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e A group B, that extends both Artin’s braid group Bo and Thompson's group F,
occurring in various contexts:

» “geometry group of an algebraic law”,

» subgroup of M. Brin's braided Thompson group BV,

» quotient of a group of Greenberg—Sergiescu and Funar—Kapoudjian,
o Here: insist on similarity with Bso (use of self-distributivity)

and connection with homeomorphisms of S2\Cantor.



3
o

LS

o




Plan:

e 1. Artin’s braid group Boso

«0O>» «F»r «

!
a
i

DA™



Plan:

e 1. Artin’s braid group Boso

e 2. Thompson's group F

«0O>» «F»r «

!
a
i

DA™



Plan:

e 1. Artin’s braid group B
e 2. Thompson's group F

e 3. The parenthesized braid group Be



Plan:

e 1. Artin’s braid group B
e 2. Thompson's group F
e 3. The parenthesized braid group Be

e 4. The Artin representation of B,



Plan:
e 1. Artin’s braid group B
e 2. Thompson's group F
e 3. The parenthesized braid group Be

e 4. The Artin representation of B,

«0O>» «F»r «

!

v

a
i
v

DA™



Hac




Artin’s braid groups

e Definition (Artin): For n > 1, the braid group B,



Artin’s braid groups

e Definition (Artin): For n > 1, the braid group B,
= { n-strand braid diagrams } / isotopy



Artin’s braid groups

e Definition (Artin): For n > 1, the braid group B,
{ n-strand braid diagrams } / isotopy

m1(configuration space of n points of C mod. action of S,)



Artin’s braid groups

e Definition (Artin): For n > 1, the braid group B,

{ n-strand braid diagrams } / isotopy

= m1(configuration space of n points of C mod. action of S,)

= MCG(Dn)
)

{homeomorphisms of an n-punctured disk that fix 9D, } /isotopy



Artin’s braid groups

e Definition (Artin): For n > 1, the braid group B,
{ n-strand braid diagrams } / isotopy

m1(configuration space of n points of C mod. action of S,)

= MCG(Dn)
I
homeomorphisms of an n-punctured disk that fix 9D, } /isotopy
I phi f p | disk tl fix ODp} /i o)

7
0;0; = 00,0, for |i —j| =1

0;0; = 0.0; for\i—j\>2>
J J J

= <"17 o00p @1 ’ o
1



Artin’s braid groups

e Definition (Artin): For n > 1, the braid group B,

{ n-strand braid diagrams } / isotopy

m1(configuration space of n points of C mod. action of S,)
= MCG(Dnr)

_<0_ " ’ ;0. = 0.0, for\l—1\22>
- 12" “n—1 3 — - O.0. . A
0;0;0; = 0;0,0; for |i —j| =1

(N I 2O I

i i+1



Artin’s braid groups

e Definition (Artin): For n > 1, the braid group B,
{ n-strand braid diagrams } / isotopy

= m1(configuration space of n points of C mod. action of S,)

= MCG(Dn)
< ’ ey = o for\i—j\>2>
- 0-7 ’0-_ . .
! n=1] 000, = 00,0, for |i—j|=1
(N I 2O I
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e Definition (Artin): For n > 1, the braid group B,

{ n-strand braid diagrams } / isotopy

= m1(configuration space of n points of C mod. action of S,)

= MCG(Dn)
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The group B

e Embedding B, into Bpy1: add a trivial (n + 1)st strand

n n+l
Then B — lim B, — 0,0; = 0;0; for |[i —j| > 2
° en oc—|_> n—<(7170'27 ‘(7’0)(7’:0)(7’0) f0r|l—_]|:]_>

e Equivalently: Identify B, with a subgroup of B,;1, and put

Boo = Bn-
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Artin's representation

e Viewing B, as a group of (isotopy classes of ) homeomorphisms of Dp:

» action of B, on the fundamental group of D, a free group of rank n.

D3
il
X1 X0 X3 -y
[ ] [ ] [ ) [ ) [ ]
-~
*

e From there: homomorphism p from B, to Aut(F,):
X = X,'X,'_HXFI7
p(o:) 1§ X1 Xi,
X +— x, for k £ i, i+ 1.

e Theorem (Artin): The homomorphism p is injective.
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The group F

o Definition (Richard Thompson, 1965):

F :=(ag,a1,... | ajaj = ajaj41 for j > i). (*)

e Fact: The group F is a group of right fractions for the monoid F.

e Fact: Every element of F has a unique expression of the form

PO ,P1
ap a;

such that ((px # 0 and qx # 0) implies (pxy1 # 0) or (qkt1 # 0)).

—q1

oo gPra—an .. —qo
aftra, ... a;

&)

e Fact: The group F is finitely presented:

. ag
» generated by ag and a1, since ap = 310 forn>2;

2 2 3
. u“ ” u“ ” . a ap a a
» relations: agl = a3” and agl = ay”, that is, aioal = a;° and a}° 1= a°.
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Subgroups of F

e Fact: The center of F is trivial.

e Fact: Commutators in F correspond to homeomorphisms with slope 1 near 0 and 1.
» Hence F/[F,F] ~Z & Z.

e Proposition: Every proper quotient of F is abelian.

e Theorem: The subgroup [F, F] is simple.

e Theorem (Brin—Squier, 1985): The group F includes no free subgroup of rank > 2.

