
Garside and quadratic normalisation: a survey

Garside and quadratic normalisation: a survey

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Garside and quadratic normalisation: a survey

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

2015/07/24 12:34

2015/07/24 12:34

2015/07/25 14:17

2015/07/24 12:34

2015/07/25 14:17

Garside and quadratic normalisation: a survey

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Garside and quadratic normalisation: a survey

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Garside and quadratic normalisation: a survey

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

• A survey of normal forms in monoids that are

Garside and quadratic normalisation: a survey

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

• A survey of normal forms in monoids that are
◮ based on greedy algorithms (Garside normalisation),

Garside and quadratic normalisation: a survey

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

• A survey of normal forms in monoids that are
◮ based on greedy algorithms (Garside normalisation),
◮ and, more generally, on local algorithms (quadratic normalisation).

Garside and quadratic normalisation: a survey

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

• A survey of normal forms in monoids that are
◮ based on greedy algorithms (Garside normalisation),
◮ and, more generally, on local algorithms (quadratic normalisation).

• A common mechanism inducing a universal recipe: the domino rule.

Plan:

Plan:

• 1. Two examples

Plan:

• 1. Two examples
- Free abelian monoids

Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

• 2. Garside normalisation

Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

• 2. Garside normalisation
- Garside monoids

Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

• 2. Garside normalisation
- Garside monoids
- Artin–Tits monoids

Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

• 2. Garside normalisation
- Garside monoids
- Artin–Tits monoids

• 3. Quadratic normalisation

Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

• 2. Garside normalisation
- Garside monoids
- Artin–Tits monoids

• 3. Quadratic normalisation
- Plactic monoids

Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

• 2. Garside normalisation
- Garside monoids
- Artin–Tits monoids

• 3. Quadratic normalisation
- Plactic monoids

Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

• 2. Garside normalisation
- Garside monoids
- Artin–Tits monoids

• 3. Quadratic normalisation
- Plactic monoids

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

◮ each element of M has a unique An-decomposition s1| ··· |sp with s16 ···6sp :

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

◮ each element of M has a unique An-decomposition s1| ··· |sp with s16 ···6sp :

◮ the lexicographic normal form NFLex(g) (with respect to 6).

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

◮ each element of M has a unique An-decomposition s1| ··· |sp with s16 ···6sp :

◮ the lexicographic normal form NFLex(g) (with respect to 6).

• Another (more complicated, but more easily extendible) normal form:

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

◮ each element of M has a unique An-decomposition s1| ··· |sp with s16 ···6sp :

◮ the lexicographic normal form NFLex(g) (with respect to 6).

• Another (more complicated, but more easily extendible) normal form:

◮ put Sn := {
∏

i∈I ai | I ⊆ {1, ...,n}}

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

◮ each element of M has a unique An-decomposition s1| ··· |sp with s16 ···6sp :

◮ the lexicographic normal form NFLex(g) (with respect to 6).

• Another (more complicated, but more easily extendible) normal form:

◮ put Sn := {
∏

i∈I ai | I ⊆ {1, ...,n}} (so #Sn = 2n)

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

◮ each element of M has a unique An-decomposition s1| ··· |sp with s16 ···6sp :

◮ the lexicographic normal form NFLex(g) (with respect to 6).

• Another (more complicated, but more easily extendible) normal form:

◮ put Sn := {
∏

i∈I ai | I ⊆ {1, ...,n}} (so #Sn = 2n)

• Proposition: Each element of M has a unique Sn-decomposition s1| ··· |sp with sp 6= 1,
and

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

◮ each element of M has a unique An-decomposition s1| ··· |sp with s16 ···6sp :

◮ the lexicographic normal form NFLex(g) (with respect to 6).

• Another (more complicated, but more easily extendible) normal form:

◮ put Sn := {
∏

i∈I ai | I ⊆ {1, ...,n}} (so #Sn = 2n)

• Proposition: Each element of M has a unique Sn-decomposition s1| ··· |sp with sp 6= 1,
and ∀s∈Sn (si ≺ s ⇒ s |4 si si+1 ··· sp). (∗)

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

◮ each element of M has a unique An-decomposition s1| ··· |sp with s16 ···6sp :

◮ the lexicographic normal form NFLex(g) (with respect to 6).

• Another (more complicated, but more easily extendible) normal form:

◮ put Sn := {
∏

i∈I ai | I ⊆ {1, ...,n}} (so #Sn = 2n)

• Proposition: Each element of M has a unique Sn-decomposition s1| ··· |sp with sp 6= 1,
and ∀s∈Sn (si ≺ s ⇒ s |4 si si+1 ··· sp). (∗)

↑
si is a proper divisor of s: ∃t 6=1 (si t = s)

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

◮ each element of M has a unique An-decomposition s1| ··· |sp with s16 ···6sp :

◮ the lexicographic normal form NFLex(g) (with respect to 6).

• Another (more complicated, but more easily extendible) normal form:

◮ put Sn := {
∏

i∈I ai | I ⊆ {1, ...,n}} (so #Sn = 2n)

• Proposition: Each element of M has a unique Sn-decomposition s1| ··· |sp with sp 6= 1,
and ∀s∈Sn (si ≺ s ⇒ s |4 si si+1 ··· sp). (∗)

↑
si is a proper divisor of s: ∃t 6=1 (si t = s)

↑
¬∃t (st = si si+1 ··· sp)

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

◮ each element of M has a unique An-decomposition s1| ··· |sp with s16 ···6sp :

◮ the lexicographic normal form NFLex(g) (with respect to 6).

• Another (more complicated, but more easily extendible) normal form:

◮ put Sn := {
∏

i∈I ai | I ⊆ {1, ...,n}} (so #Sn = 2n)

• Proposition: Each element of M has a unique Sn-decomposition s1| ··· |sp with sp 6= 1,
and ∀s∈Sn (si ≺ s ⇒ s |4 si si+1 ··· sp). (∗)

↑
si is a proper divisor of s: ∃t 6=1 (si t = s)

↑
¬∃t (st = si si+1 ··· sp)

hence: (∗) means: “si is a maximal (left)-divisor of si si+1 ··· sp lying in Sn”

Free abelian monoids

• Let M be a free abelian monoid based on An := {a1, ..., an} (≃ (N,+)n).

◮ each element of M has an An-decomposition that is unique
up to the order of letters;

• Fix a linear order 6 on An.

◮ each element of M has a unique An-decomposition s1| ··· |sp with s16 ···6sp :

◮ the lexicographic normal form NFLex(g) (with respect to 6).

• Another (more complicated, but more easily extendible) normal form:

◮ put Sn := {
∏

i∈I ai | I ⊆ {1, ...,n}} (so #Sn = 2n)

• Proposition: Each element of M has a unique Sn-decomposition s1| ··· |sp with sp 6= 1,
and ∀s∈Sn (si ≺ s ⇒ s |4 si si+1 ··· sp). (∗)

↑
si is a proper divisor of s: ∃t 6=1 (si t = s)

↑
¬∃t (st = si si+1 ··· sp)

hence: (∗) means: “si is a maximal (left)-divisor of si si+1 ··· sp lying in Sn”

◮ the greedy normal form NFGar(g) (with respect to Sn).

Greedy in free abelian

• Example: NFGar(a3bc2) = abc|ac|a.

1 a

b

c

a
3
bc

2

Greedy in free abelian

• Example: NFGar(a3bc2) = abc|ac|a.

1 a

b

c

a
3
bc

2

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams,

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2
σ1

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2
σ1

is isotopic to

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2
σ1

is isotopic to

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2
σ1

is isotopic to

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2
σ1

is isotopic to

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2
σ1

is isotopic to

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2
σ1

is isotopic to

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2
σ1

is isotopic to

σ2

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2
σ1

is isotopic to

σ2
σ1

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2
σ1

is isotopic to

σ2
σ1
σ2

Braid monoids

• Definition: The n-strand braid monoid is

B+
n :=

〈
σ1, ..., σn−1

∣∣∣
〉+

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

• Theorem (Artin 1926, Garside 1969): Under the correspondence

σi !

1 i i+1 n

... ...

and concatenation (stacking) of diagrams, the elements of B+
n interpret as isotopy

classes of positive n-strand braid diagrams.

↑
continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation σ1σ2σ1 = σ2σ1σ2:

σ1
σ2
σ1

is isotopic to

σ2
σ1
σ2

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

any two strands cross at most once
↓

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

any two strands cross at most once
↓

= {g ∈ B+
n | g 4 ∆n}.

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

any two strands cross at most once
↓

= {g ∈ B+
n | g 4 ∆n}.

↑
∃h (gh = ∆n)

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

any two strands cross at most once
↓

= {g ∈ B+
n | g 4 ∆n}.

↑
∃h (gh = ∆n)

տ
the half-turn braid:

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

any two strands cross at most once
↓

= {g ∈ B+
n | g 4 ∆n}.

↑
∃h (gh = ∆n)

տ
the half-turn braid:

∆1

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

any two strands cross at most once
↓

= {g ∈ B+
n | g 4 ∆n}.

↑
∃h (gh = ∆n)

տ
the half-turn braid:

∆1 ∆2

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

any two strands cross at most once
↓

= {g ∈ B+
n | g 4 ∆n}.

↑
∃h (gh = ∆n)

տ
the half-turn braid:

∆1 ∆2
∆3

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

any two strands cross at most once
↓

= {g ∈ B+
n | g 4 ∆n}.

↑
∃h (gh = ∆n)

տ
the half-turn braid:

∆1 ∆2
∆3

∆4

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

any two strands cross at most once
↓

= {g ∈ B+
n | g 4 ∆n}.

