

The isotopy problem of braids

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

N-KOOK Seminar, Osaka State University, May 16, 2015

• The braid isotopy problem is a problem of medium difficulty, with many (really) different solutions illustrating various approaches to Artin's braid groups.

- Here: a survey of some solutions:
 - ▶ one algebraic solution: the greedy normal form
 - two topological solutions: Dynnikov's coordinates, Bressaud's relaxation method [and two more: the alternating normal form (yesterday), handle reduction (ILDT)]

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure

- 3. Dynnikov's coordinates
- 4. Bressaud's relaxation algorithm

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure

- 3. Dynnikov's coordinates
- 4. Bressaud's relaxation algorithm

• A 3-strand braid diagram:

• Isotopy Problem:

Given two *n*-strand braid diagrams, can one deform them to one another?

• More formally: view braid diagrams as projections of 3D-diagrams in $D^2 \times (0,1)$,

and consider ambient isotopy leaving the end-disks fixed.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Concatenation of braid diagrams:

- Associative;
- ▶ Compatible with isotopy, hence induces a well-defined product on classes;
- Admits the unbraided diagram $[\emptyset]$ as a neutral element;
- Every diagram has an inverse, its mirror-image:

• For every $n \ge 1$: the group B_n of *n*-strand braids.

isotopy class of braid diagrams

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- The group structure of B_n makes the Braid Isotopy Problem easier:
 - ▶ Reduces to the Braid Triviality Problem: $D' \approx D \iff D^{-1}*D' \approx [\emptyset]$.
 - Enables one to use algebraic tools, provided one has a presentation of B_n .
- Artin generators: Every *n*-strand braid diagram is a (finite) concatenation of elementary diagrams with one crossing, hence of the form

$$\sigma_{i}: \underbrace{\frac{\vdots}{\sum_{i=1}^{n}}_{i}^{n}}_{1} \quad \text{or} \quad \sigma_{i}^{-1}: \underbrace{\frac{\vdots}{\sum_{i=1}^{n}}_{i}^{n}}_{1} \quad \text{with } 1 \leq i < n.$$

• <u>Theorem</u> (Artin, 1926): The group B_n admits the presentation $\left\langle \sigma_1, ..., \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2\\ \sigma_i \sigma_i \sigma_i \sigma_i = \sigma_i \sigma_i \sigma_i & \text{for } |i-j| = 1 \end{array} \right\rangle.$

▶ Proof: Isotopy of piecewise linear diagrams is generated by Δ -moves.

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure

- 3. Dynnikov's coordinates
- 4. Bressaud's relaxation algorithm

• Braid Isotopy reduced to the Word Problem for B_n with respect to $\{\sigma_1, ..., \sigma_{n-1}\}$: given a braid word w, decide whether w represents 1 in B_n . \uparrow a word in the letters $\sigma_1^{\pm 1}, ..., \sigma_{n-1}^{\pm 1}$.

• (Novikov, 1952) There exists a finitely presented group with an unsolvable Word Problem.

• Here: (Garside) Use the monoid.

• <u>Theorem</u> (Garside, 1969): Let B_n^+ be the monoid with presentation

$$\Big\langle \sigma_1,...,\sigma_{n-1} \Big| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \Big\rangle^+.$$

Then B_n^+ embeds in B_n and B_n is a group of fractions for B_n^+ .

every element of B_n can be written $\beta^{-1}\gamma$ with $\beta, \gamma \in B_n^+$

▶ Proof: Show that B_n^+ is cancellative and admits common multiples.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- An effective way of reducing from B_n to B_n^+ :
- Lemma (Garside): Inductively define Δ_n by $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.

Then, for every (signed) n-strand braid word w, one can find $p \ge 0$ and a positive n-strand braid word w' and satisfying $\Delta_n^p w \equiv w'$.

