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Laboratoire de Mathématiques Nicolas Oresme
Université de Caen
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Laboratoire de Mathématiques Nicolas Oresme
Université de Caen
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• A survey of normal forms in monoids that are
◮ based on greedy algorithms (Garside normalisation),
◮ and, more generally, on local algorithms (quadratic normalisation).

• A common mechanism inducing a universal recipe: the domino rule.
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n has a unique

decomposition s1| ··· |sp with s1, ..., sp ∈ Sn, sp 6= 1, and

∀s∈Sn (si ≺ s ⇒ s |4 si si+1 ··· sp).

i.e., again: “si is a maximal left-divisor of si si+1 ··· sp lying in Sn”

◮ the greedy (or Garside) normal form NFGar(g) (with respect to Sn).
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Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

• 2. Garside normalisation
- Garside monoids
- Artin–Tits monoids

• 3. Quadratic normalisation
- Plactic monoids
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◮ ∆ is a Garside element of M, meaning: the left- and the right-divisors of ∆
coincide and generate M.

◮ The family Div(∆) of all divisors of ∆ in M is finite.

• Philosophy: The finite lattice Div(∆) encodes the whole structure of M.

• Example: Put ∆n := a1 + ··· + an.

Then (Nn,∆n) is a Garside monoid.

◮ Here the lattice Div(∆n) is
an n-dimensional cube (2n elements):
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• Proposition: If (M,∆) is a Garside monoid, every element g of M has a unique
decomposition s1| ··· |sp satisfying s1, ..., sp ∈ Div(∆), sp 6= 1, and
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◮ Go to a more general scheme: Garside families.
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• Definition: (i) If M is a left-cancellative monoid and
S ⊆ M, call an S-word s1|s2 S-normal if

∀s∈S ∀f ∈M (s 4 fs1s2 ⇒ s 4 fs1),

and s1| ··· |sp S-normal iff si |si+1 is S-normal for each i . s1 s2

s

f

տ“is normal”(ii) Call S a Garside family if
every element of M admits an S-normal decomposition.

• Lemma: If (M,∆) is a Garside monoid, then Div(∆) is a Garside family in M; an
S-word is S-normal for S := Div(∆) iff it is normal in the sense of Garside monoids.

◮ Hence: we recover the previous framework...



Garside families examples

... but also catch new examples:



Garside families examples

... but also catch new examples:

• Example (stupid): Every left-cancellative monoid is a Garside family in itself.



Garside families examples

... but also catch new examples:

• Example (stupid): Every left-cancellative monoid is a Garside family in itself.

◮ Only proper (finite) subfamilies may be interesting.



Garside families examples

... but also catch new examples:

• Example (stupid): Every left-cancellative monoid is a Garside family in itself.

◮ Only proper (finite) subfamilies may be interesting.

• Example: (“Klein bottle monoid”) Let K+ := 〈a, b | a = bab〉+.



Garside families examples

... but also catch new examples:

• Example (stupid): Every left-cancellative monoid is a Garside family in itself.

◮ Only proper (finite) subfamilies may be interesting.

• Example: (“Klein bottle monoid”) Let K+ := 〈a, b | a = bab〉+.
Then Div(a2) is a Garside family in M.



Garside families examples

... but also catch new examples:

• Example (stupid): Every left-cancellative monoid is a Garside family in itself.

◮ Only proper (finite) subfamilies may be interesting.

• Example: (“Klein bottle monoid”) Let K+ := 〈a, b | a = bab〉+.
Then Div(a2) is a Garside family in M.

a
−1

b
2

a
−1

b a
−1

ba
−1

b
2
a
−1

b
−2

b
−1 1 b b

2

ab
2

ab a ba b
2
a

ab
2
a aba a

2
a
2
b a

2
b
2



Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd.



Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,



Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),



Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.



Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

◮ In this case, there must exist a smallest Garside family.



Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

◮ In this case, there must exist a smallest Garside family.

• Example (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits
a finite Garside family.



Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

◮ In this case, there must exist a smallest Garside family.

• Example (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits
a finite Garside family. ↑

defined by relations sts... = tst..., same length



Garside families examples (cont’d)

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any
two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

◮ contains the atoms of M,
◮ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
◮ and is closed under right-divisor.