↑
∃h (gh = ∆n)

տ
the half-turn braid:

∆1 ∆2
∆3

∆4

• Proposition (Adyan 1984, Morton–El-Rifai 1988): Every element g of B+
n has a unique

decomposition s1| ··· |sp with s1, ..., sp ∈ Sn, sp 6= 1, and

∀s∈Sn (si ≺ s ⇒ s |4 si si+1 ··· sp).

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

any two strands cross at most once
↓

= {g ∈ B+
n | g 4 ∆n}.

↑
∃h (gh = ∆n)

տ
the half-turn braid:

∆1 ∆2
∆3

∆4

• Proposition (Adyan 1984, Morton–El-Rifai 1988): Every element g of B+
n has a unique

decomposition s1| ··· |sp with s1, ..., sp ∈ Sn, sp 6= 1, and

∀s∈Sn (si ≺ s ⇒ s |4 si si+1 ··· sp).

i.e., again: “si is a maximal left-divisor of si si+1 ··· sp lying in Sn”

The greedy normal form of braids

• Put Sn := {simple n-strand braids}

any two strands cross at most once
↓

= {g ∈ B+
n | g 4 ∆n}.

↑
∃h (gh = ∆n)

տ
the half-turn braid:

∆1 ∆2
∆3

∆4

• Proposition (Adyan 1984, Morton–El-Rifai 1988): Every element g of B+
n has a unique

decomposition s1| ··· |sp with s1, ..., sp ∈ Sn, sp 6= 1, and

∀s∈Sn (si ≺ s ⇒ s |4 si si+1 ··· sp).

i.e., again: “si is a maximal left-divisor of si si+1 ··· sp lying in Sn”

◮ the greedy (or Garside) normal form NFGar(g) (with respect to Sn).

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Greedy in braid monoid

• Example: NFGar(σ2σ3σ
2
2 σ1σ2σ

2
3) = σ1σ2σ3σ2σ1σ2|σ1σ3.

Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

• 2. Garside normalisation
- Garside monoids
- Artin–Tits monoids

• 3. Quadratic normalisation
- Plactic monoids

Garside monoids

• Definition: A Garside monoid

Garside monoids

• Definition: A Garside monoid is a pair (M,∆), where M is a cancellative monoid

Garside monoids

• Definition: A Garside monoid is a pair (M,∆), where M is a cancellative monoid s.t.

◮ There exists λ : M → N satisfying, for all f , g ,

λ(fg) > λ(f) + λ(g) and g 6= 1 ⇒ λ(g) 6= 0.

Garside monoids

• Definition: A Garside monoid is a pair (M,∆), where M is a cancellative monoid s.t.

◮ There exists λ : M → N satisfying, for all f , g ,

λ(fg) > λ(f) + λ(g) and g 6= 1 ⇒ λ(g) 6= 0.

◮ Any two elements of M admit left- and right-lcms and gcds.

Garside monoids

• Definition: A Garside monoid is a pair (M,∆), where M is a cancellative monoid s.t.

◮ There exists λ : M → N satisfying, for all f , g ,

λ(fg) > λ(f) + λ(g) and g 6= 1 ⇒ λ(g) 6= 0.

◮ Any two elements of M admit left- and right-lcms and gcds.

◮ ∆ is a Garside element of M, meaning: the left- and the right-divisors of ∆
coincide and generate M.

Garside monoids

• Definition: A Garside monoid is a pair (M,∆), where M is a cancellative monoid s.t.

◮ There exists λ : M → N satisfying, for all f , g ,

λ(fg) > λ(f) + λ(g) and g 6= 1 ⇒ λ(g) 6= 0.

◮ Any two elements of M admit left- and right-lcms and gcds.

◮ ∆ is a Garside element of M, meaning: the left- and the right-divisors of ∆
coincide and generate M.

◮ The family Div(∆) of all divisors of ∆ in M is finite.

Garside monoids

• Definition: A Garside monoid is a pair (M,∆), where M is a cancellative monoid s.t.

◮ There exists λ : M → N satisfying, for all f , g ,

λ(fg) > λ(f) + λ(g) and g 6= 1 ⇒ λ(g) 6= 0.

◮ Any two elements of M admit left- and right-lcms and gcds.

◮ ∆ is a Garside element of M, meaning: the left- and the right-divisors of ∆
coincide and generate M.

◮ The family Div(∆) of all divisors of ∆ in M is finite.

• Philosophy: The finite lattice Div(∆) encodes the whole structure of M.

Garside monoids

• Definition: A Garside monoid is a pair (M,∆), where M is a cancellative monoid s.t.

◮ There exists λ : M → N satisfying, for all f , g ,

λ(fg) > λ(f) + λ(g) and g 6= 1 ⇒ λ(g) 6= 0.

◮ Any two elements of M admit left- and right-lcms and gcds.

◮ ∆ is a Garside element of M, meaning: the left- and the right-divisors of ∆
coincide and generate M.

◮ The family Div(∆) of all divisors of ∆ in M is finite.

• Philosophy: The finite lattice Div(∆) encodes the whole structure of M.

• Example: Put ∆n := a1 + ··· + an.

Then (Nn,∆n) is a Garside monoid.

Garside monoids

• Definition: A Garside monoid is a pair (M,∆), where M is a cancellative monoid s.t.

◮ There exists λ : M → N satisfying, for all f , g ,

λ(fg) > λ(f) + λ(g) and g 6= 1 ⇒ λ(g) 6= 0.

◮ Any two elements of M admit left- and right-lcms and gcds.

◮ ∆ is a Garside element of M, meaning: the left- and the right-divisors of ∆
coincide and generate M.

◮ The family Div(∆) of all divisors of ∆ in M is finite.

• Philosophy: The finite lattice Div(∆) encodes the whole structure of M.

• Example: Put ∆n := a1 + ··· + an.

Then (Nn,∆n) is a Garside monoid.

◮ Here the lattice Div(∆n) is
an n-dimensional cube (2n elements):

1

a
b

c

ab
ac

bc

∆

Garside monoid examples

• Example: (B+
n ,∆n) is a Garside monoid.

Garside monoid examples

• Example: (B+
n ,∆n) is a Garside monoid.

◮ Here the lattice Div(∆n)
is the nth permutohedron

(n! elements):

1
σ
1

σ
1
σ
2

σ
1
σ
2
σ
1

σ
1
σ
2
σ
1
σ
3

σ
1
σ
2
σ
1
σ
3
σ
2

∆

σ
3

σ
3
σ
2

σ
2
σ
3
σ
2

σ
2
σ
3
σ
2
σ
1

σ
2
σ
3
σ
2
σ
1
σ
2

σ
2

σ
2
σ
1 σ

2
σ
3

σ
2
σ
1
σ
3

σ
2
σ
1
σ
3
σ
2

Garside monoid examples

• Example: (B+
n ,∆n) is a Garside monoid.

◮ Here the lattice Div(∆n)
is the nth permutohedron

(n! elements):

1
σ
1

σ
1
σ
2

σ
1
σ
2
σ
1

σ
1
σ
2
σ
1
σ
3

σ
1
σ
2
σ
1
σ
3
σ
2

∆

σ
3

σ
3
σ
2

σ
2
σ
3
σ
2

σ
2
σ
3
σ
2
σ
1

σ
2
σ
3
σ
2
σ
1
σ
2

σ
2

σ
2
σ
1 σ

2
σ
3

σ
2
σ
1
σ
3

σ
2
σ
1
σ
3
σ
2

• Example: M = 〈a1, ...,an | ae11 = ··· = a
en
n 〉+

with ∆ = a
e1
1 = ··· = a

en
n .

Then (M,∆) is a Garside monoid.

Garside monoid examples

• Example: (B+
n ,∆n) is a Garside monoid.

◮ Here the lattice Div(∆n)
is the nth permutohedron

(n! elements):

1
σ
1

σ
1
σ
2

σ
1
σ
2
σ
1

σ
1
σ
2
σ
1
σ
3

σ
1
σ
2
σ
1
σ
3
σ
2

∆

σ
3

σ
3
σ
2

σ
2
σ
3
σ
2

σ
2
σ
3
σ
2
σ
1

σ
2
σ
3
σ
2
σ
1
σ
2

σ
2

σ
2
σ
1 σ

2
σ
3

σ
2
σ
1
σ
3

σ
2
σ
1
σ
3
σ
2

• Example: M = 〈a1, ...,an | ae11 = ··· = a
en
n 〉+

with ∆ = a
e1
1 = ··· = a

en
n .

Then (M,∆) is a Garside monoid.

◮ Here the lattice Div(∆)
has e1+ ···+en−n+2 elements:

1

a

a
2

a
3

b

b
2

b
3

c

c
2

c
3

c
4

∆

Garside monoid examples

• Example: (B+
n ,∆n) is a Garside monoid.

◮ Here the lattice Div(∆n)
is the nth permutohedron

(n! elements):

1
σ
1

σ
1
σ
2

σ
1
σ
2
σ
1

σ
1
σ
2
σ
1
σ
3

σ
1
σ
2
σ
1
σ
3
σ
2

∆

σ
3

σ
3
σ
2

σ
2
σ
3
σ
2

σ
2
σ
3
σ
2
σ
1

σ
2
σ
3
σ
2
σ
1
σ
2

σ
2

σ
2
σ
1 σ

2
σ
3

σ
2
σ
1
σ
3

σ
2
σ
1
σ
3
σ
2

• Example: M = 〈a1, ...,an | ae11 = ··· = a
en
n 〉+

with ∆ = a
e1
1 = ··· = a

en
n .

