K ロ → K 伊 → K ミ → K ミ → ニ Ξ → K Q Q →

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

 OQ

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

K ロ > K @ > K 경 > K 경 > 시 경

 OQ

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

K ロ > K @ > K 경 > K 경 > 시 경

 OQ

• A group *B*• that extends both Artin's braid group *B*[∞] and Thompson's group *F*,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

 $\mathbf{E} = \mathbf{A} \in \mathbf{E} \times \mathbf{A} \in \mathbf{E} \times \mathbf{A} \times \mathbf{E} \times \mathbf{A$

 OQ

• A group *B*• that extends both Artin's braid group *B*[∞] and Thompson's group *F*, occurring in various contexts:

► "geometry group of an algebraic law",

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

 $\mathbf{E} = \mathbf{A} \in \mathbb{R} \times \mathbf{A} \in \mathbb{R} \times \mathbb{R$

 OQ

• A group *B*• that extends both Artin's braid group *B*[∞] and Thompson's group *F*, occurring in various contexts:

- \blacktriangleright "geometry group of an algebraic law",
- \triangleright subgroup of M. Brin's braided Thompson group BV ,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

• A group *B*• that extends both Artin's braid group *B*[∞] and Thompson's group *F*, occurring in various contexts:

- \blacktriangleright "geometry group of an algebraic law",
- ► subgroup of M. Brin's braided Thompson group BV,
- ▶ quotient of a group of Greenberg–Sergiescu and Funar–Kapoudjian, ...

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen. France

Topology Seminar, Tokyo University, May 7, 2015

• A group *B*• that extends both Artin's braid group *B*[∞] and Thompson's group *F*, occurring in various contexts:

- \blacktriangleright "geometry group of an algebraic law",
- ► subgroup of M. Brin's braided Thompson group BV,
- ▶ quotient of a group of Greenberg–Sergiescu and Funar–Kapoudjian, ...
- Here: insist on similarity with *B*[∞] (use of self-distributivity)

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen. France

Topology Seminar, Tokyo University, May 7, 2015

• A group *B*• that extends both Artin's braid group *B*[∞] and Thompson's group *F*, occurring in various contexts:

- \blacktriangleright "geometry group of an algebraic law",
- ► subgroup of M. Brin's braided Thompson group BV,
- ▶ quotient of a group of Greenberg–Sergiescu and Funar–Kapoudjian, ...
- Here: insist on similarity with *B*[∞] (use of self-distributivity)

and connection with homeomorphisms of $S^2\backslash$ Cantor.

 $\mathcal{A} \hspace{0.2cm}\Box \hspace{0.2cm} \mathbb{P} \hspace{0.2cm} \mathcal{A} \hspace{0.2cm} \overline{\boxtimes} \hspace{0.2cm} \mathbb{P} \hspace{0.2cm$

• 1. Artin's braid group *B*[∞]

K ロ > K 레 > K 로 > K 로 > 트로 - 9 Q @

• 1. Artin's braid group *B*[∞]

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

• 2. Thompson's group *F*

- 1. Artin's braid group *B*[∞]
- 2. Thompson's group *F*
- 3. The parenthesized braid group *B*•

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- 1. Artin's braid group *B*[∞]
- 2. Thompson's group *F*
- 3. The parenthesized braid group *B*•

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

• 4. The Artin representation of *B*•

- 1. Artin's braid group *B*[∞]
- 2. Thompson's group *F*
- 3. The parenthesized braid group *B*•

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• 4. The Artin representation of *B*•

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

• Definition (Artin): For $n \geq 1$, the braid group B_n

• Definition (Artin): For $n \geq 1$, the braid group B_n $= \{$ *n*-strand braid diagrams $\}$ / isotopy

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- Definition (Artin): For $n \geq 1$, the braid group B_n
	- $= \{$ *n*-strand braid diagrams $\}$ / isotopy

 $= \pi_1$ (configuration space of *n* points of C mod. action of S_n)

(ロ) (日) (모) (모) (모) 및 990

- Definition (Artin): For $n \geq 1$, the braid group B_n
	- $= \{$ *n*-strand braid diagrams $\}$ / isotopy
	- $= \pi_1$ (configuration space of *n* points of $\mathbb C$ mod. action of S_n)
	- $= \mathcal{MCG}(D_n)$

(ロ) (日) (모) (모) (모) 및 990

- Definition (Artin): For $n \geq 1$, the braid group B_n
	- $= \{$ *n*-strand braid diagrams $\}$ / isotopy
	- $= \pi_1$ (configuration space of *n* points of $\mathbb C$ mod. action of S_n)

$$
= \mathcal{MCG}(D_n)
$$

$$
= \left\langle \sigma_1, ..., \sigma_{n-1} \mid \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle.
$$

(ロ) (日) (모) (모) (모) 및 990

- Definition (Artin): For $n \geq 1$, the braid group B_n
	- $= \{$ *n*-strand braid diagrams $\}$ / isotopy
	- $= \pi_1$ (configuration space of *n* points of $\mathbb C$ mod. action of S_n)

$$
= \mathcal{MCG}(D_n)
$$

$$
= \left\langle \sigma_1, ..., \sigma_{n-1} \mid \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle.
$$

$$
\sigma_i := \bigg\{ \begin{array}{c} \cdots \\ 1 \end{array} \bigg| \begin{array}{c} \cdots \\ \vdots \\ i \end{array} \bigg| \begin{array}{c} \sum_{i=1}^n \bigg| \begin{array}{c} \cdots \\ \vdots \\ n \end{array} \bigg| \end{array}
$$

- Definition (Artin): For $n \geq 1$, the braid group B_n
	- $= \{$ *n*-strand braid diagrams $\}$ / isotopy
	- $= \pi_1$ (configuration space of *n* points of $\mathbb C$ mod. action of S_n)

$$
= \mathcal{MCG}(D_n)
$$

↑ {homeomorphisms of an *n*-punctured disk that fix ∂*Dn*}/isotopy

$$
= \left\langle \sigma_1, ..., \sigma_{n-1} \mid \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle.
$$

$$
\sigma_i := \bigg\{ \begin{array}{c} \cdots \\ 1 \end{array} \bigg| \begin{array}{c} \cdots \\ \vdots \\ i \end{array} \bigg| \begin{array}{c} \sum_{i=1}^n \bigg| \begin{array}{c} \cdots \\ \vdots \\ n \end{array} \bigg| \end{array}
$$

K ロ > K 레 > K 코 > K 코 > 「코」 ◆ 9.4.0*

KEL KAR KELKER E VAN

- Definition (Artin): For $n \geq 1$, the braid group B_n
	- $= \{$ *n*-strand braid diagrams $\}$ / isotopy
	- $= \pi_1$ (configuration space of *n* points of $\mathbb C$ mod. action of S_n)

$$
= \mathcal{MCG}_{\wedge}(D_n)
$$

$$
= \left\langle \sigma_1, ..., \sigma_{n-1} \mid \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle.
$$

• Embedding B_n into B_{n+1} : add a trivial $(n+1)$ st strand

(ロ) (图) (ミ) (ミ) = Ξ | 9 Q (V

• Embedding B_n into B_{n+1} : add a trivial $(n+1)$ st strand

• Then $B_{\infty} := \varinjlim B_n$

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

• Embedding B_n into B_{n+1} : add a trivial $(n+1)$ st strand

• Then
$$
B_{\infty} := \varinjlim B_n = \langle \sigma_1, \sigma_2, \dots \mid \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i - j| \ge 2 \rangle
$$
.

(ロ) (日) (모) (모) (모) 모 | ⊙Q (◇

• Embedding B_n into B_{n+1} : add a trivial $(n+1)$ st strand

• Then
$$
B_{\infty} := \varinjlim B_n = \langle \sigma_1, \sigma_2, \dots \mid \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i - j| \ge 2 \rangle
$$
.

