

The alternating normal form of braids

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Friday Seminar, Osaka State University, May 15, 2015

- New normal form(s) for braid groups (and other Garside groups), suitable for investigating order properties, and for applications to unprovability statements.
- An introduction for T. Ito's talk in IDLT...

Plan:

- 1. The alternating normal form
- 2. Connection with the standard braid order

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- 3. Application to unprovability statements
- 4. The rotating normal form

<u>Plan</u>:

- 1. The alternating normal form
- 2. Connection with the standard braid order

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- 3. Application to unprovability statements
- 4. The rotating normal form

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation

$$\Big\langle \sigma_1,...,\sigma_{n-1} \Big| \begin{array}{cc} \sigma_i\sigma_j=\sigma_j\sigma_i & \text{for } |i-j| \geqslant 2\\ \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j & \text{for } |i-j|=1 \end{array} \Big\rangle.$$

 \simeq { braid diagrams } / isotopy:

$$\sigma_i \quad \leftrightarrow \quad i+1 \sum_{i=1}^{i+1} \sum_{i=1}^{i+1}$$

 \simeq mapping class group of D_n (disk with *n* punctures):

• <u>Definition</u>: B_n^+ := submonoid of B_n generated by $\sigma_1, ..., \sigma_{n-1}$ (positive braids).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: B_n is a group of (left and right) fractions for B_n^+ .

every element of B_n can be expressed as $\beta \gamma^{-1}$ and $\beta'^{-1} \gamma'$ with $\beta, \gamma, \beta', \gamma' \in B_n^+$

Garside's half-turn braid:
$$\Delta_1 = 1$$
, $\Delta_n = \Delta_{n-1}\sigma_{n-1}...\sigma_1$

• <u>Proposition</u>: B_n^+ is a Garside monoid with Garside element Δ_n : every β in B_n^+ has a unique expression $\beta_p \cdots \beta_1$ with β_i maximal right-divisor of $\beta_p \cdots \beta_i$ lying in $Div(\Delta_n)$.

 β is a right-divisor of γ if $\exists \gamma' \ (\gamma = \gamma' \beta)$

- <u>Corollary</u>: Every β in B_n has a unique expression $\beta_p \cdots \beta_1 \gamma_1^{-1} \cdots \gamma_q^{-1}$ with β_1, \dots, β_p and $\gamma_1, \dots, \gamma_q$ in $Div(\Delta_n)$ and $gcd(\beta_1, \gamma_1) = 1$.
- This (right) "greedy normal form" gives a bi-automatic structure on B_n , etc.

- Other normal forms on B_n or B_n^+ that are not—or not directly—connected with the greedy normal form:
 - ▶ Type 1: Normal forms coming from combing (Artin, Markov–Ivanovsky).
 - Type 2: Normal forms coming from relaxation strategies (Dynnikov–Wiest, Bressaud).
 - Type 3: Normal forms coming from an order on braid words: NF(x) defined to be the least word representing x.
 - Example 1 (Bronfman): lexicographical order of braid words;
 - ▶ Example 2 (Burckel): associate with every braid word w

a certain finite tree, and use a well-ordering on trees.

 Type 4: Alternating (and rotating) normal forms coming from parabolic submonoids

- Recall: β right-divisor of γ —equivalently: γ left-multiple of β if $\exists \gamma'(\gamma = \gamma'\beta)$.
- <u>Proposition</u> (Garside, 1969): Under (left- and right-) division, B_n^+ is a lattice: least common multiples (lcms) and greatest common divisors (gcds) exist.

• Lemma: If $S \subseteq B_n^+$ is closed under left-lcm and right-divisor, then every β in B_n^+ admits a unique decomposition $\beta = \beta' \beta_1$ with β_1 a maximal right-divisor of β in S.

• If S generates B_n^+ , iterating gives a unique normal form.

for instance, $S = Div(\Delta_n)$ gives the (right) greedy normal form

• Lemma (variant): If S is a submonoid of B_n^+ closed under left-lcm and right-divisor, then every β in B_n^+ admits a unique decomposition $\beta = \beta' \beta_1$ such that the only right-divisor of β' lying in S is 1. " β' right-coprime to S"

• <u>Definition</u>: In the above framework, call β_1 the <u>S</u>-tail of β .

