

The isotopy problem of braids

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

N-KOOK Seminar, Osaka State University, May 16, 2015

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A$

 OQ

• The braid isotopy problem is a problem of medium difficulty, with many (really) different solutions illustrating various approaches to Artin's braid groups.

- Here: a survey of some solutions:
	- \triangleright one algebraic solution: the greedy normal form
	- ► two topological solutions: Dynnikov's coordinates, Bressaud's relaxation method [and two more: the alternating normal form (yesterday), handle reduction (ILDT)]

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure

- 3. Dynnikov's coordinates
- 4. Bressaud's relaxation algorithm

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure

- 3. Dynnikov's coordinates
- 4. Bressaud's relaxation algorithm

• A 3-strand braid diagram:

$$
\text{Ric} \leftarrow \text{Cic} \leftarrow \text{C
$$

• Isotopy Problem:

Given two *n*-strand braid diagrams, can one deform them to one another?

• More formally: view braid diagrams as projections of 3D-diagrams in $D^2 \times (0,1)$,

and consider ambient isotopy leaving the end-disks fixed.

KEL KAR KELKER E VAN

• Concatenation of braid diagrams:

- ▶ Associative;
- ▶ Compatible with isotopy, hence induces a well-defined product on classes;
- Admits the unbraided diagram $[0]$ as a neutral element;
- Every diagram has an inverse, its mirror-image:

• For every $n \geq 1$: the group B_n of *n*-strand braids.

↑ isotopy class of braid diagrams

- The group structure of B_n makes the Braid Isotopy Problem easier:
	- Reduces to the Braid Triviality Problem: $D' \approx D \Leftrightarrow D^{-1} * D' \approx [0]$.
	- Enables one to use algebraic tools, provided one has a presentation of B_n .
- Artin generators: Every *n*-strand braid diagram is a (finite) concatenation of elementary diagrams with one crossing, hence of the form

σi : 1 . . . i i+1 . . . n or σ −1 i : 1 . . . i i+1 . . . n with 1 6 i < n.

• Theorem (Artin, 1926): The group B_n admits the presentation $f_{\alpha r}$ $|i \quad | \quad \leq \gamma$.

$$
\left\langle \sigma_1, ..., \sigma_{n-1} \left| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i - j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1 \end{array} \right.\right\rangle.
$$

► Proof: Isotopy of piecewise linear diagrams is generated by Δ -moves.

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure

- 3. Dynnikov's coordinates
- 4. Bressaud's relaxation algorithm

 \bullet Braid Isotopy reduced to the Word Problem for B_n with respect to $\{\sigma_1,...,\sigma_{n-1}\}$: given a braid word w, decide whether w represents 1 in B_n . a word in the letters $\sigma_1^{\pm 1},...\sigma_{n-1}^{\pm 1}.$

- (Novikov, 1952) There exists a finitely presented group with an unsolvable Word Problem.
- Here: (Garside) Use the monoid.

 \bullet <u>Theorem</u> (Garside, 1969): Let B_n^+ be the monoid with presentation

$$
\left\langle \sigma_1,...,\sigma_{n-1} \left| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right.\right\rangle^+.
$$

Then B_n^+ embeds in B_n and B_n is a group of fractions for B_n^+ .

every element of B_n can be written $\beta^{-1}\gamma$ with $\beta, \gamma \in B_n^+$

▶ Proof: Show that B_n^+ is cancellative and admits common multiples. $□$

- An effective way of reducing from B_n to B_n^+ :
- <u>Lemma</u> (Garside): *Inductively define* Δ_n *by* $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.

Then, for every (signed) n-strand braid word w, one can find $p \ge 0$ and a positive n-strand braid word w' and satisfying $\Delta_n^p w \equiv w'$.

