<ロト 4 回 h 4 0 ∩ 4 0

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

• A survey of normal forms in monoids that are

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- A survey of normal forms in monoids that are
 - based on greedy algorithms (Garside normalisation),

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

- A survey of normal forms in monoids that are
 - ▶ based on greedy algorithms (Garside normalisation),
 - ▶ and, more generally, on local algorithms (quadratic normalisation).

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

- A survey of normal forms in monoids that are
 - ▶ based on greedy algorithms (Garside normalisation),
 - ▶ and, more generally, on local algorithms (quadratic normalisation).
- A common mechanism inducing a universal recipe: the domino rule.

• 1. Two examples

• 1. Two examples

- Free abelian monoids

• 1. Two examples

- Free abelian monoids

- Braid monoids

- 1. Two examples
 - Free abelian monoids

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Braid monoids
- 2. Garside normalisation

- 1. Two examples
 - Free abelian monoids

- Braid monoids
- 2. Garside normalisation
 - Garside monoids

• 1. Two examples

- Free abelian monoids
- Braid monoids

• 2. Garside normalisation

- Garside monoids
- Artin-Tits monoids

- 1. Two examples
 - Free abelian monoids
 - Braid monoids

• 2. Garside normalisation

- Garside monoids
- Artin-Tits monoids

• 3. Quadratic normalisation

- 1. Two examples
 - Free abelian monoids
 - Braid monoids

• 2. Garside normalisation

- Garside monoids
- Artin-Tits monoids

▲ロト ▲圖ト ▲目ト ▲目ト 三目 - のへで

- 3. Quadratic normalisation
 - Plactic monoids

- 1. Two examples
 - Free abelian monoids
 - Braid monoids

• 2. Garside normalisation

- Garside monoids
- Artin-Tits monoids

▲ロト ▲圖ト ▲目ト ▲目ト 三目 - のへで

- 3. Quadratic normalisation
 - Plactic monoids

- 1. Two examples
 - Free abelian monoids
 - Braid monoids
- 2. Garside normalisation
 - Garside monoids
 - Artin-Tits monoids

▲ロト ▲圖ト ▲目ト ▲目ト 三目 - のへで

- 3. Quadratic normalisation
 - Plactic monoids

• Let M be a free abelian monoid based on $A_n := \{a_1, ..., a_n\} \ (\simeq (\mathbb{N}, +)^n).$

- Let M be a <u>free abelian</u> monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n)$.
 - ▶ each element of M has an A_n -decomposition that is unique

- Let M be a <u>free abelian</u> monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n)$.
 - ▶ each element of M has an A_n -decomposition that is unique

• Fix a linear order \leq on A_n .

- Let M be a free abelian monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n).$
 - \blacktriangleright each element of *M* has an *A_n*-decomposition that is unique

- Fix a linear order \leq on A_n .
 - ▶ each element of *M* has a <u>unique</u> A_n -decomposition $s_1 | \cdots | s_p$ with $s_1 \leq \cdots \leq s_p$:

- Let M be a free abelian monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n).$
 - ▶ each element of M has an A_n -decomposition that is unique

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − つへつ

- Fix a linear order \leq on A_n .
 - ▶ each element of *M* has a <u>unique</u> A_n -decomposition $s_1 | \cdots | s_p$ with $s_1 \leq \cdots \leq s_p$:
 - ▶ the lexicographic normal form $NF^{Lex}(g)$ (with respect to \leq).

- Let M be a free abelian monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n).$
 - \blacktriangleright each element of *M* has an *A_n*-decomposition that is unique

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Fix a linear order \leq on A_n .
 - ▶ each element of *M* has a <u>unique</u> A_n -decomposition $s_1 | \cdots | s_p$ with $s_1 \leq \cdots \leq s_p$:
 - ▶ the lexicographic normal form $NF^{Lex}(g)$ (with respect to \leq).
- Another (more complicated, but more easily extendible) normal form:

- Let M be a <u>free abelian</u> monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n)$.
 - \blacktriangleright each element of *M* has an *A_n*-decomposition that is unique

(日) (日) (日) (日) (日) (日) (日) (日)

- Fix a linear order \leq on A_n .
 - ▶ each element of *M* has a <u>unique</u> A_n -decomposition $s_1 | \cdots | s_p$ with $s_1 \leqslant \cdots \leqslant s_p$:
 - ▶ the lexicographic normal form $NF^{Lex}(g)$ (with respect to \leq).
- Another (more complicated, but more easily extendible) normal form:
 - ▶ put $S_n := \{\prod_{i \in I} a_i \mid I \subseteq \{1, ..., n\}\}$

- Let M be a <u>free abelian</u> monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n)$.
 - \blacktriangleright each element of *M* has an *A_n*-decomposition that is unique

ヘロト (日) (日) (日) (日) (日) (日)

- Fix a linear order \leq on A_n .
 - ▶ each element of *M* has a <u>unique</u> A_n -decomposition $s_1 | \cdots | s_p$ with $s_1 \leqslant \cdots \leqslant s_p$:
 - ▶ the lexicographic normal form $NF^{Lex}(g)$ (with respect to \leq).
- Another (more complicated, but more easily extendible) normal form:
 - ▶ put $S_n := \{\prod_{i \in I} a_i \mid I \subseteq \{1, ..., n\}\}$ (so $\#S_n = 2^n$)

- Let M be a free abelian monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n).$
 - ▶ each element of M has an A_n -decomposition that is unique

A D M A

- Fix a linear order \leq on A_n .
 - ▶ each element of *M* has a <u>unique</u> A_n -decomposition $s_1 | \cdots | s_p$ with $s_1 \leq \cdots \leq s_p$:
 - ▶ the lexicographic normal form $NF^{Lex}(g)$ (with respect to \leq).
- Another (more complicated, but more easily extendible) normal form:
 - ▶ put $S_n := \{\prod_{i \in I} a_i \mid I \subseteq \{1, ..., n\}\}$ (so $\#S_n = 2^n$)

• Proposition: Each element of M has a unique S_n-decomposition $s_1|\cdots|s_p$ with $s_p \neq 1$, and

- Let M be a free abelian monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n).$
 - \blacktriangleright each element of *M* has an *A_n*-decomposition that is unique

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Fix a linear order \leq on A_n .
 - ▶ each element of *M* has a <u>unique</u> A_n -decomposition $s_1 | \cdots | s_p$ with $s_1 \leq \cdots \leq s_p$:
 - ▶ the lexicographic normal form $NF^{Lex}(g)$ (with respect to \leq).
- Another (more complicated, but more easily extendible) normal form:
 - ▶ put $S_n := \{\prod_{i \in I} a_i \mid I \subseteq \{1, ..., n\}\}$ (so $\#S_n = 2^n$)

• <u>Proposition</u>: Each element of M has a unique S_n -decomposition $s_1 | \cdots | s_p$ with $s_p \neq 1$, and $\forall s \in S_n (s_i \prec s \Rightarrow s \preccurlyeq s_i s_{i+1} \cdots s_p).$ (*)

- Let M be a free abelian monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n).$
 - \blacktriangleright each element of *M* has an *A_n*-decomposition that is unique

- Fix a linear order \leq on A_n .
 - ▶ each element of *M* has a <u>unique</u> A_n -decomposition $s_1 | \cdots | s_p$ with $s_1 \leq \cdots \leq s_p$:
 - ▶ the lexicographic normal form $NF^{Lex}(g)$ (with respect to \leq).
- Another (more complicated, but more easily extendible) normal form:
 - ▶ put $S_n := \{\prod_{i \in I} a_i \mid I \subseteq \{1, ..., n\}\}$ (so $\#S_n = 2^n$)