• Equivalently: Identify B_n with a subgroup of B_{n+1} , and put

$$
B_{\infty}=\bigcup_n B_n.
$$

• Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ | 코 | 2000

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n ,

K ロ > K 레 > K 코 > K 코 > 「코」 ◆ 9.4.0*

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

K ロ > K 레 > K 코 > K 코 > 「코」 ◆ 9.4.0*

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

イロト イ部 トイモト イモトー

 \equiv 990

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

(ロ) (個) (差) (差) …

 \equiv 990

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

(ロ) (個) (差) (差) …

 \equiv 990

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

\equiv

 OQ

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

 \equiv

 OQ

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

 \equiv

 OQ

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

 \equiv \curvearrowleft \curvearrowright

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

(ロ) (日) (모) (모) (모) 및 990

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

• From there: homomorphism ρ from B_n to $Aut(F_n)$:

 $\mathbf{E} = \mathbf{A} \in \mathbf{E} \times \mathbf{A} \in \mathbf{E} \times \mathbf{A} \times \mathbf{E} \times \mathbf{A$

 OQ

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

• From there: homomorphism ρ from B_n to $Aut(F_n)$:

$$
\rho(\sigma_i): \left\{ \begin{array}{l} x_i \quad \mapsto \quad x_i x_{i+1} x_i^{-1}, \\ x_{i+1} \mapsto \quad x_i, \\ x_k \quad \mapsto \quad x_k \quad \text{for } k \neq i, i+1. \end{array} \right.
$$

- Viewing *Bⁿ* as a group of (isotopy classes of) homeomorphisms of *Dn*:
	- \triangleright action of B_n on the fundamental group of D_n , a free group of rank *n*.

• From there: homomorphism ρ from B_n to $Aut(F_n)$:

$$
\rho(\sigma_i): \left\{ \begin{array}{l} x_i \quad \mapsto \ x_i x_{i+1} x_i^{-1}, \\ x_{i+1} \mapsto \ x_i, \\ x_k \quad \mapsto \ x_k \quad \text{for } k \neq i, i+1. \end{array} \right.
$$

• Theorem (Artin): *The homomorphism* ρ *is injective.*

Plan:

- 1. Artin's braid group *B*[∞]
- 2. Thompson's group *F*
- 3. The parenthesized braid group *B*•

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• 4. The Artin representation of *B*•

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

• Definition (Richard Thompson, 1965):

$$
F := \langle a_0, a_1, \dots | a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle. \tag{*}
$$

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

• Definition (Richard Thompson, 1965):

$$
F := \langle a_0, a_1, \dots | a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle. \tag{*}
$$

▶ occurs in the construction of a f.p. group with unsolvable word problem

• Definition (Richard Thompson, 1965):

$$
F := \langle a_0, a_1, \dots | a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle. \tag{*}
$$

▶ occurs in the construction of a f.p. group with unsolvable word problem

 \bullet <u>Fact</u>: The group F is a group of right fractions for the monoid $\frac{F^+}{\phi}$.

the monoid presented by $(*)$

(ロ) (日) (모) (모) (모) 모 | ⊙Q (◇

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

• Definition (Richard Thompson, 1965):

$$
F := \langle a_0, a_1, \dots | a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle. \tag{*}
$$

 \triangleright occurs in the construction of a f.p. group with unsolvable word problem

- \bullet <u>Fact</u>: The group F is a group of right fractions for the monoid $\frac{F^+}{\phi}$. the monoid presented by $(*)$
- Fact: *Every element of F has a unique expression of the form*

 $a_0^{p_0} a_1^{p_1} \cdots a_n^{p_n} a_n^{-q_n} \cdots a_1^{-q_1} a_0^{-q_0}$

such that $((p_k \neq 0 \text{ and } q_k \neq 0)$ *implies* $(p_{k+1} \neq 0)$ *or* $(q_{k+1} \neq 0)$ *).*

• Definition (Richard Thompson, 1965):

$$
F := \langle a_0, a_1, \dots | a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle. \tag{*}
$$

 \triangleright occurs in the construction of a f.p. group with unsolvable word problem

- \bullet <u>Fact</u>: The group F is a group of right fractions for the monoid $\frac{F^+}{\phi}$. the monoid presented by $(*)$
- Fact: *Every element of F has a unique expression of the form*

 $a_0^{p_0} a_1^{p_1} \cdots a_n^{p_n} a_n^{-q_n} \cdots a_1^{-q_1} a_0^{-q_0}$

such that $((p_k \neq 0 \text{ and } q_k \neq 0)$ *implies* $(p_{k+1} \neq 0)$ *or* $(q_{k+1} \neq 0)$ *).*

• Fact: *The group F is finitely presented:*

KEL KALIKEN KEL GRA

• Definition (Richard Thompson, 1965):

$$
F := \langle a_0, a_1, \dots | a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle. \tag{*}
$$

 \triangleright occurs in the construction of a f.p. group with unsolvable word problem

- \bullet <u>Fact</u>: The group F is a group of right fractions for the monoid $\frac{F^+}{\phi}$. the monoid presented by $(*)$
- Fact: *Every element of F has a unique expression of the form*

 $a_0^{p_0} a_1^{p_1} \cdots a_n^{p_n} a_n^{-q_n} \cdots a_1^{-q_1} a_0^{-q_0}$

such that $((p_k \neq 0 \text{ and } q_k \neq 0)$ *implies* $(p_{k+1} \neq 0)$ *or* $(q_{k+1} \neq 0)$ *).*

- Fact: *The group F is finitely presented:*
	- generated by a_0 and a_1 , since $a_n = a_1^{a_0^n}$ for $n \geq 2$;

• Definition (Richard Thompson, 1965):

$$
F := \langle a_0, a_1, \dots | a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle. \tag{*}
$$

 \triangleright occurs in the construction of a f.p. group with unsolvable word problem

- \bullet <u>Fact</u>: The group F is a group of right fractions for the monoid $\frac{F^+}{\phi}$. the monoid presented by $(*)$
- Fact: *Every element of F has a unique expression of the form*

 $a_0^{p_0} a_1^{p_1} \cdots a_n^{p_n} a_n^{-q_n} \cdots a_1^{-q_1} a_0^{-q_0}$ *such that* $((p_k \neq 0 \text{ and } q_k \neq 0)$ *implies* $(p_{k+1} \neq 0)$ *or* $(q_{k+1} \neq 0)$ *).*

- Fact: *The group F is finitely presented:*
	- generated by a_0 and a_1 , since $a_n = a_1^{a_0^n}$ for $n \geq 2$;
	- relations: " $a_2^{a_1} = a_3$ " and " $a_3^{a_1} = a_4$ ", that is, $a_1^{a_0a_1} = a_1^{a_0^2}$ and $a_1^{a_0^2a_1} = a_1^{a_0^3}$.

• *F* ≃ { piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

イロト イ母 トイミト イミト ニヨー りんぐ

(ロ) (日) (모) (모) (모) 모 | ⊙Q (◇

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

• An element of $F = a$ pair of dyadic decompositions of $[0, 1]$:

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

• An element of $F = a$ pair of dyadic decompositions of $[0, 1]$:

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

• An element of $F = a$ pair of dyadic decompositions of $[0, 1]$:

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

• An element of $F = a$ pair of dyadic decompositions of $[0, 1]$:

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2*^k* }.

• An element of $F = a$ pair of dyadic decompositions of $[0, 1]$:

• Fact: *The center of F is trivial.*

 \triangleright Point: every homeomorphism commuting with x_1 fixes $1/2$.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ | 코 | 2000

- Fact: *The center of F is trivial.*
	- \triangleright Point: every homeomorphism commuting with x_1 fixes $1/2$.
- Fact: *Commutators in F correspond to homeomorphisms with slope* 1 *near* 0 *and* 1*.*

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- Fact: *The center of F is trivial.*
	- \triangleright Point: every homeomorphism commuting with x_1 fixes $1/2$.
- Fact: *Commutators in F correspond to homeomorphisms with slope* 1 *near* 0 *and* 1*.* ► Hence $F/[F, F] \simeq \mathbb{Z} \oplus \mathbb{Z}$.

- Fact: *The center of F is trivial.*
	- \triangleright Point: every homeomorphism commuting with x_1 fixes $1/2$.
- Fact: *Commutators in F correspond to homeomorphisms with slope* 1 *near* 0 *and* 1*.* \blacktriangleright Hence $F/[F, F] \simeq \mathbb{Z} \oplus \mathbb{Z}$.
- Proposition: *Every proper quotient of F is abelian.*
	- ▶ Point: Every normal subgroup contains all commutators.