- Then: $w \equiv \varepsilon \iff w' \equiv \Delta_n^{\rho} \iff w' \equiv^+ \Delta_n^{\rho}$ the empty word equivalence equivalence generated by braid relations generated by braid relations alone and $\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = 1$
- Now: \equiv^+ is decidable, as it preserves word-length.
- Hence: A (theoretical) solution to the Braid Isotopy Problem: starting from w,
 - ▶ 1. find *p* and *w*' positive satisfying $\Delta_n^p w \equiv w'$;
 - ▶ 2. test $w' \equiv^+ \Delta_n^p$ by systematically enumerating the \equiv^+ -class of w'.

- To improve the previous solution and make it tractable: define (efficiently computable) normal forms on B⁺_n.
- Every *n*-strand braid gives a permutation of $\{1, ..., n\}$: follow the positions of the strands:
 - short exact sequence

 $1 \longrightarrow PB_n \longrightarrow B_n \longrightarrow \mathfrak{S}_n \longrightarrow 1.$

- Inductively define a (set-theoretic) section for the projection of B_n onto \mathfrak{S}_n : for $f = (n, f(n)) \circ g$ with $g \in \mathfrak{S}_{n-1}$, put $\sigma_f := \sigma_{f(n)} \cdots \sigma_{n-1} \sigma_g$
 - ▶ a family of n! permutation braids in B_n^+ .

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Lemma: Permutations braids are the (left- and right-) divisors of Δ_n in B_n^+ . β left-divides γ if $\exists \gamma' \ (\beta \gamma' = \gamma)$. • <u>Theorem</u> (Garside 1969): With respect to (left- and right-) divisibility, B_n^+ is a lattice.

least common multiples and greatest common divisors exist

 <u>Corollary</u>: For every positive n-strand braid β, there exists a <u>unique maximal permutation braid left-dividing β</u>.
 namely: the left-gcd of β and Δ_n

► A distinguished decomposition:

$$\beta = \sigma_{\mathbf{f}_1} \cdot \beta' = \sigma_{\mathbf{f}_1} \cdot \sigma_{\mathbf{f}_2} \cdot \beta'' = \cdots = \sigma_{\mathbf{f}_1} \cdot \sigma_{\mathbf{f}_2} \cdot \cdots \cdot \sigma_{\mathbf{f}_r}.$$

"a positive braid is a sequence of permutations"

• <u>Fact</u>: σ_{f} is a maximal left-divisor of $\sigma_{f} \cdot \sigma_{g}$ iff every recoil of f is a descent of g. \uparrow i s.t. f(i) > f(i+1) i s.t. $g^{-1}(i) > g^{-1}(i+1)$

• <u>Proposition</u> (Adjan, El-Rifai–Morton, Thurston, ... 1980s): Every braid in B_n admits a unique expression $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$ with $p \in \mathbb{Z}$, $f_1 \neq (n, ..., 2, 1)$, $f_r \neq id$, and every recoil of f_{k+1} is a descent of f_k .

- The point here: not only theoretical, but also tractable.
 - The greedy normal form can be computed efficiently.
 - ▶ Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β .
- Recipe:
 - ▶ Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

- ► The normal form of $\sigma_g \beta$ is $\Delta_n^p \sigma_{f'_1} \cdots \sigma_{f'_p} \sigma_{g_p}$ if $\sigma_{f'_1} \neq \Delta_n$, and $\Delta_n^{p+1} \sigma_{f'_2} \cdots \sigma_{f'_p} \sigma_{g_p}$ otherwise.
- ► And the normal form of $\sigma_{g}^{-1}\beta$? There exists g' satisfying $\sigma_{g}\sigma_{g'} = \Delta_n$, hence $\sigma_{g}^{-1} = \sigma_{g'}\Delta_n^{-1}$, and $\sigma_{g}^{-1}\beta = \sigma_{g'}\Delta_n^{p-1}\sigma_{f_1}\cdots\sigma_{f_r}$: continue as above.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- This corresponds to an automatic structure for B_n (Thurston, Cannon),
 - ▶ and, more specifically, to a Garside structure (D.-Paris 1997):

a submonoid B_n^+ of B_n , plus an element Δ_n of B_n^+ such that

- B_n is a group of fractions for B_n^+ ,
- B_n^+ equipped with the (left) divisibility relation is a lattice,
- $\operatorname{Div}_{\operatorname{left}}(\Delta_n) = \operatorname{Div}_{\operatorname{right}}(\Delta_n)$, $\operatorname{Div}(\Delta_n)$ generates B_n^+ , and $\#\operatorname{Div}(\Delta_n) < \infty$.
- ▶ Is the Garside structure on B_n unique? Is there another Garside structure on B_n ?