• <u>Proposition</u>: Each element of M has a unique S_n -decomposition $s_1 | \cdots | s_p$ with $s_p \neq 1$, and $\forall s \in S_n (s_i \prec s \Rightarrow s \preccurlyeq s_i s_{i+1} \cdots s_p).$ (*)

 s_i is a proper divisor of $s: \exists t \neq 1 (s_i t = s)$

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 = ∽へ⊙

- Let M be a free abelian monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n).$
 - \blacktriangleright each element of *M* has an *A_n*-decomposition that is unique

- Fix a linear order \leq on A_n .
 - ▶ each element of *M* has a <u>unique</u> A_n -decomposition $s_1 | \cdots | s_p$ with $s_1 \leqslant \cdots \leqslant s_p$:
 - ▶ the lexicographic normal form $NF^{Lex}(g)$ (with respect to \leq).
- Another (more complicated, but more easily extendible) normal form:

▶ put
$$S_n := \{\prod_{i \in I} a_i \mid I \subseteq \{1, ..., n\}\}$$
 (so $\#S_n = 2^n$)

• <u>Proposition</u>: Each element of M has a unique S_n -decomposition $s_1 | \cdots | s_p$ with $s_p \neq 1$, and $\forall s \in S_n (s_i \prec s \Rightarrow s \preccurlyeq s_i s_{i+1} \cdots s_p).$ (*)

 s_i is a proper divisor of $s: \exists t \neq 1 (s_i t = s) \neg \exists t (st = s_i s_{i+1} \cdots s_p)$

- Let M be a free abelian monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n).$
 - \blacktriangleright each element of *M* has an *A_n*-decomposition that is unique

up to the order of letters;

- Fix a linear order \leq on A_n .
 - ▶ each element of *M* has a <u>unique</u> A_n -decomposition $s_1 | \cdots | s_p$ with $s_1 \leq \cdots \leq s_p$:
 - ▶ the lexicographic normal form $NF^{Lex}(g)$ (with respect to \leq).
- Another (more complicated, but more easily extendible) normal form:

▶ put
$$S_n := \{\prod_{i \in I} a_i \mid I \subseteq \{1, ..., n\}\}$$
 (so $\#S_n = 2^n$)

• <u>Proposition</u>: Each element of M has a unique S_n -decomposition $s_1 | \cdots | s_p$ with $s_p \neq 1$, and $\forall s \in S_n (s_i \prec s \Rightarrow s \preccurlyeq s_i s_{i+1} \cdots s_p).$ (*)

 s_i is a proper divisor of $s: \exists t \neq 1 (s_i t \stackrel{i}{=} s) \neg \exists t \stackrel{i}{(st = s_i s_{i+1} \cdots s_p)}$ hence: (*) means: " s_i is a maximal (left)-divisor of $s_i s_{i+1} \cdots s_p$ lying in S_n "

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- Let M be a free abelian monoid based on $A_n := \{a_1, ..., a_n\} (\simeq (\mathbb{N}, +)^n).$
 - \blacktriangleright each element of *M* has an *A_n*-decomposition that is unique

up to the order of letters;

A D M A

- Fix a linear order \leq on A_n .
 - ▶ each element of *M* has a <u>unique</u> A_n -decomposition $s_1 | \cdots | s_p$ with $s_1 \leq \cdots \leq s_p$:
 - ▶ the lexicographic normal form $NF^{Lex}(g)$ (with respect to \leq).
- Another (more complicated, but more easily extendible) normal form:

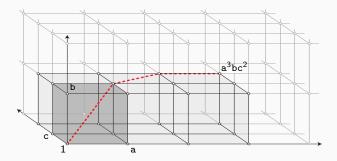
▶ put
$$S_n := \{\prod_{i \in I} a_i \mid I \subseteq \{1, ..., n\}\}$$
 (so $\#S_n = 2^n$)

• <u>Proposition</u>: Each element of M has a unique S_n -decomposition $s_1 | \cdots | s_p$ with $s_p \neq 1$, and $\forall s \in S_n (s_i \prec s \Rightarrow s \preccurlyeq s_i s_{i+1} \cdots s_p).$ (*)

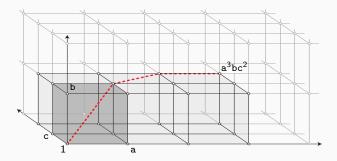
 s_i is a proper divisor of $s: \exists t \neq 1 (s_i t \stackrel{i}{=} s) \neg \exists t (s_i t = s_i s_{i+1} \cdots s_p)$ hence: (*) means: " s_i is a maximal (left)-divisor of $s_i s_{i+1} \cdots s_p$ lying in S_n "

▶ the greedy normal form $NF^{Gar}(g)$ (with respect to S_n).

• Example: $NF^{Gar}(a^3bc^2) = abc|ac|a.$



• Example: $NF^{Gar}(a^3bc^2) = abc|ac|a.$



 $B_{n}^{+} :=$

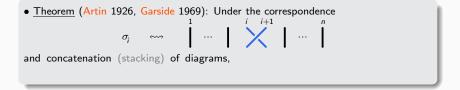
 \rangle^+ .

$$B_n^+ := \left\langle \sigma_1, ..., \sigma_{n-1} \right|$$

$$B_n^+ := \left\langle \sigma_1, ..., \sigma_{n-1} \right| \quad \sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{ for } |i-j| \ge 2 \\ \right\rangle^+$$

$$B_n^+ := \left\langle \sigma_1, ..., \sigma_{n-1} \right| \left. \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle^+$$

$$\mathcal{B}_n^+ := \left\langle \sigma_1, ..., \sigma_{n-1} \right| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle^+$$



$$\mathcal{B}_{n}^{+} := \left\langle \sigma_{1}, ..., \sigma_{n-1} \right| \left. \begin{array}{cc} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \geqslant 2 \\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle^{+}$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \cdots p_i \xrightarrow{i + 1} \cdots p_i$

and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

$$\mathbf{B}_{n}^{+} := \left\langle \sigma_{1}, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \ge 2 \\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle^{+}$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \qquad i \qquad i+1 \qquad \dots \qquad n$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\mathbf{B}_{n}^{+} := \left\langle \sigma_{1}, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \ge 2 \\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle^{+}$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \qquad i \qquad i^{i+1} \qquad n$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\mathbf{B}_{n}^{+} := \left\langle \sigma_{1}, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \ge 2 \\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle^{+}$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \qquad \dots \qquad i \qquad i^{i+1} \qquad \dots \qquad n^n$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\mathbf{B}_{n}^{+} := \left\langle \sigma_{1}, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \ge 2 \\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle^{+}$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \cdots p_n^{i-1} \cdots p_n^{i-1}$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

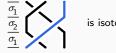
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\mathbf{B}_{n}^{+} := \left\langle \sigma_{1}, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \ge 2 \\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle^{+}$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \cdots p_{n-1} \cdots p_n^n$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

• Topological interpretation of the braid relation $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$:



is isotopic to

$$\mathbf{B}_{n}^{+} := \left\langle \sigma_{1}, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \ge 2 \\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle^{+}$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \cdots p_n^{i-1} \cdots p_n^{i-1}$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

$$\mathbf{B}_{n}^{+} := \left\langle \sigma_{1}, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \ge 2 \\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle^{+}$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \cdots p_{n-1} \cdots p_{n-1} \cdots p_{n-1}$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\mathbf{B}_{n}^{+} := \left\langle \sigma_{1}, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \ge 2 \\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle^{+}$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \cdots p_{n-1} \cdots p_{n-1}^{n-1} \cdots p_{n-1}^{n-1}$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\mathbf{B}_n^+ := \left\langle \sigma_1, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle^+$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \cdots p_{n-1} \cdots p_n^n$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\mathbf{B}_n^+ := \left\langle \sigma_1, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle^+$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff \prod_{i=1}^{n} \cdots \prod_{i=1}^{n} \prod_{i=1}^{n} \cdots \prod_{i=1}^{n} \prod_{i=1}^{n} \cdots \prod_{i=1}^{n} \prod_{i=1}^{n} \cdots \prod_{i=1}^{n} \prod_{i=1}^$

continuous deformation of the ambient 3D-space

$$\mathbf{B}_n^+ := \left\langle \sigma_1, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle^+$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff \prod_{i=1}^{n} \cdots \prod_{i=1}^{n} \prod_{i=1}^{n+1} \cdots \prod_{i=1}^{n}$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

$$\mathcal{B}_n^+ := \left\langle \sigma_1, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle^+$$