• Fact: *The center of F is trivial.*

 \triangleright Point: every homeomorphism commuting with x_1 fixes $1/2$.

- Fact: *Commutators in F correspond to homeomorphisms with slope* 1 *near* 0 *and* 1*.* \blacktriangleright Hence $F/[F, F] \simeq \mathbb{Z} \oplus \mathbb{Z}$.
- Proposition: *Every proper quotient of F is abelian.*

▶ Point: Every normal subgroup contains all commutators.

• Theorem: *The subgroup* [*F*, *F*] *is simple.*

▶ Point: A normal subgroup of $[F, F]$ contains all commutators.

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

• Fact: *The center of F is trivial.*

 \triangleright Point: every homeomorphism commuting with x_1 fixes $1/2$.

- Fact: *Commutators in F correspond to homeomorphisms with slope* 1 *near* 0 *and* 1*.* \blacktriangleright Hence $F/[F, F] \simeq \mathbb{Z} \oplus \mathbb{Z}$.
- Proposition: *Every proper quotient of F is abelian.*

▶ Point: Every normal subgroup contains all commutators.

- Theorem: *The subgroup* [*F*, *F*] *is simple.* ▶ Point: A normal subgroup of $[F, F]$ contains all commutators.
- Theorem (Brin–Squier, 1985): *The group F includes no free subgroup of rank* ≥ 2 .
• Fact: *The center of F is trivial.*

 \triangleright Point: every homeomorphism commuting with x_1 fixes $1/2$.

- Fact: *Commutators in F correspond to homeomorphisms with slope* 1 *near* 0 *and* 1*.* \blacktriangleright Hence $F/[F, F] \simeq \mathbb{Z} \oplus \mathbb{Z}$.
- Proposition: *Every proper quotient of F is abelian.*

▶ Point: Every normal subgroup contains all commutators.

- Theorem: *The subgroup* [*F*, *F*] *is simple.* ▶ Point: A normal subgroup of $[F, F]$ contains all commutators.
- Theorem (Brin–Squier, 1985): *The group F includes no free subgroup of rank* ≥ 2 .
	- ► In fact: Every non-abelian subgroup of *F* includes a copy of \mathbb{Z}^{∞} .

• Fact: *The center of F is trivial.*

 \triangleright Point: every homeomorphism commuting with x_1 fixes $1/2$.

- Fact: *Commutators in F correspond to homeomorphisms with slope* 1 *near* 0 *and* 1*.* \blacktriangleright Hence $F/[F, F] \simeq \mathbb{Z} \oplus \mathbb{Z}$.
- Proposition: *Every proper quotient of F is abelian.*

▶ Point: Every normal subgroup contains all commutators.

• Theorem: *The subgroup* [*F*, *F*] *is simple.*

▶ Point: A normal subgroup of $[F, F]$ contains all commutators.

- Theorem (Brin–Squier, 1985): *The group F includes no free subgroup of rank* ≥ 2 .
	- ► In fact: Every non-abelian subgroup of *F* includes a copy of \mathbb{Z}^{∞} .
	- \blacktriangleright Compare with: F^+ includes a free monoid of rank 2.

• Question 1 (Gersten): Is *F* automatic? (*F* is not word hyperbolic)

 \exists finite state automaton computing a normal form for the elements

(ロ) (日) (모) (모) (모) 모 | ⊙Q (◇

- Question 1 (Gersten): Is *F* automatic? (*F* is not word hyperbolic) \exists finite state automaton computing a normal form for the elements
- Theorem (Guba 2005): *The Dehn function of F is quadratic.* $\Phi(n) := \sup \{ \text{area}(w) \mid \text{length}(w) = n \text{ and } w \text{ represents } 1 \text{ in } F \}$

- Question 1 (Gersten): Is *F* automatic? (*F* is not word hyperbolic) \exists finite state automaton computing a normal form for the elements
- Theorem (Guba 2005): *The Dehn function of F is quadratic.* $\Phi(n) := \sup \{ \text{area}(w) \mid \text{length}(w) = n \text{ and } w \text{ represents } 1 \text{ in } F \}$
- Question 2 (Geoghegan): Is *F* amenable? \exists left-invariant $[0,1]$ -measure on $\mathfrak{P}(F)$

- Question 1 (Gersten): Is *F* automatic? (*F* is not word hyperbolic) \exists finite state automaton computing a normal form for the elements
- Theorem (Guba 2005): *The Dehn function of F is quadratic.* $\Phi(n) := \sup \{ \text{area}(w) \mid \text{length}(w) = n \text{ and } w \text{ represents } 1 \text{ in } F \}$
- Question 2 (Geoghegan): Is *F* amenable? \exists left-invariant $[0,1]$ -measure on $\mathfrak{P}(F)$
- \bullet Q<u>uestion 3</u>: What is the growth rate of F^+ and F w.r.t. $\{a_0^{\pm 1}, a_1^{\pm 1}\}$? ↑ [√]*ⁿ ^an*, with *^an*:= #{elements with length *ⁿ* expression}

- Question 1 (Gersten): Is *F* automatic? (*F* is not word hyperbolic) \exists finite state automaton computing a normal form for the elements
- Theorem (Guba 2005): *The Dehn function of F is quadratic.* $\Phi(n) := \sup \{ \text{area}(w) \mid \text{length}(w) = n \text{ and } w \text{ represents } 1 \text{ in } F \}$
- Question 2 (Geoghegan): Is *F* amenable? \exists left-invariant $[0,1]$ -measure on $\mathfrak{P}(F)$
- \bullet Q<u>uestion 3</u>: What is the growth rate of F^+ and F w.r.t. $\{a_0^{\pm 1}, a_1^{\pm 1}\}$? ↑ [√]*ⁿ ^an*, with *^an*:= #{elements with length *ⁿ* expression}
- <u>Theorem</u>: (*i*) (Burillo) *The growth rate of F⁺ is* $\frac{1}{2\sin(\pi/14)} \approx 2.24...$
- Question 1 (Gersten): Is *F* automatic? (*F* is not word hyperbolic) \exists finite state automaton computing a normal form for the elements
- Theorem (Guba 2005): *The Dehn function of F is quadratic.* $\Phi(n) := \sup \{ \text{area}(w) \mid \text{length}(w) = n \text{ and } w \text{ represents } 1 \text{ in } F \}$
- Question 2 (Geoghegan): Is *F* amenable? \exists left-invariant $[0,1]$ -measure on $\mathfrak{P}(F)$
- \bullet Q<u>uestion 3</u>: What is the growth rate of F^+ and F w.r.t. $\{a_0^{\pm 1}, a_1^{\pm 1}\}$? ↑ [√]*ⁿ ^an*, with *^an*:= #{elements with length *ⁿ* expression}
- <u>Theorem</u>: (*i*) (Burillo) *The growth rate of F⁺ is* $\frac{1}{2\sin(\pi/14)} \approx 2.24...$ - (*ii*) (Guba) *The growth rate of F lies between* $\frac{3+\sqrt{5}}{2} \approx 2.618...$ *and* 3*.*

Plan:

- 1. Artin's braid group *B*[∞]
- 2. Thompson's group *F*
- 3. The parenthesized braid group *B*•

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• 4. The Artin representation of *B*•

• Ordinary braid diagrams:

以1

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

• Ordinary braid diagrams:

(ロ) (日) (日) (日) (日) (日)

• Ordinary braid diagrams:

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

• Ordinary braid diagrams:

(ロ) (日) (모) (모) (모) 및 990

• Ordinary braid diagrams:

(ロ) (日) (모) (모) (모) 및 990

• Ordinary braid diagrams:

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

• Ordinary braid diagrams:

• Parenthesized braid diagrams: (possibly) non-equidistant positions:

← initial positions: \bullet

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

• Ordinary braid diagrams:

- ← initial positions: \bullet
- \leftarrow final positions:

• Ordinary braid diagrams:

KEL KAR KELKER E VAN

• Ordinary braid diagrams:

• Ordinary braid diagrams:

(ロ) (日) (모) (모) (모) 및 990

• More precisely:

K ロ > K 레 > K 코 > K 코 > 「코」 ◆ 9,40*

イロト イ部 トイモト イモトー \equiv 990

(ロ) (個) (差) (差) … \equiv 990

K ロ > K 레 > K 코 > K 코 > 「코」 ◆ 9,40*

K ロ > K 레 > K 코 > K 코 > 「코」 ◆ 9,40*

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

(ロ) (日) (모) (모) (모) 및 990

(ロ) (個) (差) (差) …

 \equiv 990

(ロ) (個) (差) (差) …

 \equiv 990

イロト イ母 ト イミト イミト ニヨー りんぐ

• A typical parenthesized braid diagram:

• Connection with binary trees: positions correspond to nodes in a binary tree;

 $\mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{F} \quad \mathcal{F}$

 \equiv \curvearrowleft a \curvearrowright

- Connection with binary trees: positions correspond to nodes in a binary tree;
	- \blacktriangleright Enumerated starting from the root and descending the right branch.