Then (M,∆) is a Garside monoid.

◮ Here the lattice Div(∆)
has e1+ ···+en−n+2 elements:

1

a

a
2

a
3

b

b
2

b
3

c

c
2

c
3

c
4

∆

and many more...

Garside monoid examples

• Example: (B+
n ,∆n) is a Garside monoid.

◮ Here the lattice Div(∆n)
is the nth permutohedron

(n! elements):

1
σ
1

σ
1
σ
2

σ
1
σ
2
σ
1

σ
1
σ
2
σ
1
σ
3

σ
1
σ
2
σ
1
σ
3
σ
2

∆

σ
3

σ
3
σ
2

σ
2
σ
3
σ
2

σ
2
σ
3
σ
2
σ
1

σ
2
σ
3
σ
2
σ
1
σ
2

σ
2

σ
2
σ
1 σ

2
σ
3

σ
2
σ
1
σ
3

σ
2
σ
1
σ
3
σ
2

• Example: M = 〈a1, ...,an | ae11 = ··· = a
en
n 〉+

with ∆ = a
e1
1 = ··· = a

en
n .

Then (M,∆) is a Garside monoid.

◮ Here the lattice Div(∆)
has e1+ ···+en−n+2 elements:

1

a

a
2

a
3

b

b
2

b
3

c

c
2

c
3

c
4

∆

and many more... ask Matthieu Picantin!

Greedy NF in a Garside monoid

• Proposition: If (M,∆) is a Garside monoid, every element g of M has a unique
decomposition s1| ··· |sp satisfying s1, ..., sp ∈ Div(∆), sp 6= 1, and

∀s∈Div(∆) (si ≺ s ⇒ s |4 si si+1 ··· sp).

Greedy NF in a Garside monoid

• Proposition: If (M,∆) is a Garside monoid, every element g of M has a unique
decomposition s1| ··· |sp satisfying s1, ..., sp ∈ Div(∆), sp 6= 1, and

∀s∈Div(∆) (si ≺ s ⇒ s |4 si si+1 ··· sp).

once more: si is a maximal left-divisor of si si+1 ··· sp lying in Div(∆).

Greedy NF in a Garside monoid

• Proposition: If (M,∆) is a Garside monoid, every element g of M has a unique
decomposition s1| ··· |sp satisfying s1, ..., sp ∈ Div(∆), sp 6= 1, and

∀s∈Div(∆) (si ≺ s ⇒ s |4 si si+1 ··· sp).

once more: si is a maximal left-divisor of si si+1 ··· sp lying in Div(∆).

◮ A “greedy” normal form

Greedy NF in a Garside monoid

• Proposition: If (M,∆) is a Garside monoid, every element g of M has a unique
decomposition s1| ··· |sp satisfying s1, ..., sp ∈ Div(∆), sp 6= 1, and

∀s∈Div(∆) (si ≺ s ⇒ s |4 si si+1 ··· sp).

once more: si is a maximal left-divisor of si si+1 ··· sp lying in Div(∆).

◮ A “greedy” normal form

• Proof (existence): Left-dividing s and ∆ means left-dividing gcdL(s,∆).

Greedy NF in a Garside monoid

• Proposition: If (M,∆) is a Garside monoid, every element g of M has a unique
decomposition s1| ··· |sp satisfying s1, ..., sp ∈ Div(∆), sp 6= 1, and

∀s∈Div(∆) (si ≺ s ⇒ s |4 si si+1 ··· sp).

once more: si is a maximal left-divisor of si si+1 ··· sp lying in Div(∆).

◮ A “greedy” normal form

• Proof (existence): Left-dividing s and ∆ means left-dividing gcdL(s,∆).

◮ Write g = s1g ′ with s1 = gcdL(g ,∆).

Greedy NF in a Garside monoid

• Proposition: If (M,∆) is a Garside monoid, every element g of M has a unique
decomposition s1| ··· |sp satisfying s1, ..., sp ∈ Div(∆), sp 6= 1, and

∀s∈Div(∆) (si ≺ s ⇒ s |4 si si+1 ··· sp).

once more: si is a maximal left-divisor of si si+1 ··· sp lying in Div(∆).

◮ A “greedy” normal form

• Proof (existence): Left-dividing s and ∆ means left-dividing gcdL(s,∆).

◮ Write g = s1g ′ with s1 = gcdL(g ,∆).

◮ Then iterate: g ′ = s2g ′′, g ′′ = s3g ′′′, etc. �

Greedy NF in a Garside monoid

• Proposition: If (M,∆) is a Garside monoid, every element g of M has a unique
decomposition s1| ··· |sp satisfying s1, ..., sp ∈ Div(∆), sp 6= 1, and

∀s∈Div(∆) (si ≺ s ⇒ s |4 si si+1 ··· sp).

once more: si is a maximal left-divisor of si si+1 ··· sp lying in Div(∆).

◮ A “greedy” normal form

• Proof (existence): Left-dividing s and ∆ means left-dividing gcdL(s,∆).

◮ Write g = s1g ′ with s1 = gcdL(g ,∆).

◮ Then iterate: g ′ = s2g ′′, g ′′ = s3g ′′′, etc. �

• Question: How to effectively compute this normal form?

Greedy NF in a Garside monoid

• Proposition: If (M,∆) is a Garside monoid, every element g of M has a unique
decomposition s1| ··· |sp satisfying s1, ..., sp ∈ Div(∆), sp 6= 1, and

∀s∈Div(∆) (si ≺ s ⇒ s |4 si si+1 ··· sp).

once more: si is a maximal left-divisor of si si+1 ··· sp lying in Div(∆).

◮ A “greedy” normal form

• Proof (existence): Left-dividing s and ∆ means left-dividing gcdL(s,∆).

◮ Write g = s1g ′ with s1 = gcdL(g ,∆).

◮ Then iterate: g ′ = s2g ′′, g ′′ = s3g ′′′, etc. �

• Question: How to effectively compute this normal form? What is the mechanism?

Greedy NF in a Garside monoid

• Proposition: If (M,∆) is a Garside monoid, every element g of M has a unique
decomposition s1| ··· |sp satisfying s1, ..., sp ∈ Div(∆), sp 6= 1, and

∀s∈Div(∆) (si ≺ s ⇒ s |4 si si+1 ··· sp).

once more: si is a maximal left-divisor of si si+1 ··· sp lying in Div(∆).

◮ A “greedy” normal form

• Proof (existence): Left-dividing s and ∆ means left-dividing gcdL(s,∆).

◮ Write g = s1g ′ with s1 = gcdL(g ,∆).

◮ Then iterate: g ′ = s2g ′′, g ′′ = s3g ′′′, etc. �

• Question: How to effectively compute this normal form? What is the mechanism?

◮ Go to a more general scheme: Garside families.

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg ,

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg , (= think of the monoid as of a category)

◮ and f

g

f ′

g ′ for fg = f ′g ′.

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg , (= think of the monoid as of a category)

◮ and f

g

f ′

g ′ for fg = f ′g ′.

• Definition: (i) If M is a left-cancellative monoid and
S ⊆ M, call an S-word s1|s2 S-normal if

∀s∈S ∀f ∈M (s 4 fs1s2 ⇒ s 4 fs1),

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg , (= think of the monoid as of a category)

◮ and f

g

f ′

g ′ for fg = f ′g ′.

• Definition: (i) If M is a left-cancellative monoid and
S ⊆ M, call an S-word s1|s2 S-normal if

∀s∈S ∀f ∈M (s 4 fs1s2 ⇒ s 4 fs1),

and s1| ··· |sp S-normal iff si |si+1 is S-normal for each i .

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg , (= think of the monoid as of a category)

◮ and f

g

f ′

g ′ for fg = f ′g ′.

• Definition: (i) If M is a left-cancellative monoid and
S ⊆ M, call an S-word s1|s2 S-normal if

∀s∈S ∀f ∈M (s 4 fs1s2 ⇒ s 4 fs1),

and s1| ··· |sp S-normal iff si |si+1 is S-normal for each i . s1 s2

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg , (= think of the monoid as of a category)

◮ and f

g

f ′

g ′ for fg = f ′g ′.

• Definition: (i) If M is a left-cancellative monoid and
S ⊆ M, call an S-word s1|s2 S-normal if

∀s∈S ∀f ∈M (s 4 fs1s2 ⇒ s 4 fs1),

and s1| ··· |sp S-normal iff si |si+1 is S-normal for each i . s1 s2

s

f

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg , (= think of the monoid as of a category)

◮ and f

g

f ′

g ′ for fg = f ′g ′.

• Definition: (i) If M is a left-cancellative monoid and
S ⊆ M, call an S-word s1|s2 S-normal if

∀s∈S ∀f ∈M (s 4 fs1s2 ⇒ s 4 fs1),

and s1| ··· |sp S-normal iff si |si+1 is S-normal for each i . s1 s2

s

f

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg , (= think of the monoid as of a category)

◮ and f

g

f ′

g ′ for fg = f ′g ′.

• Definition: (i) If M is a left-cancellative monoid and
S ⊆ M, call an S-word s1|s2 S-normal if

∀s∈S ∀f ∈M (s 4 fs1s2 ⇒ s 4 fs1),

and s1| ··· |sp S-normal iff si |si+1 is S-normal for each i . s1 s2

s

f

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg , (= think of the monoid as of a category)

◮ and f

g

f ′

g ′ for fg = f ′g ′.