• <u>Theorem</u> (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \cdots p_{i-1} \cdots p_{i-1} \cdots p_{i-1}$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

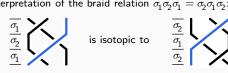
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\mathbf{B}_n^+ := \left\langle \sigma_1, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle^+$$

• Theorem (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \cdots p_i \stackrel{i = i+1}{\longrightarrow} 1 \cdots p_i$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

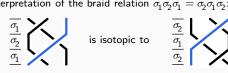


$$\mathbf{B}_{n}^{+} := \left\langle \sigma_{1}, ..., \sigma_{n-1} \middle| \begin{array}{cc} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \ge 2 \\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle^{+}$$

• Theorem (Artin 1926, Garside 1969): Under the correspondence $\sigma_i \iff 1 \cdots p_i \stackrel{i = i+1}{\longrightarrow} 1 \cdots p_i$ and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive *n*-strand braid diagrams.

continuous deformation of the ambient 3D-space

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○



• Put $S_n := \{ \text{simple } n \text{-strand braids} \}$

any two strands cross at most once \downarrow • Put $S_n := \{ \text{simple } n \text{-strand braids} \}$

any two strands cross at most once

• Put $S_n := { simple n-strand braids } = { g \in B_n^+ | g \preccurlyeq \Delta_n }.$

any two strands cross at most once

• Put $S_n := { simple n-strand braids } = { g \in B_n^+ | g \preccurlyeq \Delta_n }.$ $\exists h (gh = \Delta_n)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

any two strands cross at most once

any two strands cross at most once • Put $S_n := \{ simple \ n\text{-strand braids} \} = \{ g \in B_n^+ \mid g \preccurlyeq \Delta_n \}.$ $\exists h \ (gh = \Delta_n)$ the half-turn braid:

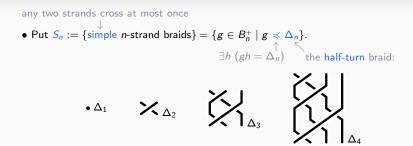
Δ1

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

any two strands cross at most once • Put $S_n := \{ simple \ n\text{-strand braids} \} = \{ g \in B_n^+ \mid g \preccurlyeq \Delta_n \}.$ $\exists h \ (gh = \Delta_n)$ the half-turn braid:

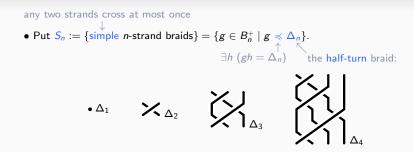
any two strands cross at most once • Put $S_n := \{ simple \ n\text{-strand braids} \} = \{ g \in B_n^+ \mid g \preccurlyeq \Delta_n \}.$ $\exists h \ (gh = \Delta_n)$ the half-turn braid:





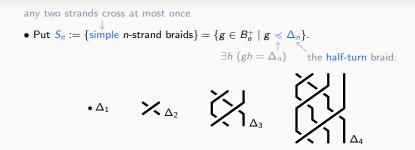
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○



• <u>Proposition</u> (Adyan 1984, Morton–El-Rifai 1988): Every element g of B_n^+ has a unique decomposition $s_1 | \cdots | s_p$ with $s_1, \dots, s_p \in S_n$, $s_p \neq 1$, and $\forall s \in S_n (s_i \prec s \Rightarrow s \preccurlyeq s_i s_{i+1} \cdots s_p).$

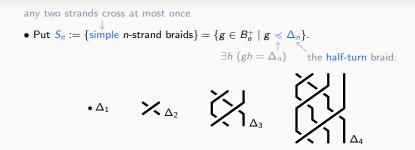
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○



• <u>Proposition</u> (Adyan 1984, Morton–El-Rifai 1988): Every element g of B_n^+ has a unique decomposition $s_1 | \cdots | s_p$ with $s_1, \dots, s_p \in S_n$, $s_p \neq 1$, and $\forall s \in S_n (s_i \prec s \Rightarrow s \preccurlyeq s_i s_{i+1} \cdots s_p).$

i.e., again: " s_i is a maximal left-divisor of $s_i s_{i+1} \cdots s_p$ lying in S_n "

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

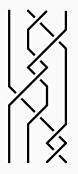


• <u>Proposition</u> (Adyan 1984, Morton–El-Rifai 1988): Every element g of B_n^+ has a unique decomposition $s_1 | \cdots | s_p$ with $s_1, \dots, s_p \in S_n$, $s_p \neq 1$, and $\forall s \in S_n (s_i \prec s \Rightarrow s \preccurlyeq s_i s_{i+1} \cdots s_p).$

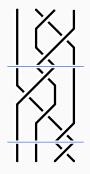
i.e., again: " s_i is a maximal left-divisor of $s_i s_{i+1} \cdots s_p$ lying in S_n "

▶ the greedy (or Garside) normal form $NF^{Gar}(g)$ (with respect to S_n).

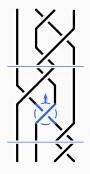
◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

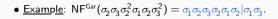


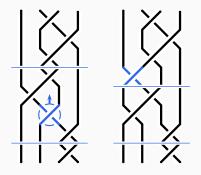
◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

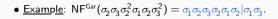


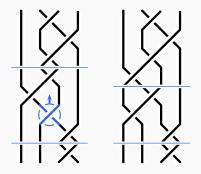
◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○



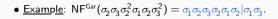


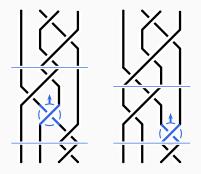


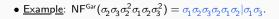


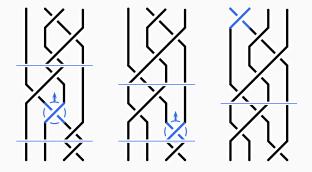


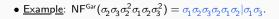
◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 句 ◆ ○

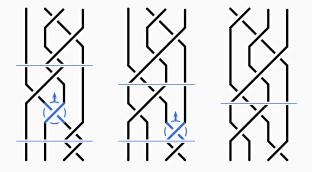


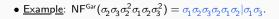


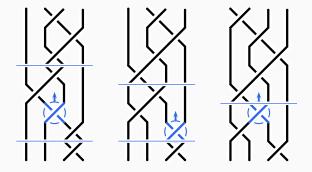


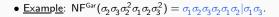


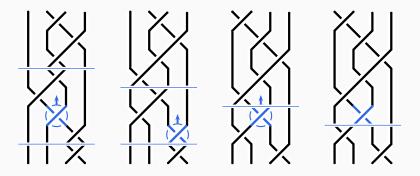




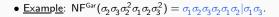


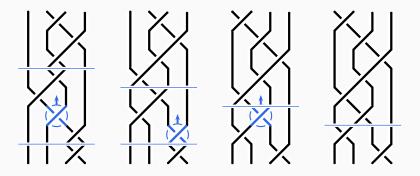






▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 - つへぐ





▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 - つへぐ

Plan:

- 1. Two examples
 - Free abelian monoids
 - Braid monoids

• 2. Garside normalisation

- Garside monoids
- Artin-Tits monoids

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

- 3. Quadratic normalisation
 - Plactic monoids

• Definition: A Garside monoid

• <u>Definition</u>: A Garside monoid is a pair (M, Δ) , where M is a cancellative monoid

<u>Definition</u>: A Garside monoid is a pair (M, Δ), where M is a cancellative monoid s.t.
 There exists λ : M → N satisfying, for all f, g,

 $\lambda(fg) \geqslant \lambda(f) + \lambda(g)$ and $g \neq 1 \Rightarrow \lambda(g) \neq 0.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- <u>Definition</u>: A Garside monoid is a pair (M, Δ) , where M is a cancellative monoid s.t.
 - ▶ There exists $\lambda: M \to \mathbb{N}$ satisfying, for all f, g,

$$\lambda(fg) \geqslant \lambda(f) + \lambda(g)$$
 and $g \neq 1 \Rightarrow \lambda(g) \neq 0.$

 \blacktriangleright Any two elements of *M* admit left- and right-lcms and gcds.

