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• Definition: B+++
n := submonoid of Bn generated by σ1, ..., σn−1 (positive braids).
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• Other normal forms on Bn or B+++
n
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◮ Type 4: Alternating (and rotating) normal forms
coming from parabolic submonoids
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• Iterate to obtain a unique normal form: construct a tree for each positive braid
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1 is alternating-normal iff
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• Remarks:

◮ The normal form can be extended to Bn using fractions.

◮ Works in every “locally Garside” monoid, in particular every Artin–Tits monoid.

◮ NB: The alternating normal form is not connected with an automatic structure.
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• Definition: For x , x ′ in B∞, declare x <D x ′ if, among all braid words that rep-
resent x−1x ′, at least one is such that the generator σi with highest index appears
positively only.

↑
σi occurs, σ

−1
i does not

• Example: σ2 <D σ1σ2 holds, because σ−1
2 σ1σ2 = σ1σ2σ

−1
1 ,

and, in the latter word, σ2 appears positively only.

• Theorem
(i) (D, 1992): The relation <D is a left-invariant linear order on B∞.

(ii) (Laver, 1994): The restriction of <D to B+++
∞

is a well-order;

(iii) (Burckel, 1997): The restriction of <D to B+++
n

is the initial interval [1, σn) of (B+++
∞
, <D) and has length ωωn−2

.

• Remark: replacing “maximal index” with “minimal index” in the definition
amounts to flipping the order: for β, γ in Bn, β <′

D γ iff Φn(β) <D Φn(γ).
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Braid order vs. greedy normal form

• The braid order is effective (there is an algorithm deciding <D), but complicated.

• In particular: The well-order property gives a distinguished element (<D-smallest elt)
in every nonempty subset of B+++

n (e.g., in each conjugacy class)
but cannot be computed in practice (?).

• Typically: <D is not well connected with the greedy normal form:

◮ If β, γ are divisors of ∆n, then β <D γ iff perm(β) <Lex perm(γ), (good!)

◮ ... but does not extend to arbitrary positive braids,
viewed as sequences of divisors of ∆n.

(bad!)
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• Theorem (D., 2007): The order <D on B+++
n is a ShortLex-extension of the order <D

on B+++
n−1 via the Φ-splitting:

For β, γ in B+++
n with Φ-splittings

β = Φp−1
n (βp) ···β3 · Φn(β2) · β1, γ = Φq−1

n (γq) ··· γ3 · Φn(γ2) · γ1,

β <D γ holds iff either p < q,
or p = q and there exists r s.t. βi = γi for i > r and βr <D γr .

• Proof: The flip normal form coincides with the Burckel normal form. �

• Corollary: The braid order can be read from the alternating normal form.
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But:

• Theorem (joint with L.Carlucci and A.Weiermann, 2010):
Proposition A cannot be proved in IΣ1 (resp. IΣ2).

↑ ↑
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to formulas with one ∃ (resp. ∃∀) unbounded quantifier

Contrasting with the folklore result:
• Proposition: All usual (algebraic) properties of braids can be proved in IΣ1.
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The combinatorial principle WO f

• So far, particular sequences of braids (G3-sequences); now, arbitrary sequences.

• Definition: For f : N→ N, let WO f be the combinatorial principle:
“For each k, there exists m s.t. no descending sequence (β0, β1, ...) in B+++

3 satisfying

∀i (||βi || 6 k + f (i)) has length larger than m” (with ||β||:= least k s.t. β divides ∆k
3)

“There is no infinite descending sequence of braids with complexity bounded by f ”

• Trivially: WOconstant true. Actually: WO f true for every f (provable from ZF).

• Theorem (Carlucci–D.–Weiermann, 2010): For r 6 ω, put fr (x) := ⌊Ack
−1
r (x)
√
x⌋. Then:

(i) WOfr is provable from IΣ1 for each finite r .

(ii) WO fω is not provable from IΣ1.

• Key point for the proof: Fine counting arguments in B+++
3 , namely evaluating

#{β ∈ B+++
3 | ||β|| 6 ℓ and β <D ∆k

3}.



Plan:

• 1. The alternating normal form

• 2. Connection with the standard braid order

• 3. Application to unprovability statements

• 4. The rotating normal form



Band generators

• Another family of generators for Bn: the Birman–Ko–Lee generators



Band generators

• Another family of generators for Bn: the Birman–Ko–Lee generators

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1 for 1 6 i < j 6 n.



Band generators

• Another family of generators for Bn: the Birman–Ko–Lee generators

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1 for 1 6 i < j 6 n.

i

j



Band generators

• Another family of generators for Bn: the Birman–Ko–Lee generators

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1 for 1 6 i < j 6 n.

i

j

≈



Band generators

• Another family of generators for Bn: the Birman–Ko–Lee generators

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1 for 1 6 i < j 6 n.

i

j

≈

• Definition: (dual braid monoid) B+∗

n := the submonoid of Bn generated by the ai,js.



Band generators

• Another family of generators for Bn: the Birman–Ko–Lee generators

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1 for 1 6 i < j 6 n.

i

j

≈

• Definition: (dual braid monoid) B+∗

n := the submonoid of Bn generated by the ai,js.

• Remark= B+++
n ⊆ B+∗

n , since σi = ai,i+1;



Band generators

• Another family of generators for Bn: the Birman–Ko–Lee generators

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1 for 1 6 i < j 6 n.

i

j

≈

• Definition: (dual braid monoid) B+∗

n := the submonoid of Bn generated by the ai,js.

• Remark= B+++
n ⊆ B+∗

n , since σi = ai,i+1; 6= for n > 3, since a1,3 = σ2σ1σ
−1
2 /∈ B+++

3 .



