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• The braid isotopy problem is a problem of medium difficulty, with many (really)
different solutions illustrating various approaches to Artin’s braid groups.

• Here: a survey of some solutions:

◮ one algebraic solution: the greedy normal form

◮ two topological solutions: Dynnikov’s coordinates, Bressaud’s relaxation method

[and two more: the alternating normal form (yesterday), handle reduction (ILDT)]
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• 2. Greedy normal form and the Garside structure

• 3. Dynnikov’s coordinates

• 4. Bressaud’s relaxation algorithm
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The braid isotopy problem

• A 3-strand braid diagram:

(no U-turn allowed)

• Isotopy Problem:
Given two n-strand braid diagrams, can one deform them to one another?

≈

↑
is isotopic to

• More formally: view braid diagrams as projections of 3D-diagrams in D2 × (0, 1),

←

and consider ambient isotopy leaving the end-disks fixed.



Braid groups

• Concatenation of braid diagrams:

∗ :=

◮ Associative;

◮ Compatible with isotopy, hence induces a well-defined product on classes;

◮ Admits the unbraided diagram [∅] as a neutral element;

◮ Every diagram has an inverse, its mirror-image:

braidbraidbraid ∗ braid braid braid = braidbraidbraid braid braid braid ≈

• For every n > 1: the group Bn of n-strand braids.
↑

isotopy class of braid diagrams



Artin’s presentation

• The group structure of Bn makes the Braid Isotopy Problem easier:

◮ Reduces to the Braid Triviality Problem: D′ ≈ D ⇔ D−1∗D′ ≈ [∅].

◮ Enables one to use algebraic tools, provided one has a presentation of Bn.

• Artin generators: Every n-strand braid diagram is a (finite) concatenation of
elementary diagrams with one crossing, hence of the form

σi :

1
..
.

i

i+1

..

. n

or σ−1
i :

1
..
.

i

i+1

..

. n

with 1 6 i < n.

• Theorem (Artin, 1926): The group Bn admits the presentation
〈

σ1, ..., σn−1

∣
∣
∣

σiσj = σjσi
σiσjσi = σjσiσj

for |i − j | > 2

for |i − j | = 1

〉

.

◮ Proof: Isotopy of piecewise linear diagrams is generated by ∆-moves. �
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Reducing to the monoid

• Braid Isotopy reduced to the Word Problem for Bn with respect to {σ1, ..., σn−1}:

given a braid word w , decide whether w represents 1 in Bn.
↑

a word in the letters σ±1
1 , ...σ±1

n−1.

• (Novikov, 1952) There exists a finitely presented group
with an unsolvable Word Problem.

• Here: (Garside) Use the monoid.

• Theorem (Garside, 1969): Let B+++
n be the monoid with presentation

〈

σ1, ..., σn−1

∣
∣
∣

σiσj = σjσi
σiσjσi = σjσiσj

for |i − j | > 2

for |i − j | = 1

〉+
.

Then B+++
n embeds in Bn and Bn is a group of fractions for B+++

n .

↑
every element of Bn can be written β−1γ with β, γ ∈ B+++

n

◮ Proof: Show that B+++
n is cancellative and admits common multiples. �



The Word Problem for B+++
n

• An effective way of reducing from Bn to B+++
n :

• Lemma (Garside): Inductively define ∆n by ∆1 = 1, ∆n = ∆n−1 · σn−1 ··· σ2σ1.

≈

Then, for every (signed) n-strand braid word w, one can find p > 0
and a positive n-strand braid word w ′ and satisfying ∆p

nw ≡ w ′.

• Then: w ≡ ε
↑

the empty word

⇔ w ′ ≡ ∆p
n ⇔ w ′ ≡+ ∆p

n
↑

equivalence
generated by braid relations
and σiσ

−1
i = σ−1

i σi = 1

↑
equivalence

generated by braid relations alone

• Now: ≡+ is decidable, as it preserves word-length.

• Hence: A (theoretical) solution to the Braid Isotopy Problem: starting from w ,

◮ 1. find p and w ′ positive satisfying ∆p
nw ≡ w ′;

◮ 2. test w ′ ≡+ ∆p
n by systematically enumerating the ≡+-class of w ′.