- <u>Definition</u>: A Garside monoid is a pair (M, Δ) , where M is a cancellative monoid s.t.
 - ▶ There exists $\lambda: M \to \mathbb{N}$ satisfying, for all f, g,

 $\lambda(\mathit{fg}) \geqslant \lambda(\mathit{f}) + \lambda(\mathit{g}) \qquad \text{and} \qquad \mathit{g} \neq 1 \Rightarrow \lambda(\mathit{g}) \neq 0.$

- ▶ Any two elements of *M* admit left- and right-lcms and gcds.
- $\blacktriangleright \Delta \text{ is a Garside element of } M \text{, meaning: the left- and the right-divisors of } \Delta \text{ coincide and generate } M \text{.}$

- <u>Definition</u>: A Garside monoid is a pair (M, Δ) , where M is a cancellative monoid s.t.
 - ▶ There exists $\lambda: M \to \mathbb{N}$ satisfying, for all f, g,

 $\lambda(\mathit{fg}) \geqslant \lambda(\mathit{f}) + \lambda(\mathit{g}) \qquad ext{and} \qquad \mathit{g} \neq 1 \Rightarrow \lambda(\mathit{g}) \neq 0.$

- ▶ Any two elements of *M* admit left- and right-lcms and gcds.
- $\blacktriangleright \Delta \text{ is a Garside element of } M \text{, meaning: the left- and the right-divisors of } \Delta \text{ coincide and generate } M \text{.}$
- The family $Div(\Delta)$ of all divisors of Δ in M is finite.

- <u>Definition</u>: A Garside monoid is a pair (M, Δ) , where M is a cancellative monoid s.t.
 - ▶ There exists $\lambda: M \to \mathbb{N}$ satisfying, for all f, g,

 $\lambda(\mathit{fg}) \geqslant \lambda(\mathit{f}) + \lambda(\mathit{g}) \qquad ext{and} \qquad \mathit{g} \neq 1 \Rightarrow \lambda(\mathit{g}) \neq 0.$

- ▶ Any two elements of *M* admit left- and right-lcms and gcds.
- $\blacktriangleright \Delta \text{ is a Garside element of } M, \text{ meaning: the left- and the right-divisors of } \Delta \\ \text{coincide and generate } M.$
- The family $Div(\Delta)$ of all divisors of Δ in M is finite.

• <u>Philosophy</u>: The finite lattice $Div(\Delta)$ encodes the whole structure of *M*.

- <u>Definition</u>: A Garside monoid is a pair (M, Δ) , where M is a cancellative monoid s.t.
 - ▶ There exists $\lambda: M \to \mathbb{N}$ satisfying, for all f, g,

 $\lambda(\mathit{fg}) \geqslant \lambda(\mathit{f}) + \lambda(\mathit{g}) \qquad ext{and} \qquad \mathit{g} \neq 1 \Rightarrow \lambda(\mathit{g}) \neq 0.$

- ▶ Any two elements of *M* admit left- and right-lcms and gcds.
- $\blacktriangleright \Delta \text{ is a Garside element of } M, \text{ meaning: the left- and the right-divisors of } \Delta \\ \text{coincide and generate } M.$
- The family $Div(\Delta)$ of all divisors of Δ in M is finite.

• <u>Philosophy</u>: The finite lattice $Div(\Delta)$ encodes the whole structure of *M*.

• Example: Put $\Delta_n := a_1 + \cdots + a_n$. Then (\mathbb{N}^n, Δ_n) is a Garside monoid.

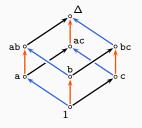
- <u>Definition</u>: A Garside monoid is a pair (M, Δ) , where M is a cancellative monoid s.t.
 - ▶ There exists $\lambda: M \to \mathbb{N}$ satisfying, for all f, g,

$$\lambda(fg) \geqslant \lambda(f) + \lambda(g)$$
 and $g \neq 1 \Rightarrow \lambda(g) \neq 0$.

- ▶ Any two elements of *M* admit left- and right-lcms and gcds.
- $\blacktriangleright \Delta \text{ is a Garside element of } M \text{, meaning: the left- and the right-divisors of } \Delta \text{ coincide and generate } M \text{.}$
- The family $Div(\Delta)$ of all divisors of Δ in M is finite.

• <u>Philosophy</u>: The finite lattice $Div(\Delta)$ encodes the whole structure of *M*.

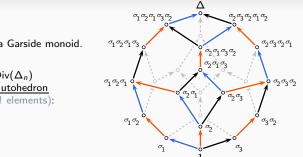
 Example: Put Δ_n := a₁ + ··· + a_n. Then (Nⁿ, Δ_n) is a Garside monoid. Here the lattice Div(Δ_n) is an n-dimensional cube (2ⁿ elements):



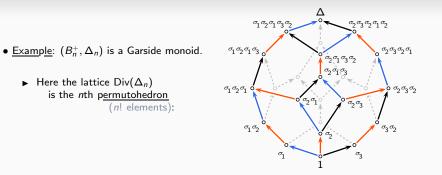
◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 = つへぐ

• <u>Example</u>: (B_n^+, Δ_n) is a Garside monoid.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

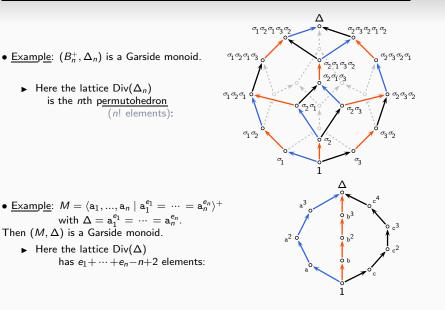


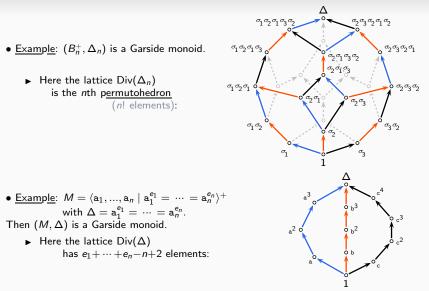
- Example: (B_n^+, Δ_n) is a Garside monoid.
 - ► Here the lattice Div(∆_n) is the *n*th permutohedron (n! elements):



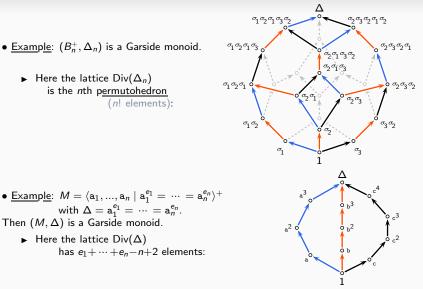
• Example:
$$M = \langle a_1, ..., a_n | a_1^{e_1} = \cdots = a_n^{e_n} \rangle^+$$

with $\Delta = a_1^{e_1} = \cdots = a_n^{e_n}$.
Then (M, Δ) is a Garside monoid.





and many more ...



and many more... ask Matthieu Picantin!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: If (M, Δ) is a Garside monoid, every element g of M has a unique decomposition $s_1 | \cdots | s_p$ satisfying $s_1, \dots, s_p \in Div(\Delta)$, $s_p \neq 1$, and $\forall s \in Div(\Delta) (s_i \prec s \Rightarrow s \preccurlyeq s_i s_{i+1} \cdots s_p)$.