• Definition: (i) If M is a left-cancellative monoid and
S ⊆ M, call an S-word s1|s2 S-normal if

∀s∈S ∀f ∈M (s 4 fs1s2 ⇒ s 4 fs1),

and s1| ··· |sp S-normal iff si |si+1 is S-normal for each i . s1 s2

s

f

տ“is normal”

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg , (= think of the monoid as of a category)

◮ and f

g

f ′

g ′ for fg = f ′g ′.

• Definition: (i) If M is a left-cancellative monoid and
S ⊆ M, call an S-word s1|s2 S-normal if

∀s∈S ∀f ∈M (s 4 fs1s2 ⇒ s 4 fs1),

and s1| ··· |sp S-normal iff si |si+1 is S-normal for each i . s1 s2

s

f

տ“is normal”(ii) Call S a Garside family if
every element of M admits an S-normal decomposition.

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg , (= think of the monoid as of a category)

◮ and f

g

f ′

g ′ for fg = f ′g ′.

• Definition: (i) If M is a left-cancellative monoid and
S ⊆ M, call an S-word s1|s2 S-normal if

∀s∈S ∀f ∈M (s 4 fs1s2 ⇒ s 4 fs1),

and s1| ··· |sp S-normal iff si |si+1 is S-normal for each i . s1 s2

s

f

տ“is normal”(ii) Call S a Garside family if
every element of M admits an S-normal decomposition.

• Lemma: If (M,∆) is a Garside monoid, then Div(∆) is a Garside family in M; an
S-word is S-normal for S := Div(∆) iff it is normal in the sense of Garside monoids.

Garside families

• Convention: associate with an element g of a monoid an arrow
g

;

◮ then f g
for fg , (= think of the monoid as of a category)

◮ and f

g

f ′

g ′ for fg = f ′g ′.

• Definition: (i) If M is a left-cancellative monoid and
S ⊆ M, call an S-word s1|s2 S-normal if

∀s∈S ∀f ∈M (s 4 fs1s2 ⇒ s 4 fs1),

and s1| ··· |sp S-normal iff si |si+1 is S-normal for each i . s1 s2

s

f

տ“is normal”(ii) Call S a Garside family if
every element of M admits an S-normal decomposition.

• Lemma: If (M,∆) is a Garside monoid, then Div(∆) is a Garside family in M; an
S-word is S-normal for S := Div(∆) iff it is normal in the sense of Garside monoids.

◮ Hence: we recover the previous framework...

Garside families examples

... but also catch new examples:

Garside families examples

... but also catch new examples:

• Example (stupid): Every left-cancellative monoid is a Garside family in itself.

Garside families examples

... but also catch new examples:

• Example (stupid): Every left-cancellative monoid is a Garside family in itself.

◮ Only proper (finite) subfamilies may be interesting.

Garside families examples

... but also catch new examples:

• Example (stupid): Every left-cancellative monoid is a Garside family in itself.

◮ Only proper (finite) subfamilies may be interesting.

• Example: (“Klein bottle monoid”) Let K+ := 〈a, b | a = bab〉+.

Garside families examples

... but also catch new examples:

• Example (stupid): Every left-cancellative monoid is a Garside family in itself.

◮ Only proper (finite) subfamilies may be interesting.

• Example: (“Klein bottle monoid”) Let K+ := 〈a, b | a = bab〉+.
Then Div(a2) is a Garside family in M.

Garside families examples

... but also catch new examples:

• Example (stupid): Every left-cancellative monoid is a Garside family in itself.

◮ Only proper (finite) subfamilies may be interesting.

• Example: (“Klein bottle monoid”) Let K+ := 〈a, b | a = bab〉+.
Then Div(a2) is a Garside family in M.

a
−1

b
2

a
−1

b a
−1

ba
−1

b
2
a
−1

b
−2

b
−1 1 b b

2

ab
2

ab a ba b
2
a

ab
2
a aba a

2
a
2
b a

2
b
2

Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd.

Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,

Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),

Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

◮ In this case, there must exist a smallest Garside family.

Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

◮ In this case, there must exist a smallest Garside family.

• Example (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits
a finite Garside family.

Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

◮ In this case, there must exist a smallest Garside family.

• Example (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits
a finite Garside family. ↑

defined by relations sts... = tst..., same length

Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

◮ In this case, there must exist a smallest Garside family.

• Example (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits
a finite Garside family. ↑

defined by relations sts... = tst..., same length

Typically (“type Ã2”):

Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

◮ In this case, there must exist a smallest Garside family.

• Example (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits
a finite Garside family. ↑

defined by relations sts... = tst..., same length

Typically (“type Ã2”): 〈σ1, σ2, σ3 | σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ3σ1σ3 = σ1σ3σ1〉
+

Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

◮ In this case, there must exist a smallest Garside family.

• Example (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits
a finite Garside family. ↑

defined by relations sts... = tst..., same length

Typically (“type Ã2”): 〈σ1, σ2, σ3 | σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ3σ1σ3 = σ1σ3σ1〉
+

1 σ
1

σ
2

σ
3

σ
1
σ
2

σ
2
σ
1

σ
2
σ
3

σ
3
σ
2

σ
1
σ
3

σ
3
σ
1

σ
2
σ
3
σ
2

σ
3
σ
1
σ
3

σ
1
σ
2
σ
1

σ
1
σ
2
σ
3
σ
2

σ
2
σ
3
σ
1
σ
3

σ
3
σ
1
σ
2
σ
1

Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

◮ In this case, there must exist a smallest Garside family.

• Example (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits
a finite Garside family. ↑

defined by relations sts... = tst..., same length

Typically (“type Ã2”): 〈σ1, σ2, σ3 | σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ3σ1σ3 = σ1σ3σ1〉
+

1 σ
1

σ
2

σ
3

σ
1
σ
2

σ
2
σ
1

σ
2
σ
3

σ
3
σ
2

σ
1
σ
3

σ
3
σ
1

σ
2
σ
3
σ
2

σ
3
σ
1
σ
3

σ
1
σ
2
σ
1

σ
1
σ
2
σ
3
σ
2

σ
2
σ
3
σ
1
σ
3

σ
3
σ
1
σ
2
σ
1

(certainly not a lattice)

Garside normalisation

• The Garside normal form NFS is indeed a greedy normal form:

Garside normalisation

• The Garside normal form NFS is indeed a greedy normal form:

• Proposition: If S is a Garside family in a left-cancellative monoid M:

◮ The S-normal form is (essentially) unique when it exists.

Garside normalisation

• The Garside normal form NFS is indeed a greedy normal form:

• Proposition: If S is a Garside family in a left-cancellative monoid M:

◮ The S-normal form is (essentially) unique when it exists.
◮ If S is finite, the language of S-normal words is regular.

Garside normalisation

• The Garside normal form NFS is indeed a greedy normal form:

• Proposition: If S is a Garside family in a left-cancellative monoid M:

◮ The S-normal form is (essentially) unique when it exists.
◮ If S is finite, the language of S-normal words is regular.
◮ A word s1| ··· |sp is S-normal iff

∀s∈S (si ≺ s ⇒ s |4 si si+1 ··· sp).

Garside normalisation

• The Garside normal form NFS is indeed a greedy normal form:

• Proposition: If S is a Garside family in a left-cancellative monoid M:

◮ The S-normal form is (essentially) unique when it exists.
◮ If S is finite, the language of S-normal words is regular.
◮ A word s1| ··· |sp is S-normal iff

∀s∈S (si ≺ s ⇒ s |4 si si+1 ··· sp).

once again: si is a maximal left-divisor of si si+1 ··· sp lying in S

Garside normalisation

• The Garside normal form NFS is indeed a greedy normal form:

• Proposition: If S is a Garside family in a left-cancellative monoid M:

◮ The S-normal form is (essentially) unique when it exists.
◮ If S is finite, the language of S-normal words is regular.
◮ A word s1| ··· |sp is S-normal iff

∀s∈S (si ≺ s ⇒ s |4 si si+1 ··· sp).

once again: si is a maximal left-divisor of si si+1 ··· sp lying in S

• Main question: How to compute the S-normal form? What is the mechanism?

Garside normalisation

• The Garside normal form NFS is indeed a greedy normal form:

• Proposition: If S is a Garside family in a left-cancellative monoid M:

◮ The S-normal form is (essentially) unique when it exists.
◮ If S is finite, the language of S-normal words is regular.
◮ A word s1| ··· |sp is S-normal iff

∀s∈S (si ≺ s ⇒ s |4 si si+1 ··· sp).

once again: si is a maximal left-divisor of si si+1 ··· sp lying in S

• Main question: How to compute the S-normal form? What is the mechanism?

◮ Equivalently: how to compute the normalisation map NS : S∗ → S∗?

Garside normalisation

• The Garside normal form NFS is indeed a greedy normal form:

• Proposition: If S is a Garside family in a left-cancellative monoid M:

◮ The S-normal form is (essentially) unique when it exists.
◮ If S is finite, the language of S-normal words is regular.
◮ A word s1| ··· |sp is S-normal iff

∀s∈S (si ≺ s ⇒ s |4 si si+1 ··· sp).

once again: si is a maximal left-divisor of si si+1 ··· sp lying in S

• Main question: How to compute the S-normal form? What is the mechanism?

◮ Equivalently: how to compute the normalisation map NS : S∗ → S∗?

• Lemma: If S is a Garside family in a left-cancellative monoid M, then, for all s1, s2
in S, the S-normal form of s1s2 has length 6 2.

