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is isotopic to

o More formally: view braid diagrams as projections of 3D-diagrams in D? x (0,1),

N\ C S

and consider ambient isotopy leaving the end-disks fixed.
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e The group structure of B, makes the Braid Isotopy Problem easier:
» Reduces to the Braid Triviality Problem: D’ ~ D < D~ 'xD’ ~ [f)].

» Enables one to use algebraic tools, provided one has a presentation of By.

e Artin generators: Every n-strand braid diagram is a (finite) concatenation of
elementary diagrams with one crossing, hence of the form

n n

i+1 = i+1
I‘+ or & 1 i+

with 1 <i < n.

)
]

e Theorem (Artin, 1926): The group B, admits the presentation

J J
<01, o009 @3] ‘ o
1

0;0; = 0;0;0; for |i — j| =

0.0 = 0.0 for|i—j|>2>
J 1/

]

» Proof: Isotopy of piecewise linear diagrams is generated by A-moves. O
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e Braid Isotopy reduced to the Word Problem for B, with respect to {c,...,0,_;}:
given a braid word w, decide whether w represents 1 in B,.

a word in the letters alil, "'Unjill-

e (Novikov, 1952) There exists a finitely presented group
with an unsolvable Word Problem.

e Here: (Garside) Use the monoid.

e Theorem (Garside, 1969): Let B be the monoid with presentation

0.0 =00 for |i — j| >
i 5
<01""’U"—1 0,0,0;, = 0.0,0: f; 1>
i 509 for |i — j| =

J

Then B} embeds in B, and By, is a group of fractions for B} .

every element of B, can be written B~ 1~y with 8,~ € B

» Proof: Show that B} is cancellative and admits common multiples. |
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e An effective way of reducing from B, to B;}:

e Lemma (Garside): Inductively define Ap by A1 =1, A, = Ap_q -0

n—1"" 901"

Then, for every n-strand braid word w, one can find p > 0
and a positive n-strand braid word w’ and satisfying Abw = w’.

e Then: w s w=A & w=tAf
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e Now: =T is decidable, as it preserves word-length.

e Hence: A solution to the Braid Isotopy Problem: starting from w,
» 1. find p and w’ positive satisfying Ahw = w/;
» 2. test w/ =+ AP by systematically enumerating the =*-class of w’.
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Plan:
e 1. The braid isotopy problem

e 2. Greedy normal form and the Garside structure

e 3. Dynnikov's coordinates

e 4. Bressaud's relaxation algorithm
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e An n-strand braid diagram = a danse of n points in a disk:

. » an isotopy class of homeomorphisms of D, leaving 9D, fixed

disk with n marked points boundary of D,

e Proposition: The group By, is (isomorphic to) the mapping class group of Dp.
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» action of B, on the fundamental group of D, a free group of rank n.
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e From there: a homomorphism p from B, to Aut(Fy):
=i
Xj b XiXjg1X o,
p(o;) 1§ X1 Xi,
xx +— x, for k #i,i+ 1.

e Theorem (Artin): The homomorphism p is injective. J

» a new solution of the Word Problem for B, (hence of the Braid Isotopy Problem):
a braid word w represents 1 in B, iff p(w)(xx) = xx holds for k =1,...,n.
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» An efficient method: “linear space, quadratic time complexity”
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e Main observation:

#((L)NT)=#(LNo '(T)).

» compare the intersections of L with T and o LT).

e Lemma: If T, T’ are any two (singular) triangulations,
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e For one flip, the formula is

X2 X3 X2 X3

X1 X4 X1 X4
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e Hence: One must go from T to g (T by a finite sequence of flips.
@

e For one flip, the formula is

%EM%

x + x" = max(x1 + x3, x2 + xa)

» Dynnikov's formulas when iterating four times (four flips).



Plan:
e 1. The braid isotopy problem

e 2. Greedy normal form and the Garside structure

e 3. Dynnikov's coordinates

e 4. Bressaud's relaxation algorithm
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e Exemple 2 (Bressaud 2005):
» here C = axes of standard loops

» strategy: relax B(x1), then B(x2),... by diminishing
the number of intersections with half-axes.

N L N
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» a normal form on B, (whence a solution to the Braid Isotopy Problem),

» together with an algorithm computing NF(wa,.il) from NF(w) and i.

e Remark: The Bressaud normal form has nothing to do with positive braids and B}

(nor with B/} either).
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