Band generators

• Another family of generators for Bn: the Birman–Ko–Lee generators

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1 for 1 6 i < j 6 n.

i

j

≈

• Definition: (dual braid monoid) B+∗

n := the submonoid of Bn generated by the ai,js.

• Remark= B+++
n ⊆ B+∗

n , since σi = ai,i+1; 6= for n > 3, since a1,3 = σ2σ1σ
−1
2 /∈ B+++

3 .

• Chord representation of the Birman–Ko–Lee generators:



Band generators

• Another family of generators for Bn: the Birman–Ko–Lee generators

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1 for 1 6 i < j 6 n.

i

j

≈

• Definition: (dual braid monoid) B+∗

n := the submonoid of Bn generated by the ai,js.

• Remark= B+++
n ⊆ B+∗

n , since σi = ai,i+1; 6= for n > 3, since a1,3 = σ2σ1σ
−1
2 /∈ B+++

3 .

• Chord representation of the Birman–Ko–Lee generators:

1
2

n
1
2n



Band generators

• Another family of generators for Bn: the Birman–Ko–Lee generators

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1 for 1 6 i < j 6 n.

i

j

≈

• Definition: (dual braid monoid) B+∗

n := the submonoid of Bn generated by the ai,js.

• Remark= B+++
n ⊆ B+∗

n , since σi = ai,i+1; 6= for n > 3, since a1,3 = σ2σ1σ
−1
2 /∈ B+++

3 .

• Chord representation of the Birman–Ko–Lee generators:

1
2

n
1
2n

1
2n



Band generators

• Another family of generators for Bn: the Birman–Ko–Lee generators

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1 for 1 6 i < j 6 n.

i

j

≈

• Definition: (dual braid monoid) B+∗

n := the submonoid of Bn generated by the ai,js.

• Remark= B+++
n ⊆ B+∗

n , since σi = ai,i+1; 6= for n > 3, since a1,3 = σ2σ1σ
−1
2 /∈ B+++

3 .

• Chord representation of the Birman–Ko–Lee generators:

1
2

n
1
2n

1
2n

i

j

ai,j 7→



Chords

• Lemma: In terms of the ai,js, the group Bn and the monoid B+∗

n are presented by



Chords

• Lemma: In terms of the ai,js, the group Bn and the monoid B+∗

n are presented by

· = · for disjoint chords,



Chords

• Lemma: In terms of the ai,js, the group Bn and the monoid B+∗

n are presented by

· = · for disjoint chords,

·



Chords

• Lemma: In terms of the ai,js, the group Bn and the monoid B+∗

n are presented by

· = · for disjoint chords,

· = ·



Chords

• Lemma: In terms of the ai,js, the group Bn and the monoid B+∗

n are presented by

· = · for disjoint chords,

· = · = ·

for adjacent chords enumerated in clockwise order.



Chords

• Lemma: In terms of the ai,js, the group Bn and the monoid B+∗

n are presented by

· = · for disjoint chords,

· = · = ·

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φn of B+++
n



Chords

• Lemma: In terms of the ai,js, the group Bn and the monoid B+∗

n are presented by

· = · for disjoint chords,

· = · = ·

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φn of B+++
n = conjugating under ∆n



Chords

• Lemma: In terms of the ai,js, the group Bn and the monoid B+∗

n are presented by

· = · for disjoint chords,

· = · = ·

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φn of B+++
n = conjugating under ∆n

= symmetry in the braid diagram.



Chords

• Lemma: In terms of the ai,js, the group Bn and the monoid B+∗

n are presented by

· = · for disjoint chords,

· = · = ·

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φn of B+++
n = conjugating under ∆n

= symmetry in the braid diagram.

• Lemma: Conjugating by ∆∗

n := a1,2a2,3 ··· an−1,n gives an automorphism Φ∗

n of B+∗

n ;



Chords

• Lemma: In terms of the ai,js, the group Bn and the monoid B+∗

n are presented by

· = · for disjoint chords,

· = · = ·

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φn of B+++
n = conjugating under ∆n

= symmetry in the braid diagram.

• Lemma: Conjugating by ∆∗

n := a1,2a2,3 ··· an−1,n gives an automorphism Φ∗

n of B+∗

n ;
For all i , j , one has

Φ∗

n (ai,j) = ai+1mod n,j+1mod n.



Chords

• Lemma: In terms of the ai,js, the group Bn and the monoid B+∗

n are presented by

· = · for disjoint chords,

· = · = ·

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φn of B+++
n = conjugating under ∆n

= symmetry in the braid diagram.

• Lemma: Conjugating by ∆∗

n := a1,2a2,3 ··· an−1,n gives an automorphism Φ∗

n of B+∗

n ;
For all i , j , one has

Φ∗

n (ai,j) = ai+1mod n,j+1mod n.
↑

= rotating by 2π/n in the chord representation
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← the Φ∗-splitting of β

1

2
n

n−1

1

2
n

n−1

β1

1

2
n

n−1

β1

Φ∗

n (β2)

1

2
n

n−1

β1

Φ∗

n (β2)

Φ∗

n
2(β3)

• Theorem (Fromentin 2008): For β, γ in B+∗

n with Φ∗-splittings

β = Φ∗

n
p−1(βp) · .... · Φ∗

n (β2) · β1, γ = Φ∗

n
q−1(γq) · .... · Φ∗

n (γ2) · γ1,
β <D γ holds iff either p < q,

or p = q and there exists r s.t. βi = γi for i > r and βr <D γr .

• Iterating: the rotating normal form... and applications.
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