• The dual Garside structure on B_n , based on the Birman–Ko–Lee generators:

for $1 \leq i < j \leq n$: $\mathbf{a}_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}$.

• <u>Definition</u> (Birman–Ko–Lee 1997): $B_n^{+*} :=$ submonoid of B_n generated by the $a_{i,js}$. $\Delta_n^* := a_{1,2}a_{2,3} \cdots a_{n-1,n} (= \sigma_1 \sigma_2 \cdots \sigma_{n-1}).$

- <u>Proposition</u>: (B_n^{+*}, Δ_n^*) is a Garside structure on B_n .
 - ▶ a new solution of the Word Problem.

- Chord representation of the Birman–Ko–Lee generators:
- $a_{i,j} \mapsto$

• Lemma: In terms of the BKL generators, B_n is presented by the relations

for adjacent chords enumerated in clockwise order.

► Hence: For *P* a *p*-gon, can define a_P to be the product of the $a_{i,j}$ corresponding to p-1 adjacent edges of *P* in clockwise order;

idem for an union of disjoint polygons.

• <u>Proposition</u> (Digne-Michel 2002): The divisors of Δ_n^* in B_n^{+*} are the $\frac{1}{n+1}\binom{2n}{n}$ elements ap for P a non-intersecting union of polygons in an n-punctured circle. \uparrow equivalently: a non-crossing partition of $\{1, ..., n\}$

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure

- 3. Dynnikov's coordinates
- 4. Bressaud's relaxation algorithm

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• An *n*-strand braid diagram = a danse of *n* points in a disk:

• <u>Proposition</u>: The group B_n is (isomorphic to) the mapping class group of D_n .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - ▶ action of B_n on the fundamental group of D_n , a free group of rank n.

• From there: a homomorphism ρ from B_n to Aut(F_n):

$$\rho(\sigma_i) : \begin{cases} x_i \mapsto x_i x_{i+1} x_i^{-1}, \\ x_{i+1} \mapsto x_i, \\ x_k \mapsto x_k \text{ for } k \neq i, i+1. \end{cases}$$

• <u>Theorem</u> (Artin): The homomorphism ρ is injective.

▶ a new solution of the Word Problem for B_n (hence of the Braid Isotopy Problem): a braid word w represents 1 in B_n iff $\rho(w)(x_k) = x_k$ holds for k = 1, ..., n.

• For
$$x \in \mathbb{Z}$$
, put $\mathbf{x}^+ = \max(0, x)$, $\mathbf{x}^- = \min(x, 0)$, and
 $\mathbf{F}^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1)^+, y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1)^-, y_1 + z_1^+)$,
 $\mathbf{F}^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2)^+, y_2 + z_2^-, x_2 - y_2^- - (y_1^- - z_2)^-, y_1 - z_2^-)$,
with $\mathbf{z}_1 = x_1 - y_1^- - x_2 + y_2^+$ and $\mathbf{z}_2 = x_1 + y_1^- - x_2 - y_2^+$

• Define an action of *n*-strand braid words on \mathbb{Z}^{2n} by $(a_1, b_1, ..., a_n, b_n) * \sigma_i^e = (a'_1, b'_1, ..., a'_n, b'_n)$ with $a'_k = a_k$ and $b'_k = b_k$ for $k \neq i, i+1$, and $(a'_i, b'_i, a'_{i+1}, b'_{i+1}) = F^e(a_i, b_i, a_{i+1}, b_{i+1})$.

• <u>Definition</u>: The coordinates of an n-strand braid word w are (0, 1, 0, 1, ..., 0, 1) * w.

