<ロ> < 団> < 団> < 三> < 三> < 三</p>

<ロト < @ ト < 注 ト < 注 ト 注 の < @</p>

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

• A group B_{\bullet} that extends both Artin's braid group B_{∞} and Thompson's group F,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• A group B_{\bullet} that extends both Artin's braid group B_{∞} and Thompson's group F, occurring in various contexts:

"geometry group of an algebraic law",

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• A group B_{\bullet} that extends both Artin's braid group B_{∞} and Thompson's group F, occurring in various contexts:

- "geometry group of an algebraic law",
- ▶ subgroup of M. Brin's braided Thompson group BV,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

• A group B_{\bullet} that extends both Artin's braid group B_{∞} and Thompson's group F, occurring in various contexts:

- "geometry group of an algebraic law",
- ▶ subgroup of M. Brin's braided Thompson group BV,
- ▶ quotient of a group of Greenberg–Sergiescu and Funar–Kapoudjian, ...

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

• A group B_{\bullet} that extends both Artin's braid group B_{∞} and Thompson's group F, occurring in various contexts:

- "geometry group of an algebraic law",
- ▶ subgroup of M. Brin's braided Thompson group BV,
- ▶ quotient of a group of Greenberg–Sergiescu and Funar–Kapoudjian, ...
- Here: insist on similarity with B_{∞} (use of self-distributivity)

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

• A group B_{\bullet} that extends both Artin's braid group B_{∞} and Thompson's group F, occurring in various contexts:

- "geometry group of an algebraic law",
- ▶ subgroup of M. Brin's braided Thompson group BV,
- ▶ quotient of a group of Greenberg–Sergiescu and Funar–Kapoudjian, ...
- Here: insist on similarity with B_{∞} (use of self-distributivity)

and connection with homeomorphisms of $S^2 \setminus Cantor$.

Plan:

<u>Plan</u>:

• 1. Artin's braid group B_∞

<ロト < @ ト < 注 ト < 注 ト 注 の < @</p>

<u>Plan</u>:

• 1. Artin's braid group B_∞

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 4 で</p>

• 2. Thompson's group F

Plan:

- 1. Artin's braid group B_∞
- 2. Thompson's group F
- \bullet 3. The parenthesized braid group B_{\bullet}

<u>Plan</u>:

- 1. Artin's braid group B_∞
- 2. Thompson's group F
- \bullet 3. The parenthesized braid group B_{\bullet}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• 4. The Artin representation of B_{\bullet}

Plan:

- 1. Artin's braid group B_∞
- 2. Thompson's group F
- \bullet 3. The parenthesized braid group B_{\bullet}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• 4. The Artin representation of B_{\bullet}

• <u>Definition</u> (Artin): For $n \ge 1$, the braid group B_n

<u>Definition</u> (Artin): For n ≥ 1, the braid group B_n
 = { n-strand braid diagrams } / isotopy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• Definition (Artin): For $n \ge 1$, the braid group B_n

= { *n*-strand braid diagrams } / isotopy

 $= \pi_1$ (configuration space of *n* points of \mathbb{C} mod. action of S_n)

- <u>Definition</u> (Artin): For $n \ge 1$, the braid group B_n
 - = { n-strand braid diagrams } / isotopy
 - $= \pi_1$ (configuration space of *n* points of \mathbb{C} mod. action of S_n)
 - $= \mathcal{MCG}(D_n)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- <u>Definition</u> (Artin): For $n \ge 1$, the braid group B_n
 - = { *n*-strand braid diagrams } / isotopy
 - $= \pi_1$ (configuration space of *n* points of \mathbb{C} mod. action of S_n)
 - $= \mathcal{MCG}(D_n)$

$$= \Big\langle \sigma_{\!\!1},...,\sigma_{\!\!n-1} \,\Big| \begin{array}{cc} \sigma_{\!\!i}\sigma_{\!\!j} = \sigma_{\!\!j}\sigma_{\!\!i} & \text{for } |i-j| \geqslant 2 \\ \sigma_{\!\!i}\sigma_{\!\!j}\sigma_{\!\!j}\sigma_{\!\!i} = \sigma_{\!\!j}\sigma_{\!\!i}\sigma_{\!\!j} & \text{for } |i-j| = 1 \end{array} \Big\rangle.$$

- <u>Definition</u> (Artin): For $n \ge 1$, the braid group B_n
 - = { *n*-strand braid diagrams } / isotopy
 - $= \pi_1$ (configuration space of *n* points of \mathbb{C} mod. action of S_n)

$$= \mathcal{MCG}(D_n)$$

$$= \Big\langle \sigma_{\!\!1},...,\sigma_{\!\!n-1} \Big| \begin{array}{cc} \sigma_{\!\!i}\sigma_{\!\!j} = \sigma_{\!\!j}\sigma_{\!\!i} & \text{for } |i-j| \geqslant 2 \\ \sigma_{\!\!i}\sigma_{\!\!j}\sigma_{\!\!j} = \sigma_{\!\!j}\sigma_{\!\!i}\sigma_{\!\!j} & \text{for } |i-j| = 1 \end{array} \Big\rangle.$$

$$\sigma_i: \quad \bigcup_{1} \cdots \quad \bigcup_{i \quad i+1} \bigcup_{i = 1} \cdots \bigcup_{n}$$

- <u>Definition</u> (Artin): For $n \ge 1$, the braid group B_n
 - = { *n*-strand braid diagrams } / isotopy
 - $= \pi_1$ (configuration space of *n* points of \mathbb{C} mod. action of S_n)

$$= \mathcal{MCG}(D_n)$$

$$= \Big\langle \sigma_{\!\!1},...,\sigma_{\!\!n-1} \Big| \begin{array}{cc} \sigma_{\!\!i}\sigma_{\!\!j} = \sigma_{\!\!j}\sigma_{\!\!i} & \text{for } |i-j| \geqslant 2 \\ \sigma_{\!\!i}\sigma_{\!\!j}\sigma_{\!\!j}\sigma_{\!\!i} = \sigma_{\!\!j}\sigma_{\!\!i}\sigma_{\!\!j} & \text{for } |i-j| = 1 \end{array} \Big\rangle.$$

$$\sigma_i:$$
 $\prod_{1} \cdots \prod_{i \ i+1} \prod_{j \ i+1} \prod_{j \ j+1} \prod_{n \ n}$

- <u>Definition</u> (Artin): For $n \ge 1$, the braid group B_n
 - = { *n*-strand braid diagrams } / isotopy
 - $= \pi_1$ (configuration space of *n* points of \mathbb{C} mod. action of S_n)

$$= \mathcal{MCG}(D_n)$$

$$= \Big\langle \sigma_1, ..., \sigma_{n-1} \Big| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2\\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \Big\rangle.$$

$$\sigma_i: \prod_{1} \cdots \prod_{i \in j+1} \prod_{i=1}^{j} \cdots \prod_{n}$$

• Embedding B_n into B_{n+1} : add a trivial (n + 1)st strand

<□▶ <□▶ < □▶ < □▶ < □▶ = □ の < ⊙

• Embedding B_n into B_{n+1} : add a trivial (n + 1)st strand

• Then $B_{\infty} := \varinjlim B_n$

• Embedding B_n into B_{n+1} : add a trivial (n + 1)st strand

• Then
$$B_{\infty} := \varinjlim B_n = \left\langle \sigma_1, \sigma_2, \dots \right| \left. \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2\\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Embedding B_n into B_{n+1} : add a trivial (n+1)st strand

• Then
$$B_{\infty} := \varinjlim B_n = \left\langle \sigma_1, \sigma_2, \dots \right| \left. \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2\\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle.$$

• Equivalently: Identify B_n with a subgroup of B_{n+1} , and put

$$B_{\infty} = \bigcup_{n} B_{n}.$$

• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - action of B_n on the fundamental group of D_n ,

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - action of B_n on the fundamental group of D_n , a free group of rank n.

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - action of B_n on the fundamental group of D_n , a free group of rank n.

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - action of B_n on the fundamental group of D_n , a free group of rank n.

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - action of B_n on the fundamental group of D_n , a free group of rank n.

