal form:
	- **►** If β , γ are divisors of Δ_n , then $\beta <_{\mathsf{D}} \gamma$ iff perm(β) \lt^{Lex} perm(γ), (good!)

• The braid order is effective (there is an algorithm deciding $\langle p \rangle$), but complicated.

• In particular: The well-order property gives a distinguished element $(_p-smallest e_l)$ in every nonempty subset of B_n^+ (e.g., in each conjugacy class) but cannot be computed in practice (?).

- Typically: $\lt_ D$ is not well connected with the greedy normal form:
	- ► If β, γ are divisors of Δ_n , then $\beta <_{\mathsf{D}} \gamma$ iff perm $(\beta) <^{\mathsf{Lex}}$ perm (γ) , (good!)
	- ► ... but does not extend to arbitrary positive braids, viewed as sequences of divisors of Δ_n . (bad!)

Braid order vs. alternating normal form

K ロ > K 御 > K 差 > K 差 > → 差 → の Q Q <

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• <u>Theorem</u> (D., 2007): The order $<_D$ on B_n^+ is a ShortLex-extension of the order $<_D$ on B_{n-1}^+ via the Φ -splitting:

• <u>Theorem</u> (D., 2007): The order $<_D$ on B_n^+ is a ShortLex-extension of the order $<_D$ on B_{n-1}^+ via the Φ -splitting: For β, γ in B_n^+ with Φ -splittings $\beta = \Phi_n^{p-1}(\beta_p) \cdots \beta_3 \cdot \Phi_n(\beta_2) \cdot \beta_1,$
• <u>Theorem</u> (D., 2007): The order $<_D$ on B_n^+ is a ShortLex-extension of the order $<_D$ on B_{n-1}^+ via the Φ -splitting: For β, γ in B_n^+ with Φ -splittings $\beta = \Phi_n^{p-1}(\beta_p) \cdots \beta_3 \cdot \Phi_n(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^{q-1}(\gamma_q) \cdots \gamma_3 \cdot \Phi_n(\gamma_2) \cdot \gamma_1,$

• <u>Theorem</u> (D., 2007): The order $<_D$ on B_n^+ is a ShortLex-extension of the order $<_D$ on B_{n-1}^+ via the Φ -splitting: For β, γ in B_n^+ with Φ -splittings $\beta = \Phi_n^{p-1}(\beta_p) \cdots \beta_3 \cdot \Phi_n(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^{q-1}(\gamma_q) \cdots \gamma_3 \cdot \Phi_n(\gamma_2) \cdot \gamma_1,$ $\beta <_{\mathsf{D}} \gamma$ holds iff either $p < q$,

• <u>Theorem</u> (D., 2007): The order $<_D$ on B_n^+ is a ShortLex-extension of the order $<_D$ on B_{n-1}^+ via the Φ -splitting: For β, γ in B_n^+ with Φ -splittings $\beta = \Phi_n^{p-1}(\beta_p) \cdots \beta_3 \cdot \Phi_n(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^{q-1}(\gamma_q) \cdots \gamma_3 \cdot \Phi_n(\gamma_2) \cdot \gamma_1,$ $\beta <_{\mathsf{D}} \gamma$ holds iff either $p < q$, or $p = q$ and there exists r s.t. $\beta_i = \gamma_i$ for $i > r$ and $\beta_r <_{\text{D}} \gamma_r$.

• <u>Theorem</u> (D., 2007): The order $<_D$ on B_n^+ is a ShortLex-extension of the order $<_D$ on B_{n-1}^+ via the Φ -splitting: For β, γ in B_n^+ with Φ -splittings $\beta = \Phi_n^{p-1}(\beta_p) \cdots \beta_3 \cdot \Phi_n(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^{q-1}(\gamma_q) \cdots \gamma_3 \cdot \Phi_n(\gamma_2) \cdot \gamma_1,$ $\beta <_{\mathsf{D}} \gamma$ holds iff either $p < q$, or $p = q$ and there exists r s.t. $\beta_i = \gamma_i$ for $i > r$ and $\beta_r <_{\text{D}} \gamma_r$.

• Proof: The flip normal form coincides with the Burckel normal form.

• <u>Theorem</u> (D., 2007): The order $<_D$ on B_n^+ is a ShortLex-extension of the order $<_D$ on B_{n-1}^+ via the Φ -splitting: For β, γ in B_n^+ with Φ -splittings $\beta = \Phi_n^{p-1}(\beta_p) \cdots \beta_3 \cdot \Phi_n(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^{q-1}(\gamma_q) \cdots \gamma_3 \cdot \Phi_n(\gamma_2) \cdot \gamma_1,$ $\beta <_{\mathsf{D}} \gamma$ holds iff either $p < q$, or $p = q$ and there exists r s.t. $\beta_i = \gamma_i$ for $i > r$ and $\beta_r <_{\text{D}} \gamma_r$.

• Proof: The flip normal form coincides with the Burckel normal form.

• Corollary: The braid order can be read from the alternating normal form.

Plan:

- 1. The alternating normal form
- 2. Connection with the standard braid order

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ - 코 - Y 9 Q Q ·

- 3. Application to unprovability statements
- 4. The rotating normal form

• Aim: Construct (very) long sequences of braids using a simple inductive rule. (reminiscent of Goodstein's sequences and Hydra battles)

- Aim: Construct (very) long sequences of braids using a simple inductive rule. (reminiscent of Goodstein's sequences and Hydra battles)
- \bullet Recall: A 3-strand braid word $\sigma^{\rm e_p}_{[p]}\!...\sigma^{\rm e_2}_2\sigma^{\rm e_1}_1$ $([p]=1$ or 2) is normal iff $e_p \geq 1$, $e_{p-1} \geq 2$, ..., $e_3 \geq 2$, $e_2 \geq 1$, and $e_1 \geq 0$.