KEL KAR KELKER E VAN

- Connection with binary trees: positions correspond to nodes in a binary tree;
	- ► Enumerated starting from the root and descending the right branch.

KEL KAR KELKER E VAN

- Connection with binary trees: positions correspond to nodes in a binary tree;
	- \blacktriangleright Enumerated starting from the root and descending the right branch.

*a*1 σ_1^{-1} a_2^{-1} 2

- Connection with binary trees: positions correspond to nodes in a binary tree;
	- \blacktriangleright Enumerated starting from the root and descending the right branch.

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 \equiv

 OQ

*a*1 σ_1^{-1} a_2^{-1}

- Connection with binary trees: positions correspond to nodes in a binary tree;
	- \blacktriangleright Enumerated starting from the root and descending the right branch.

... ... corresponds to 7→ *^tⁱ*

 σ_i = switching subtrees

 $\mathbf{E} = \mathbf{A} \in \mathbf{E} \times \mathbf{A} \in \mathbf{E} \times \mathbf{A} \times \mathbf{E} \times \mathbf{A$

 OQ

• Connection with binary trees: positions correspond to nodes in a binary tree;

 \blacktriangleright Enumerated starting from the root and descending the right branch.

*a*1 σ_1^{-1} a_2^{-1} 2

 σ_i = switching subtrees

• Connection with binary trees: positions correspond to nodes in a binary tree;

 \blacktriangleright Enumerated starting from the root and descending the right branch.

*a*1 σ_1^{-1} a_2^{-1} 2

KEL KAR KELKER E VAN

 σ_i = switching subtrees

 σ_1^{-1} a_2^{-1} 2

*a*1

- Connection with binary trees: positions correspond to nodes in a binary tree;
	- ► Enumerated starting from the root and descending the right branch.

 a_2^{-1} 2 • Connection with binary trees: positions correspond to nodes in a binary tree;

*a*1 σ_1^{-1}

 \blacktriangleright Enumerated starting from the root and descending the right branch.

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

• For ordinary braid diagrams, only one completion:

• For parenthesized braid diagrams, several completions:

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

• For ordinary braid diagrams, only one completion:

- For parenthesized braid diagrams, several completions:
	- \blacktriangleright index positions by sequences of integers

(or, equivalently, infinitesimals)

corresponding to

• For parenthesized braid diagrams, several completions:

 \blacktriangleright index positions by sequences of integers

(or, equivalently, *infinitesimals*)

corresponding to

• For parenthesized braid diagrams, several completions:

 \blacktriangleright index positions by sequences of integers

(or, equivalently, infinitesimals)

corresponding to

• For parenthesized braid diagrams, several completions:

 \blacktriangleright index positions by sequences of integers

(or, equivalently, infinitesimals)

corresponding to

• For parenthesized braid diagrams, several completions:

 \blacktriangleright index positions by sequences of integers

(or, equivalently, infinitesimals)

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

KEL KALIKEN KEL GRA

KEL KALIKEN KEL GRA

KEL KALIKEN KEL GRA

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} = \{$ parenthesized braid diagrams $\}$ /isotopy.

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} := \{$ parenthesized braid diagrams $\}/$ isotopy.

 \blacktriangleright Two isotopy classes D, D' can be composed when

the final positions of *D* coincide with the initial positions of *D*′ .

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} := \{$ parenthesized braid diagrams $\}/$ isotopy.

 \blacktriangleright Two isotopy classes D, D' can be composed when

the final positions of *D* coincide with the initial positions of *D*′ .

• To make a group:

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} = \{$ parenthesized braid diagrams $\}/i$ sotopy.

 \blacktriangleright Two isotopy classes D, D' can be composed when

the final positions of *D* coincide with the initial positions of *D*′ .

- To make a group:
	- ▶ Going from $\coprod B_n$ (groupoid) to B_{∞} : embed B_n into $B_{n'}$ for $n \leq n'$.

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} = \{$ parenthesized braid diagrams $\}/i$ sotopy.

 \blacktriangleright Two isotopy classes *D*, *D'* can be composed when

the final positions of *D* coincide with the initial positions of *D*′ .

- To make a group:
	- ▶ Going from $\coprod B_n$ (groupoid) to B_{∞} : embed B_n into $B_{n'}$ for $n \leq n'$.
	- ► Going from $\coprod \frac{B_t}{\lambda}$ (groupoid) to a group: embed B_t into $B_{t'}$ for $t \subseteq t'.$

the family of (isotopy classes) of diagrams with initial positions t (a binary tree)

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} = \{$ parenthesized braid diagrams $\}/i$ sotopy.

 \blacktriangleright Two isotopy classes *D*, *D'* can be composed when

the final positions of *D* coincide with the initial positions of *D*′ .

- To make a group:
	- ▶ Going from $\coprod B_n$ (groupoid) to B_{∞} : embed B_n into $B_{n'}$ for $n \leq n'$.
	- ► Going from $\coprod \frac{B_t}{\lambda}$ (groupoid) to a group: embed B_t into $B_{t'}$ for $t \subseteq t'.$

the family of (isotopy classes) of diagrams with initial positions t (a binary tree)

• Definition: The group B_{\bullet} of parenthesized braids is lim { parenthesized braid diagrams }/isotopy. • Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is for* $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_j$

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is for* $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_j$

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is for* $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, • Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is for* $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

for $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$, $\sigma_j \sigma_j \mathbf{a}_i = \mathbf{a}_j \sigma_i$,

(ロ) (日) (모) (모) (모) 및 990

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

for $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j, \quad \sigma_i\sigma_j$ a $_i=a_j\sigma_i, \quad \sigma_j\sigma_i$ a $_j=a_i\sigma_i \quad \text{ for } j=i+1.$

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

for $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j, \quad \sigma_i\sigma_j$ a $_i=a_j\sigma_i, \quad \sigma_j\sigma_i$ a $_j=a_i\sigma_i \quad \text{ for } j=i+1.$

 \blacktriangleright commutation relations:

丫人∝丫丫 σ*i* σ*^j* = σ*^j* σ*i*

(ロ) (日) (모) (모) (모) 및 990

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

for $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j, \quad \sigma_i\sigma_j$ a $_i=a_j\sigma_i, \quad \sigma_j\sigma_i$ a $_j=a_i\sigma_i \quad \text{ for } j=i+1.$

 \blacktriangleright commutation relations:

$$
\bigwedge \bigvee\nolimits_{\sigma_i \sigma_j = \sigma_j \sigma_i} \gtrsim \bigvee \bigwedge \bigwedge \bigvee \bigvee_{\sigma_i \mathsf{a}_j = \mathsf{a}_j \sigma_i} \gtrsim \bigvee \bigwedge
$$

.
K □ ▶ K □ ▶ K □ ▶ K □ ▶ X □ ▶ │ □ │ ◆ 9 Q (2)

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

for $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j, \quad \sigma_i\sigma_j$ a $_i=a_j\sigma_i, \quad \sigma_j\sigma_i$ a $_j=a_i\sigma_i \quad \text{ for } j=i+1.$

 \blacktriangleright commutation relations:

$$
\bigwedge \bigvee_{\sigma_i \sigma_j = \sigma_j \sigma_i} \bigvee_{\sigma_i} \bigwedge \bigwedge \bigwedge \bigvee_{\sigma_i \sigma_j = \mathsf{a}_j \sigma_i} \bigvee \bigvee_{\mathsf{for} \ j \geqslant \ i+2}
$$

