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• A group B• that extends both Artin’s braid group B∞ and Thompson’s group F ,
occurring in various contexts:

◮ “geometry group of an algebraic law”,
◮ subgroup of M.Brin’s braided Thompson group BV ,
◮ quotient of a group of Greenberg–Sergiescu and Funar–Kapoudjian, ...

• Here: insist on similarity with B∞ (use of self-distributivity)
and connection with homeomorphisms of S2\Cantor.
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• Definition (Artin): For n > 1, the braid group Bn

= { n-strand braid diagrams } / isotopy

= π1(configuration space of n points of C mod. action of Sn)

=MCG(Dn)
↑

{homeomorphisms of an n-punctured disk that fix ∂Dn}/isotopy

=
〈
σ1, ..., σn−1

∣∣∣ σiσj = σjσi
σiσjσi = σjσiσj

for |i − j | > 2

for |i − j | = 1

〉
.

σi : ··· ···
1 i i+1 n

≈

σ1σ2σ1 σ2σ1σ2

≈

σ1σ3 σ3σ1
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• Embedding Bn into Bn+1: add a trivial (n + 1)st strand

7→

1 ... n 1 ... n n+1

• Then B∞ := lim−→Bn =
〈
σ1, σ2, ...

∣∣∣ σiσj = σjσi
σiσjσi = σjσiσj

for |i − j | > 2

for |i − j | = 1

〉
.

• Equivalently: Identify Bn with a subgroup of Bn+1, and put

B∞ =
⋃

n

Bn.
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• Viewing Bn as a group of (isotopy classes of) homeomorphisms of Dn:

◮ action of Bn on the fundamental group of Dn, a free group of rank n.

∗

D3

x1 x2 x3
σ1

∗

D3
x1x2x

−1
1

x1

x3

• From there: homomorphism ρ from Bn to Aut(Fn):

ρ(σi ) :





xi 7→ xixi+1x
−1
i ,

xi+1 7→ xi ,

xk 7→ xk for k 6= i , i + 1.

• Theorem (Artin): The homomorphism ρ is injective.
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• Definition (Richard Thompson, 1965):

F := 〈a0, a1, ... | ajai = aiaj+1 for j > i〉. (∗)

◮ occurs in the construction of a f.p. group with unsolvable word problem

• Fact: The group F is a group of right fractions for the monoid F+.
↑

the monoid presented by (∗)

• Fact: Every element of F has a unique expression of the form

ap00 ap11 ··· a
pn
n a−qn

n ··· a−q1
1 a−q0

0

such that ((pk 6= 0 and qk 6= 0) implies (pk+1 6= 0) or (qk+1 6= 0)).

• Fact: The group F is finitely presented:

◮ generated by a0 and a1, since an = a
an0
1 for n > 2;

◮ relations: “aa12 = a3” and “aa13 = a4”, that is, aa0a11 = a
a20
1 and a

a20a1
1 = a

a30
1 .
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Subgroups of F

• Fact: The center of F is trivial.

◮ Point: every homeomorphism commuting with x1 fixes 1/2.

• Fact: Commutators in F correspond to homeomorphisms with slope 1 near 0 and 1.

◮ Hence F/[F , F ] ≃ Z⊕ Z.

• Proposition: Every proper quotient of F is abelian.

◮ Point: Every normal subgroup contains all commutators.

• Theorem: The subgroup [F ,F ] is simple.

◮ Point: A normal subgroup of [F ,F ] contains all commutators.

• Theorem (Brin–Squier, 1985): The group F includes no free subgroup of rank > 2.