• <u>Proposition</u>: If (M, Δ) is a Garside monoid, every element g of M has a unique decomposition $s_1 | \cdots | s_p$ satisfying $s_1, \dots, s_p \in Div(\Delta)$, $s_p \neq 1$, and $\forall s \in Div(\Delta) \ (s_i \prec s \Rightarrow s \ \leqslant s_i s_{i+1} \cdots s_p)$.

once more: s_i is a <u>maximal</u> left-divisor of $s_i s_{i+1} \cdots s_p$ lying in $Div(\Delta)$.

• <u>Proposition</u>: If (M, Δ) is a Garside monoid, every element g of M has a unique decomposition $s_1 | \cdots | s_p$ satisfying $s_1, \dots, s_p \in Div(\Delta)$, $s_p \neq 1$, and $\forall s \in Div(\Delta) \ (s_i \prec s \Rightarrow s \ \leqslant s_i s_{i+1} \cdots s_p)$.

once more: s_i is a <u>maximal</u> left-divisor of $s_i s_{i+1} \cdots s_p$ lying in $Div(\Delta)$.

► A "greedy" normal form

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Proposition</u>: If (M, Δ) is a Garside monoid, every element g of M has a unique decomposition $s_1 | \cdots | s_p$ satisfying $s_1, \dots, s_p \in Div(\Delta)$, $s_p \neq 1$, and $\forall s \in Div(\Delta) \ (s_i \prec s \Rightarrow s \ \leqslant s_i s_{i+1} \cdots s_p)$.

once more: s_i is a <u>maximal</u> left-divisor of $s_i s_{i+1} \cdots s_p$ lying in $Div(\Delta)$.

► A "greedy" normal form

• <u>Proof</u> (existence): Left-dividing s and Δ means left-dividing $gcd_L(s, \Delta)$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Proposition</u>: If (M, Δ) is a Garside monoid, every element g of M has a unique decomposition $s_1 | \cdots | s_p$ satisfying $s_1, \dots, s_p \in Div(\Delta)$, $s_p \neq 1$, and $\forall s \in Div(\Delta) \ (s_i \prec s \Rightarrow s \ \leqslant s_i s_{i+1} \cdots s_p)$.

once more: s_i is a <u>maximal</u> left-divisor of $s_i s_{i+1} \cdots s_p$ lying in $Div(\Delta)$.

► A "greedy" normal form

Proof (existence): Left-dividing s and Δ means left-dividing gcd_L(s, Δ).
 Write g = s₁g' with s₁ = gcd_L(g, Δ).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: If (M, Δ) is a Garside monoid, every element g of M has a unique decomposition $s_1 | \cdots | s_p$ satisfying $s_1, \dots, s_p \in Div(\Delta)$, $s_p \neq 1$, and $\forall s \in Div(\Delta) \ (s_i \prec s \Rightarrow s \ \ddagger s_i s_{i+1} \cdots s_p)$.

once more: s_i is a <u>maximal</u> left-divisor of $s_i s_{i+1} \cdots s_p$ lying in $Div(\Delta)$.

- ► A "greedy" normal form
- Proof (existence): Left-dividing s and Δ means left-dividing gcd_L(s, Δ).
 Write g = s₁g' with s₁ = gcd_L(g, Δ).
 Then iterate: g' = s₂g'', g'' = s₃g''', etc.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: If (M, Δ) is a Garside monoid, every element g of M has a unique decomposition $s_1 | \cdots | s_p$ satisfying $s_1, \dots, s_p \in Div(\Delta)$, $s_p \neq 1$, and $\forall s \in Div(\Delta) \ (s_i \prec s \Rightarrow s \ \leqslant s_i s_{i+1} \cdots s_p)$.

once more: s_i is a <u>maximal</u> left-divisor of $s_i s_{i+1} \cdots s_p$ lying in $Div(\Delta)$.

- ► A "greedy" normal form
- Proof (existence): Left-dividing s and Δ means left-dividing gcd_L(s, Δ).
 Write g = s₁g' with s₁ = gcd_L(g, Δ).
 Then iterate: g' = s₂g'', g'' = s₃g''', etc.

• Question: How to effectively compute this normal form?

• <u>Proposition</u>: If (M, Δ) is a Garside monoid, every element g of M has a unique decomposition $s_1 | \cdots | s_p$ satisfying $s_1, \dots, s_p \in Div(\Delta)$, $s_p \neq 1$, and $\forall s \in Div(\Delta) \ (s_i \prec s \Rightarrow s \ \leqslant s_i s_{i+1} \cdots s_p)$.

once more: s_i is a <u>maximal</u> left-divisor of $s_i s_{i+1} \cdots s_p$ lying in $Div(\Delta)$.

- ► A "greedy" normal form
- Proof (existence): Left-dividing s and Δ means left-dividing gcd_L(s, Δ).
 Write g = s₁g' with s₁ = gcd_L(g, Δ).
 Then iterate: g' = s₂g'', g'' = s₃g''', etc.

• Question: How to effectively compute this normal form? What is the mechanism?

• <u>Proposition</u>: If (M, Δ) is a Garside monoid, every element g of M has a unique decomposition $s_1 | \cdots | s_p$ satisfying $s_1, \dots, s_p \in Div(\Delta)$, $s_p \neq 1$, and $\forall s \in Div(\Delta) \ (s_i \prec s \Rightarrow s \ \leqslant s_i s_{i+1} \cdots s_p)$.

once more: s_i is a <u>maximal</u> left-divisor of $s_i s_{i+1} \cdots s_p$ lying in $\text{Div}(\Delta)$.

- A "greedy" normal form
- Proof (existence): Left-dividing s and Δ means left-dividing gcd_L(s, Δ).
 Write g = s₁g' with s₁ = gcd_L(g, Δ).
 Then iterate: g' = s₂g'', g'' = s₃g''', etc.

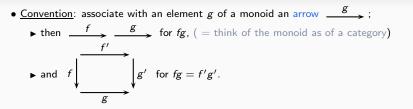
• Question: How to effectively compute this normal form? What is the mechanism?

▶ Go to a more general scheme: Garside families.

• <u>Convention</u>: associate with an element g of a monoid an arrow \xrightarrow{g} ;

• <u>Convention</u>: associate with an element g of a monoid an arrow \xrightarrow{g} ;

$$\blacktriangleright \text{ then } \xrightarrow{f} \xrightarrow{g} \text{ for } fg,$$



• <u>Convention</u>: associate with an element g of a monoid an arrow \xrightarrow{g} ;

▶ then
$$f g$$
 for fg , (= think of the monoid as of a category)
▶ and $f \downarrow g'$ for $fg = f'g'$.

• <u>Definition</u>: (i) If *M* is a left-cancellative monoid and $S \subseteq M$, call an *S*-word $s_1|s_2$ <u>*S*-normal</u> if

 $\forall s \in S \ \forall f \in M \ (s \preccurlyeq fs_1s_2 \Rightarrow s \preccurlyeq fs_1),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − つへつ

• <u>Convention</u>: associate with an element g of a monoid an arrow \xrightarrow{g} ;

▶ then
$$f$$
 g for fg , (= think of the monoid as of a category)
▶ and $f \bigvee_{g}$ g' for $fg = f'g'$.