(ロ) (日) (모) (모) (모) 및 990

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

for $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j, \quad \sigma_i\sigma_j$ a $_i=a_j\sigma_i, \quad \sigma_j\sigma_i$ a $_j=a_i\sigma_i \quad \text{ for } j=i+1.$

 \triangleright commutation relations:

 $a_i \sigma_{j-1} = \sigma_j a_j$

$$
\sum_{\sigma_j \sigma_j = \sigma_j \sigma_i} \sum_{\sigma_j \sigma_j = \sigma_j \sigma_i} \sum_{\text{semi-commutation relations ("Thompson" relations):}} \sum_{\sigma_j a_j = a_j \sigma_j} \left\{\sum_{\sigma_j a_j = a_j \sigma_j} \sigma_j \right\}
$$
 for $j \geqslant i+2$
• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

for $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j, \quad \sigma_i\sigma_j$ a $_i=a_j\sigma_i, \quad \sigma_j\sigma_i$ a $_j=a_i\sigma_i \quad \text{ for } j=i+1.$

 \blacktriangleright commutation relations:

≈ σ*i* σ*^j* = σ*^j* σ*i* ≈ σ*i a^j* = *aj*σ*ⁱ* for *j* > *i* + 2 ◮ semi-commutation relations ("Thompson" relations): ≈ *^ai*σ*j*−¹ ⁼ ^σ*^j ai* ≈ *aⁱ aj*−¹ = *a^j aⁱ* for *j* > *i* + 2

(ロ) (日) (모) (모) (모) 및 990

 OQ

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

for $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j, \quad \sigma_i\sigma_j$ a $_i=a_j\sigma_i, \quad \sigma_j\sigma_i$ a $_j=a_i\sigma_i \quad \text{ for } j=i+1.$

Example 1.2

\nFrom, the equation of the equation of the equation:

\n
$$
\sum_{\sigma_i \sigma_j = \sigma_j \sigma_i} \sum_{\sigma_j \sigma_j = \sigma_j \sigma_i} \sum_{\sigma_i \sigma_j = 1} \sum_{\sigma_j \sigma_i} \sum_{\sigma_i \sigma_{j-1} = \sigma_j \sigma_i} \sum_{\sigma_i \sigma_{j-1} = a_j a_i} \sum_{\sigma_i \sigma_{j-1} = a_j a_i} \sum_{\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}} \sum_{\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}}
$$

 OQ

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

for $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j, \quad \sigma_i\sigma_j$ a $_i=a_j\sigma_i, \quad \sigma_j\sigma_i$ a $_j=a_i\sigma_i \quad \text{ for } j=i+1.$

≈ σ*i* σ*^j* = σ*^j* σ*i* ≈ σ*i a^j* = *aj*σ*ⁱ* for *j* > *i* + 2 ◮ semi-commutation relations ("Thompson" relations): ≈ *^ai*σ*j*−¹ ⁼ ^σ*^j ai* ≈ *aⁱ aj*−¹ = *a^j aⁱ* for *j* > *i* + 2 ◮ braid relations: ≈ σ*i* σ*i*+1σ*ⁱ* = σ*i*+1σ*ⁱ* σ*i*+1 ≈ σ*i* σ*i*+1*aⁱ* = *ai*+1σ*ⁱ*

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

for $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j, \quad \sigma_i\sigma_j$ a $_i=a_j\sigma_i, \quad \sigma_j\sigma_i$ a $_j=a_i\sigma_i \quad \text{ for } j=i+1.$

Example 1. The image shows a linear combination of equations:

\n
$$
\sum_{\sigma_i \sigma_j = \sigma_j \sigma_i} \sum_{\sigma_j \sigma_i} \sum_{\sigma_j \sigma_j = a_j \sigma_i} \sum_{\sigma_i \sigma_j = a_j \sigma_i} \sum_{\sigma_i \sigma_{j-1} = \sigma_j a_i} \sum_{\sigma_i \sigma_{j-1} = a_j a_i} \sum_{\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}} \sum_{\sigma_i \sigma_{i+1} a_i = a_{i+1} \sigma_i} \sum_{\sigma_i \sigma_{i+1} \sigma_i = a_{i+1} \sigma_i} \sum_{\sigma_i \sigma_{i+1} \sigma_i = a_i \sigma_i} \sum_{\sigma_i \sigma_i = a_i \sigma_i} \sum_{\sigma_i
$$

• Proposition: *A presentation of B*• *in terms of the generators aⁱ and* σ*ⁱ is*

for $x = \sigma$ *or a*: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \geq i + 2$, $\sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j, \quad \sigma_i\sigma_j$ a $_i=a_j\sigma_i, \quad \sigma_j\sigma_i$ a $_j=a_i\sigma_i \quad \text{ for } j=i+1.$

Example 1. The image shows a linear combination of equations:

\n
$$
\sum_{\sigma_i \sigma_j = \sigma_j \sigma_i} \sum_{\sigma_j \sigma_i} \sum_{\sigma_j \sigma_j = a_j \sigma_i} \sum_{\sigma_i \sigma_j = a_j \sigma_i} \sum_{\sigma_i \sigma_{j-1} = \sigma_j a_i} \sum_{\sigma_i \sigma_{j-1} = a_j a_i} \sum_{\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}} \sum_{\sigma_i \sigma_{i+1} a_i = a_{i+1} \sigma_i} \sum_{\sigma_i \sigma_{i+1} \sigma_i = a_{i+1} \sigma_i} \sum_{\sigma_i \sigma_{i+1} \sigma_i = a_i \sigma_i} \sum_{\sigma_i \sigma_i = a_i \sigma_i} \sum_{\sigma_i
$$

- Proof (beginning):
	- ▶ The relations (...) hold in *B* (obvious);

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- Proof (beginning):
	- ▶ The relations (...) hold in *B* (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by $(...);$

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

- Proof (beginning):
	- ▶ The relations (...) hold in *B* (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$;

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

- Proof (beginning):
	- ▶ The relations (...) hold in *B* (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

- Proof (beginning):
	- ▶ The relations (...) hold in *B* (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
		- $-B_{\circ}^{+} :=$ the monoid presented by $(...).$

- Proof (beginning):
	- \blacktriangleright The relations (...) hold in B_{\bullet} (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
		- $-B_{\circ}^{+} :=$ the monoid presented by $(...).$
- \bullet <u>Fact</u>: The group B_{\circ} is generated by $\sigma_{1}, \sigma_{2}, a_{1}, a_{2}$.

KEL KAR KELKER E VAN

- Proof (beginning):
	- \blacktriangleright The relations (...) hold in B_{\bullet} (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
		- $-B_{\circ}^{+} :=$ the monoid presented by $(...).$
- \bullet <u>Fact</u>: The group B_{\circ} is generated by $\sigma_{1}, \sigma_{2}, a_{1}, a_{2}$.

Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

- Proof (beginning):
	- \blacktriangleright The relations (...) hold in B_{\bullet} (obvious);
	- \blacktriangleright For the other direction, introduce
		- B_{\circ} := the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
		- $-B_{\circ}^{+} :=$ the monoid presented by $(...).$
- \bullet <u>Fact</u>: The group B_{\circ} is generated by $\sigma_{1}, \sigma_{2}, a_{1}, a_{2}$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• Main lemma: *The monoid B*⁺ ◦ *is cancellative and admits least common multiples and greatest common divisors.*

- Proof (beginning):
	- \blacktriangleright The relations (...) hold in B_{\bullet} (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
		- $-B_{\circ}^{+} :=$ the monoid presented by $(...).$
- \bullet <u>Fact</u>: The group B_{\circ} is generated by $\sigma_{1}, \sigma_{2}, a_{1}, a_{2}$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• Main lemma: *The monoid B*⁺ ◦ *is cancellative and admits least common multiples* and greatest common divisors. It is a *Zappa-Szep* product of B_{∞}^{+} and F^{+} .