- Aim: Construct (very) long sequences of braids using a simple inductive rule. (reminiscent of Goodstein's sequences and Hydra battles)
- \bullet Recall: A 3-strand braid word $\sigma^{\rm e_p}_{[p]}\!...\sigma^{\rm e_2}_2\sigma^{\rm e_1}_1$ $([p]=1$ or 2) is normal iff $e_p \geq 1$, $e_{p-1} \geq 2$, ..., $e_3 \geq 2$, $e_2 \geq 1$, and $e_1 \geq 0$.
- Definition: The critical position in a positive 3-strand braid word: smallest k (= rightmost) s.t. e_k does not have the minimal legal value, if it exists, p otherwise.

 $A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow \Box B \rightarrow A \Box C \$

- Aim: Construct (very) long sequences of braids using a simple inductive rule. (reminiscent of Goodstein's sequences and Hydra battles)
- \bullet Recall: A 3-strand braid word $\sigma^{\rm e_p}_{[p]}\!...\sigma^{\rm e_2}_2\sigma^{\rm e_1}_1$ $([p]=1$ or 2) is normal iff $e_p \geq 1$, $e_{p-1} \geq 2$, ..., $e_3 \geq 2$, $e_2 \geq 1$, and $e_1 \geq 0$.
- Definition: The critical position in a positive 3-strand braid word: smallest k (= rightmost) s.t. e_k does not have the minimal legal value, if it exists, p otherwise.

- Aim: Construct (very) long sequences of braids using a simple inductive rule. (reminiscent of Goodstein's sequences and Hydra battles)
- \bullet Recall: A 3-strand braid word $\sigma^{\rm e_p}_{[p]}\!...\sigma^{\rm e_2}_2\sigma^{\rm e_1}_1$ $([p]=1$ or 2) is normal iff $e_p \geq 1$, $e_{p-1} \geq 2$, ..., $e_3 \geq 2$, $e_2 \geq 1$, and $e_1 \geq 0$.
- Definition: The critical position in a positive 3-strand braid word: smallest k (= rightmost) s.t. e_k does not have the minimal legal value, if it exists, p otherwise.

- Aim: Construct (very) long sequences of braids using a simple inductive rule. (reminiscent of Goodstein's sequences and Hydra battles)
- \bullet Recall: A 3-strand braid word $\sigma^{\rm e_p}_{[p]}\!...\sigma^{\rm e_2}_2\sigma^{\rm e_1}_1$ $([p]=1$ or 2) is normal iff $e_p \geq 1$, $e_{p-1} \geq 2$, ..., $e_3 \geq 2$, $e_2 \geq 1$, and $e_1 \geq 0$.
- Definition: The critical position in a positive 3-strand braid word: smallest k (= rightmost) s.t. e_k does not have the minimal legal value, if it exists, p otherwise.

• Definition: The G_3 -sequence from a positive 3-braid x:

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

- Definition: The G_3 -sequence from a positive 3-braid x:
	- Start with the alternating normal form of x ;

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ - 코 - Y 9 Q Q ·

- Definition: The G_3 -sequence from a positive 3-braid x:
	- Start with the alternating normal form of x ;
	- At step t : remove one crossing in the critical block;

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block;
		- add t new crossings in the next block, if it exists;

A DIA K A B A B A B A DIA K B A VION

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 ,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 ,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 , σ_1^7 ,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 , σ_1^7 , σ_1^6 ,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 , σ_1^7 , σ_1^6 , σ_1^5 ,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 , σ_1^7 , σ_1^6 , σ_1^5 , σ_1^4 ,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 , σ_1^7 , σ_1^6 , σ_1^5 , σ_1^4 , σ_1^3 ,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 , σ_1^7 , σ_1^6 , σ_1^6 , σ_1^6 , σ_1^4 , σ_1^3 , σ_1^2 ,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 , σ_1^7 , σ_1^6 , σ_1^5 , σ_1^4 , σ_1^3 , σ_1^2 , σ_1 ,

- Definition: The G_3 -sequence from a positive 3-braid x:
	- \triangleright Start with the alternating normal form of x;
	- At step t : remove one crossing in the critical block; add t new crossings in the next block, if it exists;
	- \blacktriangleright The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2 , σ_1^7 , σ_1^6 , σ_1^5 , σ_1^4 , σ_1^4 , σ_1^3 , σ_1^2 , σ_1 , 1.

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

• More examples:

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma^{}_1\sigma^{}_2\sigma^{}_1$ has length 30.

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length
K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length 9

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length 90

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,1$

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,15$

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159$

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,9$

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- ► The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,95$

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- ► The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953$

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- ► The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length 90,159,953,4

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length 90,159,953,47

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953,477$

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953,477,6$

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953,477,63$

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- ► The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953,477,630...$

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- ► The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953,477,630...$

Nevertheless:

• Proposition A: Every G_3 -sequence (resp. G_{∞} -sequence) is finite.

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- ► The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953,477,630...$

Nevertheless:

• Proposition A: Every G_3 -sequence (resp. G_{∞} -sequence) is finite.

similar with B_{∞}^{+} instead of $B_{3}^{+}...$

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- ► The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953,477,630...$

Nevertheless:

• Proposition A: Every G_3 -sequence (resp. G_{∞} -sequence) is finite.

similar with
$$
B_{\infty}^{+}
$$
 instead of B_{3}^{+} ...

• Proof: The sequences are descending in the braid **well**-order. \Box

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- ► The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953,477,630...$

Nevertheless:

• Proposition A: Every G_3 -sequence (resp. G_{∞} -sequence) is finite.

```
similar with B_{\infty}^{+} instead of B_{3}^{+}...
```
• Proof: The sequences are descending in the braid well-order.

But:

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- ► The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953,477,630...$

Nevertheless:

• Proposition A: Every G_3 -sequence (resp. G_{∞} -sequence) is finite.

```
similar with B_{\infty}^{+} instead of B_{3}^{+}...
```
• Proof: The sequences are descending in the braid well-order.

But:

• Theorem (joint with L.Carlucci and A.Weiermann, 2010): Proposition A cannot be proved in $I\Sigma_1$ (resp. $I\Sigma_2$).