Garside normalisation

• The Garside normal form NFS is indeed a greedy normal form:

• Proposition: If S is a Garside family in a left-cancellative monoid M:

◮ The S-normal form is (essentially) unique when it exists.
◮ If S is finite, the language of S-normal words is regular.
◮ A word s1| ··· |sp is S-normal iff

∀s∈S (si ≺ s ⇒ s |4 si si+1 ··· sp).

once again: si is a maximal left-divisor of si si+1 ··· sp lying in S

• Main question: How to compute the S-normal form? What is the mechanism?

◮ Equivalently: how to compute the normalisation map NS : S∗ → S∗?

• Lemma: If S is a Garside family in a left-cancellative monoid M, then, for all s1, s2
in S, the S-normal form of s1s2 has length 6 2.

◮ Makes sense to consider the restriction N
S
:= NS ↾S [2]

Garside normalisation

• The Garside normal form NFS is indeed a greedy normal form:

• Proposition: If S is a Garside family in a left-cancellative monoid M:

◮ The S-normal form is (essentially) unique when it exists.
◮ If S is finite, the language of S-normal words is regular.
◮ A word s1| ··· |sp is S-normal iff

∀s∈S (si ≺ s ⇒ s |4 si si+1 ··· sp).

once again: si is a maximal left-divisor of si si+1 ··· sp lying in S

• Main question: How to compute the S-normal form? What is the mechanism?

◮ Equivalently: how to compute the normalisation map NS : S∗ → S∗?

• Lemma: If S is a Garside family in a left-cancellative monoid M, then, for all s1, s2
in S, the S-normal form of s1s2 has length 6 2.

◮ Makes sense to consider the restriction N
S
:= NS ↾S [2] s1

s2

Garside normalisation

• The Garside normal form NFS is indeed a greedy normal form:

• Proposition: If S is a Garside family in a left-cancellative monoid M:

◮ The S-normal form is (essentially) unique when it exists.
◮ If S is finite, the language of S-normal words is regular.
◮ A word s1| ··· |sp is S-normal iff

∀s∈S (si ≺ s ⇒ s |4 si si+1 ··· sp).

once again: si is a maximal left-divisor of si si+1 ··· sp lying in S

• Main question: How to compute the S-normal form? What is the mechanism?

◮ Equivalently: how to compute the normalisation map NS : S∗ → S∗?

• Lemma: If S is a Garside family in a left-cancellative monoid M, then, for all s1, s2
in S, the S-normal form of s1s2 has length 6 2.

◮ Makes sense to consider the restriction N
S
:= NS ↾S [2] s1

s2

t1

t2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

◮ Proof:

s1 s2

s′1 s′2

t0 t1 t2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

◮ Proof:

s1 s2

s′1 s′2

t0 t1 t2

s

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

◮ Proof:

s1 s2

s′1 s′2

t0 t1 t2

s

f

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

◮ Proof:

s1 s2

s′1 s′2

t0 t1 t2

s

f

s1 s2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

◮ Proof:

s1 s2

s′1 s′2

t0 t1 t2

s

f

s1 s2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

◮ Proof:

s1 s2

s′1 s′2

t0 t1 t2

s

f

s1 s2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

◮ Proof:

s1 s2

s′1 s′2

t0 t1 t2

s

f

s1 s2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

◮ Proof:

s1 s2

s′1 s′2

t0 t1 t2

s

f

s1 s2

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

◮ Proof:

s1 s2

s′1 s′2

t0 t1 t2

s

f

s1 s2
�

The domino rule

• Lemma (“domino rule”): If S is a Garside family in a left-cancellative monoid M,

s1 s2

s′1 s′2

t0 t1 t2t0

s1

t1

s′1

s2

t2

s′2

◮ Proof:

s1 s2

s′1 s′2

t0 t1 t2

s

f

s1 s2
�

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

s′2

t2

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

s′2

t2 tp−1

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

s′2

t2 tp−1

s′p

tp

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

s′2

t2 tp−1

s′p

tp

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

s′2

t2 tp−1

s′p

tp

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

s′2

t2 tp−1

s′p

tp

tp

,

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

s′2

t2 tp−1

s′p

tp

tp

,

that is, NS (t|s1| ··· |sp) = N
S
1|2| ··· |p−1(t|s1| ··· |sp).

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

s′2

t2 tp−1

s′p

tp

tp

,

that is, NS (t|s1| ··· |sp) = N
S
1|2| ··· |p−1(t|s1| ··· |sp).

↑
applying N

S
:= NS ↾S [2] in positions 1, then 2, etc. until p − 1

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

s′2

t2 tp−1

s′p

tp

tp

,

that is, NS (t|s1| ··· |sp) = N
S
1|2| ··· |p−1(t|s1| ··· |sp).

↑
applying N

S
:= NS ↾S [2] in positions 1, then 2, etc. until p − 1

• Corollary: If S is a Garside family in a left-cancellative monoid M:

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

s′2

t2 tp−1

s′p

tp

tp

,

that is, NS (t|s1| ··· |sp) = N
S
1|2| ··· |p−1(t|s1| ··· |sp).

↑
applying N

S
:= NS ↾S [2] in positions 1, then 2, etc. until p − 1

• Corollary: If S is a Garside family in a left-cancellative monoid M:

◮ For each t in S, there is a rational transducer computing N(tw) from N(w).

Left multiplication

• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
S-normal, and t lies in S, then the S-normal form of ts1 ··· sp is

s1 s2 sp

t = t0

s′1

t1

s′2

t2 tp−1

s′p

tp

tp

,

that is, NS (t|s1| ··· |sp) = N
S
1|2| ··· |p−1(t|s1| ··· |sp).

↑
applying N

S
:= NS ↾S [2] in positions 1, then 2, etc. until p − 1

• Corollary: If S is a Garside family in a left-cancellative monoid M:

◮ For each t in S, there is a rational transducer computing N(tw) from N(w).

◮ Garside normalisation satisfies the 2-Fellow Traveller Property on the left.

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1,

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2,

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3,

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

step 2

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

step 2 step 3

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

step 2 step 3

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

step 2 step 3

s′1

step 4

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

step 2 step 3

s′1

step 4

s′2

step 5

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

step 2 step 3

s′1

step 4

s′2

step 5

s′3

step 6

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

step 2 step 3

s′1

step 4

s′2

step 5

s′3

step 6

s′4

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

step 2 step 3

s′1

step 4

s′2

step 5

s′3

step 6

s′4

• Corollary: If a monoid M is left-cancellative, has no invertible element 6= 1, and
admits a finite Garside family S:

◮ NS can be computed in DTIME(n2), and the Word Pb for (M,S) lies in DTIME(n2).

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

step 2 step 3

s′1

step 4

s′2

step 5

s′3

step 6

s′4

• Corollary: If a monoid M is left-cancellative, has no invertible element 6= 1, and
admits a finite Garside family S:

◮ NS can be computed in DTIME(n2), and the Word Pb for (M,S) lies in DTIME(n2).

◮ If M is right-cancellative, M is left-automatic.

The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.

s1

s2

s3

s4

step 1

step 2 step 3

s′1

step 4

s′2

step 5

s′3

step 6

s′4

• Corollary: If a monoid M is left-cancellative, has no invertible element 6= 1, and
admits a finite Garside family S:

◮ NS can be computed in DTIME(n2), and the Word Pb for (M,S) lies in DTIME(n2).

◮ If M is right-cancellative, M is left-automatic.

◮ (Picantin) M is an automaton semigroup and is residually finite.

Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

• 2. Garside normalisation
- Garside monoids
- Artin–Tits monoids

• 3. Quadratic normalisation
- Plactic monoids

Normalisation

• From now on: consider (more) general geodesic normal forms for a monoid.

Normalisation

• From now on: consider (more) general geodesic normal forms for a monoid.

↑
the normal form has minimal length

• Proposition: There exists a notion of a normalisation (S,N), with N a length
preserving map S∗ → S∗, s.t. defining a geodesic normal form on a monoid M is
equivalent to defining a normalisation mod a neutral letter for M.

Normalisation

• From now on: consider (more) general geodesic normal forms for a monoid.

↑
the normal form has minimal length

• Proposition: There exists a notion of a normalisation (S,N), with N a length
preserving map S∗ → S∗, s.t. defining a geodesic normal form on a monoid M is
equivalent to defining a normalisation mod a neutral letter for M.

↑
a letter e satisfying ∀w (N(w |e) = N(e|w) = N(w)|e)

↑

M = 〈S | {w = N(w) | w ∈ S∗} ∪ {e = 1}〉+

• Example (lexicographic): M = Nn and NLex(w) := w lexicographically sorted.

Normalisation

• From now on: consider (more) general geodesic normal forms for a monoid.

↑
the normal form has minimal length

• Proposition: There exists a notion of a normalisation (S,N), with N a length
preserving map S∗ → S∗, s.t. defining a geodesic normal form on a monoid M is
equivalent to defining a normalisation mod a neutral letter for M.

↑
a letter e satisfying ∀w (N(w |e) = N(e|w) = N(w)|e)

↑

M = 〈S | {w = N(w) | w ∈ S∗} ∪ {e = 1}〉+

• Example (lexicographic): M = Nn and NLex(w) := w lexicographically sorted.

• Example (Garside): M = B+
n , S = Div(∆n), and NGar(s1| ··· |sp) := (s′1| ··· |s

′
q |1| ··· |1),

with s′1| ··· |s
′
q the S-normal form of s1 ··· sp .

Normalisation

• From now on: consider (more) general geodesic normal forms for a monoid.

↑
the normal form has minimal length

• Proposition: There exists a notion of a normalisation (S,N), with N a length
preserving map S∗ → S∗, s.t. defining a geodesic normal form on a monoid M is
equivalent to defining a normalisation mod a neutral letter for M.