- Proof (beginning):
	- \blacktriangleright The relations (...) hold in B_{\bullet} (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
		- $-B_{\circ}^{+} :=$ the monoid presented by $(...).$
- \bullet <u>Fact</u>: The group B_{\circ} is generated by $\sigma_{1}, \sigma_{2}, a_{1}, a_{2}$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• Main lemma: *The monoid B*⁺ ◦ *is cancellative and admits least common multiples and greatest common divisors. It is a Zappa-Szep product of* B_{∞}^+ *and* F^+ *.*

↑

 $B_{\infty}^{+} \times F^{+}$ with **two** actions:

- Proof (beginning):
	- \blacktriangleright The relations (...) hold in B_{\bullet} (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
		- $-B_{\circ}^{+} :=$ the monoid presented by $(...).$
- \bullet <u>Fact</u>: The group B_{\circ} is generated by $\sigma_{1}, \sigma_{2}, a_{1}, a_{2}$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• Main lemma: *The monoid B*⁺ ◦ *is cancellative and admits least common multiples and greatest common divisors. It is a Zappa-Szep product of* B_{∞}^+ *and* F^+ *.*

 $B_{\infty}^{+} \times F^{+}$ with two actions: $a_i \cdot \beta = \mathsf{db}_i(\beta) \cdot a_{\beta^{-1}(i)}$

- Proof (beginning):
	- \blacktriangleright The relations (...) hold in B_{\bullet} (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
		- $-B_{\circ}^{+} :=$ the monoid presented by $(...).$
- \bullet <u>Fact</u>: The group B_{\circ} is generated by $\sigma_{1}, \sigma_{2}, a_{1}, a_{2}$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• Main lemma: *The monoid B*⁺ ◦ *is cancellative and admits least common multiples* and greatest common divisors. It is a *Zappa-Szep* product of B_{∞}^{+} and F^{+} .

 $B_{\infty}^{+} \times F^{+}$ with two actions: $a_i \cdot \beta = \mathsf{db}_i(\beta) \cdot a_{\beta^{-1}(i)}$ F^+ acts on B^+_{∞} by doubling strands, B^+_{∞} acts on F^+ by permuting positions.

- Proof (beginning):
	- \blacktriangleright The relations (...) hold in B_{\bullet} (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
		- $-B_{\circ}^{+} :=$ the monoid presented by $(...).$
- \bullet <u>Fact</u>: The group B_{\circ} is generated by $\sigma_{1}, \sigma_{2}, a_{1}, a_{2}$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• Main lemma: *The monoid B*⁺ ◦ *is cancellative and admits least common multiples* and greatest common divisors. It is a *Zappa-Szep* product of B_{∞}^{+} and F^{+} .

 $B_{\infty}^{+} \times F^{+}$ with two actions: $a_i \cdot \beta = \mathsf{db}_i(\beta) \cdot a_{\beta^{-1}(i)}$ F^+ acts on B^+_{∞} by doubling strands, B^+_{∞} acts on F^+ by permuting positions.

 \bullet <u>Proposition</u>: The group B_{\circ} *is a group of fractions for the monoid* B_{\circ}^{+} *,*

- Proof (beginning):
	- \blacktriangleright The relations (...) hold in B_{\bullet} (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
		- $-B_{\circ}^{+} :=$ the monoid presented by $(...).$
- \bullet <u>Fact</u>: The group B_{\circ} is generated by $\sigma_1, \sigma_2,$ $a_1, a_2.$, σ ₂ Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• Main lemma: *The monoid B*⁺ ◦ *is cancellative and admits least common multiples* and greatest common divisors. It is a *Zappa-Szep* product of B_{∞}^{+} and F^{+} .

 $B_{\infty}^{+} \times F^{+}$ with two actions: $a_i \cdot \beta = \mathsf{db}_i(\beta) \cdot a_{\beta^{-1}(i)}$ F^+ acts on B^+_{∞} by doubling strands, B^+_{∞} acts on F^+ by permuting positions.

• Proposition: *The group B*◦ *is a group of fractions for the monoid B*⁺ ◦ *, and one has* $B_{\circ} = (F^+)^{-1} \cdot B_{\infty} \cdot F^+$.

- Proof (beginning):
	- \blacktriangleright The relations (...) hold in B_{\bullet} (obvious);
	- \blacktriangleright For the other direction, introduce
		- $B_{\circ} :=$ the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
		- $-B_{\circ}^{+} :=$ the monoid presented by $(...).$
- \bullet <u>Fact</u>: The group B_{\circ} is generated by $\sigma_1, \sigma_2,$ $a_1, a_2.$, σ ₂ Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• Main lemma: *The monoid B*⁺ ◦ *is cancellative and admits least common multiples and greatest common divisors. It is a Zappa-Szep product of* B_{∞}^+ *and* F^+ *.*

 $B_{\infty}^{+} \times F^{+}$ with two actions: $a_i \cdot \beta = \mathsf{db}_i(\beta) \cdot a_{\beta^{-1}(i)}$ F^+ acts on B^+_{∞} by doubling strands, B^+_{∞} acts on F^+ by permuting positions.

• Proposition: *The group B*◦ *is a group of fractions for the monoid B*⁺ ◦ *, and one has* $B_{\circ} = (F^+)^{-1} \cdot B_{\infty} \cdot F^+$.

▶ Every parenthesized braid diagram can be isotoped to a diagram "dilatation $+$ braid $+$ contraction".

K ロ > K 레 > K 로 > K 로 > 트로 - 9 Q @

 \bullet <u>Proposition</u>: Let $\mathsf{sh} : \sigma_{\mathsf{i}} \mapsto \sigma_{\mathsf{i+1}}$ and $\mathsf{a}_{\mathsf{i}} \mapsto \mathsf{a}_{\mathsf{i+1}}$ for every $\mathsf{i}.$

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

 \bullet <u>Proposition</u>: Let sh : $\sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i . For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$

 \bullet <u>Proposition</u>: Let sh : $\sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i . For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$ $g \circ h := g \cdot sh(h) \cdot a_1$.

 \bullet <u>Proposition</u>: Let sh : $\sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i . For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$ $g \circ h := g \cdot sh(h) \cdot a_1$.

 \bullet <u>Proposition</u>: Let sh : $\sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i . For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$ $g \circ h := g \cdot sh(h) \cdot a_1$.

$$
\begin{cases} x * (y * z) = (x * y) * (x * z): \text{ self-distributivity, "LD"} \\ \end{cases}
$$

 \bullet <u>Proposition</u>: Let sh : $\sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i . For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$ $g \circ h := g \cdot sh(h) \cdot a_1$.

$$
\begin{cases}\n x * (y * z) = (x * y) * (x * z): \text{ self-distributivity, "LD"} \\
x * (y * z) = (x \circ y) * z \\
x * (y \circ z) = (x * y) \circ (x * z)\n\end{cases}
$$

 \bullet <u>Proposition</u>: Let sh : $\sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i . For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$ $g \circ h := g \cdot sh(h) \cdot a_1$.

$$
\begin{cases}\n x * (y * z) = (x * y) * (x * z): \text{ self-distributivity, "LD"} \\
x * (y * z) = (x \circ y) * z \\
x * (y \circ z) = (x * y) \circ (x * z)\n\end{cases}
$$

K ロ > K 레 > K 코 > K 코 > 「코」 ◆ 9.4.0*

 \bullet <u>Proposition</u>: Let sh : $\sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i . For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$ $g \circ h := g \cdot sh(h) \cdot a_1$.

Then (B _○, $*$, ○) *is an augmented LD-system.*

$$
\begin{cases}\n x * (y * z) = (x * y) * (x * z): \text{ self-distributivity, "LD"} \\
x * (y * z) = (x \circ y) * z \\
x * (y \circ z) = (x * y) \circ (x * z)\n\end{cases}
$$

 \bullet <u>Proposition</u>: Let sh : $\sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i . For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$ $g \circ h := g \cdot sh(h) \cdot a_1$.

Then (B _○, $*$, ○) *is an augmented LD-system.*

$$
\begin{cases}\n x * (y * z) = (x * y) * (x * z): \text{ self-distributivity, "LD"} \\
x * (y * z) = (x \circ y) * z \\
x * (y \circ z) = (x * y) \circ (x * z)\n\end{cases}
$$

 \bullet <u>Proposition</u>: Let sh : $\sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i . For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$ $g \circ h := g \cdot sh(h) \cdot a_1$.