• <u>Theorem</u> (Dynnikov 2000): The coordinates of w only depend on the braid represented by w, and they characterize the latter.

- Hence: a new solution of the Braid Isotopy Problem: a braid word w represents 1 iff its Dynnikov coordinates are (0, 1, 0, 1, ..., 0, 1).
- ► An extremely efficient method: "linear space, quadratic time complexity"

• Braid=homeomorphism of $D_n \triangleright$ acts on curves drawn in D_n .

• Count intersections with a fixed triangulation:

▶ 3n + 3 numbers, which determine the braid

• Fact: The Dynnikov coordinates are the half-differences between the previous intersection numbers.

(going from 3n + 3 downto 2n)

- <u>Problem</u>: Compute the coordinates of $\beta \sigma_i^{\pm 1}$ from those of β and *i*.
 - ▶ compare the intersections of L and $\sigma_i(L)$ with the (fixed) triangulation T
- Main observation:

$$\#(\sigma_i(L)\cap T)=\#(L\cap\sigma_i^{-1}(T)).$$

▶ compare the intersections of *L* with *T* and $\sigma_i^{-1}(T)$.

• Lemma: If T, T' are any two (singular) triangulations, one can go from T to T' using a finite sequence of flips.

• Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.

• For one flip, the formula is

▶ Dynnikov's formulas when iterating four times (four flips).

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure

- 3. Dynnikov's coordinates
- 4. Bressaud's relaxation algorithm

- Here again: *n*-strand braid = (isotopy class of) homeomorphism of D_n
- <u>Principle</u>: Fix one (or several) base curve C,
 - ▶ define a relaxation strategy for unbraiding $\beta(C)$ and coming back to C:
 - ▶ the sequence of $\sigma_i^{\pm 1}$ used to unbraid β gives a distinguished expression of β^{-1}

(hence a normal form)

- requires to define a complexity notion first.
- Exemple (Fenn et al. 1997, Dynnikov–Wiest 2006):
 C = main diameter of D_n, strategy = consider the "useful arc".

- Exemple 2 (Bressaud 2005):
 - here C = axes of standard loops
 - ▶ strategy: relax $\beta(x_1)$, then $\beta(x_2)$,... by diminishing

the number of intersections with half-axes.

- ▶ a normal form on B_n (whence a solution to the Braid Isotopy Problem),
- ▶ together with an algorithm computing NF($w\sigma_i^{\pm 1}$) from NF(w) and *i*.
- <u>Remark</u>: The Bressaud normal form has nothing to do with positive braids and B_n^+ (nor with B_n^{+*} either).

• Normal form of $\sigma_1^{-1}\sigma_2^{-1}\sigma_1\sigma_1\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_3^{-1}\sigma_3 = \sigma_2 \cdot \sigma_3 \cdot \sigma_1^{-1}\sigma_2^{-1}\sigma_3^{-1}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

On the Garside approach:

• <u>D. Epstein</u>, with <u>J. Cannon</u>, <u>D. Holt</u>, <u>S. Levy</u>, <u>M. Paterson</u> & <u>W. Thurston</u>, Word Processing in Groups Jones & Bartlett Publ. (1992).

• <u>P. Dehornoy</u>, with <u>F. Digne</u>, <u>D. Krammer</u>, <u>J. Michel</u>, Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 22, Europ. Math. Soc. (2015)

On the Dynnikov coordinates:

 <u>P. Dehornoy</u>, with <u>I. Dynnikov</u>, <u>D. Rolfsen</u>, <u>B. Wiest</u>, Ordering braids, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

On relaxation methods:

- <u>R. Fenn</u>, <u>M.T. Greene</u>, <u>D. Rolfsen</u>, <u>C. Rourke</u>, <u>B. Wiest</u>, *Ordering the braid groups*, Pacific J. of Math. 191 (1999) 49-74.
- X. Bressaud, A normal form for braids,
- J. Knot Th. Ramifications 17-6 (2008) 697-732.

www.math.unicaen.fr/~dehornoy