Permutation braids

• To improve the previous solution and make it tractable:
define (efficiently computable) normal forms on B+++

n .

• Every n-strand braid gives a permutation of {1, ...,n}:
follow the positions of the strands:

1

2

n

i

f (i)
◮ short exact sequence

1 −→ PBn −→ Bn −→ Sn −→ 1.

• Inductively define a (set-theoretic) section
for the projection of Bn onto Sn:

for f = (n, f (n)) ◦ g with g ∈ Sn−1,
put σf := σ

f (n)
···σn−1σg

f (n)

n

σg

︸ ︷︷ ︸

σf
◮ a family of n! permutation braids in B+++

n .

• Lemma: Permutations braids are the (left- and right-) divisors of ∆n in B+++
n .

↑
β left-divides γ if ∃γ′ (βγ′ = γ).



The greedy normal form

• Theorem (Garside 1969): With respect to (left- and right-) divisibility, B+++
n is a lattice.

↑
least common multiples and greatest common divisors exist

• Corollary: For every positive n-strand braid β,
there exists a unique maximal permutation braid left-dividing β.

↑
namely: the left-gcd of β and ∆n

◮ A distinguished decomposition:

β = σf1
· β′ = σf1

· σf2 · β
′′ = ··· = σf1

· σf2 · ··· · σfr .

“a positive braid is a sequence of permutations”

• Fact: σf is a maximal left-divisor of σf · σg iff every recoil of f is a descent of g.
↑

i s.t. f (i) > f (i+1)
↑

i s.t. g−1(i) > g−1(i+1)

• Proposition (Adjan, El-Rifai–Morton, Thurston, ... 1980s): Every braid in Bn admits
a unique expression ∆p

n σf1
··· σfr with p ∈ Z, f1 6= (n, ...,2, 1), fr 6= id, and every recoil

of fk+1 is a descent of fk .



The greedy normal form (cont’d)

• The point here: not only theoretical, but also tractable.
◮ The greedy normal form can be computed efficiently.
◮ Key point: computing the normal form of σiβ and σ−1

i β from that of β.

• Recipe:
◮ Assume that the normal form of β is ∆p

n σf1
···σfr ; let σg be a permutation-braid;

∆p
n σf1

σf2
σfℓ

σg

∆p
n

σ
φ
p
n (g)

σg0

σ
f ′1

σg1

σ
f ′2

σg2 σgr−1

σ
f ′r

σgr

◮ The normal form of σgβ is ∆p
n σf ′1
··· σ

f ′p
σgp if σ

f ′1
6=∆n,

and ∆p+1
n σ

f ′2
···σ

f ′p
σgp otherwise.

◮ And the normal form of σ−1
g β? There exists g ′ satisfying σgσg′ = ∆n,

hence σ−1
g = σ

g′
∆−1

n , and σ−1
g β = σ

g′
∆p−1

n σf1
···σfr : continue as above.



Garside structures on Bn

• This corresponds to an automatic structure for Bn (Thurston, Cannon),

◮ and, more specifically, to a Garside structure (D.–Paris 1997):
↑

a submonoid B+++
n of Bn, plus an element ∆n of B+++

n such that
- Bn is a group of fractions for B+++

n ,
- B+++

n equipped with the (left) divisibility relation is a lattice,
- Divleft(∆n) = Divright(∆n), Div(∆n) generates B+++

n , and #Div(∆n) <∞.

◮ Is the Garside structure on Bn unique? Is there another Garside structure on Bn?

• The dual Garside structure on Bn, based on the Birman–Ko–Lee generators:

for 1 6 i < j 6 n: ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1.

i

j

≈

• Definition (Birman–Ko–Lee 1997): B+∗

n := submonoid of Bn generated by the ai,j s.
∆∗

n := a1,2a2,3 ··· an−1,n (= σ1σ2 ···σn−1).

• Proposition: (B+∗

n ,∆∗
n ) is a Garside structure on Bn.

◮ a new solution of the Word Problem.



Chords

• Chord representation of the Birman–Ko–Lee generators: ai,j 7→

1
2n

i

j

• Lemma: In terms of the BKL generators, Bn is presented by the relations

· = · for disjoint chords,

· = · = ·

for adjacent chords enumerated in clockwise order.