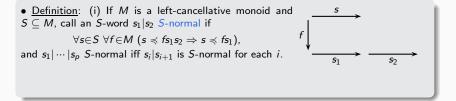
• <u>Definition</u>: (i) If *M* is a left-cancellative monoid and $S \subseteq M$, call an *S*-word $s_1|s_2$ *S*-normal if $\forall s \in S \ \forall f \in M \ (s \preccurlyeq fs_1s_2 \Rightarrow s \preccurlyeq fs_1),$

and $s_1 | \cdots | s_p$ S-normal iff $s_i | s_{i+1}$ is S-normal for each *i*.

▶ then
$$f$$
 g for fg , (= think of the monoid as of a category)
▶ and $f \bigvee_{g}$ g' for $fg = f'g'$.

• <u>Definition</u>: (i) If *M* is a left-cancellative monoid and $S \subseteq M$, call an *S*-word $s_1|s_2$ *S*-normal if $\forall s \in S \ \forall f \in M \ (s \preccurlyeq fs_1s_2 \Rightarrow s \preccurlyeq fs_1),$ and $s_1| \cdots |s_p$ *S*-normal iff $s_i|s_{i+1}$ is *S*-normal for each *i*. $s_1 \rightarrow s_2 \rightarrow s_2$

▶ then f g for fg, (= think of the monoid as of a category) ▶ and $f \downarrow g'$ for fg = f'g'.



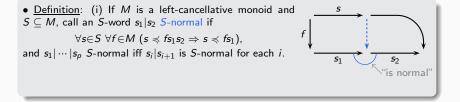
▶ then f g for fg, (= think of the monoid as of a category) ▶ and $f \downarrow g'$ for fg = f'g'.

• <u>Definition</u>: (i) If *M* is a left-cancellative monoid and $S \subseteq M$, call an *S*-word $s_1|s_2$ *S*-normal if $\forall s \in S \ \forall f \in M \ (s \preccurlyeq fs_1s_2 \Rightarrow s \preccurlyeq fs_1),$ and $s_1| \cdots |s_p$ *S*-normal iff $s_i|s_{i+1}$ is *S*-normal for each *i*. $f \bigvee_{s_1 \otimes s_1} \cdots \otimes s_{s_1} \otimes s_{s_1$

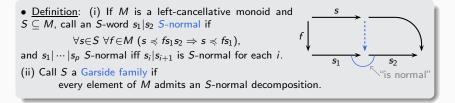
▶ then f g for fg, (= think of the monoid as of a category) ▶ and $f \downarrow g'$ for fg = f'g'.

• <u>Definition</u>: (i) If *M* is a left-cancellative monoid and $S \subseteq M$, call an *S*-word $s_1|s_2$ *S*-normal if $\forall s \in S \ \forall f \in M \ (s \preccurlyeq fs_1s_2 \Rightarrow s \preccurlyeq fs_1),$ and $s_1| \cdots |s_p$ *S*-normal iff $s_i|s_{i+1}$ is *S*-normal for each *i*.

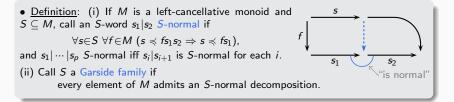
▶ then
$$f g$$
 for fg , (= think of the monoid as of a category)
▶ and $f \downarrow g'$ for $fg = f'g'$.



▶ then f g for fg, (= think of the monoid as of a category) ▶ and $f \bigvee_{g}$ g' for fg = f'g'.

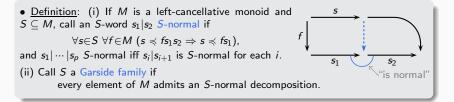


▶ then
$$f$$
 g for fg , (= think of the monoid as of a category)
▶ and $f \bigvee_{g}$ g' for $fg = f'g'$.



• Lemma: If (M, Δ) is a Garside monoid, then $Div(\Delta)$ is a Garside family in M; an S-word is S-normal for $S := Div(\Delta)$ iff it is normal in the sense of Garside monoids.

▶ then
$$f$$
 g for fg , (= think of the monoid as of a category)
▶ and $f \bigvee_{g}$ g' for $fg = f'g'$.



• Lemma: If (M, Δ) is a Garside monoid, then $Div(\Delta)$ is a Garside family in M; an S-word is S-normal for $S := Div(\Delta)$ iff it is normal in the sense of Garside monoids.

Hence: we recover the previous framework...

... but also catch new examples:

... but also catch new examples:

• Example (stupid): Every left-cancellative monoid is a Garside family in itself.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

... but also catch new examples:

<u>Example</u> (stupid): Every left-cancellative monoid is a Garside family in itself.
 Only proper (finite) subfamilies may be interesting.

... but also catch new examples:

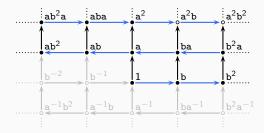
- <u>Example</u> (stupid): Every left-cancellative monoid is a Garside family in itself.
 Only proper (finite) subfamilies may be interesting.
- Example: ("Klein bottle monoid") Let $K^+ := \langle a, b \mid a = bab \rangle^+$.

... but also catch new examples:

- <u>Example</u> (stupid): Every left-cancellative monoid is a Garside family in itself.
 Only proper (finite) subfamilies may be interesting.
- <u>Example</u>: ("Klein bottle monoid") Let $K^+ := \langle a, b \mid a = bab \rangle^+$. Then Div(a^2) is a Garside family in M.

... but also catch new examples:

- <u>Example</u> (stupid): Every left-cancellative monoid is a Garside family in itself.
 Only proper (finite) subfamilies may be interesting.
- Example: ("Klein bottle monoid") Let $K^+ := \langle a, b \mid a = bab \rangle^+$. Then Div(a^2) is a Garside family in M.



• <u>Theorem</u>: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd.

• <u>Theorem</u>: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

▶ contains the atoms of M,

• <u>Theorem</u>: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

- ▶ contains the atoms of M,
- ▶ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),

• <u>Theorem</u>: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

- ▶ contains the atoms of M,
- ▶ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
- ▶ and is closed under right-divisor.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Theorem</u>: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

- ▶ contains the atoms of M,
- ▶ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
- ▶ and is closed under right-divisor.

▶ In this case, there must exist a smallest Garside family.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Theorem</u>: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

- ▶ contains the atoms of M,
- ▶ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
- ▶ and is closed under right-divisor.

▶ In this case, there must exist a smallest Garside family.

 <u>Example</u> (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits a <u>finite</u> Garside family.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Theorem</u>: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

- ▶ contains the atoms of M,
- ▶ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
- ▶ and is closed under right-divisor.

▶ In this case, there must exist a smallest Garside family.

 <u>Example</u> (D.-Dyer-Hohlweg): Every finitely generated Artin-Tits monoid admits a <u>finite</u> Garside family.
 defined by relations sts... = tst..., same length

• <u>Theorem</u>: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

- ▶ contains the atoms of M,
- ▶ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
- ▶ and is closed under right-divisor.

▶ In this case, there must exist a smallest Garside family.

• <u>Example</u> (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits a <u>finite</u> Garside family. Typically ("type \tilde{A}_2 "):

• <u>Theorem</u>: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

- ▶ contains the atoms of M,
- ▶ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
- ▶ and is closed under right-divisor.

▶ In this case, there must exist a smallest Garside family.