• Use two submonoids S_1 , S_2 that, together, generate B_n^+ ,

- <u>Fact</u>: B_n admits an automorphism Φ_n that exchanges σ_i and σ_{n-i} for each *i*.
 - A horizontal symmetry in braid diagrams
 - ▶ The monoid $\langle \sigma_2, ... \sigma_{n-1} \rangle^+$ is the image of B_{n-1}^+ under Φ_n .
 - ▶ Hence a decomposition $\dots \beta_4\beta_3\beta_2\beta_1$ with β_1, β_3, \dots in B_{n-1}^+ and β_2, β_4, \dots in $\langle \sigma_2, \dots \sigma_{n-1} \rangle^+$ can also be written

• <u>Proposition</u>: Every braid β in B_n^+ admits a unique decomposition $\beta = \cdots \Phi_n(\beta_4) \cdot \beta_3 \cdot \Phi_n(\beta_2) \cdot \beta_1 \quad \leftarrow \text{the } \Phi\text{-splitting of } \beta$ with $\beta_i \in B_{n-1}^+$ s.t., for $i \ge 2$, no σ_k with $k \ge 2$ right-divides $\cdots b_{i+2} \Phi_n(\beta_{i+1})\beta_i$. • Iterate to obtain a unique normal form: construct a tree for each positive braid

▶ the alternating normal form of Δ_4^2 is $\sigma_3 \sigma_2 \sigma_1^2 \sigma_2 \sigma_3 \sigma_2 \sigma_1^2 \sigma_2 \sigma_1^2$.

 • <u>Proposition</u>: Every braid in B_n^+ admits a unique alternating normal form, which can be computed in quadratic time. Alternating normal words are recognized by a finite state automaton.

- A "bizarre" normal form, very different from the greedy normal form:
 - $\begin{array}{c} \blacktriangleright \text{ Example: the greedy NF of } \Delta_3^p \text{ is } \Delta_3 | \cdots | \Delta_3 \text{ (}p \text{ entries) its alternating NF is} \\ \underbrace{\sigma_1 | \sigma_2^2 | \cdots | \sigma_2^2 | \sigma_1^2 | \sigma_2 | \sigma_1^p}_{p+3 \text{ entries}} \text{ for odd } p, \underbrace{\sigma_2 | \sigma_1^2 | \cdots | \sigma_2^2 | \sigma_1^2 | \sigma_2 | \sigma_1^p}_{p+3 \text{ entries}} \text{ for even } p. \end{array}$
- <u>Proposition</u>: A positive 3-strand braid word $\sigma_i^{e_p} \cdots \sigma_1^{e_3} \sigma_2^{e_2} \sigma_1^{e_1}$ is alternating-normal iff $e_p \ge 1, \ e_{p-1} \ge 2, \ \dots, \ e_3 \ge 2, \ e_2 \ge 1, \ e_1 \ge 0.$
- Remarks:
 - ▶ The normal form can be extended to B_n using fractions.
 - ▶ Works in every "locally Garside" monoid, in particular every Artin-Tits monoid.
 - ▶ NB: The alternating normal form is not connected with an automatic structure.

<u>Plan</u>:

- 1. The alternating normal form
- 2. Connection with the standard braid order

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- 3. Application to unprovability statements
- 4. The rotating normal form

- <u>Definition</u>: For x, x' in B_{∞} , declare $x <_D x'$ if, among all braid words that represent $x^{-1}x'$, at least one is such that the generator σ_i with highest index appears positively only.
- σ_i occurs, σ_i^{-1} does not
- <u>Example</u>: $\sigma_2 <_{\text{D}} \sigma_1 \sigma_2$ holds, because $\sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1}$, and, in the latter word, σ_2 appears positively only.

```
<u>Theorem</u>

        (i) (D, 1992): The relation <<sub>D</sub> is a left-invariant linear order on B<sub>∞</sub>.
        (ii) (Laver, 1994): The restriction of <<sub>D</sub> to B<sup>+</sup><sub>∞</sub> is a well-order;
        (iii) (Burckel, 1997): The restriction of <<sub>D</sub> to B<sup>+</sup><sub>n</sub>
        is the initial interval [1, σ<sub>n</sub>) of (B<sup>+</sup><sub>∞</sub>, <<sub>D</sub>) and has length ω<sup>ω<sup>n-2</sup></sup>.
```

• <u>Remark</u>: replacing "maximal index" with "minimal index" in the definition amounts to flipping the order: for β, γ in B_n , $\beta <'_D \gamma$ iff $\Phi_n(\beta) <_D \Phi_n(\gamma)$.

ション ふゆ チョン チョン ヨー ものの

• The braid order is effective (there is an algorithm deciding $<_D$), but complicated.

 In particular: The well-order property gives a distinguished element (<_D-smallest elt) in every nonempty subset of B⁺_n (e.g., in each conjugacy class) but cannot be computed in practice (?).