◮ Hence: For P a p-gon, can define aP to
be the product of the ai,j corresponding to p−1
adjacent edges of P in clockwise order;

idem for an union of disjoint polygons.

a2,8a3,5a5,6 ↔

1
2

3

4
5

6

7

8

• Proposition (Digne–Michel 2002): The divisors of ∆∗
n in B+∗

n are the 1
n+1

(2n
n

)
ele-

ments aP for P a non-intersecting union of polygons in an n-punctured circle.
↑

equivalently: a non-crossing partition of {1, ...,n}
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Homeomorphisms

• An n-strand braid diagram = a danse of n points in a disk:

DnDnDnDnDnDnDn

... ◮ an isotopy class of homeomorphisms of Dn leaving ∂Dn fixed
↑

disk with n marked points
↑

boundary of Dn

• Proposition: The group Bn is (isomorphic to) the mapping class group of Dn.



The Artin representation

• Viewing Bn as a group of (isotopy classes of) homeomorphisms of Dn:

◮ action of Bn on the fundamental group of Dn, a free group of rank n.

∗

D3

x1

x2

x3

σ1

∗

D3

x3

x1

x1x2x
−1
1

• From there: a homomorphism ρ from Bn to Aut(Fn):

ρ(σi ) :







xi 7→ xixi+1x
−1
i ,

xi+1 7→ xi ,
xk 7→ xk for k 6= i , i + 1.

• Theorem (Artin): The homomorphism ρ is injective.

◮ a new solution of the Word Problem for Bn (hence of the Braid Isotopy Problem):

a braid word w represents 1 in Bn iff ρ(w)(xk ) = xk holds for k = 1, ...,n.



Dynnikov coordinates

• For x ∈ Z, put x+ = max(0, x), x− = min(x , 0), and

F+(x1, y1, x2, y2) = (x1+y+
1 +(y+

2 −z1)
+, y2−z

+
1 , x2+y−

2 +(y−

1 +z1)−, y1+z+1 ),

F−(x1, y1, x2, y2) = (x1−y
+
1 −(y

+
2 +z2)+, y2+z−2 , x2−y

−

2 −(y
−

1 − z2)−, y1−z
−

2 ),

with z1 = x1−y
−

1 −x2+y+
2 and z2 = x1+y−

1 −x2−y
+
2 .

• Define an action of n-strand braid words on Z
2n by

(a1, b1, ..., an, bn) ∗ σe
i = (a′1, b

′
1, ..., a

′
n, b

′
n)

with a′k = ak and b′k = bk for k 6= i , i+1, and (a′i , b
′
i , a

′
i+1, b

′
i+1) = F e(ai , bi , ai+1, bi+1).

• Definition: The coordinates of an n-strand braid word w are (0, 1, 0, 1, ...,0, 1) ∗ w.

• Theorem (Dynnikov 2000): The coordinates of w only depend on the braid represented
by w, and they characterize the latter.

◮ Hence: a new solution of the Braid Isotopy Problem:
a braid word w represents 1 iff its Dynnikov coordinates are (0, 1, 0, 1, ...,0, 1).

◮ An extremely efficient method: “linear space, quadratic time complexity”



Laminations

• Braid=homeomorphism of Dn ◮ acts on curves drawn in Dn.

→
σ1
→
σ1
→
σ1
→
σ1

→
σ−1
2

→
σ1

→
σ−1
2

→
σ1

→
σ−1
2

• Count intersections with a fixed triangulation:

6
3 3
4
2 2
2
1 1
0

3

0

6
3 3
4
2 2
2
1 1
0

3

0

6
3 3
4
2 2
2
1 1
0

3

0

6
4 2
6
3 3
2
1 1
0

3

0

6
3 3
4
2 2
2
1 1
0

3

0

6
4 2
6
3 3
2
1 1
0

3

0

6
3 3
4
2 2
2
1 1
0

3

0

6
4 2
6
3 3
2
1 1
0

3

0

6
4 2
6
1 5
6
3 3
0

3

0

◮ 3n + 3 numbers, which determine the braid



Updating coordinates

• Fact: The Dynnikov coordinates are the half-differences
between the previous intersection numbers.