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - action of B_n on the fundamental group of D_n , a free group of rank n.

€ 990

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - ▶ action of B_n on the fundamental group of D_n , a free group of rank n.

 \equiv

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - ▶ action of B_n on the fundamental group of D_n , a free group of rank n.

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - ▶ action of B_n on the fundamental group of D_n , a free group of rank n.

€ 990

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - ▶ action of B_n on the fundamental group of D_n , a free group of rank n.

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - action of B_n on the fundamental group of D_n , a free group of rank n.

• From there: homomorphism ρ from B_n to $Aut(F_n)$:

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - action of B_n on the fundamental group of D_n , a free group of rank n.

• From there: homomorphism ρ from B_n to $Aut(F_n)$:

$$\rho(\sigma_i) : \begin{cases} x_i \quad \mapsto \ x_i x_{i+1} x_i^{-1}, \\ x_{i+1} \mapsto \ x_i, \\ x_k \quad \mapsto \ x_k \text{ for } k \neq i, i+1 \end{cases}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n :
 - action of B_n on the fundamental group of D_n , a free group of rank n.

• From there: homomorphism ρ from B_n to $Aut(F_n)$:

$$\rho(\sigma_i) : \begin{cases} x_i \quad \mapsto \quad x_i x_{i+1} x_i^{-1}, \\ x_{i+1} \mapsto \quad x_i, \\ x_k \quad \mapsto \quad x_k \quad \text{for } k \neq i, i+1. \end{cases}$$

• <u>Theorem</u> (Artin): The homomorphism ρ is injective.

Plan:

- 1. Artin's braid group B_∞
- 2. Thompson's group F
- \bullet 3. The parenthesized braid group B_{\bullet}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• 4. The Artin representation of B_{\bullet}

• <u>Definition</u> (Richard Thompson, 1965):

$$F := \langle a_0, a_1, \dots \mid a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle.$$
(*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• Definition (Richard Thompson, 1965):

$$F := \langle a_0, a_1, \dots \mid a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle.$$
(*)

▶ occurs in the construction of a f.p. group with unsolvable word problem

• Definition (Richard Thompson, 1965):

$$F := \langle a_0, a_1, \dots \mid a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle.$$
(*)

▶ occurs in the construction of a f.p. group with unsolvable word problem

• <u>Fact</u>: The group F is a group of right fractions for the monoid F^+ .

the monoid presented by (*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − つへつ

• Definition (Richard Thompson, 1965):

$$F := \langle a_0, a_1, \dots \mid a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle.$$
(*)

▶ occurs in the construction of a f.p. group with unsolvable word problem

- <u>Fact</u>: The group F is a group of right fractions for the monoid F⁺. the monoid presented by (*)
- Fact: Every element of F has a unique expression of the form

 $a_0^{p_0}a_1^{p_1}\cdots a_n^{p_n}a_n^{-q_n}\cdots a_1^{-q_1}a_0^{-q_0}$

such that $((p_k \neq 0 \text{ and } q_k \neq 0) \text{ implies } (p_{k+1} \neq 0) \text{ or } (q_{k+1} \neq 0)).$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ●

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Definition (Richard Thompson, 1965):

$$F := \langle a_0, a_1, \dots \mid a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle.$$
(*)

▶ occurs in the construction of a f.p. group with unsolvable word problem

- <u>Fact</u>: The group F is a group of right fractions for the monoid F⁺. the monoid presented by (*)
- Fact: Every element of F has a unique expression of the form

 $a_0^{p_0}a_1^{p_1}\cdots a_n^{p_n}a_n^{-q_n}\cdots a_1^{-q_1}a_0^{-q_0}$

such that $((p_k \neq 0 \text{ and } q_k \neq 0) \text{ implies } (p_{k+1} \neq 0) \text{ or } (q_{k+1} \neq 0)).$

• Fact: The group F is finitely presented:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Definition (Richard Thompson, 1965):

$$F := \langle a_0, a_1, \dots \mid a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle.$$
(*)

▶ occurs in the construction of a f.p. group with unsolvable word problem

- <u>Fact</u>: The group F is a group of right fractions for the monoid F⁺. the monoid presented by (*)
- Fact: Every element of F has a unique expression of the form

 $a_0^{p_0}a_1^{p_1}\cdots a_n^{p_n}a_n^{-q_n}\cdots a_1^{-q_1}a_0^{-q_0}$

such that $((p_k \neq 0 \text{ and } q_k \neq 0) \text{ implies } (p_{k+1} \neq 0) \text{ or } (q_{k+1} \neq 0)).$

- Fact: The group F is finitely presented:
 - generated by a_0 and a_1 , since $a_n = a_1^{a_0^n}$ for $n \ge 2$;

• Definition (Richard Thompson, 1965):

$$F := \langle a_0, a_1, \dots \mid a_j a_i = a_i a_{j+1} \text{ for } j > i \rangle.$$
(*)

occurs in the construction of a f.p. group with unsolvable word problem

- <u>Fact</u>: The group F is a group of right fractions for the monoid F⁺. the monoid presented by (*)
- Fact: Every element of F has a unique expression of the form

 $a_0^{p_0}a_1^{p_1}\cdots a_n^{p_n}a_n^{-q_n}\cdots a_1^{-q_1}a_0^{-q_0}$ such that $((p_k \neq 0 \text{ and } q_k \neq 0) \text{ implies } (p_{k+1} \neq 0) \text{ or } (q_{k+1} \neq 0)).$

- Fact: The group F is finitely presented:
 - generated by a_0 and a_1 , since $a_n = a_1^{a_0^n}$ for $n \ge 2$;
 - ▶ relations: " $a_2^{a_1} = a_3$ " and " $a_3^{a_1} = a_4$ ", that is, $a_1^{a_0a_1} = a_1^{a_0^2}$ and $a_1^{a_0^2a_1} = a_1^{a_0^3}$.

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 = つへぐ

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2^k $\}$. • $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2^k $\}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2^k $\}$.

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2^k $\}$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - 釣�(や)

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form $2^k \}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form $2^k \}$.

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form $2^k \}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form $2^k \}$.

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2^k $\}$.

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form $2^k \}$.

• An element of F = a pair of dyadic decompositions of [0, 1]:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form 2^k $\}$.

• An element of F = a pair of dyadic decompositions of [0, 1]:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form $2^k \}$.

• An element of F = a pair of dyadic decompositions of [0, 1]:

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form $2^k \}$.

• An element of F = a pair of dyadic decompositions of [0, 1]:

= a pair of finite binary rooted trees:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

• $F \simeq \{$ piecewise linear orientation preserving homeomorphisms of [0, 1] with discontinuities of the derivative and slopes of the form $2^k \}$.

• An element of F = a pair of dyadic decompositions of [0, 1]:

• Fact: The center of F is trivial.

▶ Point: every homeomorphism commuting with x_1 fixes 1/2.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Fact: The center of F is trivial.
 - ▶ Point: every homeomorphism commuting with x_1 fixes 1/2.
- Fact: Commutators in F correspond to homeomorphisms with slope 1 near 0 and 1.

- Fact: The center of F is trivial.
 - ▶ Point: every homeomorphism commuting with x_1 fixes 1/2.
- Fact: Commutators in F correspond to homeomorphisms with slope 1 near 0 and 1.
 ▶ Hence F/[F, F] ≃ Z ⊕ Z.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Fact: The center of F is trivial.
 - ▶ Point: every homeomorphism commuting with x_1 fixes 1/2.
- Fact: Commutators in F correspond to homeomorphisms with slope 1 near 0 and 1.
 ▶ Hence F/[F, F] ≃ Z ⊕ Z.
- Proposition: Every proper quotient of F is abelian.
 - ▶ Point: Every normal subgroup contains all commutators.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Fact: The center of F is trivial.

▶ Point: every homeomorphism commuting with x_1 fixes 1/2.

- Fact: Commutators in F correspond to homeomorphisms with slope 1 near 0 and 1.
 ▶ Hence F/[F, F] ≃ Z ⊕ Z.
- <u>Proposition</u>: Every proper quotient of F is abelian.