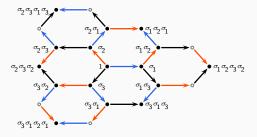
• <u>Example</u> (D.-Dyer-Hohlweg): Every finitely generated Artin-Tits monoid admits a <u>finite</u> Garside family. Typically ("type \tilde{A}_2 "): $\langle \sigma_1, \sigma_2, \sigma_3 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2, \sigma_2 \sigma_2 \sigma_2 \sigma_3 \sigma_2 \sigma_3, \sigma_3 \sigma_1 \sigma_3 = \sigma_1 \sigma_3 \sigma_1 \rangle^+$ • <u>Theorem</u>: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

- ▶ contains the atoms of M,
- ▶ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
- ▶ and is closed under right-divisor.

▶ In this case, there must exist a smallest Garside family.

Example (D.-Dyer-Hohlweg): Every finitely generated Artin-Tits monoid admits
 a finite Garside family.
 defined by relations sts... = tst.... same length

 $\text{Typically ("type $\widetilde{A}_2")$: $\langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2, \sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_3, \sigma_3 \sigma_1 \sigma_3 = \sigma_1 \sigma_3 \sigma_1 \rangle^+ $}$



<□▶ <□▶ < □▶ < □▶ < □▶ = □ のへ⊙

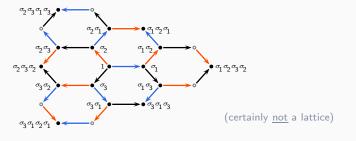
• <u>Theorem</u>: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

- ▶ contains the atoms of M,
- ▶ is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
- ▶ and is closed under right-divisor.

▶ In this case, there must exist a smallest Garside family.

Example (D.-Dyer-Hohlweg): Every finitely generated Artin-Tits monoid admits
 a finite Garside family.
 defined by relations sts... = tst.... same length

 $\text{Typically ("type $\widetilde{A}_2"$): $\langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2, \sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_3, \sigma_3 \sigma_1 \sigma_3 = \sigma_1 \sigma_3 \sigma_1 \rangle^+ $}$



• The Garside normal form NF^S is indeed a greedy normal form:

- The Garside normal form NF^{S} is indeed a greedy normal form:
- <u>Proposition</u>: If S is a Garside family in a left-cancellative monoid M:
 - ▶ The S-normal form is (essentially) unique when it exists.

- The Garside normal form NF^{S} is indeed a greedy normal form:
- Proposition: If S is a Garside family in a left-cancellative monoid M:
 - ▶ The S-normal form is (essentially) unique when it exists.
 - ▶ If S is finite, the language of S-normal words is regular.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The Garside normal form NF^{5} is indeed a greedy normal form:
- Proposition: If S is a Garside family in a left-cancellative monoid M:
 - ▶ The S-normal form is (essentially) unique when it exists.
 - ▶ If S is finite, the language of S-normal words is regular.
 - A word $s_1 | \cdots | s_p$ is S-normal iff

$$\forall s \in S \ (s_i \prec s \Rightarrow s \ \ s_i s_{i+1} \cdots s_p).$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The Garside normal form NF^S is indeed a greedy normal form:
- Proposition: If S is a Garside family in a left-cancellative monoid M:
 - ▶ The S-normal form is (essentially) unique when it exists.
 - ▶ If S is finite, the language of S-normal words is regular.
 - A word $s_1 | \cdots | s_p$ is S-normal iff

 $\forall s \in S (s_i \prec s \Rightarrow s \notin s_i s_{i+1} \cdots s_p).$

once again: s_i is a maximal left-divisor of $s_i s_{i+1} \cdots s_p$ lying in S

(日) (日) (日) (日) (日) (日) (日) (日)

- The Garside normal form NF^S is indeed a greedy normal form:
- <u>Proposition</u>: If S is a Garside family in a left-cancellative monoid M:
 - ▶ The S-normal form is (essentially) unique when it exists.
 - ▶ If S is finite, the language of S-normal words is regular.
 - A word $s_1 | \cdots | s_p$ is S-normal iff

 $\forall s \in S (s_i \prec s \Rightarrow s \notin s_i s_{i+1} \cdots s_p).$

once again: s_i is a maximal left-divisor of $s_i s_{i+1} \cdots s_p$ lying in S

• <u>Main question</u>: How to compute the S-normal form? What is the mechanism?

- The Garside normal form NF^S is indeed a greedy normal form:
- Proposition: If S is a Garside family in a left-cancellative monoid M:
 - ▶ The S-normal form is (essentially) unique when it exists.
 - ▶ If S is finite, the language of S-normal words is regular.
 - A word $s_1 | \cdots | s_p$ is S-normal iff

 $\forall s \in S (s_i \prec s \Rightarrow s \notin s_i s_{i+1} \cdots s_p).$

once again: s_i is a maximal left-divisor of $s_i s_{i+1} \cdots s_p$ lying in S

• <u>Main question</u>: How to compute the S-normal form? What is the mechanism?

▶ Equivalently: how to compute the normalisation map $N^S: S^* \to S^*$?

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

- The Garside normal form NF^S is indeed a greedy normal form:
- Proposition: If S is a Garside family in a left-cancellative monoid M:
 - ▶ The S-normal form is (essentially) unique when it exists.
 - ▶ If S is finite, the language of S-normal words is regular.
 - A word $s_1 | \cdots | s_p$ is S-normal iff

 $\forall s \in S (s_i \prec s \Rightarrow s \notin s_i s_{i+1} \cdots s_p).$

once again: s_i is a maximal left-divisor of $s_i s_{i+1} \cdots s_p$ lying in S

• <u>Main question</u>: How to compute the S-normal form? What is the mechanism?

▶ Equivalently: how to compute the normalisation map $N^S: S^* \to S^*$?

• Lemma: If S is a Garside family in a left-cancellative monoid M, then, for all s_1, s_2 in S, the S-normal form of s_1s_2 has length ≤ 2 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(日) (日) (日) (日) (日) (日) (日) (日)

- The Garside normal form NF⁵ is indeed a greedy normal form:
- Proposition: If S is a Garside family in a left-cancellative monoid M:
 - The S-normal form is (essentially) unique when it exists.
 - ▶ If S is finite, the language of S-normal words is regular.
 - A word $s_1 | \cdots | s_p$ is S-normal iff

 $\forall s \in S (s_i \prec s \Rightarrow s \notin s_i s_{i+1} \cdots s_p).$

once again: s_i is a maximal left-divisor of $s_i s_{i+1} \cdots s_p$ lying in S

• <u>Main question</u>: How to compute the S-normal form? What is the mechanism?

▶ Equivalently: how to compute the normalisation map $N^S: S^* \to S^*$?

• Lemma: If S is a Garside family in a left-cancellative monoid M, then, for all s_1, s_2 in S, the S-normal form of s_1s_2 has length ≤ 2 .

▶ Makes sense to consider the restriction $\overline{N}^S := N^S \upharpoonright S^{[2]}$

- The Garside normal form NF^S is indeed a greedy normal form:
- Proposition: If S is a Garside family in a left-cancellative monoid M:
 - ▶ The S-normal form is (essentially) unique when it exists.
 - ▶ If S is finite, the language of S-normal words is regular.
 - A word $s_1 | \cdots | s_p$ is S-normal iff

 $\forall s \in S (s_i \prec s \Rightarrow s \notin s_i s_{i+1} \cdots s_p).$

once again: s_i is a maximal left-divisor of $s_i s_{i+1} \cdots s_p$ lying in S

• Main question: How to compute the S-normal form? What is the mechanism?

▶ Equivalently: how to compute the normalisation map $N^S: S^* \to S^*$?

• Lemma: If S is a Garside family in a left-cancellative monoid M, then, for all s_1, s_2 in S, the S-normal form of s_1s_2 has length ≤ 2 .