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- ► The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953,477,630...$

Nevertheless:

• Proposition A: Every G_3 -sequence (resp. G_{∞} -sequence) is finite.

```
similar with B_{\infty}^{+} instead of B_{3}^{+}...
```
• Proof: The sequences are descending in the braid well-order.

But:

• Theorem (joint with L.Carlucci and A.Weiermann, 2010): Proposition A cannot be proved in $I\Sigma_1$ (resp. $I\Sigma_2$).

> ↑ ↑ the subsystem of Peano arithmetic in which induction is restricted to formulas with one ∃ (resp. ∃∀) unbounded quantifier

- More examples:
	- \blacktriangleright The \mathcal{G}_3 -sequence from $\sigma_1\sigma_2\sigma_1$ has length 30.
	- ► The \mathcal{G}_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length $90,159,953,477,630...$

Nevertheless:

• Proposition A: Every G_3 -sequence (resp. G_{∞} -sequence) is finite.

similar with
$$
B_{\infty}^{+}
$$
 instead of B_{3}^{+} ...

• Proof: The sequences are descending in the braid well-order.

But:

• Theorem (joint with L.Carlucci and A.Weiermann, 2010): Proposition A cannot be proved in $I\Sigma_1$ (resp. $I\Sigma_2$).

> ↑ ↑ the subsystem of Peano arithmetic in which induction is restricted to formulas with one ∃ (resp. ∃∀) unbounded quantifier

Contrasting with the folklore result:

• Proposition: All usual (algebraic) properties of braids can be proved in $I\Sigma_1$.

• Proof of the unprovability of the finiteness of G_3 -sequences in $I\Sigma_1$:

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ - 코 - Y 9 Q Q ·

- Proof of the unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
	- ▶ Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.

.
K □ ▶ K □ ▶ K □ ▶ K □ ▶ X □ ▶ → □ ● → ⊙ Q ⊙

- Proof of the unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
	- ▶ Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.
	- \blacktriangleright <u>Main lemma</u>: For β a 3-braid with normal form $\sigma^{\rm e_p}_{[p]}...\sigma^{\rm e_2}_2\sigma^{\rm e_1}_1$, put

$$
\textit{ord}(\beta):=\omega^{p-1}\cdot e_p+\sum_{p>k\geqslant 1}\omega^{k-1}\cdot (e_k-e_k^{\textit{min}}),
$$

- Proof of the unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
	- ► Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.
	- \blacktriangleright <u>Main lemma</u>: For β a 3-braid with normal form $\sigma^{\rm e_p}_{[p]}...\sigma^{\rm e_2}_2\sigma^{\rm e_1}_1$, put

$$
\textit{ord}(\beta):=\omega^{p-1}\cdot e_p+\sum_{p>k\geqslant 1}\omega^{k-1}\cdot (e_k-e_k^{\textit{min}}),
$$

(with $e_k^{min} = 2$ for $k \ge 3$, $e_2^{min} = 1$, $e_1^{min} = 0$).

- Proof of the unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
	- ► Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.
	- \blacktriangleright <u>Main lemma</u>: For β a 3-braid with normal form $\sigma^{\rm e_p}_{[p]}...\sigma^{\rm e_2}_2\sigma^{\rm e_1}_1$, put

$$
\textit{ord}(\beta):=\omega^{p-1}\cdot e_p+\sum_{p>k\geqslant 1}\omega^{k-1}\cdot (e_k-e_k^{min}),
$$

(with $e_k^{min} = 2$ for $k \ge 3$, $e_2^{min} = 1$, $e_1^{min} = 0$). Then $\textit{ord}(\beta) = \xi \Rightarrow \forall k \; (\mathcal{T}(\beta \sigma_1^k) \geqslant H_\xi(k)).$

- Proof of the unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
	- ► Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.
- \blacktriangleright <u>Main lemma</u>: For β a 3-braid with normal form $\sigma^{\rm e_p}_{[p]}...\sigma^{\rm e_2}_2\sigma^{\rm e_1}_1$, put $\textit{ord}(\beta):=\omega^{p-1}\cdot e_p+\sum_{k}^{\infty}\omega^{k-1}\cdot (e_k-e_k^{min}),$ $p>k\geqslant1$ (with $e_k^{min} = 2$ for $k \ge 3$, $e_2^{min} = 1$, $e_1^{min} = 0$). Then $\textit{ord}(\beta)=\xi\quad\Rightarrow\quad\forall k\,\, (\mathcal{T}\big(\beta\sigma_{1}^{k}\big)\geqslant H_{\xi}(k)).$ ا
the length of the G_3 -sequence from...

- Proof of the unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
	- ► Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.
	- \blacktriangleright <u>Main lemma</u>: For β a 3-braid with normal form $\sigma^{\rm e_p}_{[p]}...\sigma^{\rm e_2}_2\sigma^{\rm e_1}_1$, put p−1 \sum k−1 min

$$
ord(\beta) := \omega^{p-1} \cdot e_p + \sum_{p > k \geqslant 1} \omega^{k-1} \cdot (e_k - e_k^{mn}),
$$

(with $e_k^{min} = 2$ for $k \ge 3$, $e_2^{min} = 1$, $e_1^{min} = 0$). Then $\textit{ord}(\beta)=\xi\quad\Rightarrow\quad\forall k\,\, (\mathcal{T}\big(\beta\sigma_{1}^{k}\big)\geqslant \mathcal{H}_{\xi}(k)).$ the length of the "Hardy hierarchy" of functions: \mathcal{G}_3 -sequence from... $H_r(x) := x + r$,

- Proof of the unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
	- Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.
- \blacktriangleright <u>Main lemma</u>: For β a 3-braid with normal form $\sigma^{\rm e_p}_{[p]}...\sigma^{\rm e_2}_2\sigma^{\rm e_1}_1$, put $\textit{ord}(\beta):=\omega^{p-1}\cdot e_p+\sum_{k}^{\infty}\omega^{k-1}\cdot (e_k-e_k^{min}),$ $p>k\geqslant1$ (with $e_k^{min} = 2$ for $k \ge 3$, $e_2^{min} = 1$, $e_1^{min} = 0$). Then $\textit{ord}(\beta)=\xi\quad\Rightarrow\quad\forall k\,\, (\mathcal{T}\big(\beta\sigma_{1}^{k}\big)\geqslant \mathcal{H}_{\xi}(k)).$ the length of the "Hardy hierarchy" of functions: \mathcal{G}_3 -sequence from... $H_r(x) := x + r,$ $H_{\omega+r}(x) := 2(x+r)$,

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ - 코 - Y 9 Q Q ·

- Proof of the unprovability of the finiteness of G_3 -sequences in $I\Sigma_1$:
	- ▶ Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.