Then (B _○, $*$, ○) *is an augmented LD-system.*

$$
\begin{cases}\n x * (y * z) = (x * y) * (x * z): \text{ self-distributivity, "LD"} \\
x * (y * z) = (x \circ y) * z \\
x * (y \circ z) = (x * y) \circ (x * z)\n\end{cases}
$$

 $\mathbf{E} = \mathbf{A} \in \mathbb{R} \times \mathbf{A} \in \mathbb{R} \times \mathbb{R$ OQ • Recall: want to prove *B*◦ ≃ *B*•, i.e., *B*• presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})

- Recall: want to prove *B* ≃ *B*•, i.e., *B* presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
	- ▶ Need to show that, for *w* a parenthesized braid word, the isotopy class of the diagram $D(w)$ determines the class $[w]$ of w in B_{\circ} .

- Recall: want to prove *B* ≃ *B*•, i.e., *B* presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
	- ▶ Need to show that, for *w* a parenthesized braid word, the isotopy class of the diagram $D(w)$ determines the class $[w]$ of w in B_{\circ} .
- Proof (sketch):
	- ◮ Use diagram colorings: Having fixed a set *S* with a binary operation ∗,

- Recall: want to prove *B* ≃ *B*•, i.e., *B* presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
	- ▶ Need to show that, for *w* a parenthesized braid word, the isotopy class of the diagram $D(w)$ determines the class $[w]$ of w in B_{\circ} .
- Proof (sketch):
	- ◮ Use diagram colorings: Having fixed a set *S* with a binary operation ∗,
		- put colors from *S* on the top ends of a (parenthesized) braid diagram,

- Recall: want to prove *B* ≃ *B*•, i.e., *B* presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
	- ▶ Need to show that, for *w* a parenthesized braid word, the isotopy class of the diagram $D(w)$ determines the class $[w]$ of w in B_{\circ} .
- Proof (sketch):
	- ◮ Use diagram colorings: Having fixed a set *S* with a binary operation ∗,
		- put colors from *S* on the top ends of a (parenthesized) braid diagram,

- propagate using the rule

$4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- Recall: want to prove *B* ≃ *B*•, i.e., *B* presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
	- ▶ Need to show that, for *w* a parenthesized braid word, the isotopy class of the diagram $D(w)$ determines the class $[w]$ of w in B_{\circ} .
- Proof (sketch):
	- ◮ Use diagram colorings: Having fixed a set *S* with a binary operation ∗,
		- put colors from *S* on the top ends of a (parenthesized) braid diagram,

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- Recall: want to prove *B* ≃ *B*•, i.e., *B* presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
	- ▶ Need to show that, for *w* a parenthesized braid word, the isotopy class of the diagram $D(w)$ determines the class $[w]$ of w in B_{\circ} .
- Proof (sketch):
	- ◮ Use diagram colorings: Having fixed a set *S* with a binary operation ∗,
		- put colors from *S* on the top ends of a (parenthesized) braid diagram,

- Recall: want to prove *B* ≃ *B*•, i.e., *B* presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
	- ▶ Need to show that, for *w* a parenthesized braid word, the isotopy class of the diagram $D(w)$ determines the class $[w]$ of w in B_{\circ} .
- Proof (sketch):
	- ◮ Use diagram colorings: Having fixed a set *S* with a binary operation ∗,
		- put colors from *S* on the top ends of a (parenthesized) braid diagram,

- propagate using the rule

- works (compatible with Reidemeister move) when ∗ obeys the LD law.

- Recall: want to prove *B* ≃ *B*•, i.e., *B* presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
	- ▶ Need to show that, for *w* a parenthesized braid word, the isotopy class of the diagram $D(w)$ determines the class $[w]$ of w in B_{\circ} .
- Proof (sketch):
	- ◮ Use diagram colorings: Having fixed a set *S* with a binary operation ∗,
		- put colors from *S* on the top ends of a (parenthesized) braid diagram,

- works (compatible with Reidemeister move) when ∗ obeys the LD law.
- ► Here: use B_0 and its LD-operation $*$ for coloring diagrams

- Recall: want to prove *B* ≃ *B*•, i.e., *B* presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
	- ▶ Need to show that, for *w* a parenthesized braid word, the isotopy class of the diagram $D(w)$ determines the class $[w]$ of w in B_{\circ} .
- Proof (sketch):
	- ◮ Use diagram colorings: Having fixed a set *S* with a binary operation ∗,
		- put colors from *S* on the top ends of a (parenthesized) braid diagram,

- works (compatible with Reidemeister move) when ∗ obeys the LD law.
- ► Here: use B_0 and its LD-operation $*$ for coloring diagrams
	- the point: there exists eval : $(B_0)^\infty \to B_0$ such that, in B_0 ,

$$
\begin{array}{c}\n\overrightarrow{x} \\
D(w) \\
\overrightarrow{x} \cdot D(w)\n\end{array}
$$

- Recall: want to prove *B* ≃ *B*•, i.e., *B* presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
	- ▶ Need to show that, for *w* a parenthesized braid word, the isotopy class of the diagram $D(w)$ determines the class $[w]$ of w in B_{\circ} .
- Proof (sketch):
	- ◮ Use diagram colorings: Having fixed a set *S* with a binary operation ∗,
		- put colors from *S* on the top ends of a (parenthesized) braid diagram,

- works (compatible with Reidemeister move) when ∗ obeys the LD law.
- ► Here: use B_0 and its LD-operation $*$ for coloring diagrams
	- the point: there exists eval : $(B_0)^\infty \to B_0$ such that, in B_0 ,

$$
D(w)
$$
 implies $eval(\vec{x} \cdot D(w)) = eval(\vec{x}) \cdot [w].$

$$
\vec{x} \cdot \vec{D}(w)
$$

- Recall: want to prove *B* ≃ *B*•, i.e., *B* presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
	- ► Need to show that, for *w* a parenthesized braid word, the isotopy class of the diagram $D(w)$ determines the class $[w]$ of w in B_{\circ} .
- Proof (sketch):
	- ◮ Use diagram colorings: Having fixed a set *S* with a binary operation ∗,
		- put colors from *S* on the top ends of a (parenthesized) braid diagram,

- propagate using the rule

x y

- works (compatible with Reidemeister move) when ∗ obeys the LD law.
- ► Here: use B_0 and its LD-operation $*$ for coloring diagrams

- the point: there exists eval : $(B_0)^\infty \to B_0$ such that, in B_0 ,

$$
D(w)
$$

implies $eval(\vec{x} \cdot D(w)) = eval(\vec{x}) \cdot [w].$

$$
\vec{x} \cdot D(w)
$$

- hence, [*w*] recovered from the isotopy class of *D*(*w*).

• Proposition: *The augmented LD-system* (*B*•, ∗, ◦) *is torsion-free.*

every element of B_{\bullet} generates a free subsystem

• Proposition: *The augmented LD-system* (*B*•, ∗, ◦) *is torsion-free.*

every element of B_{\bullet} generates a free subsystem

• Proposition: *Every element of B*• *has a canonical expression in terms of special ones.*

the closure of 1 under $*$ and \circ

 $A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow \Box B \rightarrow A \Box C \$

KEL KALIKEN KEL GRA

• Proposition: *The augmented LD-system* (*B*•, ∗, ◦) *is torsion-free.*

every element of B_{\bullet} generates a free subsystem

• Proposition: *Every element of B*• *has a canonical expression in terms of special ones.* the closure of 1 under $*$ and \circ

• Proposition: *The group B*• *is orderable; more precisely: every element of B*• *has an* expression in which the σ_i with minimal index occurs positively only $(n \circ \sigma_i^{-1})$.

◮ similar to *B*∞, but not expected because of the *aⁱ* s

KEL KALIKEN KEL GRA

• Proposition: *The augmented LD-system* (*B*•, ∗, ◦) *is torsion-free.*

every element of B_{\bullet} generates a free subsystem

• Proposition: *Every element of B*• *has a canonical expression in terms of special ones.* the closure of 1 under $*$ and \circ

• Proposition: *The group B*• *is orderable; more precisely: every element of B*• *has an* expression in which the σ_i with minimal index occurs positively only $(n \circ \sigma_i^{-1})$.

◮ similar to *B*∞, but not expected because of the *aⁱ* s

• Proposition: The group B_{\bullet} is (isomorphic to) M. Brin's group \widehat{BV} .