» In fact: Every non-abelian subgroup of F includes a copy of Z°°.
» Compare with: F* includes a free monoid of rank 2.
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Three questions about F

e Question 1 (Gersten): Is F automatic? (F is not word hyperbolic)

3 finite state automaton computing a normal form for the elements

® Theorem (Guba 2005): The Dehn function of F is quadratic.

1
®(n) := sup{area(w) | length(w) = n and w represents 1 in F}

e Question 2 (Geoghegan): Is F amenable?

3 left-invariant [0, 1]-measure on PB(F)
e Question 3: What is the growth rate of F* and F w.r.t. {aBH7 aitl}?
"an, with ap:= #{elements with length n expression}

vV

e Theorem: - (i) (Burillo) The growth rate of F* is m ~224....

- (ii) (Guba) The growth rate of F lies between 3+2\/§ ~ 2.618... and 3.
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Parenthesized braids

e Ordinary braid diagrams:

/

W

» one elementary pattern: crossing 0;:

e Parenthesized braid diagrams:

l\

M

» two elementary patterns: crossing o; :

< initial positions: e o o o

< final positions: e o o o

X
——

non-equidistant positions:

< initial positions: (00) o

< final positions: . (a-)

§
N

grouping a; : I

(and their inverses)
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Parenthesized braid diagrams (cont'd)

e More precisely:

- &

T
everything in [i + 1,/ + 2) crosses
over everything in [i,i + 1)

I m - W///

preserved translated
everythlng in[i,i+1)
is shrinked by an e-factor
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Making a group

e Parenthesized braid diagrams form a groupoid (small category with inverses):
BB := { parenthesized braid diagrams } /isotopy.

» Two isotopy classes D, D’ can be composed when
the final positions of D coincide with the initial positions of D’.

e To make a group:
» Going from [ B, (groupoid) to Boo: embed By, into B, for n < n’.
» Going from [ B; (groupoid) to a group: embed B; into B, for t C t’.

the family of (isotopy classes) of diagrams with initial positions t (a binary tree)

o Definition: The group Be of parenthesized braids is
lim { parenthesized braid diagrams } /isotopy.
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for x =0 or a: and  ajxj_; = xja; forj
g0a; = ajo;,  0;0,3] = a3;0; forj=i+1.
)

0.0.0. = 0.0.0;,
vy 4y J
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e Proposition: A presentation of Be in terms of the generators a; and o is
and apxj_, =xja; forj>i+2,

forx =0 ora: ox; = xo;
0;0,0; = 0,0,0;, ;0,3 = 3j0;,  0;0;3; = a;0; forj=i+1.
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» commutation relations:
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g o h:=g-sh(h)-a.

, and a; — aj1 for every i. For g, h in Bo, let
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Presentation of Be (proof)

e Recall: want to prove By >~ B,, i.e., Be presented by the “braid-Thompson” relations

» Need to show that, for w a parenthesized braid word,
the isotopy class of the diagram D(w) determines the class [w] of w in Bo.

o Proof (sketch):

» Use diagram colorings: Having fixed a set S with a binary operation x,

- put colors from S on the top ends of a braid diagram,
Xy
- propagate using the rule x
X*Yy X

- works when * obeys the LD law.

» Here: use B, and its LD-operation * for coloring diagrams

- the point: there exists eval : (Bo)°° — B, such that, in Bo,
X

D(w) implies eval(X- D(w)) = eval(X) - [w].

X D(w)
- hence, [w] recovered from the isotopy class of D(w). O
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Plan:
e 1. Artin’s braid group Boso
e 2. Thompson's group F

e 3. The parenthesized braid group Be

e 4. The Artin representation of B,
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Action of Be on Sk

e Action of Be on Sk by homeomorphisms: an embedding of Be in MCG(Sk)

a “Dehn twist

a “dilatation—contraction”
exchanging D; and D;y;

expanding D; and contracting Dj

e Induces an action p on m1(Sk) (“Artin representation” ):

_ Xj = XiXit1,  Xils b Xi
Xis ¥ XiXiq1,sX; ! XI I._l:—i I’lf,;r j>2“s
_ X vy
» read p(0;):4 Xiy1,s > Xi p(a;): X"J+'_’: . lf+orJIY<5<i z
Xi,s > Xi,s for ki, i4+1 Lo Lo

Xk,s F* Xkq1,s for k>i
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Artin representation of Be

e Proposition: The Artin representation p of Be in Aut(F) is faithful. J

e Proof:
» Uses the LD-structure again
» Method: Show that, if a braid word w contains one o; and no afl,
then p(w) moves some xs, hence is nontrivial.

» Key point: p(w) can be read from colouring trees
(similar to the Hurwitz action of a braid word on a sequence)
» If w contains one ¢; and no crl’l, then p(w)(x1) finishes with xfl,

hence p(w)(x1) # x1, hence p(w) # id. O
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