↑
a letter e satisfying ∀w (N(w |e) = N(e|w) = N(w)|e)

↑

M = 〈S | {w = N(w) | w ∈ S∗} ∪ {e = 1}〉+

• Example (lexicographic): M = Nn and NLex(w) := w lexicographically sorted.

• Example (Garside): M = B+
n , S = Div(∆n), and NGar(s1| ··· |sp) := (s′1| ··· |s

′
q |1| ··· |1),

with s′1| ··· |s
′
q the S-normal form of s1 ··· sp .

Id. for every Garside family S in a left-cancellative monoid M.

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic:

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic: a word is <Lex-nondecreasing iff every length-2 factor is,

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic: a word is <Lex-nondecreasing iff every length-2 factor is,
and one can from w to NLex(w) by swapping adjacent letters.

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic: a word is <Lex-nondecreasing iff every length-2 factor is,
and one can from w to NLex(w) by swapping adjacent letters.

◮ (S,NGar) is quadratic:

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic: a word is <Lex-nondecreasing iff every length-2 factor is,
and one can from w to NLex(w) by swapping adjacent letters.

◮ (S,NGar) is quadratic: a word is S-normal iff every length-2 factor is,

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic: a word is <Lex-nondecreasing iff every length-2 factor is,
and one can from w to NLex(w) by swapping adjacent letters.

◮ (S,NGar) is quadratic: a word is S-normal iff every length-2 factor is, and one
can from w to NGar(w) by normalising length-2 factors: domino rule.

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic: a word is <Lex-nondecreasing iff every length-2 factor is,
and one can from w to NLex(w) by swapping adjacent letters.

◮ (S,NGar) is quadratic: a word is S-normal iff every length-2 factor is, and one
can from w to NGar(w) by normalising length-2 factors: domino rule.

• Fact: If (S,N) is a quadratic normalisation, the set of N-normal words is regular.

• Notation: For (S,N) quadratic: N := N↾S [2],

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic: a word is <Lex-nondecreasing iff every length-2 factor is,
and one can from w to NLex(w) by swapping adjacent letters.

◮ (S,NGar) is quadratic: a word is S-normal iff every length-2 factor is, and one
can from w to NGar(w) by normalising length-2 factors: domino rule.

• Fact: If (S,N) is a quadratic normalisation, the set of N-normal words is regular.

• Notation: For (S,N) quadratic: N := N↾S [2],

N i := N applied to the factor in position i , i + 1,

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic: a word is <Lex-nondecreasing iff every length-2 factor is,
and one can from w to NLex(w) by swapping adjacent letters.

◮ (S,NGar) is quadratic: a word is S-normal iff every length-2 factor is, and one
can from w to NGar(w) by normalising length-2 factors: domino rule.

• Fact: If (S,N) is a quadratic normalisation, the set of N-normal words is regular.

• Notation: For (S,N) quadratic: N := N↾S [2],

N i := N applied to the factor in position i , i + 1,
N i1| ··· |im := N im ◦ ··· ◦ N i1 ,

Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic: a word is <Lex-nondecreasing iff every length-2 factor is,
and one can from w to NLex(w) by swapping adjacent letters.

◮ (S,NGar) is quadratic: a word is S-normal iff every length-2 factor is, and one
can from w to NGar(w) by normalising length-2 factors: domino rule.

• Fact: If (S,N) is a quadratic normalisation, the set of N-normal words is regular.

• Notation: For (S,N) quadratic: N := N↾S [2],

N i := N applied to the factor in position i , i + 1,
N i1| ··· |im := N im ◦ ··· ◦ N i1 ,

◮ If (S,N) is quadratic, there exists for every S-word w
a sequence of positions u (depending on w) s.t. N(w) = Nu(w).

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

• Lemma: If (S,N) is of left class c, then
◮ (S,N) is of left class c′ for every c′ > c,

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

• Lemma: If (S,N) is of left class c, then
◮ (S,N) is of left class c′ for every c′ > c,
◮ (S,N) is of right class c′′ for every c′′ > c+1.

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

• Lemma: If (S,N) is of left class c, then
◮ (S,N) is of left class c′ for every c′ > c,
◮ (S,N) is of right class c′′ for every c′′ > c+1.

• Examples:

◮ (S,NLex) is of class

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

• Lemma: If (S,N) is of left class c, then
◮ (S,N) is of left class c′ for every c′ > c,
◮ (S,N) is of right class c′′ for every c′′ > c+1.

• Examples:

◮ (S,NLex) is of class (3, 3):

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

• Lemma: If (S,N) is of left class c, then
◮ (S,N) is of left class c′ for every c′ > c,
◮ (S,N) is of right class c′′ for every c′′ > c+1.

• Examples:

◮ (S,NLex) is of class (3, 3): ∀w∈S [3] (NLex(w) = N121(w) = N212(w)).

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

• Lemma: If (S,N) is of left class c, then
◮ (S,N) is of left class c′ for every c′ > c,
◮ (S,N) is of right class c′′ for every c′′ > c+1.

• Examples:

◮ (S,NLex) is of class (3, 3): ∀w∈S [3] (NLex(w) = N121(w) = N212(w)).

◮ (S,NGar) is of class

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

• Lemma: If (S,N) is of left class c, then
◮ (S,N) is of left class c′ for every c′ > c,
◮ (S,N) is of right class c′′ for every c′′ > c+1.

• Examples:

◮ (S,NLex) is of class (3, 3): ∀w∈S [3] (NLex(w) = N121(w) = N212(w)).

◮ (S,NGar) is of class (4, 3):

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

• Lemma: If (S,N) is of left class c, then
◮ (S,N) is of left class c′ for every c′ > c,
◮ (S,N) is of right class c′′ for every c′′ > c+1.

• Examples:

◮ (S,NLex) is of class (3, 3): ∀w∈S [3] (NLex(w) = N121(w) = N212(w)).

◮ (S,NGar) is of class (4, 3): ∀w∈S [3] (NGar(w) = N1212(w) = N212(w)).

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

• Lemma: If (S,N) is of left class c, then
◮ (S,N) is of left class c′ for every c′ > c,
◮ (S,N) is of right class c′′ for every c′′ > c+1.

• Examples:

◮ (S,NLex) is of class (3, 3): ∀w∈S [3] (NLex(w) = N121(w) = N212(w)).

◮ (S,NGar) is of class (4, 3): ∀w∈S [3] (NGar(w) = N1212(w) = N212(w)).

◮ Define NLex
∗ (s|t) := ⌈(s + t)/2⌉|⌊(s + t)/2⌋ for s > t, and s|t otherwise.

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

• Lemma: If (S,N) is of left class c, then
◮ (S,N) is of left class c′ for every c′ > c,
◮ (S,N) is of right class c′′ for every c′′ > c+1.

• Examples:

◮ (S,NLex) is of class (3, 3): ∀w∈S [3] (NLex(w) = N121(w) = N212(w)).

◮ (S,NGar) is of class (4, 3): ∀w∈S [3] (NGar(w) = N1212(w) = N212(w)).

◮ Define NLex
∗ (s|t) := ⌈(s + t)/2⌉|⌊(s + t)/2⌋ for s > t, and s|t otherwise.

Then (S,NLex
∗) is of (minimal) class (3+⌊log2(n)⌋, 3+⌊log2(n)⌋), where n = #S.

The class of a quadratic normalisation

• For ‖w‖ = 3, the only possibilities are u = 121...[c] or u = 212...[c].
↑

1|2|1|..., length c

• Definition: A quadratic normalisation (S,N) is of left class c if

∀w∈S [3] (N(w) = N121...[c](w)).

... right class c ... N212...[c](w)) ...

... class (c, c′) for left class c and right class c′.

• Lemma: If (S,N) is of left class c, then
◮ (S,N) is of left class c′ for every c′ > c,
◮ (S,N) is of right class c′′ for every c′′ > c+1.

• Examples:

◮ (S,NLex) is of class (3, 3): ∀w∈S [3] (NLex(w) = N121(w) = N212(w)).

◮ (S,NGar) is of class (4, 3): ∀w∈S [3] (NGar(w) = N1212(w) = N212(w)).

◮ Define NLex
∗ (s|t) := ⌈(s + t)/2⌉|⌊(s + t)/2⌋ for s > t, and s|t otherwise.

Then (S,NLex
∗) is of (minimal) class (3+⌊log2(n)⌋, 3+⌊log2(n)⌋), where n = #S.

Class (4, 3)

• Lemma: A quadratic normalisation (S,N) is
of class (4, 3) iff the domino rule is valid for (S,N).

Class (4, 3)

• Lemma: A quadratic normalisation (S,N) is
of class (4, 3) iff the domino rule is valid for (S,N).

s1 s2

s′1 s′2

t0 t1

Class (4, 3)

• Lemma: A quadratic normalisation (S,N) is
of class (4, 3) iff the domino rule is valid for (S,N).

s1 s2

s′1 s′2

t0 t1 t2

Class (4, 3)

• Lemma: A quadratic normalisation (S,N) is
of class (4, 3) iff the domino rule is valid for (S,N).

s1 s2

s′1 s′2

t0 t1 t2

Class (4, 3)

• Lemma: A quadratic normalisation (S,N) is
of class (4, 3) iff the domino rule is valid for (S,N).

s1 s2

s′1 s′2

t0 t1 t2

◮ Hence: The mechanism for class (4,3) is the same as in the Garside case.