► Main lemma: For
$$
\beta
$$
 a 3-braid with normal form $\sigma_{[p]}^{e_p}... \sigma_2^{e_2} \sigma_1^{e_1}$, put
\n
$$
ord(\beta) := \omega^{p-1} \cdot e_p + \sum_{p>k \geq 1} \omega^{k-1} \cdot (e_k - e_k^{min}),
$$
\n(with $e_k^{min} = 2$ for $k \geq 3$, $e_2^{min} = 1$, $e_1^{min} = 0$). Then
\n
$$
ord(\beta) = \xi \implies \forall k \left(T(\beta \sigma_1^k) \geq H_{\xi}(k) \right).
$$
\nthe length of the "Hardy hierarchy" of functions:
\n G_3 -sequence from... $H_r(x) := x + r$,
\n $H_{\omega+r}(x) := 2(x+r)$,
\n $H_{\omega \cdot 2}(x) := 4x$,

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- Proof of the unprovability of the finiteness of G_3 -sequences in $I\Sigma_1$:
	- ▶ Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.

► Main lemma: For
$$
\beta
$$
 a 3-braid with normal form $\sigma_{[p]}^{e_p} \dots \sigma_2^{e_2} \sigma_1^{e_1}$, put
\n
$$
\text{ord}(\beta) := \omega^{p-1} \cdot e_p + \sum_{p>k \geqslant 1} \omega^{k-1} \cdot (e_k - e_k^{\min}),
$$
\n
$$
(\text{with } e_k^{\min} = 2 \text{ for } k \geqslant 3, e_2^{\min} = 1, e_1^{\min} = 0). \text{ Then}
$$
\n
$$
\text{ord}(\beta) = \xi \implies \forall k \left(T(\beta \sigma_1^k) \geq H_\xi(k) \right).
$$
\nthe length of the "Hardy hierarchy" of functions:
\n
$$
\beta_3\text{-sequence from} \dots \qquad H_\nu(x) := x + r,
$$
\n
$$
H_{\omega+r}(x) := 2(x+r),
$$
\n
$$
H_{\omega/2}(x) := 2(x+1)
$$
\n
$$
H_{\omega/2} = 2x+1
$$
\n
$$
H_{\omega/2} = 2x+1
$$

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

- Proof of the unprovability of the finiteness of G_3 -sequences in $I\Sigma_1$:
	- ▶ Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.

► Main lemma: For
$$
\beta
$$
 a 3-braid with normal form $\sigma_{[p]}^{e_p} \dots \sigma_2^{e_2} \sigma_1^{e_1}$, put
\n
$$
ord(\beta) := \omega^{p-1} \cdot e_p + \sum_{p>k \geq 1} \omega^{k-1} \cdot (e_k - e_k^{min}),
$$
\n
$$
(with e_k^{min} = 2 \text{ for } k \geq 3, e_2^{min} = 1, e_1^{min} = 0). \text{ Then}
$$
\n
$$
ord(\beta) = \xi \implies \forall k \left(T(\beta \sigma_1^k) \geq H_{\xi}(k) \right).
$$
\nthe length of the "Hardy hierarchy" of functions:
\n
$$
G_3
$$
-sequence from... $H_r(x) := x + r,$
\n
$$
H_{\omega+r}(x) := 2(x+r),
$$

\n
$$
H_{\omega} \cdot 2(x) := 4x,
$$

\n
$$
H_{\omega} = Ackerman function,...
$$

► Hence: $\mathcal{T}(\sigma_{[k]}^2 \sigma_{[k-1]}^2 \dots \sigma_1^2 \sigma_2 \sigma_1^k) \geqslant H_{\omega} \omega(k).$

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

- Proof of the unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
	- ▶ Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.

► Main lemma: For
$$
\beta
$$
 a 3-braid with normal form $\sigma_{[p]}^{e_p} \dots \sigma_2^{e_2} \sigma_1^{e_1}$, put
\n
$$
ord(\beta) := \omega^{p-1} \cdot e_p + \sum_{p>k \geqslant 1} \omega^{k-1} \cdot (e_k - e_k^{min}),
$$
\n
$$
(with e_k^{min} = 2 \text{ for } k \geqslant 3, e_2^{min} = 1, e_1^{min} = 0). \text{ Then}
$$
\n
$$
ord(\beta) = \xi \implies \forall k \left(T(\beta \sigma_1^k) \geq H_{\xi}(k) \right).
$$
\nthe length of the "Hardy hierarchy" of functions:
\n G_3 -sequence from... $H_r(x) := x + r,$
\n $H_{\omega+r}(x) := 2(x+r),$
\n $H_{\omega \cdot 2}(x) := 4x,$
\n $H_{\omega \cdot \omega} = \text{ Ackerman function}, \dots$

- ► Hence: $\mathcal{T}(\sigma_{[k]}^2 \sigma_{[k-1]}^2 \dots \sigma_1^2 \sigma_2 \sigma_1^k) \geqslant H_{\omega} \omega(k).$
- \blacktriangleright I Σ_1 does not prove that the Ackermann function is defined everywhere,

- Proof of the unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
	- ► Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.