▶ Point: Every normal subgroup contains all commutators.

• <u>Theorem</u>: The subgroup [F, F] is simple.

▶ Point: A normal subgroup of [F, F] contains all commutators.

- Fact: The center of F is trivial.
 - ▶ Point: every homeomorphism commuting with x_1 fixes 1/2.
- Fact: Commutators in F correspond to homeomorphisms with slope 1 near 0 and 1.
 ▶ Hence F/[F, F] ≃ Z ⊕ Z.
- <u>Proposition</u>: Every proper quotient of F is abelian.
 - ▶ Point: Every normal subgroup contains all commutators.
- <u>Theorem</u>: The subgroup [F, F] is simple.
 Point: A normal subgroup of [F, F] contains all commutators.
- <u>Theorem</u> (Brin–Squier, 1985): The group F includes no free subgroup of rank ≥ 2 .

- Fact: The center of F is trivial.
 - ▶ Point: every homeomorphism commuting with x_1 fixes 1/2.
- Fact: Commutators in F correspond to homeomorphisms with slope 1 near 0 and 1.
 ▶ Hence F/[F, F] ≃ Z ⊕ Z.
- <u>Proposition</u>: Every proper quotient of F is abelian.
 - Point: Every normal subgroup contains all commutators.
- <u>Theorem</u>: The subgroup [F, F] is simple.
 Point: A normal subgroup of [F, F] contains all commutators.
- Theorem (Brin–Squier, 1985): The group F includes no free subgroup of rank ≥ 2 .
 - ▶ In fact: Every non-abelian subgroup of *F* includes a copy of \mathbb{Z}^{∞} .

- Fact: The center of F is trivial.
 - ▶ Point: every homeomorphism commuting with x_1 fixes 1/2.
- Fact: Commutators in F correspond to homeomorphisms with slope 1 near 0 and 1.
 ▶ Hence F/[F, F] ≃ Z ⊕ Z.
- <u>Proposition</u>: Every proper quotient of F is abelian.
 - ▶ Point: Every normal subgroup contains all commutators.
- <u>Theorem</u>: The subgroup [F, F] is simple.

▶ Point: A normal subgroup of [F, F] contains all commutators.

- <u>Theorem</u> (Brin–Squier, 1985): The group F includes no free subgroup of rank ≥ 2 .
 - ▶ In fact: Every non-abelian subgroup of *F* includes a copy of \mathbb{Z}^{∞} .
 - ▶ Compare with: F⁺ includes a free monoid of rank 2.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Theorem (Guba 2005): The Dehn function of F is quadratic. $\uparrow \\ \Phi(n) := \sup\{\operatorname{area}(w) \mid \operatorname{length}(w) = n \text{ and } w \text{ represents } 1 \text{ in } F\}$
- Q<u>uestion 2</u> (Geoghegan): Is F amenable?

 ↑
 ∃ left-invariant [0, 1]-measure on 𝔅(F)

(日) (日) (日) (日) (日) (日) (日) (日)

- Theorem (Guba 2005): The Dehn function of F is quadratic. $\uparrow \\ \Phi(n) := \sup\{\operatorname{area}(w) \mid \operatorname{length}(w) = n \text{ and } w \text{ represents } 1 \text{ in } F\}$
- Q<u>uestion 2</u> (Geoghegan): Is F amenable? \exists left-invariant [0,1]-measure on $\mathfrak{P}(F)$
- Question 3: What is the growth rate of F^+ and F w.r.t. $\{a_0^{\pm 1}, a_1^{\pm 1}\}$? $\sqrt[n]{a_n}$, with $a_n := \#\{\text{elements with length } n \text{ expression}\}$

A D M A

- Theorem (Guba 2005): The Dehn function of F is quadratic. $\uparrow \\ \Phi(n) := \sup\{\operatorname{area}(w) \mid \operatorname{length}(w) = n \text{ and } w \text{ represents } 1 \text{ in } F\}$
- Q<u>uestion 2</u> (Geoghegan): Is F amenable? \exists left-invariant [0, 1]-measure on $\mathfrak{P}(F)$
- Question 3: What is the growth rate of F^+ and F w.r.t. $\{a_0^{\pm 1}, a_1^{\pm 1}\}$? $\sqrt[n]{a_n}$, with $a_n := \#\{\text{elements with length } n \text{ expression}\}$
- <u>Theorem</u>: (i) (Burillo) The growth rate of F^+ is $\frac{1}{2\sin(\pi/14)} \approx 2.24...$

- Theorem (Guba 2005): The Dehn function of F is quadratic. $\uparrow \\ \Phi(n) := \sup\{\operatorname{area}(w) \mid \operatorname{length}(w) = n \text{ and } w \text{ represents } 1 \text{ in } F\}$
- Q<u>uestion 2</u> (Geoghegan): Is F amenable? \exists left-invariant [0, 1]-measure on $\mathfrak{P}(F)$
- Question 3: What is the growth rate of F^+ and F w.r.t. $\{a_0^{\pm 1}, a_1^{\pm 1}\}$? $\sqrt[n]{a_n}, \text{ with } a_n := \#\{\text{elements with length } n \text{ expression}\}$
- <u>Theorem</u>: (i) (Burillo) The growth rate of F⁺ is 1/(2 sin(π/14)) ≈ 2.24....
 (ii) (Guba) The growth rate of F lies between 3+√5/2 ≈ 2.618... and 3.

Plan:

- 1. Artin's braid group B_∞
- 2. Thompson's group F
- 3. The parenthesized braid group B_{\bullet}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• 4. The Artin representation of B_{\bullet}

Υ.

 \leftarrow initial positions: • • • •

• Ordinary braid diagrams:

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Ordinary braid diagrams:

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Ordinary braid diagrams:

• Parenthesized braid diagrams: (possibly) non-equidistant positions:

 \leftarrow initial positions: (••) •

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Ordinary braid diagrams:

- \leftarrow initial positions: (••) •
- \leftarrow final positions: (••

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● つへで

• More precisely:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

• A typical parenthesized braid diagram:

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• A typical parenthesized braid diagram:

• Connection with binary trees: positions correspond to nodes in a binary tree;

- 白 ト - 4 戸 ト - 4 戸 ト - 三 戸

- Connection with binary trees: positions correspond to nodes in a binary tree;
 - ► Enumerated starting from the root and descending the right branch.

- Connection with binary trees: positions correspond to nodes in a binary tree;
 - ► Enumerated starting from the root and descending the right branch.

- Connection with binary trees: positions correspond to nodes in a binary tree;
 - ► Enumerated starting from the root and descending the right branch.

 $\left|\begin{array}{c}\sigma_2\\a_1\\a_1^{-1}\\a_2^{-1}\end{array}\right|$

- Connection with binary trees: positions correspond to nodes in a binary tree;
 - ► Enumerated starting from the root and descending the right branch.

corresponds to

イロト イポト イヨト

 \exists

 $\left|\begin{array}{c}\sigma_2\\a_1\\\sigma_1^{-1}\\a_2^{-1}\end{array}\right|$

- Connection with binary trees: positions correspond to nodes in a binary tree;
 - ► Enumerated starting from the root and descending the right branch.

corresponds to

 $\sigma_i = \text{switching subtrees}$

イロト イポト イヨト

 \exists

 $\sigma_i =$ switching subtrees

• A typical parenthesized braid diagram:

 $\left|\begin{array}{c}\sigma_2\\a_1\\a_1^{-1}\\a_2^{-1}\end{array}\right|$

- Connection with binary trees: positions correspond to nodes in a binary tree;
 - ► Enumerated starting from the root and descending the right branch.

 $\left|\begin{array}{c}\sigma_2\\a_1\\\sigma_1^{-1}\\a_2^{-1}\end{array}\right|$

- Connection with binary trees: positions correspond to nodes in a binary tree;
 - ► Enumerated starting from the root and descending the right branch.

 $\sigma_i = \text{switching subtrees}$

- Connection with binary trees: positions correspond to nodes in a binary tree;
 - ► Enumerated starting from the root and descending the right branch.