Class (4, 3)

• Lemma: A quadratic normalisation (S,N) is
of class (4, 3) iff the domino rule is valid for (S,N).

s1 s2

s′1 s′2

t0 t1 t2

◮ Hence: The mechanism for class (4,3) is the same as in the Garside case.

• Proposition: If (S,N) is of class (4, 3), then, for every length-p word w, one has

N(w) = Nδp (w).

Class (4, 3)

• Lemma: A quadratic normalisation (S,N) is
of class (4, 3) iff the domino rule is valid for (S,N).

s1 s2

s′1 s′2

t0 t1 t2

◮ Hence: The mechanism for class (4,3) is the same as in the Garside case.

• Proposition: If (S,N) is of class (4, 3), then, for every length-p word w, one has

N(w) = Nδp (w).

(recall: δ2 = 1, δ3 = 212, δ4 = 323123, δ5 = 4342341234, etc.)

Class (4, 3)

• Lemma: A quadratic normalisation (S,N) is
of class (4, 3) iff the domino rule is valid for (S,N).

s1 s2

s′1 s′2

t0 t1 t2

◮ Hence: The mechanism for class (4,3) is the same as in the Garside case.

• Proposition: If (S,N) is of class (4, 3), then, for every length-p word w, one has

N(w) = Nδp (w).

(recall: δ2 = 1, δ3 = 212, δ4 = 323123, δ5 = 4342341234, etc.)

Plactic monoids

• Catch new examples with the same mechanism:

Plactic monoids

• Catch new examples with the same mechanism:

• Definition: For (X , <) a totally ordered set, the plactic monoid on (X , <) is

PX :=
〈

X
∣∣∣

〉+
.

Plactic monoids

• Catch new examples with the same mechanism:

• Definition: For (X , <) a totally ordered set, the plactic monoid on (X , <) is

PX :=
〈

X
∣∣∣

〉+
.

acb = cab for a 6 b < c

Plactic monoids

• Catch new examples with the same mechanism:

• Definition: For (X , <) a totally ordered set, the plactic monoid on (X , <) is

PX :=
〈

X
∣∣∣

〉+
.

acb = cab for a 6 b < c

bac = bca for a < b 6 c

Plactic monoids

• Catch new examples with the same mechanism:

• Definition: For (X , <) a totally ordered set, the plactic monoid on (X , <) is

PX :=
〈

X
∣∣∣

〉+
.

acb = cab for a 6 b < c

bac = bca for a < b 6 c

• Connection with Young tableaux:

Plactic monoids

• Catch new examples with the same mechanism:

• Definition: For (X , <) a totally ordered set, the plactic monoid on (X , <) is

PX :=
〈

X
∣∣∣

〉+
.

acb = cab for a 6 b < c

bac = bca for a < b 6 c

• Connection with Young tableaux:
◮ Another family of generators: S := {columns over X}

Plactic monoids

• Catch new examples with the same mechanism:

• Definition: For (X , <) a totally ordered set, the plactic monoid on (X , <) is

PX :=
〈

X
∣∣∣

〉+
.

acb = cab for a 6 b < c

bac = bca for a < b 6 c

• Connection with Young tableaux:
◮ Another family of generators: S := {columns over X}

:= strictly decreasing products of elements of X .

Plactic monoids

• Catch new examples with the same mechanism:

• Definition: For (X , <) a totally ordered set, the plactic monoid on (X , <) is

PX :=
〈

X
∣∣∣

〉+
.

acb = cab for a 6 b < c

bac = bca for a < b 6 c

• Connection with Young tableaux:
◮ Another family of generators: S := {columns over X}

:= strictly decreasing products of elements of X .
◮ Call a pair of columns c|c′ normal for

‖c‖ > ‖c′‖ & ∀k 6 ‖c′‖ (ck 6 c′k).

Plactic monoids

• Catch new examples with the same mechanism:

• Definition: For (X , <) a totally ordered set, the plactic monoid on (X , <) is

PX :=
〈

X
∣∣∣

〉+
.

acb = cab for a 6 b < c

bac = bca for a < b 6 c

• Connection with Young tableaux:
◮ Another family of generators: S := {columns over X}

:= strictly decreasing products of elements of X .
◮ Call a pair of columns c|c′ normal for

‖c‖ > ‖c′‖ & ∀k 6 ‖c′‖ (ck 6 c′k).

◮ A geodesic normal form on (PX ,S), computed by Schensted’s insertion algorithm.

Plactic monoids

• Catch new examples with the same mechanism:

• Definition: For (X , <) a totally ordered set, the plactic monoid on (X , <) is

PX :=
〈

X
∣∣∣

〉+
.

acb = cab for a 6 b < c

bac = bca for a < b 6 c

• Connection with Young tableaux:
◮ Another family of generators: S := {columns over X}

:= strictly decreasing products of elements of X .
◮ Call a pair of columns c|c′ normal for

‖c‖ > ‖c′‖ & ∀k 6 ‖c′‖ (ck 6 c′k).

◮ A geodesic normal form on (PX ,S), computed by Schensted’s insertion algorithm.

• Proposition: Schensted normalisation is quadratic of class (3, 3).

Plactic monoids

• Catch new examples with the same mechanism:

• Definition: For (X , <) a totally ordered set, the plactic monoid on (X , <) is

PX :=
〈

X
∣∣∣

〉+
.

acb = cab for a 6 b < c

bac = bca for a < b 6 c

• Connection with Young tableaux:
◮ Another family of generators: S := {columns over X}

:= strictly decreasing products of elements of X .
◮ Call a pair of columns c|c′ normal for

‖c‖ > ‖c′‖ & ∀k 6 ‖c′‖ (ck 6 c′k).

◮ A geodesic normal form on (PX ,S), computed by Schensted’s insertion algorithm.

• Proposition: Schensted normalisation is quadratic of class (3, 3).

• Similar for the Chinese monoids, now with class (5, 5).

Two results about class (4,3) normalisation

• Theorem (axiomatisability): If (S,N) is of class (4, 3), then N

Two results about class (4,3) normalisation

• Theorem (axiomatisability): If (S,N) is of class (4, 3), then N (= N↾S2) satisfies

N212 = N1212 = N2121.

Two results about class (4,3) normalisation

• Theorem (axiomatisability): If (S,N) is of class (4, 3), then N (= N↾S2) satisfies

N212 = N1212 = N2121.

Conversely, if F : S [2] → S [2] satisfies

F212 = F1212 = F2121,

Two results about class (4,3) normalisation

• Theorem (axiomatisability): If (S,N) is of class (4, 3), then N (= N↾S2) satisfies

N212 = N1212 = N2121.

Conversely, if F : S [2] → S [2] satisfies

F212 = F1212 = F2121,

then there exists a unique normalisation (S,N) of class (4, 3) satisfying N = F.

• Definition: Call a (quadratic) normalisation (S,N) left-weighted if

∀s, t, s′, t′ (s′|t′ = NGar(s|t) =⇒ s left-divides s′ in the associated monoid).

Two results about class (4,3) normalisation

• Theorem (axiomatisability): If (S,N) is of class (4, 3), then N (= N↾S2) satisfies

N212 = N1212 = N2121.

Conversely, if F : S [2] → S [2] satisfies

F212 = F1212 = F2121,

then there exists a unique normalisation (S,N) of class (4, 3) satisfying N = F.

• Definition: Call a (quadratic) normalisation (S,N) left-weighted if

∀s, t, s′, t′ (s′|t′ = NGar(s|t) =⇒ s left-divides s′ in the associated monoid).

• Theorem (characterization): If M is a left-cancellative monoid and S is a Garside
family in M, then (S,NGar) is of class (4, 3) and is left-weighted.

Two results about class (4,3) normalisation

• Theorem (axiomatisability): If (S,N) is of class (4, 3), then N (= N↾S2) satisfies

N212 = N1212 = N2121.

Conversely, if F : S [2] → S [2] satisfies

F212 = F1212 = F2121,

then there exists a unique normalisation (S,N) of class (4, 3) satisfying N = F.

• Definition: Call a (quadratic) normalisation (S,N) left-weighted if

∀s, t, s′, t′ (s′|t′ = NGar(s|t) =⇒ s left-divides s′ in the associated monoid).

• Theorem (characterization): If M is a left-cancellative monoid and S is a Garside
family in M, then (S,NGar) is of class (4, 3) and is left-weighted.

Conversely, if (S,N) is a left-weighted class (4, 3) normalisation, then S is a Garside
family in M and N = NGar holds.

Two results about class (4,3) normalisation

• Theorem (axiomatisability): If (S,N) is of class (4, 3), then N (= N↾S2) satisfies

N212 = N1212 = N2121.

Conversely, if F : S [2] → S [2] satisfies

F212 = F1212 = F2121,

then there exists a unique normalisation (S,N) of class (4, 3) satisfying N = F.

• Definition: Call a (quadratic) normalisation (S,N) left-weighted if

∀s, t, s′, t′ (s′|t′ = NGar(s|t) =⇒ s left-divides s′ in the associated monoid).

• Theorem (characterization): If M is a left-cancellative monoid and S is a Garside
family in M, then (S,NGar) is of class (4, 3) and is left-weighted.

Conversely, if (S,N) is a left-weighted class (4, 3) normalisation, then S is a Garside
family in M and N = NGar holds.

Rewrite systems

• With each normalisation (S,N) comes a rewrite system:

Rewrite systems

• With each normalisation (S,N) comes a rewrite system:

rules: s|t → N(s|t) when N(s|t) 6= s|t.

Rewrite systems

• With each normalisation (S,N) comes a rewrite system:

rules: s|t → N(s|t) when N(s|t) 6= s|t.