KEL KALIKEN KEL GRA

• Proposition: *The augmented LD-system* (*B*•, ∗, ◦) *is torsion-free.*

every element of B_{\bullet} generates a free subsystem

• Proposition: *Every element of B*• *has a canonical expression in terms of special ones.* the closure of 1 under $*$ and \circ

• Proposition: *The group B*• *is orderable; more precisely: every element of B*• *has an* expression in which the σ_i with minimal index occurs positively only $(n \circ \sigma_i^{-1})$.

◮ similar to *B*∞, but not expected because of the *aⁱ* s

• Proposition: The group B_{\bullet} is (isomorphic to) M. Brin's group BV . "braid group on one strand" • Proposition: *The augmented LD-system* (*B*•, ∗, ◦) *is torsion-free.*

every element of B_{\bullet} generates a free subsystem

- Proposition: *Every element of B has a canonical expression in terms of special ones.* the closure of 1 under $*$ and \circ
- Proposition: *The group B is orderable; more precisely: every element of B has an* expression in which the σ_i with minimal index occurs positively only $(n \circ \sigma_i^{-1})$.

◮ similar to *B*∞, but not expected because of the *aⁱ* s

• Proposition: The group B_{\bullet} is (isomorphic to) M. Brin's group \widehat{BV} .

"braid group on one strand"

KEL KAR KELKER E VAN

 \blacktriangleright a typical element:

Plan:

- 1. Artin's braid group *B*[∞]
- 2. Thompson's group *F*
- 3. The parenthesized braid group *B*•

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• 4. The Artin representation of *B*•

• Recall: $D_n =$ disk with *n* punctures

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.

• Recall: $D_n =$ disk with *n* punctures

- ▶ Here: Cantor set of punctures.
- ▶ Technically more convenient to start with a sphere rather than with a disk.

(ロ) (日) (모) (모) (모) 및 990

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- ▶ Technically more convenient to start with a sphere rather than with a disk.
- \bullet <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator.

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

• Recall: $D_n =$ disk with *n* punctures

▶ Here: Cantor set of punctures.

 \triangleright Technically more convenient to start with a sphere rather than with a disk.

• <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 $\mathbf{E} = \mathbf{A} \in \mathbf{E} \times \mathbf{A} \in \mathbf{E} \times \mathbf{A} \times \mathbf{E} \times \mathbf{A$

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 $\mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{F} \quad \mathcal{F}$

 \equiv

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 \equiv

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 \equiv

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 \equiv

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 $\mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{A} \stackrel{\mathcal{B}}{\Longrightarrow} \mathcal{F} \quad \mathcal{F}$

 \equiv

 OQ

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

イロト イ団 トイモト イモト

 \equiv

 OQ

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 $\mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P}$

 \equiv

 OQ

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 \equiv

 OQ

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 \equiv

 OQ

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 OQ

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 \equiv

 OQ

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 OQ

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

 OQ

- Recall: $D_n =$ disk with *n* punctures
	- ▶ Here: Cantor set of punctures.
	- \triangleright Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_K :=$ sphere S^2 with a Cantor set of punctures removed on the equator. $=$ two hemispheres connected by bridges indexed by **dyadic numbers**

• Action of B_{\bullet} on S_K by homeomorphisms:

• Action of B_{\bullet} on S_K by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_K)$

• Action of *B*• on *S^K* by homeomorphisms: an embedding of *B*• in MCG(*S^K*)

(ロ) (日) (모) (모) (모) 및 990

• Action of B_{\bullet} on S_K by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_K)$

(ロ) (日) (日) (日) (日) (日)

• Action of B_{\bullet} on S_K by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_K)$

(ロ) (日) (모) (모) (모) 및 990

• Action of B_{\bullet} on S_K by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_K)$

(ロ) (日) (모) (모) (모) 및 990

• Action of B_{\bullet} on S_K by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_K)$

• Induces an action ρ on $\pi_1(S_K)$

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

• Action of B_{\bullet} on S_K by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_K)$

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

• Action of B_{\bullet} on S_K by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_K)$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q Q →

• Action of B_{\bullet} on S_K by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_K)$

• Proposition: *The Artin representation* ρ *of B*• *in Aut*(*F*∞) *is faithful.*

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• Proposition: *The Artin representation* ρ *of B*• *in Aut*(*F*∞) *is faithful.*

• Proof:

▶ Uses the LD-structure again

• Proposition: *The Artin representation* ρ *of B*• *in Aut*(*F*∞) *is faithful.*

• Proof:

- \triangleright Uses the LD-structure again
- ► Method: Show that, if a braid word *w* contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

KEL KAR KELKER E VAN

• Proposition: *The Artin representation* ρ *of B*• *in Aut*(*F*∞) *is faithful.*

• Proof:

- \triangleright Uses the LD-structure again
- ► Method: Show that, if a braid word *w* contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

 \blacktriangleright Key point: $\rho(w)$ can be read from colouring trees

(similar to the Hurwitz action of a braid word on a sequence)

• Proposition: *The Artin representation* ρ *of B*• *in Aut*(*F*∞) *is faithful.*

• Proof:

- \blacktriangleright Uses the LD-structure again
- ► Method: Show that, if a braid word *w* contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

 \blacktriangleright Key point: $\rho(w)$ can be read from colouring trees

(similar to the Hurwitz action of a braid word on a sequence)

► If *w* contains one σ_1 and no σ_1^{-1} ,

• Proposition: *The Artin representation* ρ *of B*• *in Aut*(*F*∞) *is faithful.*

• Proof:

- \blacktriangleright Uses the LD-structure again
- ► Method: Show that, if a braid word *w* contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

 \blacktriangleright Key point: $\rho(w)$ can be read from colouring trees

(similar to the Hurwitz action of a braid word on a sequence)

► If *w* contains one σ_1 and no σ_1^{-1} , then $\rho(w)(x_1)$ finishes with x_1^{-1} ,

• Proposition: *The Artin representation* ρ *of B*• *in Aut*(*F*∞) *is faithful.*

• Proof:

- \blacktriangleright Uses the LD-structure again
- ► Method: Show that, if a braid word *w* contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

 \blacktriangleright Key point: $\rho(w)$ can be read from colouring trees

(similar to the Hurwitz action of a braid word on a sequence)

► If *w* contains one σ_1 and no σ_1^{-1} , then $\rho(w)(x_1)$ finishes with x_1^{-1} , hence $\rho(w)(x_1) \neq x_1$,

• Proposition: *The Artin representation* ρ *of B*• *in Aut*(*F*∞) *is faithful.*

• Proof:

- \triangleright Uses the LD-structure again
- ► Method: Show that, if a braid word *w* contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

 \blacktriangleright Key point: $\rho(w)$ can be read from colouring trees

(similar to the Hurwitz action of a braid word on a sequence)

If *w* contains one σ_1 and no σ_1^{-1} , then $\rho(w)(x_1)$ finishes with x_1^{-1} , hence $\rho(w)(x_1) \neq x_1$, hence $\rho(w) \neq id$.

KEL KAR KELKER E VAN

 $\mathcal{A} \Box \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \Box \overline{\partial} \rightarrow \mathcal{O} \, \mathcal{A} \, \mathcal{O}$

- M. Brin, *The algebra of strand splitting. I. A braided version of Thompson's group V* J. Group Th. 10 (2007) 757–788.
- M. Brin, *The algebra of strand splitting. II. A presentation for the braid group on one strand* Intern. J. of Algebra and Comput 16 (2006) 203–219.

- M. Brin, *The algebra of strand splitting. I. A braided version of Thompson's group V* J. Group Th. 10 (2007) 757–788.
- M. Brin, *The algebra of strand splitting. II. A presentation for the braid group on one strand* Intern. J. of Algebra and Comput 16 (2006) 203–219.
- P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, *Ordering braids* Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

- M. Brin, *The algebra of strand splitting. I. A braided version of Thompson's group V* J. Group Th. 10 (2007) 757–788.
- M. Brin, *The algebra of strand splitting. II. A presentation for the braid group on one strand* Intern. J. of Algebra and Comput 16 (2006) 203–219.
- P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, *Ordering braids* Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

www.math.unicaen.fr/∼dehornoy