► Main lemma: For
$$
\beta
$$
 a 3-braid with normal form $\sigma_{[p]}^{e_p} \dots \sigma_2^{e_2} \sigma_1^{e_1}$, put
\n
$$
ord(\beta) := \omega^{p-1} \cdot e_p + \sum_{p>k \geqslant 1} \omega^{k-1} \cdot (e_k - e_k^{min}),
$$
\n(with $e_k^{min} = 2$ for $k \geqslant 3$, $e_2^{min} = 1$, $e_1^{min} = 0$). Then
\n
$$
ord(\beta) = \xi \implies \forall k \left(T(\beta \sigma_1^k) \geq H_{\xi}(k) \right).
$$
\nthe length of the "Hardy hierarchy" of functions:
\n G_3 -sequence from... $H_r(x) := x + r$,
\n $H_{\omega+r}(x) := 2(x+r)$,
\n $H_{\omega \cdot 2}(x) := 4x$,
\n $H_{\omega \cdot \omega} =$ Ackerman function,...

- ► Hence: $\mathcal{T}(\sigma_{[k]}^2 \sigma_{[k-1]}^2 \dots \sigma_1^2 \sigma_2 \sigma_1^k) \geqslant H_{\omega} \omega(k).$
- \blacktriangleright I Σ_1 does not prove that the Ackermann function is defined everywhere, hence it cannot prove that T is defined everywhere,

- Proof of the unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
	- ► Principle: Assign ordinals to braids, and compare with the Hardy hierarchy.

► Main lemma: For
$$
\beta
$$
 a 3-braid with normal form $\sigma_{[p]}^{e_p} \dots \sigma_2^{e_2} \sigma_1^{e_1}$, put
\n
$$
ord(\beta) := \omega^{p-1} \cdot e_p + \sum_{p>k \geq 1} \omega^{k-1} \cdot (e_k - e_k^{min}),
$$
\n(with $e_k^{min} = 2$ for $k \geq 3$, $e_2^{min} = 1$, $e_1^{min} = 0$). Then
\n
$$
ord(\beta) = \xi \implies \forall k \left(T(\beta \sigma_1^k) \geq H_{\xi}(k) \right).
$$
\nthe length of the "Hardy hierarchy" of functions:
\n G_3 -sequence from...
\n $H_r(x) := x + r$,
\n $H_{\omega+1}(x) := 2(x+r)$,
\n $H_{\omega} \geq 2(x+r)$
\n $H_{\omega} \geq 4x$,
\n $H_{\omega} \geq 4$ Ackerman function,...

- ► Hence: $\mathcal{T}(\sigma_{[k]}^2 \sigma_{[k-1]}^2 \dots \sigma_1^2 \sigma_2 \sigma_1^k) \geqslant H_{\omega} \omega(k).$
- \blacktriangleright I Σ_1 does not prove that the Ackermann function is defined everywhere, hence it cannot prove that T is defined everywhere, that is, that all \mathcal{G}_3 -sequences of braids are finite

• So far, particular sequences of braids $(\mathcal{G}_3$ -sequences); now, arbitrary sequences.
K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ - 코 - Y 9 Q Q ·

- So far, particular sequences of braids $(\mathcal{G}_3$ -sequences); now, arbitrary sequences.
- Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle:

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

• So far, particular sequences of braids (G_3 -sequences); now, arbitrary sequences.

• Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: "For each k, there exists m s.t. no descending sequence $(\beta_0, \beta_1, ...)$ in B_3^+ satisfying $\forall i$ ($\|\beta_i\| \leqslant k + f(i)$) has length larger than m "

• So far, particular sequences of braids $(\mathcal{G}_3$ -sequences); now, arbitrary sequences.

• Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: "For each k, there exists m s.t. no descending sequence $(\beta_0, \beta_1, ...)$ in B_3^+ satisfying $\forall i$ ($\|\beta_i\| \leq k + f(i)$) has length larger than m " (with $\|\beta\|:=$ least k s.t. β divides Δ_3^k)

• So far, particular sequences of braids (G_3 -sequences); now, arbitrary sequences.

• Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: "For each k, there exists m s.t. no descending sequence $(\beta_0, \beta_1, ...)$ in B_3^+ satisfying $\forall i$ ($\|\beta_i\| \leq k + f(i)$) has length larger than m " (with $\|\beta\|:=$ least k s.t. β divides Δ_3^k)

"There is no infinite descending sequence of braids with complexity bounded by f''

• So far, particular sequences of braids (G_3 -sequences); now, arbitrary sequences.

• Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: "For each k, there exists m s.t. no descending sequence $(\beta_0, \beta_1, ...)$ in B_3^+ satisfying $\forall i$ ($\|\beta_i\| \leq k + f(i)$) has length larger than m " (with $\|\beta\|:=$ least k s.t. β divides Δ_3^k) "There is no infinite descending sequence of braids with complexity bounded by f''

• Trivially: $WO_{constant}$ true.

• So far, particular sequences of braids (G_3 -sequences); now, arbitrary sequences.

• Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: "For each k, there exists m s.t. no descending sequence $(\beta_0, \beta_1, ...)$ in B_3^+ satisfying $\forall i$ ($\|\beta_i\| \leq k + f(i)$) has length larger than m " (with $\|\beta\|:=$ least k s.t. β divides Δ_3^k) "There is no infinite descending sequence of braids with complexity bounded by f''

• Trivially: $WO_{constant}$ true. Actually: WO_f true for every f (provable from ZF).

• So far, particular sequences of braids (G_3 -sequences); now, arbitrary sequences.

• Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: "For each k, there exists m s.t. no descending sequence $(\beta_0, \beta_1, ...)$ in B_3^+ satisfying $\forall i$ ($\|\beta_i\| \leq k + f(i)$) has length larger than m " (with $\|\beta\|:=$ least k s.t. β divides Δ_3^k) "There is no infinite descending sequence of braids with complexity bounded by f''

• Trivially: $WO_{constant}$ true. Actually: WO_f true for every f (provable from ZF).

• <u>Theorem</u> (Carlucci–D.–Weiermann, 2010): For $r \leq \omega$, put $f_r(x) := \lfloor {}^{Ack_r^{-1}(x)}\!\! \sqrt{X} \rfloor$. Then:

• So far, particular sequences of braids (G_3 -sequences); now, arbitrary sequences.

• Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: "For each k, there exists m s.t. no descending sequence $(\beta_0, \beta_1, ...)$ in B_3^+ satisfying $\forall i$ ($\|\beta_i\| \leq k + f(i)$) has length larger than m " (with $\|\beta\|:=$ least k s.t. β divides Δ_3^k) "There is no infinite descending sequence of braids with complexity bounded by f''

• Trivially: $WO_{constant}$ true. Actually: WO_f true for every f (provable from ZF).

• <u>Theorem</u> (Carlucci–D.–Weiermann, 2010): For $r \leq \omega$, put $f_r(x) := \lfloor {}^{Ack_r^{-1}(x)}\!\! \sqrt{X} \rfloor$. Then: (i) WO_{f_r} is provable from $I\Sigma_1$ for each finite r.

• So far, particular sequences of braids (G_3 -sequences); now, arbitrary sequences.

• Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: "For each k, there exists m s.t. no descending sequence $(\beta_0, \beta_1, ...)$ in B_3^+ satisfying $\forall i$ ($\|\beta_i\| \leq k + f(i)$) has length larger than m " (with $\|\beta\|:=$ least k s.t. β divides Δ_3^k) "There is no infinite descending sequence of braids with complexity bounded by f''

• Trivially: $WO_{constant}$ true. Actually: WO_f true for every f (provable from ZF).

• <u>Theorem</u> (Carlucci–D.–Weiermann, 2010): For $r \leq \omega$, put $f_r(x) := \lfloor {}^{Ack_r^{-1}(x)}\!\! \sqrt{X} \rfloor$. Then: (i) WO_{f_r} is provable from $I\Sigma_1$ for each finite r. (ii) WO $_{f_\omega}$ is not provable from I Σ_1 .

• So far, particular sequences of braids (G_3 -sequences); now, arbitrary sequences.

• Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: "For each k, there exists m s.t. no descending sequence $(\beta_0, \beta_1, ...)$ in B_3^+ satisfying $\forall i$ ($\|\beta_i\| \leq k + f(i)$) has length larger than m " (with $\|\beta\|:=$ least k s.t. β divides Δ_3^k) "There is no infinite descending sequence of braids with complexity bounded by f''

• Trivially: $WO_{constant}$ true. Actually: WO_f true for every f (provable from ZF).

• <u>Theorem</u> (Carlucci–D.–Weiermann, 2010): For $r \leq \omega$, put $f_r(x) := \lfloor {}^{Ack_r^{-1}(x)}\!\! \sqrt{X} \rfloor$. Then: (i) WO_{f_r} is provable from $I\Sigma_1$ for each finite r. (ii) WO $_{f_\omega}$ is not provable from I Σ_1 .

• Key point for the proof: Fine counting arguments in B_3^+ , namely evaluating $\#\{\beta \in \mathcal{B}_3^+ \mid \|\beta\| \leq \ell \text{ and } \beta <_{\mathsf{D}} \Delta_3^k\}.$

Plan:

- 1. The alternating normal form
- 2. Connection with the standard braid order

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- 3. Application to unprovability statements
- 4. The rotating normal form

イロト (母) (ミ) (ミ) ミ) ミ のQ(V)

• Another family of generators for B_n : the Birman–Ko–Lee generators

(ロ) (日) (모) (모) (모) 및 990

(ロ) (日) (모) (모) (모) 및 990

• Another family of generators for B_n : the Birman–Ko–Lee generators $a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}$ for $1 \leqslant i < j \leqslant n$.

• <u>Definition</u>: (dual braid monoid) $B_n^{+*} :=$ the submonoid of B_n generated by the $a_{i,j}$ s.

- <u>Definition</u>: (dual braid monoid) $B_n^{+*} :=$ the submonoid of B_n generated by the $a_{i,j}$ s.
- Remark = $B_n^+ \subseteq B_n^{+*}$, since $\sigma_i = a_{i,i+1}$;

- <u>Definition</u>: (dual braid monoid) $B_n^{+*} :=$ the submonoid of B_n generated by the $a_{i,j}$ s.
- Remark = $B_n^+ \subseteq B_n^{+*}$, since $\sigma_i = a_{i,i+1}$; \neq for $n \geqslant 3$, since $a_{1,3} = \sigma_2 \sigma_1 \sigma_2^{-1} \notin B_3^+$.

- <u>Definition</u>: (dual braid monoid) $B_n^{+*} :=$ the submonoid of B_n generated by the $a_{i,j}$ s.
- Remark = $B_n^+ \subseteq B_n^{+*}$, since $\sigma_i = a_{i,i+1}$; \neq for $n \geqslant 3$, since $a_{1,3} = \sigma_2 \sigma_1 \sigma_2^{-1} \notin B_3^+$.
- Chord representation of the Birman–Ko–Lee generators:

- <u>Definition</u>: (dual braid monoid) $B_n^{+*} :=$ the submonoid of B_n generated by the $a_{i,j}$ s.
- Remark = $B_n^+ \subseteq B_n^{+*}$, since $\sigma_i = a_{i,i+1}$; \neq for $n \geqslant 3$, since $a_{1,3} = \sigma_2 \sigma_1 \sigma_2^{-1} \notin B_3^+$.
- Chord representation of the Birman–Ko–Lee generators:

- <u>Definition</u>: (dual braid monoid) $B_n^{+*} :=$ the submonoid of B_n generated by the $a_{i,j}$ s.
- Remark = $B_n^+ \subseteq B_n^{+*}$, since $\sigma_i = a_{i,i+1}$; \neq for $n \geqslant 3$, since $a_{1,3} = \sigma_2 \sigma_1 \sigma_2^{-1} \notin B_3^+$.
- Chord representation of the Birman–Ko–Lee generators:

- <u>Definition</u>: (dual braid monoid) $B_n^{+*} :=$ the submonoid of B_n generated by the $a_{i,j}$ s.
- Remark = $B_n^+ \subseteq B_n^{+*}$, since $\sigma_i = a_{i,i+1}$; \neq for $n \geqslant 3$, since $a_{1,3} = \sigma_2 \sigma_1 \sigma_2^{-1} \notin B_3^+$.
- Chord representation of the Birman–Ko–Lee generators:

 $\mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P}$

 \equiv 990

イロト イ部 トイモト イモト

 \equiv \curvearrowleft \curvearrowright

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

 \bullet <u>Lemma</u>: In terms of the a_{i,j}s, the group B_n and the monoid B_n^{+*} are presented by

for adjacent chords enumerated in clockwise order.