 $\left|\begin{array}{c} \sigma_2\\ a_1\\ \sigma_1^{-1}\\ a_2^{-1} \end{array}\right|$

- Connection with binary trees: positions correspond to nodes in a binary tree;
 - ► Enumerated starting from the root and descending the right branch.

• For parenthesized braid diagrams, several completions:

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• For ordinary braid diagrams, only one completion:

- For parenthesized braid diagrams, several completions:
 - ▶ index positions by sequences of integers

(or, equivalently, infinitesimals)

- For parenthesized braid diagrams, several completions:
 - ▶ index positions by sequences of integers

(or, equivalently, infinitesimals)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• For parenthesized braid diagrams, several completions:

► index positions by sequences of integers

(or, equivalently, infinitesimals)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• For parenthesized braid diagrams, several completions:

▶ index positions by sequences of integers

(or, equivalently, infinitesimals)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• For parenthesized braid diagrams, several completions:

▶ index positions by sequences of integers

(or, equivalently, infinitesimals)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} := \{ \text{ parenthesized braid diagrams } \} / \text{isotopy.}$

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} := \{ \text{ parenthesized braid diagrams } \} / \text{isotopy.}$

▶ Two isotopy classes D, D' can be composed when

the final positions of D coincide with the initial positions of D'.

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} := \{ \text{ parenthesized braid diagrams } \} / \text{isotopy.}$

 \blacktriangleright Two isotopy classes D, D' can be composed when

the final positions of D coincide with the initial positions of D'.

• To make a group:

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} := \{ \text{ parenthesized braid diagrams } \} / \text{isotopy.}$

▶ Two isotopy classes D, D' can be composed when

the final positions of D coincide with the initial positions of D'.

- To make a group:
 - ▶ Going from $\coprod B_n$ (groupoid) to B_∞ : embed B_n into $B_{n'}$ for $n \leq n'$.

(日) (日) (日) (日) (日) (日) (日) (日)

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} := \{ \text{ parenthesized braid diagrams } \}/\text{isotopy.}$

▶ Two isotopy classes D, D' can be composed when

the final positions of D coincide with the initial positions of D'.

- To make a group:
 - ▶ Going from $\coprod B_n$ (groupoid) to B_∞ : embed B_n into $B_{n'}$ for $n \leq n'$.
 - ▶ Going from $\coprod B_t$ (groupoid) to a group: embed B_t into $B_{t'}$ for $t \subseteq t'$.

the family of (isotopy classes) of diagrams with initial positions t (a binary tree)

• Parenthesized braid diagrams form a groupoid (small category with inverses):

 $\mathcal{B} := \{ \text{ parenthesized braid diagrams } \}/\text{isotopy.}$

▶ Two isotopy classes D, D' can be composed when

the final positions of D coincide with the initial positions of D'.

- To make a group:
 - Going from $\coprod B_n$ (groupoid) to B_∞ : embed B_n into $B_{n'}$ for $n \leq n'$.
 - Going from $\coprod B_t$ (groupoid) to a group: embed B_t into $B_{t'}$ for $t \subseteq t'$.

the family of (isotopy classes) of diagrams with initial positions t (a binary tree)

• <u>Definition</u>: The group **B**_• of parenthesized braids is lim { parenthesized braid diagrams }/isotopy.

• <u>Proposition</u>: A presentation of B_{\bullet} in terms of the generators a_i and σ_i is

• <u>Proposition</u>: A presentation of B_{\bullet} in terms of the generators a_i and σ_i is for $x = \sigma$ or a: $\sigma_i x_j = x_j \sigma_i$ • <u>Proposition</u>: A presentation of B_{\bullet} in terms of the generators a_i and σ_i is for $x = \sigma$ or a: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ • <u>Proposition</u>: A presentation of B_{\bullet} in terms of the generators a_i and σ_i is for $x = \sigma$ or a: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \ge i + 2$, • <u>Proposition</u>: A presentation of B_{\bullet} in terms of the generators a_i and σ_i is for $x = \sigma$ or a: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \ge i+2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$, • <u>Proposition</u>: A presentation of B_{\bullet} in terms of the generators a_i and σ_i is for $x = \sigma$ or a: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \ge i+2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$, $\sigma_i \sigma_j a_i = a_j \sigma_i$, • <u>Proposition</u>: A presentation of B_{\bullet} in terms of the generators a_i and σ_i is for $x = \sigma$ or a: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \ge i+2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$, $\sigma_i \sigma_j a_i = a_j \sigma_i$, $\sigma_j \sigma_i a_j = a_i \sigma_i$ for j = i+1. • <u>Proposition</u>: A presentation of B_{\bullet} in terms of the generators a_i and σ_i is for $x = \sigma$ or a: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \ge i+2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$, $\sigma_i \sigma_j a_i = a_j \sigma_i$, $\sigma_j \sigma_i a_j = a_i \sigma_i$ for j = i+1.

commutation relations:

Ϋ́Υ×Ϋ́Λ $\sigma_i \sigma_i = \sigma_i \sigma_i$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• <u>Proposition</u>: A presentation of B_{\bullet} in terms of the generators a_i and σ_i is for $x = \sigma$ or a: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \ge i+2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$, $\sigma_i \sigma_j a_i = a_j \sigma_i$, $\sigma_j \sigma_i a_j = a_i \sigma_i$ for j = i+1.

▶ commutation relations:

$$\bigwedge \bigcup_{\sigma_i \sigma_j} \approx \bigcup_{\sigma_j \sigma_i} \bigwedge \qquad \bigwedge \bigcup_{\sigma_i a_j} \approx \bigcup_{\sigma_i a_j} \bigvee_{\sigma_i a_j} \bigvee_{\sigma$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• <u>Proposition</u>: A presentation of B_{\bullet} in terms of the generators a_i and σ_i is for $x = \sigma$ or a: $\sigma_i x_j = x_j \sigma_i$ and $a_i x_{j-1} = x_j a_i$ for $j \ge i+2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$, $\sigma_i \sigma_j a_i = a_j \sigma_i$, $\sigma_j \sigma_i a_j = a_i \sigma_i$ for j = i+1.

▶ commutation relations:

$$\bigwedge \bigcup_{\sigma_i \sigma_j = \sigma_j \sigma_i} \approx \bigcup_{\sigma_i a_j = a_j \sigma_i} \bigotimes_{\sigma_i a_j = a_j \sigma_i} \bigotimes_{\text{for } j \ge i+2}$$

<□▶ < @ ▶ < E ▶ < E ▶ E のへぐ

• <u>Proposition</u>: A presentation of B_{\bullet} in terms of the generators a_i and σ_i is

 $\begin{array}{ll} \text{for } x = \sigma \ \text{or } a \colon & \sigma_i x_j = x_j \sigma_i \quad \text{and} \quad a_i x_{j-1} = x_j a_i \quad \text{for } j \geqslant i+2, \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, \quad \sigma_i \sigma_j a_i = a_j \sigma_i, \quad \sigma_j \sigma_i a_j = a_i \sigma_i \quad \text{for } j = i+1. \end{array}$

commutation relations:

$$\begin{array}{c} \overbrace{\sigma_i \sigma_j = \sigma_j \sigma_i}^{\approx} & \overbrace{\sigma_i \sigma_j}^{\approx} & \overbrace{\sigma_i \sigma_i}^{\approx} & \overbrace{\sigma_i \sigma_j}^{\approx} = a_j \sigma_i & \text{for } j \ge i+2 \\ \text{semi-commutation relations ("Thompson" relations):} \\ \overbrace{a_i \sigma_{i-1}^{\ast} = \sigma_i a_i}^{\approx} & \overbrace{\sigma_i \sigma_i}^{\approx} & \overbrace{\sigma_i \sigma_i}^{\ast} & \overbrace{\sigma_i$$

 $\begin{array}{ll} \text{for } x = \sigma \ \text{or } a: & \sigma_i x_j = x_j \sigma_i \ \text{ and } \ a_i x_{j-1} = x_j a_i \ \text{ for } j \geqslant i+2, \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, & \sigma_i \sigma_j a_i = a_j \sigma_i, \ \sigma_j \sigma_i a_j = a_i \sigma_i \ \text{ for } j = i+1. \end{array}$