◮ In fact: Every non-abelian subgroup of F includes a copy of Z∞.
◮ Compare with: F+ includes a free monoid of rank 2.
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Three questions about F

• Question 1 (Gersten): Is F automatic? (F is not word hyperbolic)
↑

∃ finite state automaton computing a normal form for the elements

• Theorem (Guba 2005): The Dehn function of F is quadratic.
↑

Φ(n) := sup{area(w) | length(w) = n and w represents 1 in F}

• Question 2 (Geoghegan): Is F amenable?
↑

∃ left-invariant [0, 1]-measure on P(F )

• Question 3: What is the growth rate of F+ and F w.r.t. {a±1
0 , a±1

1 }?↑
n
√
an, with an:= #{elements with length n expression}

• Theorem: - (i) (Burillo) The growth rate of F+ is 1
2 sin(π/14)

≈ 2.24....

- (ii) (Guba) The growth rate of F lies between 3+
√

5
2
≈ 2.618... and 3.
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• 4. The Artin representation of B•
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• Ordinary braid diagrams:

← initial positions:

← final positions:

◮ one elementary pattern: crossing σi : ··· ···
1 i i+1 n

• Parenthesized braid diagrams: (possibly) non-equidistant positions:

← initial positions: ( )

← final positions: ( )

◮ two elementary patterns: crossing σi : ··· ···
1 i i+1 n

grouping ai : ··· ···

(and their inverses)
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Parenthesized braid diagrams (cont’d)

• More precisely:

σi →
11 2

···
i i+1

···

︸ ︷︷ ︸
↑

everything in [i + 1, i + 2) crosses
over everything in [i , i + 1)

ai →
11 2

···
i i+1

···

︸ ︷︷ ︸
preserved ↑

everything in [i , i + 1)
is shrinked by an ε-factor

︸ ︷︷ ︸
translated
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Parenthesized braid diagrams (cont’d)

• A typical parenthesized braid diagram: σ2

a1

σ−1
1

a−1
2

• Connection with binary trees: positions correspond to nodes in a binary tree;
◮ Enumerated starting from the root and descending the right branch.

σi : ...

i i+1

...σi : ...

i i+1

... corresponds to 7→
ti
ti+1

i
i+1

ti+1
ti

i
i+1

σi = switching subtrees

ai : ...

i i+1

...ai : ...

i i+1

... corresponds to 7→
ti
ti+1 ti ti+1

i
i+1

i
i+1

ai = applying associativity
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Making a group

• Parenthesized braid diagrams form a groupoid (small category with inverses):

B := { parenthesized braid diagrams }/isotopy.
◮ Two isotopy classes D,D′ can be composed when

the final positions of D coincide with the initial positions of D′.

• To make a group:

◮ Going from
∐

Bn (groupoid) to B∞: embed Bn into Bn′ for n 6 n′.
◮ Going from

∐
Bt (groupoid) to a group: embed Bt into Bt′ for t ⊆ t′.
↑

the family of (isotopy classes) of diagrams with initial positions t (a binary tree)

• Definition: The group B• of parenthesized braids is
lim−→ { parenthesized braid diagrams }/isotopy.
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◮ The relations (...) hold in B• (obvious);
◮ For the other direction, introduce

- B◦ := the group presented by (...); we know B◦ →→ B•; we want B◦ ≃ B•.
- B+

◦ := the monoid presented by (...).
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◮ a typical element:



Plan:

• 1. Artin’s braid group B∞

• 2. Thompson’s group F

• 3. The parenthesized braid group B•

• 4. The Artin representation of B•
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

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Artin representation of B•

• Proposition: The Artin representation ρ of B• in Aut(F∞) is faithful.

• Proof:
◮ Uses the LD-structure again
◮ Method: Show that, if a braid word w contains one σ1 and no σ−1

1 ,
then ρ(w) moves some xs , hence is nontrivial.

◮ Key point: ρ(w) can be read from colouring trees
(similar to the Hurwitz action of a braid word on a sequence)

◮ If w contains one σ1 and no σ−1
1 , then ρ(w)(x1) finishes with x−1

1 ,
hence ρ(w)(x1) 6= x1, hence ρ(w) 6= id. �

σ1 a1
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