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The structure group

e Definition (Etingof-Schedler—Soloviev): For (X, p) an invol. nondeg. set-theoretic
solution of YBE, the structure group of (X, p) is

G:=(X|{ab=2a'b' | (a',b) = p(a,b)}).

e Equivalently: For (X, *) a bijective RC-quasigroup, the structure group of (X, *) is
G:=(X|{s(sxt)=t(t*s)]|s, t € X}).

e ldem with monoids... {...)"...

e Example: X = {a,b,c} with xxy =f(y)and f :a+— b+ c— a. Then

G := (a,b,c | ac = b, ba = c?, cb = a?).

e Main question: Investigate “YBE-groups”’ and “YBE-monoids”
from an algebraic and geometric viewpoint.
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e Fact: The Cayley graph of an YBE-group (resp. monoid) with n atoms resembles

that of Z" (resp. N").

e Example: (a,b | a2 = b?)

e Definition (Gateva—Van den Bergh): For M a monoid and X C M, an
I-structure for M is a bijection v : NX) - M st. v(1) =1, v(s) = s for s in X, and

VaeNX) Ir,e6x VseX (v(as) = v(a) 7a(s)).

e Theorem (Gateva—Van den Bergh, Jespers—Okniriski):

YBE-monoids with atom set X <= Monoids with an X-based I-structure.
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e Main technical property of Garside groups: existence of a greedy normal form.
» the latter extends to more general framework
(no need of noetherianity assumption, no need of a “Garside element” A, etc.)
» unifying notion of a Garside family (in a left-cancellative category)

Tracts in Mathematics 22

Patrick Dehornoy

with Francois Digne
Eddy Godelle
Daan Krammer
Jean Michel

Foundations of

Garside Theory

e Example: (D.-Dyer—Hohlweg): Every Artin—
Tits monoid admits a finite Garside family.
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1
(8, | {fg=h|Uf)+Ug) =L(h)} )" =B}
length of a permutation = number of inversions

» The whole structure of B} (and Bj) is encoded
in the germ structure of the Coxeter group G,
(formally: &, with the partial product f e g := fg if £(fg) = £(f) + £(g))
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e Theorem (Bessis—Digne—Michel): YES for all spherical Artin-Tits groups.
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Garside germs (cont'd)

o Definition: An RC-quasigroup (X, ) is of class d if, for all s, t in X, one has
Nyia(s,...,s,t) =t (d times s),

where M1 (x) = x and Ma(x1, ..., xn) = Mp_1(X1, ey Xn—1) * Mp—1(X1, -vvy Xn—2, Xn)-

e Lemma (Rump): Every finite RC-quasigroup has a finite class.

e Theorem (D. 2015): “Coxeter-like quotients exist for all YBE-groups”:
For G associated with an RC-system (X, *) of size n and class d, there exists a short

exact sequence
1——7Z"—G—W-—1,

with W the size d" quotient of G obtained by collapsing sl for every s in X,
plus a (set-theoretic) section o : f — f from W to Gt s.t. W is a germ for GT.
J
sl = My (s)Ma(s, s) - Ny(s, ..., s)
Gt =(W | {fg=nh|tx(f)+Lx(g) = tx(M})*

e Proof: Combines the I-structure and the Garside structure; key point: “RC-calculus”.

e Remark: Special case of class 2 previously addressed by Chouraqui and Godelle.
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A Coxeter-like group

e Example: Again X = {a,b,c} with x*xy =f(y)and f:ar—> b+ c > a.
» Then G := (a,b,c | ac = b?,ba = c?, cb = a?).
» The class is 3, leading to W := (a, b, c | ac = b?,ba = c?,cb = a®,abc = 1).

e Question: Which finite groups arise? What are their linear representations?
(known: for #X = n, there exists an n-dimensional unitary representation)
0 j O 0 1 0 0 1 0
e.g.,above:a+— [0 0O 1|, b—~ [0 O j|,c— |0 0 1
1 0 0 1 0 0 j 0 0



o>
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