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

 \bullet <u>Lemma</u>: In terms of the a_{i,j}s, the group B_n and the monoid B_n^{+*} are presented by

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φ_n of B_n^+

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

 \bullet <u>Lemma</u>: In terms of the a_{i,j}s, the group B_n and the monoid B_n^{+*} are presented by

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φ_n of B_n^+ $=$ conjugating under Δ_n

(ロ) (日) (모) (모) (모) 및 990

 \bullet <u>Lemma</u>: In terms of the a_{i,j}s, the group B_n and the monoid B_n^{+*} are presented by

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φ_n of B_n^+ $=$ conjugating under Δ_n $=$ symmetry in the braid diagram.

 \bullet <u>Lemma</u>: In terms of the a_{i,j}s, the group B_n and the monoid B_n^{+*} are presented by

for adjacent chords enumerated in clockwise order.

- Remember: flip automorphism Φ_n of B_n^+ $=$ conjugating under Δ_n $=$ symmetry in the braid diagram.
- \bullet Lemma: Conjugating by $\Delta_n^* := a_{1,2}a_{2,3}\cdots a_{n-1,n}$ gives an automorphism Φ_n^* of B_n^{+*} ;

 \bullet <u>Lemma</u>: In terms of the a_{i,j}s, the group B_n and the monoid B_n^{+*} are presented by

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φ_n of B_n^+ $=$ conjugating under Δ_n $=$ symmetry in the braid diagram.

• Lemma: Conjugating by $\Delta_n^* := a_{1,2}a_{2,3}\cdots a_{n-1,n}$ gives an automorphism Φ_n^* of B_n^{+*} ; For all i, j , one has $n_{n}^{*}(a_{i,j}) = a_{i+1 \bmod n, j+1 \bmod n}.$

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φ_n of B_n^+ $=$ conjugating under Δ_n $=$ symmetry in the braid diagram.

• Lemma: Conjugating by $\Delta_n^* := a_{1,2}a_{2,3}\cdots a_{n-1,n}$ gives an automorphism Φ_n^* of B_n^{+*} ; For all i, j , one has $n_{n}^{*}(a_{i,j}) = a_{i+1 \bmod n, j+1 \bmod n}.$

 $=$ rotating by $2\pi/n$ in the chord representation

KEL KAR KELKEL E VAN

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

• Proposition (Fromentin): Every braid β in B_n^{+*} admits a unique decomposition $\beta = \Phi_n^* P^{-1}(\beta_P) \cdot \ldots \cdot \Phi_n^* (2\beta_3) \cdot \Phi_n^* (\beta_2) \cdot \beta_1,$

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

• Proposition (Fromentin): Every braid β in B_n^{+*} admits a unique decomposition $\beta = \Phi_n^* P^{-1}(\beta_P) \cdot \ldots \cdot \Phi_n^* (2\beta_3) \cdot \Phi_n^* (\beta_2) \cdot \beta_1,$

with $\beta_i \in B^{+*}_{n-1}$ s.t. $\Phi^{*p-k}_n(\beta_p) \cdot ... \cdot \beta_k$ is right-divisible by no $a_{i,j}$ with $i, j \neq n-1$.

• Proposition (Fromentin): Every braid β in B_n^{+*} admits a unique decomposition $\beta = \Phi_n^{*p-1}(\beta_p) \cdot \ldots \cdot \Phi_n^{*2}(\beta_3) \cdot \Phi_n^{*}(\beta_2) \cdot \beta_1, \quad \leftarrow \text{ the } \Phi^* \text{-splitting of } \beta$ with $\beta_i \in B^{+*}_{n-1}$ s.t. $\Phi^{*p-k}_n(\beta_p) \cdot ... \cdot \beta_k$ is right-divisible by no $a_{i,j}$ with $i, j \neq n-1$.
A DIA K A B A B A B A DIA K B A VION

A DIA K A B A B A B A DIA K B A VION

• Proposition (Fromentin): Every braid β in B_n^{+*} admits a unique decomposition $\beta = \Phi_n^{*p-1}(\beta_p) \cdot \ldots \cdot \Phi_n^{*2}(\beta_3) \cdot \Phi_n^{*}(\beta_2) \cdot \beta_1, \quad \leftarrow \text{ the } \Phi^* \text{-splitting of } \beta$ with $\beta_i \in B^{+*}_{n-1}$ s.t. $\Phi^{*p-k}_n(\beta_p) \cdot ... \cdot \beta_k$ is right-divisible by no $a_{i,j}$ with $i, j \neq n-1$.

• Theorem (Fromentin 2008): For β, γ in B_n^{+*} with Φ^* -splittings $\beta = \Phi_n^*{}^{p-1}(\beta_p) \cdot \ldots \cdot \Phi_n^*(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^*{}^{q-1}(\gamma_q) \cdot \ldots \cdot \Phi_n^*(\gamma_2) \cdot \gamma_1,$

• Proposition (Fromentin): Every braid β in B_n^{+*} admits a unique decomposition $\beta = \Phi_n^{*p-1}(\beta_p) \cdot \ldots \cdot \Phi_n^{*2}(\beta_3) \cdot \Phi_n^{*}(\beta_2) \cdot \beta_1, \quad \leftarrow \text{ the } \Phi^* \text{-splitting of } \beta$ with $\beta_i \in B^{+*}_{n-1}$ s.t. $\Phi^{*p-k}_n(\beta_p) \cdot ... \cdot \beta_k$ is right-divisible by no $a_{i,j}$ with $i, j \neq n-1$.