(going from 3n + 3 downto 2n)

• Problem: Compute the coordinates of βσ±1
i from those of β and i .

◮ compare the intersections of L and σi (L) with the (fixed) triangulation T

• Main observation:
#(σi (L) ∩ T ) = #(L ∩ σ−1

i (T )).

◮ compare the intersections of L with T and σ−1
i (T ).

• Lemma: If T ,T ′ are any two (singular) triangulations,
one can go from T to T ′ using a finite sequence of flips.

↑

→



Flips

• Hence: One must go from T to σ−1
i (T ) by a finite sequence of flips.

→
σ−1
i

→→→ →→ →→ → →→ → →→ → → →→ → → →

• For one flip, the formula is

x1 x4

x2 x3

x1 x4

x2 x3

x x ′

x + x ′ = max(x1 + x3, x2 + x4)

◮ Dynnikov’s formulas when iterating four times (four flips).
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Relaxation methods

• Here again: n-strand braid = (isotopy class of) homeomorphism of Dn

• Principle: Fix one (or several) base curve C ,

◮ define a relaxation strategy for unbraiding β(C) and coming back to C :

◮ the sequence of σ±1
i used to unbraid β gives a distinguished expression of β−1

(hence a normal form)

◮ requires to define a complexity notion first.

• Exemple (Fenn et al. 1997, Dynnikov–Wiest 2006):
C = main diameter of Dn, strategy = consider the “useful arc”.

→

σ−1
2 σ−1

1

→

σ−1
2 σ−1

1

→

σ2σ
−1
1

→

σ−1
2 σ−1

1

→

σ2σ
−1
1

→

σ−1
2

whence β = σ2σ1σ
−1
2 σ1σ2



Axes of base loops

• Exemple 2 (Bressaud 2005):

◮ here C = axes of standard loops

◮ strategy: relax β(x1), then β(x2),... by diminishing
the number of intersections with half-axes.

→

σ2

→

σ2

→

σ1σ
−1
2

→

σ2

→

σ1σ
−1
2

→

σ1σ2

→

σ2

→

σ1σ
−1
2

→

σ1σ2

→

σ2

→

σ1σ
−1
2

→

σ1σ2

◮ a normal form on Bn (whence a solution to the Braid Isotopy Problem),

◮ together with an algorithm computing NF(wσ±1
i ) from NF(w) and i .

• Remark: The Bressaud normal form has nothing to do with positive braids and B+++
n

(nor with B+∗

n either).



Bressaud’s algorithm

1 2 3 4

σ1 :

σ2 :

σ3 :

σ−1
1 :

σ−1
2 :

σ−1
3 :

σ−1
1 σ−1

2 :

σ2σ3 :

etc. (12 pieces:
6 positive, 6 negative)

1 2 3 4

• Normal form of ε = ε.• Normal form of σ−1
1 = σ−1

1 .• Normal form of σ−1
1 σ−1

2 = σ−1
1 σ−1

2 .• Normal form of σ−1
1 σ−1

2 σ1 = σ2.σ
−1
1 σ−1

2 .• Normal form of σ−1
1 σ−1

2 σ1σ1 = σ2.σ2.σ
−1
1 σ−1

2 .• Normal form of σ−1
1 σ−1

2 σ1σ1σ
−1
3 = σ2.σ2.σ

−1
1 σ−1

2 σ−1
3 .• Normal form of σ−1

1 σ−1
2 σ1σ1σ

−1
3 σ−1

1 = σ2.σ
−1
1 σ−1

2 σ−1
3 .• Normal form of σ−1

1 σ−1
2 σ1σ1σ

−1
3 σ−1

1 σ2 = σ2.σ3.σ
−1
1 σ−1

2 σ−1
3 .• Normal form of σ−1

1 σ−1
2 σ1σ1σ

−1
3 σ−1

1 σ2σ
−1
3 = σ2.σ3.σ3σ2.σ

−1
1 σ−1

2 σ−1
3 .σ−1

1 σ−1
2 σ−1

3 .• Normal form of σ−1
1 σ−1

2 σ1σ1σ
−1
3 σ−1

1 σ2σ
−1
3 σ3 = σ2.σ3.σ

−1
1 σ−1

2 σ−1
3 .
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