◮ then normalising: ∀w ∃w ′normal (w →∗ w ′),

Rewrite systems

• With each normalisation (S,N) comes a rewrite system:

rules: s|t → N(s|t) when N(s|t) 6= s|t.

◮ then normalising: ∀w ∃w ′normal (w →∗ w ′),
◮ and confluent: ∀w ,w ′,w ′′ ((w→∗w ′&w→∗w ′′)⇒∃w ′′′ (w ′→∗w ′′′&w ′′→∗w ′′′)).

Rewrite systems

• With each normalisation (S,N) comes a rewrite system:

rules: s|t → N(s|t) when N(s|t) 6= s|t.

◮ then normalising: ∀w ∃w ′normal (w →∗ w ′),
◮ and confluent: ∀w ,w ′,w ′′ ((w→∗w ′&w→∗w ′′)⇒∃w ′′′ (w ′→∗w ′′′&w ′′→∗w ′′′)).
◮ but is it terminating: is every rewriting sequence finite?

Rewrite systems

• With each normalisation (S,N) comes a rewrite system:

rules: s|t → N(s|t) when N(s|t) 6= s|t.

◮ then normalising: ∀w ∃w ′normal (w →∗ w ′),
◮ and confluent: ∀w ,w ′,w ′′ ((w→∗w ′&w→∗w ′′)⇒∃w ′′′ (w ′→∗w ′′′&w ′′→∗w ′′′)).
◮ but is it terminating: is every rewriting sequence finite?

• Proposition: There exists a nonterminating class (4, 4) normalisation.

Rewrite systems

• With each normalisation (S,N) comes a rewrite system:

rules: s|t → N(s|t) when N(s|t) 6= s|t.

◮ then normalising: ∀w ∃w ′normal (w →∗ w ′),
◮ and confluent: ∀w ,w ′,w ′′ ((w→∗w ′&w→∗w ′′)⇒∃w ′′′ (w ′→∗w ′′′&w ′′→∗w ′′′)).
◮ but is it terminating: is every rewriting sequence finite?

• Proposition: There exists a nonterminating class (4, 4) normalisation.

◮ Proof: ab → ab
′, cd → c

′
d, bc′ → b

′′
c
′′, b′c → b

′′
c
′′, b′c′ → bc.

Rewrite systems

• With each normalisation (S,N) comes a rewrite system:

rules: s|t → N(s|t) when N(s|t) 6= s|t.

◮ then normalising: ∀w ∃w ′normal (w →∗ w ′),
◮ and confluent: ∀w ,w ′,w ′′ ((w→∗w ′&w→∗w ′′)⇒∃w ′′′ (w ′→∗w ′′′&w ′′→∗w ′′′)).
◮ but is it terminating: is every rewriting sequence finite?

• Proposition: There exists a nonterminating class (4, 4) normalisation.

◮ Proof: ab → ab
′, cd → c

′
d, bc′ → b

′′
c
′′, b′c → b

′′
c
′′, b′c′ → bc.

abcd

ab
′
cd

abc
′
d

ab
′′
c
′′
d ab

′
c
′
d

ab
′′
cd ab

′′
c
′
d

abc
′′
d ab

′
c
′′
d

�

Termination results

• Proposition: Every class (3,3) normalisation is terminating:

Termination results

• Proposition: Every class (3,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most p(p − 1)/2.

Termination results

• Proposition: Every class (3,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most p(p − 1)/2.

◮ Proof: Uses Matsumoto’s lemma for the symmetric group. �

Termination results

• Proposition: Every class (3,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most p(p − 1)/2.

◮ Proof: Uses Matsumoto’s lemma for the symmetric group. �

• Theorem: Every class (4,3) normalisation is terminating:

Termination results

• Proposition: Every class (3,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most p(p − 1)/2.

◮ Proof: Uses Matsumoto’s lemma for the symmetric group. �

• Theorem: Every class (4,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most 2p − p − 1.

Termination results

• Proposition: Every class (3,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most p(p − 1)/2.

◮ Proof: Uses Matsumoto’s lemma for the symmetric group. �

• Theorem: Every class (4,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most 2p − p − 1.

◮ Proof: Because of the domino rule, one inevitably proceeds to the normal form.
�

Termination results

• Proposition: Every class (3,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most p(p − 1)/2.

◮ Proof: Uses Matsumoto’s lemma for the symmetric group. �

• Theorem: Every class (4,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most 2p − p − 1.

◮ Proof: Because of the domino rule, one inevitably proceeds to the normal form.
�

• Corollary: Every Garside normalisation is terminating.

Termination results

• Proposition: Every class (3,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most p(p − 1)/2.

◮ Proof: Uses Matsumoto’s lemma for the symmetric group. �

• Theorem: Every class (4,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most 2p − p − 1.

◮ Proof: Because of the domino rule, one inevitably proceeds to the normal form.
�

• Corollary: Every Garside normalisation is terminating.

• Application: Every finite type Artin–Tits monoid has a finite converging presentation.

Termination results

• Proposition: Every class (3,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most p(p − 1)/2.

◮ Proof: Uses Matsumoto’s lemma for the symmetric group. �

• Theorem: Every class (4,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most 2p − p − 1.

◮ Proof: Because of the domino rule, one inevitably proceeds to the normal form.
�

• Corollary: Every Garside normalisation is terminating.

• Application: Every finite type Artin–Tits monoid has a finite converging presentation.

◮ Proof: Take for S a finite Garside family, with relations s|t = NGar(s|t). �

References

References

Part 1:

• F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20 (1969) 235-254

• H.Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

References

Part 1:

• F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20 (1969) 235-254

• H.Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

• P.Dehornoy, L. Paris, Gaussian groups and Garside groups,
two generalizations of Artin groups

Proc. London Math. Soc. 79 (1999) 569-604

• P.Dehornoy, Groupes de Garside
Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306

References

Part 1:

• F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20 (1969) 235-254

• H.Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

• P.Dehornoy, L. Paris, Gaussian groups and Garside groups,
two generalizations of Artin groups

Proc. London Math. Soc. 79 (1999) 569-604

• P.Dehornoy, Groupes de Garside
Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306

• P.Dehornoy, with F. Digne, E. Godelle, D.Krammer, J.Michel,
Foundations of Garside Theory

EMS Tracts in Mathematics, vol. 22 (2015)

References

Part 1:

• F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20 (1969) 235-254

• H.Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

• P.Dehornoy, L. Paris, Gaussian groups and Garside groups,
two generalizations of Artin groups

Proc. London Math. Soc. 79 (1999) 569-604

• P.Dehornoy, Groupes de Garside
Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306

• P.Dehornoy, with F. Digne, E. Godelle, D.Krammer, J.Michel,
Foundations of Garside Theory

EMS Tracts in Mathematics, vol. 22 (2015)

• P.Dehornoy, M.Dyer, C. Hohlweg, Garside families in Artin-
Tits monoids and low elements in Coxeter groups

Comtes-Rendus Math. 353 (2015) 403-408

References

Part 1:

• F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20 (1969) 235-254

• H.Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

• P.Dehornoy, L. Paris, Gaussian groups and Garside groups,
two generalizations of Artin groups

Proc. London Math. Soc. 79 (1999) 569-604

• P.Dehornoy, Groupes de Garside
Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306

• P.Dehornoy, with F. Digne, E. Godelle, D.Krammer, J.Michel,
Foundations of Garside Theory

EMS Tracts in Mathematics, vol. 22 (2015)

• P.Dehornoy, M.Dyer, C. Hohlweg, Garside families in Artin-
Tits monoids and low elements in Coxeter groups

Comtes-Rendus Math. 353 (2015) 403-408

Part 3:

• P.Dehornoy, Y.Guiraud, Quadratic normalisation in monoids arXiv:1504.02717

References

Part 1:

• F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20 (1969) 235-254

• H.Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

• P.Dehornoy, L. Paris, Gaussian groups and Garside groups,
two generalizations of Artin groups

Proc. London Math. Soc. 79 (1999) 569-604

• P.Dehornoy, Groupes de Garside
Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306

• P.Dehornoy, with F. Digne, E. Godelle, D.Krammer, J.Michel,
Foundations of Garside Theory

EMS Tracts in Mathematics, vol. 22 (2015)

• P.Dehornoy, M.Dyer, C. Hohlweg, Garside families in Artin-
Tits monoids and low elements in Coxeter groups

Comtes-Rendus Math. 353 (2015) 403-408

Part 3:

• P.Dehornoy, Y.Guiraud, Quadratic normalisation in monoids arXiv:1504.02717

• A.Hess, V.Ozornova, Factorability, string rewriting and discrete Morse theory arXiv:1412.3025

References

Part 1:

• F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20 (1969) 235-254

• H.Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

• P.Dehornoy, L. Paris, Gaussian groups and Garside groups,
two generalizations of Artin groups

Proc. London Math. Soc. 79 (1999) 569-604

• P.Dehornoy, Groupes de Garside
Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306

• P.Dehornoy, with F. Digne, E. Godelle, D.Krammer, J.Michel,
Foundations of Garside Theory

EMS Tracts in Mathematics, vol. 22 (2015)

• P.Dehornoy, M.Dyer, C. Hohlweg, Garside families in Artin-
Tits monoids and low elements in Coxeter groups

Comtes-Rendus Math. 353 (2015) 403-408

Part 3:

• P.Dehornoy, Y.Guiraud, Quadratic normalisation in monoids arXiv:1504.02717

• A.Hess, V.Ozornova, Factorability, string rewriting and discrete Morse theory arXiv:1412.3025

www.math.unicaen.fr/∼dehornoy