▶ commutation relations:

 $\begin{array}{ll} \text{for } x = \sigma \ \text{or } a: & \sigma_i x_j = x_j \sigma_i \ \text{ and } \ a_i x_{j-1} = x_j a_i \ \text{ for } j \geqslant i+2, \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, & \sigma_i \sigma_j a_i = a_j \sigma_i, \ \sigma_j \sigma_i a_j = a_i \sigma_i \ \text{ for } j = i+1. \end{array}$

▶ commutation relations:

$$\begin{array}{c} \overbrace{\sigma_i \sigma_j = \sigma_j \sigma_i} \approx \overbrace{\sigma_i a_j = a_j \sigma_i} \approx \overbrace{\sigma_i a_j = a_j \sigma_i} & \text{for } j \geqslant i+2 \\ \hline \text{semi-commutation relations ("Thompson" relations):} \\ \overbrace{\sigma_i \sigma_{j-1} = \sigma_j a_i} \approx \overbrace{\sigma_i a_{j-1} = a_j a_i} & \text{for } j \geqslant i+2 \\ \hline \text{braid relations:} \\ \overbrace{\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}} \\ \hline \end{array}$$

 $\begin{array}{ll} \text{for } x = \sigma \ \text{or } a: & \sigma_i x_j = x_j \sigma_i \ \text{ and } \ a_i x_{j-1} = x_j a_i \ \text{ for } j \geqslant i+2, \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, & \sigma_i \sigma_j a_i = a_j \sigma_i, \ \sigma_j \sigma_i a_j = a_i \sigma_i \ \text{ for } j = i+1. \end{array}$

▶ commutation relations:

$$\begin{array}{c} \overbrace{\sigma_i\sigma_j=\sigma_j\sigma_i} \approx \bigvee_{\sigma_ia_j=a_j\sigma_i} \qquad \text{for } j \ge i+2 \\ \text{semi-commutation relations ("Thompson" relations):} \\ \overbrace{\sigma_i\sigma_{j-1}=\sigma_ja_i} \approx \bigvee_{a_ia_{j-1}=a_ja_i} \qquad \text{for } j \ge i+2 \\ \text{semi-commutation relations ("Thompson" relations):} \\ \overbrace{\sigma_i\sigma_{i+1}\sigma_i=\sigma_{i+1}\sigma_i\sigma_{i+1}} \qquad \overbrace{\sigma_i\sigma_{i+1}a_i=a_{i+1}\sigma_i} \\ \text{semi-commutation relations:} \\ \overbrace{\sigma_i\sigma_{i+1}a_i=a_{i+1}\sigma_i} \approx \bigvee_{\sigma_i\sigma_{i+1}a_i=a_{i+1}\sigma_i} \\ \text{semi-commutation relations} \\ \end{array}$$

 $\begin{array}{ll} \text{for } x = \sigma \ \text{or } a: & \sigma_i x_j = x_j \sigma_i \ \text{ and } \ a_i x_{j-1} = x_j a_i \ \text{ for } j \geqslant i+2, \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, & \sigma_i \sigma_j a_i = a_j \sigma_i, \ \sigma_j \sigma_i a_j = a_i \sigma_i \ \text{ for } j = i+1. \end{array}$

commutation relations:

$$\begin{array}{c} \overbrace{\sigma_i \sigma_j = \sigma_j \sigma_i} \\ \sigma_i \sigma_j = \sigma_j \sigma_i \\ \circ_i \sigma_j = \sigma_j \sigma_i \\ \circ_i \sigma_{j-1} = \sigma_j a_i \\ \circ_i \sigma_{j-1} = \sigma_j a_i \\ \circ_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \\ \circ_i \sigma_i \sigma_{i+1} a_i = a_{i+1} \sigma_i \\ \circ_i \sigma_{i+1} a_i = a_i + 1 \sigma_i \\ \circ_i \sigma_i \sigma_i = a_i \sigma_i \\ \circ_i \sigma_i \\ \circ_i \sigma_i = a_i \sigma_i \\ \circ_i \sigma_i \\ \circ_i \sigma_i \\ \circ_i \sigma_$$

 $\begin{array}{ll} \text{for } x = \sigma \ \text{or } a: & \sigma_i x_j = x_j \sigma_i \ \text{ and } \ a_i x_{j-1} = x_j a_i \ \text{ for } j \geqslant i+2, \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, & \sigma_i \sigma_j a_i = a_j \sigma_i, \ \sigma_j \sigma_i a_j = a_i \sigma_i \ \text{ for } j = i+1. \end{array}$

commutation relations:

$$\begin{array}{c} \overbrace{\sigma_i \sigma_j = \sigma_j \sigma_i} \\ \sigma_i \sigma_j = \sigma_j \sigma_i \\ \circ_i \sigma_j = \sigma_j \sigma_i \\ \circ_i \sigma_{j-1} = \sigma_j a_i \\ \circ_i \sigma_{j-1} = \sigma_j a_i \\ \circ_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \\ \circ_i \sigma_i \sigma_{i+1} a_i = a_{i+1} \sigma_i \\ \circ_i \sigma_{i+1} a_i = a_i + 1 \sigma_i \\ \circ_i \sigma_i \sigma_i = a_i \sigma_i \\ \circ_i \sigma_i \\ \circ_i \sigma_i = a_i \sigma_i \\ \circ_i \sigma_i \\ \circ_i \sigma_i \\ \circ_i \sigma_$$

- Proof (beginning):
 - ▶ The relations (...) hold in B_● (obvious);

- Proof (beginning):
 - ▶ The relations (...) hold in B_• (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...);

- Proof (beginning):
 - ▶ The relations (...) hold in B_• (obvious);
 - ► For the other direction, introduce
 - B_\circ := the group presented by (...); we know $B_\circ \twoheadrightarrow B_\bullet$;

- Proof (beginning):
 - ▶ The relations (...) hold in B_• (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \twoheadrightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Proof (beginning):
 - ▶ The relations (...) hold in B_• (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \rightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
 - B_{\circ}^{+} := the monoid presented by (...).

- Proof (beginning):
 - ▶ The relations (...) hold in B_• (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \twoheadrightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
 - B_{\circ}^{+} := the monoid presented by (...).
- <u>Fact</u>: The group B_{\circ} is generated by $\sigma_1, \sigma_2, a_1, a_2$.

- Proof (beginning):
 - ▶ The relations (...) hold in B_{\bullet} (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \twoheadrightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
 - B_0^+ := the monoid presented by (...).
- <u>Fact</u>: The group B_0 is generated by $\sigma_1, \sigma_2, a_1, a_2$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

- Proof (beginning):
 - ▶ The relations (...) hold in B_● (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \twoheadrightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
 - B_{\circ}^{+} := the monoid presented by (...).
- <u>Fact</u>: The group B_0 is generated by $\sigma_1, \sigma_2, a_1, a_2$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• Main lemma: The monoid B_{\circ}^+ is cancellative and admits least common multiples and greatest common divisors.

- Proof (beginning):
 - ▶ The relations (...) hold in B_● (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \twoheadrightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
 - B_{\circ}^{+} := the monoid presented by (...).
- <u>Fact</u>: The group B_0 is generated by $\sigma_1, \sigma_2, a_1, a_2$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• <u>Main lemma</u>: The monoid B_{\circ}^+ is cancellative and admits least common multiples and greatest common divisors. It is a Zappa-Szep product of B_{∞}^+ and F^+ .

ヘロト (日) (日) (日) (日) (日) (日)

- Proof (beginning):
 - ▶ The relations (...) hold in B_• (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \twoheadrightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
 - B_{\circ}^{+} := the monoid presented by (...).
- <u>Fact</u>: The group B_0 is generated by $\sigma_1, \sigma_2, a_1, a_2$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• <u>Main lemma</u>: The monoid B_{\circ}^+ is cancellative and admits least common multiples and greatest common divisors. It is a Zappa-Szep product of B_{∞}^+ and F^+ .

