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The braid isotopy problem

• A 3-strand braid diagram:

(no U-turn allowed)

• Isotopy Problem:
Given two n-strand braid diagrams, can one deform them to one another?

≈

↑
is isotopic to

• More formally: view braid diagrams as projections of 3D-diagrams in D2 × (0, 1),

←

and consider ambient isotopy leaving the end-disks fixed.
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• Concatenation of braid diagrams:

∗ :=

◮ Associative;

◮ Compatible with isotopy, hence induces a well-defined product on classes;

◮ Admits the unbraided diagram [∅] as a neutral element;

◮ Every diagram has an inverse, its mirror-image:

braidbraidbraid ∗ braid braid braid = braidbraidbraid braid braid braid ≈

• For every n > 1: the group Bn of n-strand braids.
↑

isotopy class of braid diagrams
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σiσj = σjσi
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〉

.

◮ Proof: Isotopy of piecewise linear diagrams is generated by ∆-moves. �
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Then B+++
n embeds in Bn and Bn is a group of fractions for B+++

n .

↑
every element of Bn can be written β−1γ with β, γ ∈ B+++

n

◮ Proof: Show that B+++
n is cancellative and admits common multiples. �
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◮ 1. find p and w ′ positive satisfying ∆p
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• Definition (Birman–Ko–Lee 1997): B+∗
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◮ a new solution of the Word Problem.
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• Chord representation of the Birman–Ko–Lee generators: ai,j 7→

1
2n

i

j

• Lemma: In terms of the BKL generators, Bn is presented by the relations

· = · for disjoint chords,

· = · = ·

for adjacent chords enumerated in clockwise order.

◮ Hence: For P a p-gon, can define aP to
be the product of the ai,j corresponding to p−1
adjacent edges of P in clockwise order;

idem for an union of disjoint polygons.

a2,8a3,5a5,6 ↔

1
2

3

4
5

6

7

8

• Proposition (Digne–Michel 2002): The divisors of ∆∗
n in B+∗

n are the 1
n+1

(2n
n

)
ele-

ments aP for P a non-intersecting union of polygons in an n-punctured circle.
↑

equivalently: a non-crossing partition of {1, ...,n}



Plan:

• 1. The braid isotopy problem

• 2. Greedy normal form and the Garside structure

• 3. Dynnikov’s coordinates

• 4. Bressaud’s relaxation algorithm
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Homeomorphisms

• An n-strand braid diagram = a danse of n points in a disk:

DnDnDnDnDnDnDn

... ◮ an isotopy class of homeomorphisms of Dn leaving ∂Dn fixed
↑

disk with n marked points
↑

boundary of Dn

• Proposition: The group Bn is (isomorphic to) the mapping class group of Dn.
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◮ action of Bn on the fundamental group of Dn, a free group of rank n.
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i ,
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xk 7→ xk for k 6= i , i + 1.

• Theorem (Artin): The homomorphism ρ is injective.

◮ a new solution of the Word Problem for Bn (hence of the Braid Isotopy Problem):

a braid word w represents 1 in Bn iff ρ(w)(xk ) = xk holds for k = 1, ...,n.
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◮ 3n + 3 numbers, which determine the braid
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◮ Dynnikov’s formulas when iterating four times (four flips).



Plan:

• 1. The braid isotopy problem

• 2. Greedy normal form and the Garside structure

• 3. Dynnikov’s coordinates

• 4. Bressaud’s relaxation algorithm
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