- Then: $w \equiv \varepsilon$ ↑ the empty word $\Leftrightarrow w' \equiv \Delta_n^p \Leftrightarrow w' \equiv^+ \Delta_n^p$ equivalence generated by braid relations generated by braid relations alone and $\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = 1$ ↑ equivalence
- Now: \equiv^+ is decidable, as it preserves word-length.
- Hence: A (theoretical) solution to the Braid Isotopy Problem: starting from w,
	- ► 1. find p and w' positive satisfying $\Delta_n^p w \equiv w'$;
	- ► 2. test $w' \equiv^+ \Delta^p_n$ by systematically enumerating the \equiv^+ -class of w $'$.
- To improve the previous solution and make it tractable: **define** (efficiently computable) **normal forms on** B_n^+ **.**
- Every *n*-strand braid gives a permutation of $\{1, ..., n\}$: follow the positions of the strands:
	- \blacktriangleright short exact sequence

 $1 \longrightarrow PB_n \longrightarrow B_n \longrightarrow \mathfrak{S}_n \longrightarrow 1.$

- Inductively define a (set-theoretic) section for the projection of B_n onto \mathfrak{S}_n : for $f = (n, f(n)) \circ g$ with $g \in \mathfrak{S}_{n-1}$, put $\sigma_f := \sigma_{f(n)} \cdots \sigma_{n-1} \sigma_g$
	- ightharpoonup a family of n! permutation braids in B_n^+ .

KEL KAR KELKER E VAN

 \bullet Lemma: Permutations braids are the (left- and right-) divisors of Δ_n in B_n^+ . $β$ left-divides $γ$ if $∃γ' (βγ' = γ)$.

↑

 \bullet <u>Theorem</u> (Garside 1969): With respect to (left- and right-) divisibility, B_n^+ is a lattice.

least common multiples and greatest common divisors exist

• Corollary: For every positive n-strand braid β , there exists a unique maximal permutation braid left-dividing β . \uparrow \uparrow namely: the left-gcd of β and Δ_n

 \blacktriangleright A distinguished decomposition:

$$
\beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \dots = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \dots \cdot \sigma_{f_r}.
$$

"a positive braid is a sequence of permutations"

 \bullet <u>Fact</u>: $\sigma_{\!f}$ is a maximal left-divisor of $\sigma_{\!f} \cdot \sigma_{\!g}$ iff every recoil of f is a descent of g. ↑ *i* s.t. $f(i) > f(i+1)$ ↑ i s.t. $g^{-1}(i) > g^{-1}(i+1)$

• Proposition (Adjan, El-Rifai-Morton, Thurston, ... 1980s): Every braid in B_n admits a unique expression $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$ with $p \in \mathbb{Z}$, $f_1 \neq (n, ..., 2, 1)$, $f_r \neq id$, and every recoil of f_{k+1} is a descent of f_k .

- The point here: not only theoretical, but also tractable.
	- ► The greedy normal form can be computed efficiently.
	- ► Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β .
- Recipe:
	- ► Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

- ► The normal form of $\sigma_g \beta$ is $\Delta_n^p \sigma_{f'_1} \cdots \sigma_{f'_p} \sigma_{g_p}$ if $\sigma_{f'_1} \neq \Delta_n$ $\frac{1}{4}$ and $\Delta_n^{p+1} \sigma_{f'_2} \cdots \sigma_{f'_p} \sigma_{g_p}$ otherwise.
- ► And the normal form of $\sigma_g^{-1}\beta$? There exists g' satisfying $\sigma_g \sigma_{g'} = \Delta_n$, hence $\sigma_g^{-1} = \sigma_{g'} \Delta_n^{-1}$, and $\sigma_g^{-1} \beta = \sigma_{g'} \Delta_n^{p-1} \sigma_{f_1} \cdots \sigma_{f_r}$: continue as above.