 $B^+_{\infty} \times F^+$ with **two** actions:

A D M A

- Proof (beginning):
 - ▶ The relations (...) hold in B_● (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \twoheadrightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
 - B_{\circ}^{+} := the monoid presented by (...).
- <u>Fact</u>: The group B_0 is generated by $\sigma_1, \sigma_2, a_1, a_2$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• <u>Main lemma</u>: The monoid B_{\circ}^+ is cancellative and admits least common multiples and greatest common divisors. It is a Zappa-Szep product of B_{∞}^+ and F^+ .

 $B^+_{\infty} \times F^+$ with two actions: $a_i \cdot \beta = db_i(\beta) \cdot a_{\beta^{-1}(i)}$

- Proof (beginning):
 - ▶ The relations (...) hold in B_● (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \twoheadrightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
 - B_{\circ}^{+} := the monoid presented by (...).
- <u>Fact</u>: The group B_0 is generated by $\sigma_1, \sigma_2, a_1, a_2$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• <u>Main lemma</u>: The monoid B_{\circ}^+ is cancellative and admits least common multiples and greatest common divisors. It is a Zappa-Szep product of B_{∞}^+ and F^+ .

 $B^+_{\infty} \times F^+$ with two actions: $\mathbf{a}_i \cdot \beta = \mathsf{db}_i(\beta) \cdot \mathbf{a}_{\beta^{-1}(i)}$ F^+ acts on B^+_{∞} by doubling strands, B^+_{∞} acts on F^+ by permuting positions.

(日) (日) (日) (日) (日) (日) (日) (日)

- Proof (beginning):
 - ▶ The relations (...) hold in B_● (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \twoheadrightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
 - B_{\circ}^{+} := the monoid presented by (...).
- <u>Fact</u>: The group B_0 is generated by $\sigma_1, \sigma_2, a_1, a_2$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• <u>Main lemma</u>: The monoid B_{\circ}^+ is cancellative and admits least common multiples and greatest common divisors. It is a Zappa-Szep product of B_{∞}^+ and F^+ .

 $B^+_{\infty} \times F^+$ with two actions: $\mathbf{a}_i \cdot \beta = \mathsf{db}_i(\beta) \cdot \mathbf{a}_{\beta^{-1}(i)}$ F^+ acts on B^+_{∞} by doubling strands, B^+_{∞} acts on F^+ by permuting positions.

• <u>Proposition</u>: The group B_{\circ} is a group of fractions for the monoid B_{\circ}^+ ,

(日) (日) (日) (日) (日) (日) (日) (日)

- Proof (beginning):
 - ▶ The relations (...) hold in B_● (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \twoheadrightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
 - B_{\circ}^{+} := the monoid presented by (...).
- <u>Fact</u>: The group B_0 is generated by $\sigma_1, \sigma_2, a_1, a_2$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• <u>Main lemma</u>: The monoid B_{\circ}^+ is cancellative and admits least common multiples and greatest common divisors. It is a Zappa-Szep product of B_{∞}^+ and F^+ .

 $B^+_{\infty} \times F^+$ with two actions: $\mathbf{a}_i \cdot \beta = \mathsf{db}_i(\beta) \cdot \mathbf{a}_{\beta^{-1}(i)}$ F^+ acts on B^+_{∞} by doubling strands, B^+_{∞} acts on F^+ by permuting positions.

• <u>Proposition</u>: The group B_{\circ} is a group of fractions for the monoid B_{\circ}^{+} , and one has $B_{\circ} = (F^{+})^{-1} \cdot B_{\infty} \cdot F^{+}.$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Proof (beginning):
 - ▶ The relations (...) hold in B_● (obvious);
 - ▶ For the other direction, introduce
 - B_{\circ} := the group presented by (...); we know $B_{\circ} \twoheadrightarrow B_{\bullet}$; we want $B_{\circ} \simeq B_{\bullet}$.
 - B_{\circ}^{+} := the monoid presented by (...).
- <u>Fact</u>: The group B_0 is generated by $\sigma_1, \sigma_2, a_1, a_2$. Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1 =$

• <u>Main lemma</u>: The monoid B_{\circ}^+ is cancellative and admits least common multiples and greatest common divisors. It is a Zappa-Szep product of B_{∞}^+ and F^+ .

 $B^+_{\infty} \times F^+$ with two actions: $\mathbf{a}_i \cdot \beta = \mathsf{db}_i(\beta) \cdot \mathbf{a}_{\beta^{-1}(i)}$ F^+ acts on B^+_{∞} by doubling strands, B^+_{∞} acts on F^+ by permuting positions.

• <u>Proposition</u>: The group B_{\circ} is a group of fractions for the monoid B_{\circ}^{+} , and one has $B_{\circ} = (F^{+})^{-1} \cdot B_{\infty} \cdot F^{+}.$

Every parenthesized braid diagram can be isotoped to a diagram "dilatation + braid + contraction".

• <u>Proposition</u>: Let $sh : \sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every *i*.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• <u>Proposition</u>: Let $sh : \sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i. For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$,

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• <u>Proposition</u>: Let $sh : \sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i. For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$, $g \circ h := g \cdot sh(h) \cdot a_1$. • <u>Proposition</u>: Let $sh : \sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i. For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$, $g \circ h := g \cdot sh(h) \cdot a_1$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Proposition</u>: Let $sh : \sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i. For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$, $g \circ h := g \cdot sh(h) \cdot a_1$.

$$f(x * (y * z) = (x * y) * (x * z): \text{ self-distributivity, "LD"}$$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Proposition</u>: Let $sh : \sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i. For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$, $g \circ h := g \cdot sh(h) \cdot a_1$.

$$\begin{array}{c} (x * (y * z) = (x * y) * (x * z): \text{ self-distributivity, "LD"} \\ x * (y * z) = (x \circ y) * z \\ x * (y \circ z) = (x * y) \circ (x * z) \end{array}$$

• <u>Proposition</u>: Let $sh : \sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i. For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$, $g \circ h := g \cdot sh(h) \cdot a_1$.

Then $(B_{\circ}, *, \circ)$ is an augmented LD-system.

$$\begin{pmatrix} x * (y * z) = (x * y) * (x * z): \text{ self-distributivity, "LD"} \\ x * (y * z) = (x \circ y) * z \\ x * (y \circ z) = (x * y) \circ (x * z) \end{cases}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

• <u>Proposition</u>: Let $sh : \sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i. For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$, $g \circ h := g \cdot sh(h) \cdot a_1$.

$$\begin{array}{c} x * (y * z) = (x * y) * (x * z): \text{ self-distributivity, "LD"} \\ x * (y * z) = (x \circ y) * z \\ x * (y \circ z) = (x * y) \circ (x * z) \end{array}$$

• <u>Proposition</u>: Let $sh : \sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i. For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$, $g \circ h := g \cdot sh(h) \cdot a_1$.

$$\begin{bmatrix} x * (y * z) \\ x * (y * z) \\ z = (x * y) * (x * z): \text{ self-distributivity, "LD"} \\ x * (y * z) = (x \circ y) * z \\ x * (y \circ z) = (x * y) \circ (x * z)$$

• <u>Proposition</u>: Let $sh : \sigma_i \mapsto \sigma_{i+1}$ and $a_i \mapsto a_{i+1}$ for every i. For g, h in B_\circ , let $g * h := g \cdot sh(h) \cdot \sigma_1 \cdot sh(h)^{-1}$, $g \circ h := g \cdot sh(h) \cdot a_1$.

Then $(B_{\circ}, *, \circ)$ is an augmented LD-system.

$$x * (y * z) = (x * y) * (x * z)$$
: self-distributivity, "LD"
 $x * (y * z) = (x \circ y) * z$
 $x * (y \circ z) = (x * y) \circ (x * z)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

• Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})

- Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
 - ► Need to show that, for w a parenthesized braid word, the isotopy class of the diagram D(w) determines the class [w] of w in B₀.

- Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
 - ► Need to show that, for w a parenthesized braid word, the isotopy class of the diagram D(w) determines the class [w] of w in B₀.
- Proof (sketch):
 - Use diagram colorings: Having fixed a set S with a binary operation *,

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
 - ► Need to show that, for w a parenthesized braid word, the isotopy class of the diagram D(w) determines the class [w] of w in B₀.
- Proof (sketch):
 - ► Use diagram colorings: Having fixed a set *S* with a binary operation *,
 - put colors from S on the top ends of a (parenthesized) braid diagram,

(日) (日) (日) (日) (日) (日) (日) (日)

- Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
 - \blacktriangleright Need to show that, for w a parenthesized braid word, the isotopy class of the diagram D(w) determines the class [w] of w in B_{\circ} .
- Proof (sketch):
 - \blacktriangleright Use diagram colorings: Having fixed a set S with a binary operation *,
 - put colors from S on the top ends of a (parenthesized) braid diagram,

- Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
 - \blacktriangleright Need to show that, for w a parenthesized braid word, the isotopy class of the diagram D(w) determines the class [w] of w in B_{\circ} .
- Proof (sketch):
 - \blacktriangleright Use diagram colorings: Having fixed a set S with a binary operation *,
 - put colors from S on the top ends of a (parenthesized) braid diagram,

- propagate using the rule X

- Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
 - \blacktriangleright Need to show that, for w a parenthesized braid word, the isotopy class of the diagram D(w) determines the class [w] of w in B_{\circ} .
- Proof (sketch):
 - \blacktriangleright Use diagram colorings: Having fixed a set S with a binary operation *,
 - put colors from S on the top ends of a (parenthesized) braid diagram,

- Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
 - \blacktriangleright Need to show that, for w a parenthesized braid word, the isotopy class of the diagram D(w) determines the class [w] of w in B_{\circ} .
- Proof (sketch):
 - \blacktriangleright Use diagram colorings: Having fixed a set S with a binary operation *,
 - put colors from S on the top ends of a (parenthesized) braid diagram,

- propagate using the rule X

- works (compatible with Reidemeister move) when * obeys the LD law.

- Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
 - \blacktriangleright Need to show that, for w a parenthesized braid word, the isotopy class of the diagram D(w) determines the class [w] of w in B_{0} .
- Proof (sketch):
 - \blacktriangleright Use diagram colorings: Having fixed a set S with a binary operation *.
 - put colors from S on the top ends of a (parenthesized) braid diagram,

- propagate using the rule X

- works (compatible with Reidemeister move) when * obeys the LD law.

▶ Here: use B_{\circ} and its LD-operation * for coloring diagrams

- Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
 - ► Need to show that, for w a parenthesized braid word, the isotopy class of the diagram D(w) determines the class [w] of w in B₀.
- Proof (sketch):
 - Use diagram colorings: Having fixed a set S with a binary operation *,
 - put colors from S on the top ends of a (parenthesized) braid diagram,

- propagate using the rule X

- works (compatible with Reidemeister move) when * obeys the LD law.

- ▶ Here: use B_{\circ} and its LD-operation * for coloring diagrams
 - the point: there exists eval : $(B_{\circ})^{\infty} \to B_{\circ}$ such that, in B_{\circ} ,

$$\begin{array}{c}
\overline{x} \\
D(w) \\
\overline{x} \cdot D(w)
\end{array}$$

A D M A

- Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
 - ► Need to show that, for w a parenthesized braid word, the isotopy class of the diagram D(w) determines the class [w] of w in B₀.
- Proof (sketch):
 - Use diagram colorings: Having fixed a set S with a binary operation *,
 - put colors from S on the top ends of a (parenthesized) braid diagram,

- propagate using the rule X

- works (compatible with Reidemeister move) when * obeys the LD law.

▶ Here: use B_{\circ} and its LD-operation * for coloring diagrams

- the point: there exists eval : $(B_{\circ})^{\infty} \to B_{\circ}$ such that, in B_{\circ} ,

$$\begin{array}{c|c}
\vec{x} & \vec{x} \\
D(w) \\
\vec{x} \cdot D(w)
\end{array} \quad \text{implies} \quad \text{eval}(\vec{x} \cdot D(w)) = \text{eval}(\vec{x}) \cdot [w].$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Recall: want to prove $B_{\circ} \simeq B_{\bullet}$, i.e., B_{\bullet} presented by the "braid-Thompson" relations (no other relation in B_{\bullet} than those of B_{\circ})
 - ► Need to show that, for w a parenthesized braid word, the isotopy class of the diagram D(w) determines the class [w] of w in B₀.
- Proof (sketch):
 - Use diagram colorings: Having fixed a set S with a binary operation *,
 - put colors from S on the top ends of a (parenthesized) braid diagram,

- propagate using the rule X

- works (compatible with Reidemeister move) when * obeys the LD law.

▶ Here: use B_{\circ} and its LD-operation * for coloring diagrams

- the point: there exists eval : $(B_{\circ})^{\infty} \rightarrow B_{\circ}$ such that, in B_{\circ} ,

- hence, [w] recovered from the isotopy class of D(w).

• <u>Proposition</u>: The augmented LD-system $(B_{\bullet}, *, \circ)$ is torsion-free.

every element of B_{\bullet} generates a free subsystem

• <u>Proposition</u>: The augmented LD-system $(B_{\bullet}, *, \circ)$ is torsion-free.

every element of B_{\bullet} generates a free subsystem

• <u>Proposition</u>: Every element of B_{\bullet} has a canonical expression in terms of special ones.

the closure of 1 under * and \circ

- 白 ト - 4 戸 ト - 4 戸 ト - 三 戸

500

• <u>Proposition</u>: The augmented LD-system $(B_{\bullet}, *, \circ)$ is torsion-free.

every element of B_{\bullet} generates a free subsystem

• <u>Proposition</u>: Every element of B_• has a canonical expression in terms of special ones. the closure of 1 under * and 0

• <u>Proposition</u>: The group B_{\bullet} is orderable; more precisely: every element of B_{\bullet} has an expression in which the σ_i with minimal index occurs positively only (no σ_i^{-1}).

▶ similar to B_{∞} , but not expected because of the a_i s

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: The augmented LD-system $(B_{\bullet}, *, \circ)$ is torsion-free.

every element of B_{\bullet} generates a free subsystem

• <u>Proposition</u>: Every element of B_• has a canonical expression in terms of special ones. the closure of 1 under * and 0

• <u>Proposition</u>: The group B_{\bullet} is orderable; more precisely: every element of B_{\bullet} has an expression in which the σ_i with minimal index occurs positively only (no σ_i^{-1}).

▶ similar to B_{∞} , but not expected because of the a_i s

• <u>Proposition</u>: The group B_{\bullet} is (isomorphic to) M. Brin's group \widehat{BV} .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: The augmented LD-system $(B_{\bullet}, *, \circ)$ is torsion-free.

every element of B_{\bullet} generates a free subsystem

• <u>Proposition</u>: The group B_{\bullet} is orderable; more precisely: every element of B_{\bullet} has an expression in which the σ_i with minimal index occurs positively only (no σ_i^{-1}).

▶ similar to B_{∞} , but not expected because of the a_i s

• <u>Proposition</u>: The group B_{\bullet} is (isomorphic to) M. Brin's group \widehat{BV} . "braid group on one strand" • <u>Proposition</u>: The augmented LD-system $(B_{\bullet}, *, \circ)$ is torsion-free.

every element of B_{\bullet} generates a free subsystem

- <u>Proposition</u>: Every element of B_• has a canonical expression in terms of special ones. the closure of 1 under * and 0
- <u>Proposition</u>: The group B_{\bullet} is orderable; more precisely: every element of B_{\bullet} has an expression in which the σ_i with minimal index occurs positively only (no σ_i^{-1}).
 - ▶ similar to B_{∞} , but not expected because of the a_i s
- <u>Proposition</u>: The group B_{\bullet} is (isomorphic to) M. Brin's group \widehat{BV} .

"braid group on one strand"

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▶ a typical element:

Plan:

- 1. Artin's braid group B_∞
- 2. Thompson's group F
- \bullet 3. The parenthesized braid group B_{\bullet}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• 4. The Artin representation of B_{\bullet}

• Recall: $D_n = \text{disk}$ with *n* punctures

- Recall: $D_n = \text{disk}$ with *n* punctures
 - ► Here: Cantor set of punctures.