◮ In this case, there must exist a smallest Garside family.

• Example (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits
a finite Garside family. ↑

defined by relations sts... = tst..., same length

Typically (“type Ã2”):
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(certainly not a lattice)
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• Proposition: If S is a Garside family in a left-cancellative monoid M, and s1| ··· |sp is
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that is, NS (t|s1| ··· |sp) = N
S
1|2| ··· |p−1(t|s1| ··· |sp).

↑
applying N

S
:= NS ↾S [2] in positions 1, then 2, etc. until p − 1

• Corollary: If S is a Garside family in a left-cancellative monoid M:

◮ For each t in S, there is a rational transducer computing N(tw) from N(w).
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The Word Problem

• Iterating from the right: a universal recipe for normalising words of length p:

• Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S [p],
the S-normal form of w is given by

NS (w) = N
S
δp
(w),

with δ2 := 1, δ3 := 2|1|2, δ4 := 3|2|3|1|2|3, δ5 := 4|3|4|2|3|4|1|2|3|4, etc.
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step 2 step 3

s′1

step 4

s′2

step 5

s′3

step 6

s′4

• Corollary: If a monoid M is left-cancellative, has no invertible element 6= 1, and
admits a finite Garside family S:

◮ NS can be computed in DTIME(n2), and the Word Pb for (M,S) lies in DTIME(n2).

◮ If M is right-cancellative, M is left-automatic.

◮ (Picantin) M is an automaton semigroup and is residually finite.



Plan:

• 1. Two examples
- Free abelian monoids
- Braid monoids

• 2. Garside normalisation
- Garside monoids
- Artin–Tits monoids

• 3. Quadratic normalisation
- Plactic monoids
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Normalisation

• From now on: consider (more) general geodesic normal forms for a monoid.

↑
the normal form has minimal length

• Proposition: There exists a notion of a normalisation (S,N), with N a length
preserving map S∗ → S∗, s.t. defining a geodesic normal form on a monoid M is
equivalent to defining a normalisation mod a neutral letter for M.

↑
a letter e satisfying ∀w (N(w |e) = N(e|w) = N(w)|e)

↑

M = 〈S | {w = N(w) | w ∈ S∗} ∪ {e = 1}〉+

• Example (lexicographic): M = Nn and NLex(w) := w lexicographically sorted.

• Example (Garside): M = B+
n , S = Div(∆n), and NGar(s1| ··· |sp) := (s′1| ··· |s

′
q |1| ··· |1),

with s′1| ··· |s
′
q the S-normal form of s1 ··· sp .

Id. for every Garside family S in a left-cancellative monoid M.
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• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic: a word is <Lex-nondecreasing iff every length-2 factor is,
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Quadratic normalisation

• Definition: A normalisation (S,N) is quadratic if
◮ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
◮ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

◮ (S,NLex) is quadratic: a word is <Lex-nondecreasing iff every length-2 factor is,
and one can from w to NLex(w) by swapping adjacent letters.

◮ (S,NGar) is quadratic: a word is S-normal iff every length-2 factor is, and one
can from w to NGar(w) by normalising length-2 factors: domino rule.

• Fact: If (S,N) is a quadratic normalisation, the set of N-normal words is regular.

• Notation: For (S,N) quadratic: N := N↾S [2],

N i := N applied to the factor in position i , i + 1,
N i1| ··· |im := N im ◦ ··· ◦ N i1 ,

◮ If (S,N) is quadratic, there exists for every S-word w
a sequence of positions u (depending on w) s.t. N(w) = Nu(w).
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• Similar for the Chinese monoids, now with class (5, 5).
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• Theorem: Every class (4,3) normalisation is terminating: every rewriting sequence
from a length-p word has length at most 2p − p − 1.

◮ Proof: Because of the domino rule, one inevitably proceeds to the normal form.
�

• Corollary: Every Garside normalisation is terminating.

• Application: Every finite type Artin–Tits monoid has a finite converging presentation.

◮ Proof: Take for S a finite Garside family, with relations s|t = NGar(s|t). �
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