KEL KAR KELKER E VAN

- This corresponds to an automatic structure for B_n (Thurston, Cannon),
	- ▶ and, more specifically, to a Garside structure (D.–Paris 1997):

a submonoid B_n^+ of B_n , plus an element Δ_n of B_n^+ such that

- $-B_n$ is a group of fractions for B_n^+ ,
- B_n^+ equipped with the (left) divisibility relation is a lattice,
- Div_{left} (Δ_n) = Div_{right} (Δ_n) , Div (Δ_n) generates B_n^+ , and $\#\text{Div}(\Delta_n) < \infty$.
- ► Is the Garside structure on B_n unique? Is there another Garside structure on B_n ?
- The dual Garside structure on B_n , based on the Birman–Ko–Lee generators:

for $1 \leqslant i < j \leqslant n$: $a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}$.

- <u>Definition</u> (Birman–Ko–Lee 1997): B_n^{+*} := submonoid of B_n generated by the $a_{i,j}$ s. $\Delta_n^* := a_{1,2} a_{2,3} \cdots a_{n-1,n} \; (= \sigma_1 \sigma_2 \cdots \sigma_{n-1}).$
- <u>Proposition</u>: (B_n^{+*}, Δ_n^*) is a Garside structure on B_n .
	- ► a new solution of the Word Problem.

• Chord representation of the Birman-Ko-Lee generators:

- 1 $n \sim 2$ i j
- Lemma: In terms of the BKL generators, B_n is presented by the relations

for adjacent chords enumerated in clockwise order.

 $a_{i,i} \mapsto$

Hence: For P a p-gon, can define a_P to be the product of the $a_{i,j}$ corresponding to $p-1$ adjacent edges of P in clockwise order;

idem for an union of disjoint polygons.

• Proposition (Digne–Michel 2002): The divisors of Δ_n^* in B_n^{+*} are the $\frac{1}{n+1} {2n \choose n}$ ele-**EXECUTE THE INTERFERENT CONSUMING THE UNITED FOR A NON-**
ments a_p for P a non-intersecting union of polygons in an n-punctured circle. equivalently: a **non-crossing partition** of $\{1, ..., n\}$

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure

- 3. Dynnikov's coordinates
- 4. Bressaud's relaxation algorithm

KEL KAR KELKER E VAN

• An *n*-strand braid diagram $=$ a danse of *n* points in a disk:

• Proposition: The group B_n is (isomorphic to) the mapping class group of D_n .

KEL KAR KELKER E VAN

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
	- ightharpoonup action of B_n on the fundamental group of D_n , a free group of rank n.

• From there: a homomorphism ρ from B_n to $Aut(F_n)$:

$$
\rho(\sigma_i): \left\{ \begin{array}{l} x_i \quad \mapsto \ x_i x_{i+1} x_i^{-1}, \\ x_{i+1} \mapsto \ x_i, \\ x_k \quad \mapsto \ x_k \quad \text{for } k \neq i, i+1. \end{array} \right.
$$

• Theorem (Artin): The homomorphism ρ is injective.

a new solution of the Word Problem for B_n (hence of the Braid Isotopy Problem): a braid word w represents 1 in B_n iff $\rho(w)(x_k) = x_k$ holds for $k = 1, ..., n$.

• For
$$
x \in \mathbb{Z}
$$
, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and
\n
$$
F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1)^+, y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1)^-, y_1 + z_1^+),
$$
\n
$$
F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2)^+, y_2 + z_2^-, x_2 - y_2^- - (y_1^- - z_2)^-, y_1 - z_2^-),
$$
\nwith $z_1 = x_1 - y_1^- - x_2 + y_2^+$ and $z_2 = x_1 + y_1^- - x_2 - y_2^+$.

• Define an action of *n*-strand braid words on \mathbb{Z}^{2n} by $(a_1, b_1, ..., a_n, b_n) * \sigma_i^e = (a'_1, b'_1, ..., a'_n, b'_n)$ with $a'_k = a_k$ and $b'_k = b_k$ for $k \neq i, i+1$, and $(a'_i, b'_i, a'_{i+1}, b'_{i+1}) = F^e(a_i, b_i, a_{i+1}, b_{i+1})$.