• Theorem (Fromentin 2008): For β, γ in B_n^{+*} with Φ^* -splittings $\beta = \Phi_n^*{}^{p-1}(\beta_p) \cdot \ldots \cdot \Phi_n^*(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^*{}^{q-1}(\gamma_q) \cdot \ldots \cdot \Phi_n^*(\gamma_2) \cdot \gamma_1,$ $\beta <_{\mathsf{D}} \gamma$ holds iff

• Proposition (Fromentin): Every braid β in B_n^{+*} admits a unique decomposition $\beta = \Phi_n^{*p-1}(\beta_p) \cdot \ldots \cdot \Phi_n^{*2}(\beta_3) \cdot \Phi_n^{*}(\beta_2) \cdot \beta_1, \quad \leftarrow \text{ the } \Phi^* \text{-splitting of } \beta$ with $\beta_i \in B^{+*}_{n-1}$ s.t. $\Phi^{*p-k}_n(\beta_p) \cdot ... \cdot \beta_k$ is right-divisible by no $a_{i,j}$ with $i, j \neq n-1$.

• Theorem (Fromentin 2008): For β, γ in B_n^{+*} with Φ^* -splittings $\beta = \Phi_n^*{}^{p-1}(\beta_p) \cdot \ldots \cdot \Phi_n^*(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^*{}^{q-1}(\gamma_q) \cdot \ldots \cdot \Phi_n^*(\gamma_2) \cdot \gamma_1,$ $\beta <_{\mathsf{D}} \gamma$ holds iff either $p < q$, or $p = q$ and there exists r s.t. $\beta_i = \gamma_i$ for $i > r$ and $\beta_r <_{\text{D}} \gamma_r$.

- Theorem (Fromentin 2008): For β, γ in B_n^{+*} with Φ^* -splittings $\beta = \Phi_n^*{}^{p-1}(\beta_p) \cdot \ldots \cdot \Phi_n^*(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^*{}^{q-1}(\gamma_q) \cdot \ldots \cdot \Phi_n^*(\gamma_2) \cdot \gamma_1,$ $\beta <_{\mathsf{D}} \gamma$ holds iff either $p < q$, or $p = q$ and there exists r s.t. $\beta_i = \gamma_i$ for $i > r$ and $\beta_r <_{\text{D}} \gamma_r$.
- Iterating: the rotating normal form...

- Theorem (Fromentin 2008): For β, γ in B_n^{+*} with Φ^* -splittings $\beta = \Phi_n^*{}^{p-1}(\beta_p) \cdot \ldots \cdot \Phi_n^*(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^*{}^{q-1}(\gamma_q) \cdot \ldots \cdot \Phi_n^*(\gamma_2) \cdot \gamma_1,$ $\beta <_{\mathsf{D}} \gamma$ holds iff either $p < q$, or $p = q$ and there exists r s.t. $\beta_i = \gamma_i$ for $i > r$ and $\beta_r <_{\text{D}} \gamma_r$.
- Iterating: the rotating normal form... and applications.

• P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212-11 (2008) 2416-2439.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212-11 (2008) 2416-2439.
- L. Carlucci, P. Dehornoy, A. Weiermann, Unprovability statements involving braids, Proc. London Math. Soc. 102-1 (2011) 159-192.

- P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212-11 (2008) 2416-2439.
- L. Carlucci, P. Dehornoy, A. Weiermann, Unprovability statements involving braids, Proc. London Math. Soc. 102-1 (2011) 159-192.
- P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)
- P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212-11 (2008) 2416-2439.
- L. Carlucci, P. Dehornoy, A. Weiermann, Unprovability statements involving braids, Proc. London Math. Soc. 102-1 (2011) 159-192.
- P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)
- J. Fromentin, The well-order on dual braid monoids

• J. Fromentin, Every braid admits a short sigma-definite expression, J. Europ. Math. Soc. 13 (2011) 1591-1631.

- P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212-11 (2008) 2416-2439.
- L. Carlucci, P. Dehornoy, A. Weiermann, Unprovability statements involving braids, Proc. London Math. Soc. 102-1 (2011) 159-192.
- P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)
- J. Fromentin, The well-order on dual braid monoids

- J. Fromentin, Every braid admits a short sigma-definite expression, J. Europ. Math. Soc. 13 (2011) 1591-1631.
- T. Ito, On finite Thurston-type orderings on braid groups, Groups, Complexity Cryptol. 2 (2010) 123-155.
- P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212-11 (2008) 2416-2439.
- L. Carlucci, P. Dehornoy, A. Weiermann, Unprovability statements involving braids, Proc. London Math. Soc. 102-1 (2011) 159-192.
- P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)
- J. Fromentin, The well-order on dual braid monoids

- J. Fromentin, Every braid admits a short sigma-definite expression, J. Europ. Math. Soc. 13 (2011) 1591-1631.
- T. Ito, On finite Thurston-type orderings on braid groups, Groups, Complexity Cryptol. 2 (2010) 123-155.
- T. Ito, Finite Thurston-type orderings on dual braid monoids, J. Knot Th. Ramif. 20 (2011) 995-1019.
- P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212-11 (2008) 2416-2439.
- L. Carlucci, P. Dehornoy, A. Weiermann, Unprovability statements involving braids, Proc. London Math. Soc. 102-1 (2011) 159-192.
- P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)
- J. Fromentin, The well-order on dual braid monoids

- J. Fromentin, Every braid admits a short sigma-definite expression, J. Europ. Math. Soc. 13 (2011) 1591-1631.
- T. Ito, On finite Thurston-type orderings on braid groups, Groups, Complexity Cryptol. 2 (2010) 123-155.
- T. Ito, Finite Thurston-type orderings on dual braid monoids, J. Knot Th. Ramif. 20 (2011) 995-1019.

www.math.unicaen.fr/∼dehornoy