- Typically: $<_D$ is not well connected with the greedy normal form:
 - ▶ If β, γ are divisors of Δ_n , then $\beta <_D \gamma$ iff perm(β) <^{Lex} perm(γ), (good!)
 - ... but does not extend to arbitrary positive braids, viewed as sequences of divisors of Δ_n. (bad!)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Theorem</u> (D., 2007): The order $<_D$ on B_n^+ is a ShortLex-extension of the order $<_D$ on B_{n-1}^+ via the Φ -splitting: For β, γ in B_n^+ with Φ -splittings $\beta = \Phi_n^{p-1}(\beta_p) \cdots \beta_3 \cdot \Phi_n(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^{q-1}(\gamma_q) \cdots \gamma_3 \cdot \Phi_n(\gamma_2) \cdot \gamma_1,$ $\beta <_D \gamma$ holds iff either p < q, or p = q and there exists r s.t. $\beta_i = \gamma_i$ for i > r and $\beta_r <_D \gamma_r$.

• Proof: The flip normal form coincides with the Burckel normal form.

• Corollary: The braid order can be read from the alternating normal form.

<u>Plan</u>:

- 1. The alternating normal form
- 2. Connection with the standard braid order

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- 3. Application to unprovability statements
- 4. The rotating normal form

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- <u>Aim</u>: Construct (very) long sequences of braids using a simple inductive rule. (reminiscent of Goodstein's sequences and Hydra battles)
- Recall: A 3-strand braid word $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$ ([p] = 1 or 2) is normal iff $e_p \ge 1$, $e_{p-1} \ge 2$, ..., $e_3 \ge 2$, $e_2 \ge 1$, and $e_1 \ge 0$.
- <u>Definition</u>: The critical position in a positive 3-strand braid word: smallest k (= rightmost) s.t. ek does not have the minimal legal value, if it exists, p otherwise.

- <u>Definition</u>: The \mathcal{G}_3 -sequence from a positive 3-braid x:
 - Start with the alternating normal form of x;
 - At step t: remove one crossing in the critical block; add t new crossings in the next block, if it exists;
 - ▶ The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2 , $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2, σ_1^7 , σ_1^6 , σ_1^5 , σ_1^4 , σ_1^3 , σ_1^2 , σ_1 , 1.

- More examples:
 - ▶ The G_3 -sequence from $\sigma_1 \sigma_2 \sigma_1$ has length 30.
 - The G_3 -sequence from $\sigma_1^2 \sigma_2^2 \sigma_1^2$ has length 90,159,953,477,630...

Nevertheless:

• <u>Proposition A</u>: Every \mathcal{G}_3 -sequence (resp. \mathcal{G}_∞ -sequence) is finite.

```
similar with B^+_{\infty} instead of B^+_3...
```

• Proof: The sequences are descending in the braid well-order.

But:

• <u>Theorem</u> (joint with L.Carlucci and A.Weiermann, 2010): Proposition A cannot be proved in $|\Sigma_1|$ (resp. $|\Sigma_2|$).

> the subsystem of Peano arithmetic in which induction is restricted to formulas with one ∃ (resp. ∃∀) unbounded quantifier

Contrasting with the folklore result:

• <u>Proposition</u>: All usual (algebraic) properties of braids can be proved in $I\Sigma_1$.

- Proof of the unprovability of the finiteness of \mathcal{G}_3 -sequences in $I\Sigma_1$:
 - <u>Principle</u>: Assign ordinals to braids, and compare with the Hardy hierarchy.
 - <u>Main lemma</u>: For β a 3-braid with normal form $\sigma_{[p]}^{e_p}...\sigma_2^{e_2}\sigma_1^{e_1}$, put

$$\mathit{ord}(eta) := \omega^{p\!-\!1} \cdot e_p + \sum_{p>k \geqslant 1} \omega^{k\!-\!1} \cdot (e_k - e_k^{\mathit{min}}),$$

(with $e_k^{min} = 2$ for $k \ge 3$, $e_2^{min} = 1$, $e_1^{min} = 0$). Then

$$ord(\beta) = \xi \Rightarrow \forall k \left(\frac{T}{\beta} \sigma_1^k \right) \ge \frac{H_{\xi}(k)}{\beta}.$$

the length of the "Hardy hierarchy" of functions: \mathcal{G}_3 -sequence from... $H_r(x) := x + r,$ $H_{\omega+r}(x) := 2(x+r),$ $H_{\omega\cdot 2}(x) := 4x,$

 $H_{\omega^{\omega}} = Ackerman function,...$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- ► Hence: $T(\sigma_{[k]}\sigma_{[k-1]}^2 \dots \sigma_1^2 \sigma_2 \sigma_1^k) \ge H_{\omega^{\omega}}(k).$
- I∑₁ does not prove that the Ackermann function is defined everywhere, hence it cannot prove that T is defined everywhere, that is, that all G₃-sequences of braids are finite

• So far, particular sequences of braids (\mathcal{G}_3 -sequences); now, arbitrary sequences.