• Definition: The coordinates of an n-strand braid word w are $(0, 1, 0, 1, \ldots, 0, 1) * w$.

• Theorem (Dynnikov 2000): The coordinates of w only depend on the braid represented by w, and they characterize the latter.

- ▶ Hence: a new solution of the Braid Isotopy Problem: a braid word w represents 1 iff its Dynnikov coordinates are $(0, 1, 0, 1, ..., 0, 1)$.
- ▶ An extremely efficient method: "linear space, quadratic time complexity"

• Braid=homeomorphism of D_n \triangleright acts on curves drawn in D_n .

• Count intersections with a fixed triangulation:

 \triangleright 3n + 3 numbers, which determine the braid

• Fact: The Dynnikov coordinates are the half-differences between the previous intersection numbers.

(going from $3n + 3$ downto $2n$)

- <u>Problem</u>: Compute the coordinates of $\beta \sigma_i^{\pm 1}$ from those of β and *i*.
	- \blacktriangleright compare the intersections of L and $\sigma_i(L)$ with the (fixed) triangulation T
- Main observation:

$$
\#(\sigma_i(L) \cap T) = \#(L \cap \sigma_i^{-1}(T)).
$$

► compare the intersections of L with T and $\sigma_i^{-1}(T)$.

• Lemma: If T , T' are any two (singular) triangulations, one can go from T to T' using a finite sequence of flips.

 $\mathcal{L} \qquad \mathcal{L} \qquad \mathcal{$

 OQ

(ロ) (日) (모) (모) (모) 및 990

• Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.

• For one flip, the formula is

▶ Dynnikov's formulas when iterating four times (four flips).

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure

- 3. Dynnikov's coordinates
- 4. Bressaud's relaxation algorithm
- Here again: *n*-strand braid = (isotopy class of) homeomorphism of D_n
- Principle: Fix one (or several) base curve C,
	- \blacktriangleright define a relaxation strategy for unbraiding $\beta(C)$ and coming back to C:
	- ► the sequence of $\sigma_i^{\pm 1}$ used to unbraid β gives a distinguished expression of β^{-1}

(hence a normal form)

- \blacktriangleright requires to define a complexity notion first.
- Exemple (Fenn et al. 1997, Dynnikov–Wiest 2006): $C =$ main diameter of D_n , strategy = consider the "useful arc".

- Exemple 2 (Bressaud 2005):
	- \blacktriangleright here $C =$ axes of standard loops
	- ► strategy: relax $\beta(x_1)$, then $\beta(x_2)$,... by diminishing

the number of intersections with half-axes.

- **a normal form on** B_n (whence a solution to the Braid Isotopy Problem),
- \blacktriangleright together with an algorithm computing NF($w\sigma_i^{\pm 1})$ from NF(w) and i.
- \bullet <u>Remark</u>: The Bressaud normal form has nothing to do with positive braids and B_n^+ (nor with B_n^{+*} either).

• Normal form of $\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \sigma_2 \sigma_3^{-1} \sigma_3 = \sigma_2 \cdot \sigma_3 \cdot \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1}$.

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

On the Garside approach:

• D. Epstein, with J. Cannon, D. Holt, S. Levy, M. Paterson & W. Thurston, Word Processing in Groups **The Community of the Community** of the *Leonord Community* Jones & Bartlett Publ. (1992).

• P. Dehornoy, with F. Digne, D. Krammer, J. Michel, Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 22, Europ. Math. Soc. (2015)

On the Dynnikov coordinates:

• P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

On relaxation methods:

- R. Fenn, M.T. Greene, D. Rolfsen, C. Rourke, B. Wiest, Ordering the braid groups, Pacific J. of Math. 191 (1999) 49-74.
-
- X. Bressaud, A normal form for braids, J. Knot Th. Ramifications 17-6 (2008) 697-732.

www.math.unicaen.fr/∼dehornoy

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$