• Recall: $D_n = \text{disk}$ with n punctures

► Here: Cantor set of punctures.

▶ Technically more convenient to start with a **sphere** rather than with a disk.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- Recall: $D_n = \text{disk}$ with n punctures
 - ► Here: Cantor set of punctures.
 - ▶ Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: $S_{\mathcal{K}}$:= sphere S^2 with a Cantor set of punctures removed on the equator.

• Recall: $D_n = \text{disk}$ with n punctures

► Here: Cantor set of punctures.

▶ Technically more convenient to start with a sphere rather than with a disk.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.

▶ Technically more convenient to start with a sphere rather than with a disk.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.

▶ Technically more convenient to start with a sphere rather than with a disk.

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.

▶ Technically more convenient to start with a sphere rather than with a disk.

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.

▶ Technically more convenient to start with a sphere rather than with a disk.

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.

▶ Technically more convenient to start with a sphere rather than with a disk.

↓□▶ < @▶ < E▶ < E▶ < E</p>

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.
 - ▶ Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: S_{κ} := sphere S^2 with a Cantor set of punctures removed on the equator. = two hemispheres connected by bridges indexed by dyadic numbers

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.
 - ▶ Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: S_{κ} := sphere S^2 with a Cantor set of punctures removed on the equator. = two hemispheres connected by bridges indexed by dyadic numbers

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.
 - ▶ Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: S_{κ} := sphere S^2 with a Cantor set of punctures removed on the equator. = two hemispheres connected by bridges indexed by dyadic numbers

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.
 - ▶ Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: S_{κ} := sphere S^2 with a Cantor set of punctures removed on the equator. = two hemispheres connected by bridges indexed by dyadic numbers

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.
 - ▶ Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: S_{κ} := sphere S^2 with a Cantor set of punctures removed on the equator. = two hemispheres connected by bridges indexed by dyadic numbers

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.
 - ▶ Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: S_{κ} := sphere S^2 with a Cantor set of punctures removed on the equator. = two hemispheres connected by bridges indexed by dyadic numbers

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.
 - ▶ Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: S_{κ} := sphere S^2 with a Cantor set of punctures removed on the equator. = two hemispheres connected by bridges indexed by dyadic numbers

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.
 - ▶ Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: S_{κ} := sphere S^2 with a Cantor set of punctures removed on the equator. = two hemispheres connected by bridges indexed by dyadic numbers

- Recall: $D_n = \text{disk}$ with n punctures
 - ▶ Here: Cantor set of punctures.
 - ▶ Technically more convenient to start with a sphere rather than with a disk.
- <u>Definition</u>: S_{κ} := sphere S^2 with a Cantor set of punctures removed on the equator. = two hemispheres connected by bridges indexed by dyadic numbers

• Action of B_{\bullet} on S_{K} by homeomorphisms:

• Action of B_{\bullet} on $S_{\mathcal{K}}$ by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_{\mathcal{K}})$

• Action of B_{\bullet} on S_{K} by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_{K})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• Action of B_{\bullet} on S_{K} by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_{K})$

• Action of B_{\bullet} on S_{K} by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_{K})$

• Action of B_{\bullet} on $S_{\mathcal{K}}$ by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_{\mathcal{K}})$

• Action of B_{\bullet} on $S_{\mathcal{K}}$ by homeomorphisms: an embedding of B_{\bullet} in $\mathcal{MCG}(S_{\mathcal{K}})$

• Induces an action ρ on $\pi_1(S_K)$

• Induces an action ρ on $\pi_1(S_K)$ ("Artin representation"):

• <u>Proposition</u>: The Artin representation ρ of B_{\bullet} in $Aut(F_{\infty})$ is faithful.

- <u>Proposition</u>: The Artin representation ρ of B_{\bullet} in $Aut(F_{\infty})$ is faithful.
- Proof:
 - ▶ Uses the LD-structure again

• <u>Proposition</u>: The Artin representation ρ of B_{\bullet} in $Aut(F_{\infty})$ is faithful.

• Proof:

- ▶ Uses the LD-structure again
- ▶ Method: Show that, if a braid word w contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Proposition</u>: The Artin representation ρ of B_{\bullet} in $Aut(F_{\infty})$ is faithful.

• Proof:

- ▶ Uses the LD-structure again
- ▶ Method: Show that, if a braid word w contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

• Key point: $\rho(w)$ can be read from colouring trees

(similar to the Hurwitz action of a braid word on a sequence)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Proposition</u>: The Artin representation ρ of B_{\bullet} in $Aut(F_{\infty})$ is faithful.

• Proof:

- ▶ Uses the LD-structure again
- ▶ Method: Show that, if a braid word w contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

• Key point: $\rho(w)$ can be read from colouring trees

(similar to the Hurwitz action of a braid word on a sequence)

• If w contains one σ_1 and no σ_1^{-1} ,

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: The Artin representation ρ of B_{\bullet} in $Aut(F_{\infty})$ is faithful.

• Proof:

- ▶ Uses the LD-structure again
- ▶ Method: Show that, if a braid word w contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

• Key point: $\rho(w)$ can be read from colouring trees

(similar to the Hurwitz action of a braid word on a sequence)

▶ If w contains one σ_1 and no σ_1^{-1} , then $\rho(w)(x_1)$ finishes with x_1^{-1} ,

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: The Artin representation ρ of B_{\bullet} in $Aut(F_{\infty})$ is faithful.

• Proof:

- ▶ Uses the LD-structure again
- Method: Show that, if a braid word w contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

▶ Key point: $\rho(w)$ can be read from colouring trees

(similar to the Hurwitz action of a braid word on a sequence)

▶ If w contains one σ_1 and no σ_1^{-1} , then $\rho(w)(x_1)$ finishes with x_1^{-1} , hence $\rho(w)(x_1) \neq x_1$,

• <u>Proposition</u>: The Artin representation ρ of B_{\bullet} in $Aut(F_{\infty})$ is faithful.

• Proof:

- ▶ Uses the LD-structure again
- ▶ Method: Show that, if a braid word *w* contains one σ_1 and no σ_1^{-1} ,

then $\rho(w)$ moves some x_s , hence is nontrivial.

▶ Key point: $\rho(w)$ can be read from colouring trees

(similar to the Hurwitz action of a braid word on a sequence)

▶ If w contains one σ_1 and no σ_1^{-1} , then $\rho(w)(x_1)$ finishes with x_1^{-1} , hence $\rho(w)(x_1) \neq x_1$, hence $\rho(w) \neq id$.

Adv. in Math. 205 (2006) 354-409.

Adv. in Math. 205 (2006) 354-409.

- <u>M. Brin</u>, The algebra of strand splitting. I. A braided version of Thompson's group V J. Group Th. 10 (2007) 757–788.
- <u>M. Brin</u>, The algebra of strand splitting. II. A presentation for the braid group on one strand Intern. J. of Algebra and Comput 16 (2006) 203–219.

Adv. in Math. 205 (2006) 354-409.

・ロト ・ 日 ・ モ ト ・ 日 ・ うへつ

- <u>M. Brin</u>, The algebra of strand splitting. I. A braided version of Thompson's group V J. Group Th. 10 (2007) 757–788.
- <u>M. Brin</u>, The algebra of strand splitting. II. A presentation for the braid group on one strand Intern. J. of Algebra and Comput 16 (2006) 203–219.
- <u>P. Dehornoy</u>, with <u>I. Dynnikov</u>, <u>D. Rolfsen</u>, <u>B. Wiest</u>, *Ordering braids* Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

Adv. in Math. 205 (2006) 354-409.

- <u>M. Brin</u>, The algebra of strand splitting. I. A braided version of Thompson's group V J. Group Th. 10 (2007) 757–788.
- <u>M. Brin</u>, The algebra of strand splitting. II. A presentation for the braid group on one strand Intern. J. of Algebra and Comput 16 (2006) 203–219.
- <u>P. Dehornoy</u>, with <u>I. Dynnikov</u>, <u>D. Rolfsen</u>, <u>B. Wiest</u>, *Ordering braids* Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)

www.math.unicaen.fr/~dehornoy