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• Definition (Etingof–Schedler–Soloviev): For (X , ρ) an invol. nondeg. set-theoretic
solution of YBE, the structure group of (X , ρ) is

G := 〈X | {ab = a′b′ | (a′, b′) = ρ(a, b)}〉.

• Equivalently: For (X , ∗) a bijective RC-quasigroup, the structure group of (X , ∗) is

G := 〈X | {s(s ∗ t) = t(t ∗ s) | s, t ∈ X}〉.

• Idem with monoids... 〈...〉+...

• Example: X = {a, b, c} with x ∗ y = f (y) and f : a 7→ b 7→ c 7→ a. Then

G := 〈a, b, c | ac = b
2, ba = c

2, cb = a
2〉.

• Main (open) question: Investigate “YBE-groups” and “YBE-monoids”
from an algebraic and geometric viewpoint.
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• Definition (Gateva–Van den Bergh): For M a monoid and X ⊆ M, an (X -based)
I -structure for M is a bijection ν : N(X ) → M s.t. ν(1) = 1, ν(s) = s for s in X , and

∀a∈N(X ) ∃πa∈SX ∀s∈X (ν(as) = ν(a) πa(s)).

• Theorem (Gateva–Van den Bergh, Jespers–Okniński):

YBE-monoids with atom set X ⇐⇒ Monoids with an X -based I-structure.
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n ,
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◮ M is strongly noetherian (every element of M has a well-defined length),
◮ any two elements of M admit left- and right-lcms and gcds,
◮ the left- and right-divisors of ∆ coincide, are finite in number, and generate M.

A Garside group is a group of fractions of a Garside monoid.

• Examples: Bn, but also: all spherical Artin–Tits groups (including Zn), many others,
thus in particular YBE-groups.
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Garside families

• Main technical property of Garside groups: existence of a greedy normal form.

◮ the latter extends to more general framework
(no need of noetherianity assumption, no need of a “Garside element” ∆, etc.)

◮ unifying notion of a Garside family (in a left-cancellative category)

• Example: (D.–Dyer–Hohlweg): Every Artin–
Tits monoid admits a finite Garside family.
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(formally: Sn with the partial product f • g := fg if ℓ(fg) = ℓ(f ) + ℓ(g))

• Question: Does there exist such a Coxeter-like quotient for every Garside group?

• Theorem (Bessis–Digne–Michel): YES for all spherical Artin–Tits groups.
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• Remark: Special case of class 2 previously addressed by Chouraqui and Godelle.
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• Question: Which finite groups arise? What are their linear representations?
(known: for #X = n, there exists an n-dimensional unitary representation)

e.g., above: a 7→





0 j 0
0 0 1
1 0 0



, b 7→





0 1 0
0 0 j

1 0 0



, c 7→





0 1 0
0 0 1
j 0 0







References



References

• V.G. Drinfeld, On unsolved problems in quantum group theory

Quantum Groups, Lecture Notes in Math. 1510, Springer-Verlag, Berlin, 1992, 1-8



References

• V.G. Drinfeld, On unsolved problems in quantum group theory

Quantum Groups, Lecture Notes in Math. 1510, Springer-Verlag, Berlin, 1992, 1-8

• P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter

equation Duke Math. J. 100 (1999) 169-209



References

• V.G. Drinfeld, On unsolved problems in quantum group theory

Quantum Groups, Lecture Notes in Math. 1510, Springer-Verlag, Berlin, 1992, 1-8

• P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter

equation Duke Math. J. 100 (1999) 169-209

• T.Gateva-Ivanova, M.Van den Bergh, Semigroups of I -type J. Algebra 206 (1998) 97-112



References

• V.G. Drinfeld, On unsolved problems in quantum group theory

Quantum Groups, Lecture Notes in Math. 1510, Springer-Verlag, Berlin, 1992, 1-8

• P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter

equation Duke Math. J. 100 (1999) 169-209

• T.Gateva-Ivanova, M.Van den Bergh, Semigroups of I -type J. Algebra 206 (1998) 97-112
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