• <u>Definition</u>: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle: "For each k, there exists m s.t. no descending sequence $(\beta_0, \beta_1, ...)$ in B_3^+ satisfying $\forall i (\|\beta_i\| \leq k + f(i))$ has length larger than m" (with $\|\beta\|$:= least k s.t. β divides Δ_3^k) "There is no infinite descending sequence of braids with complexity bounded by f"

• Trivially: $WO_{constant}$ true. Actually: WO_f true for every f (provable from ZF).

<u>Theorem</u> (Carlucci–D.–Weiermann, 2010): For r ≤ ω, put f_r(x) := [Ack_r⁻¹(x)√x]. Then:
(i) WO_{fr} is provable from IΣ₁ for each finite r.
(ii) WO_{fw} is not provable from IΣ₁.

• Key point for the proof: Fine counting arguments in B_3^+ , namely evaluating $\#\{\beta \in B_3^+ \mid \|\beta\| \leq \ell \text{ and } \beta <_{\mathsf{D}} \Delta_3^k\}.$

<u>Plan</u>:

- 1. The alternating normal form
- 2. Connection with the standard braid order

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- 3. Application to unprovability statements
- 4. The rotating normal form

• Another family of generators for B_n : the Birman–Ko–Lee generators $a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}$ for $1 \leq i < j \leq n$.

- <u>Definition</u>: (dual braid monoid) B_n^{+*} := the submonoid of B_n generated by the $a_{i,j}$ s.
- <u>Remark</u>= $B_n^+ \subseteq B_n^{+*}$, since $\sigma_i = a_{i,i+1}$; \neq for $n \ge 3$, since $a_{1,3} = \sigma_2 \sigma_1 \sigma_2^{-1} \notin B_3^+$.
- Chord representation of the Birman-Ko-Lee generators:

• Lemma: In terms of the $a_{i,j}s$, the group B_n and the monoid B_n^{+*} are presented by

for adjacent chords enumerated in clockwise order.

• Remember: flip automorphism Φ_n of $B_n^+ =$ conjugating under Δ_n = symmetry in the braid diagram.

• Lemma: Conjugating by $\Delta_n^* := a_{1,2}a_{2,3} \cdots a_{n-1,n}$ gives an automorphism Φ_n^* of B_n^{+*} ; For all i, j, one has $\Phi_n^*(a_{i,j}) = a_{i+1 \mod n, j+1 \mod n}$.

= rotating by $2\pi/n$ in the chord representation

• <u>Proposition</u> (Fromentin): Every braid β in B_n^{+*} admits a unique decomposition $\beta = \Phi_n^{*p-1}(\beta_p) \cdot \ldots \cdot \Phi_n^{*2}(\beta_3) \cdot \Phi_n^*(\beta_2) \cdot \beta_1, \quad \leftarrow \text{ the } \Phi^*\text{-splitting of } \beta$ with $\beta_i \in B_{n-1}^{+*}$ s.t. $\Phi_n^{*p-k}(\beta_p) \cdot \ldots \cdot \beta_k$ is right-divisible by no $a_{i,j}$ with $i, j \neq n-1$.

- <u>Theorem</u> (Fromentin 2008): For β, γ in B_n^{+*} with Φ^* -splittings $\beta = \Phi_n^{*p-1}(\beta_p) \cdot \ldots \cdot \Phi_n^*(\beta_2) \cdot \beta_1, \quad \gamma = \Phi_n^{*q-1}(\gamma_q) \cdot \ldots \cdot \Phi_n^*(\gamma_2) \cdot \gamma_1,$ $\beta <_D \gamma$ holds iff either p < q, or p = q and there exists r s.t. $\beta_i = \gamma_i$ for i > r and $\beta_r <_D \gamma_r$.
- Iterating: the rotating normal form... and applications.

- <u>P. Dehornoy</u>, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212-11 (2008) 2416-2439.
- L. Carlucci, P. Dehornoy, A. Weiermann, Unprovability statements involving braids, Proc. London Math. Soc. 102-1 (2011) 159-192.
- <u>P. Dehornoy</u>, with <u>I. Dynnikov</u>, <u>D. Rolfsen</u>, <u>B. Wiest</u>, Ordering braids, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)
- <u>J. Fromentin</u>, The well-order on dual braid monoids

J.Knot Th. Ramif. 19-5 (2010) 631-654.

- <u>J. Fromentin</u>, Every braid admits a short sigma-definite expression, J. Europ. Math. Soc. 13 (2011) 1591-1631.
- <u>T. Ito</u>, On finite Thurston-type orderings on braid groups, Groups, Complexity Cryptol. 2 (2010) 123-155.
- <u>T. Ito</u>, Finite Thurston-type orderings on dual braid monoids, J. Knot Th. Ramif. 20 (2011) 995-1019.

www.math.unicaen.fr/~dehornoy

▲ロト ▲部ト ▲注ト ▲注ト 三注 - のへで