► Makes sense to consider the restriction $\overline{N}^S := N^S \upharpoonright S^{[2]}$ $s_1 \bigvee \xrightarrow{s_2}$

- The Garside normal form NF^S is indeed a greedy normal form:
- Proposition: If S is a Garside family in a left-cancellative monoid M:
 - ▶ The S-normal form is (essentially) unique when it exists.
 - ▶ If S is finite, the language of S-normal words is regular.
 - A word $s_1 | \cdots | s_p$ is S-normal iff

 $\forall s \in S (s_i \prec s \Rightarrow s \notin s_i s_{i+1} \cdots s_p).$

once again: s_i is a maximal left-divisor of $s_i s_{i+1} \cdots s_p$ lying in S

• <u>Main question</u>: How to compute the S-normal form? What is the mechanism?

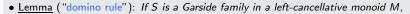
▶ Equivalently: how to compute the normalisation map $N^S: S^* \to S^*$?

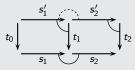
• Lemma: If S is a Garside family in a left-cancellative monoid M, then, for all s_1, s_2 in S, the S-normal form of s_1s_2 has length ≤ 2 .

▶ Makes sense to consider the restriction $\overline{N}^{S} := N^{S} \upharpoonright S^{[2]}$

52 《ロ》《罰》《玉》《玉》 王 ののの

 s_1

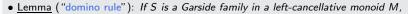




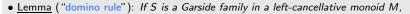
▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

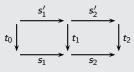
• Lemma ("domino rule"): If S is a Garside family in a left-cancellative monoid M,

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

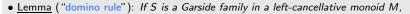


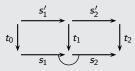
▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

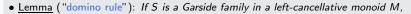


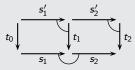


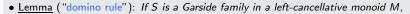
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣�()

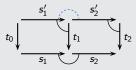


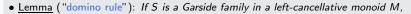


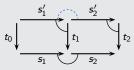


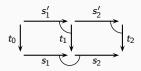


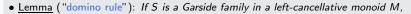


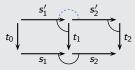


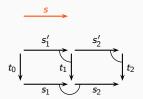




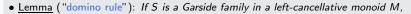


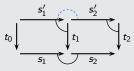


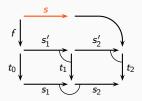


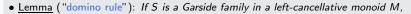


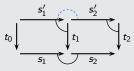
▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 - つへぐ

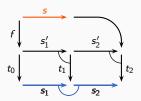




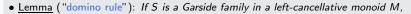


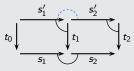


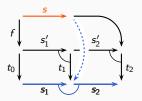




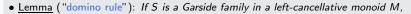
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

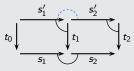




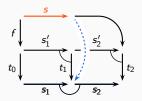


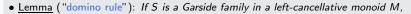
▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 - つへぐ

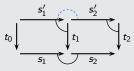


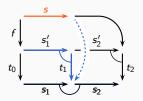


▶ Proof:

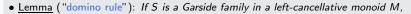


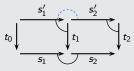


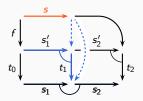


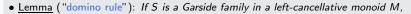


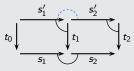
▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 - つへぐ



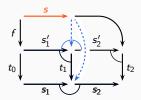


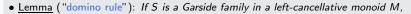


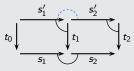




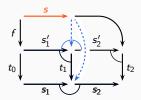
▶ Proof:





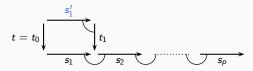


▶ Proof:



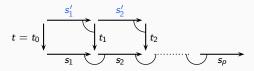
ヘロト ヘロト ヘビト ヘビト

E • ∩ < (~



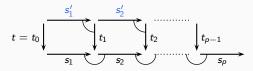
< ロト < 部ト < ヨト < ヨト -

E • ∩ < (~



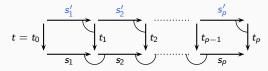
イロト イポト イヨト

 \equiv



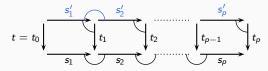
A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

 \exists



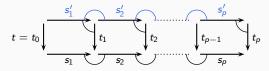
A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

 \exists



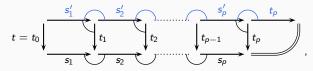
・ロト ・ 中 ・ ・ ヨ ト ・ ヨ ト

 \exists



A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

 \exists

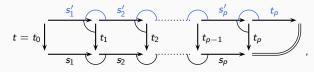


・ロト ・ 一下・ ・ ヨト

nga

 \exists

• <u>Proposition</u>: If S is a Garside family in a left-cancellative monoid M, and $s_1 | \cdots | s_p$ is S-normal, and t lies in S, then the S-normal form of $ts_1 \cdots s_p$ is

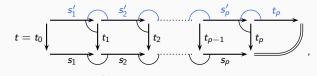


that is, $N^{S}(t|s_{1}|\cdots|s_{p}) = \overline{N}_{1|2|\cdots|p-1}^{S}(t|s_{1}|\cdots|s_{p}).$

ヘロト ヘ部ト ヘヨト ヘヨト

 \exists

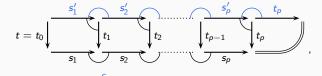
• <u>Proposition</u>: If S is a Garside family in a left-cancellative monoid M, and $s_1 | \cdots | s_p$ is S-normal, and t lies in S, then the S-normal form of $ts_1 \cdots s_p$ is



that is, $N^{S}(t|s_{1}|\cdots|s_{p}) = \overline{N}_{1|2|}^{S} \underset{\uparrow}{\cdots} \underset{p-1}{|p-1|} (t|s_{1}|\cdots|s_{p}).$ applying $\overline{N}^{S} := N^{S} \upharpoonright S^{[2]}$ in positions 1, then 2, etc. until p-1

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: If S is a Garside family in a left-cancellative monoid M, and $s_1 | \cdots | s_p$ is S-normal, and t lies in S, then the S-normal form of $ts_1 \cdots s_p$ is

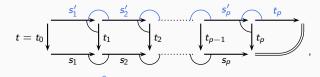


that is, $N^{S}(t|s_{1}|\cdots|s_{p}) = \overline{N}_{1|2|}^{S} \underset{\uparrow}{\cdots} \underset{p-1}{|p-1|} (t|s_{1}|\cdots|s_{p}).$ applying $\overline{N}^{S} := N^{S} \upharpoonright S^{[2]}$ in positions 1, then 2, etc. until p-1

• Corollary: If S is a Garside family in a left-cancellative monoid M:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: If S is a Garside family in a left-cancellative monoid M, and $s_1 | \cdots | s_p$ is S-normal, and t lies in S, then the S-normal form of $ts_1 \cdots s_p$ is

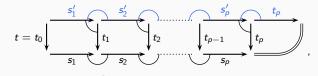


that is, $N^{S}(t|s_{1}|\cdots|s_{p}) = \overline{N}_{1|2|}^{S} \underset{\uparrow}{|p-1|} (t|s_{1}|\cdots|s_{p}).$ applying $\overline{N}^{S} := N^{S} \upharpoonright S^{[2]}$ in positions 1, then 2, etc. until p-1

• <u>Corollary</u>: If S is a Garside family in a left-cancellative monoid M:

▶ For each t in S, there is a <u>rational transducer</u> computing N(tw) from N(w).

• <u>Proposition</u>: If S is a Garside family in a left-cancellative monoid M, and $s_1 | \cdots | s_p$ is S-normal, and t lies in S, then the S-normal form of $ts_1 \cdots s_p$ is



that is, $N^{S}(t|s_{1}|\cdots|s_{p}) = \overline{N}_{1|2|}^{S} \underset{\uparrow}{\cdots} \underset{p-1}{|p-1|} (t|s_{1}|\cdots|s_{p}).$ applying $\overline{N}^{S} := N^{S} \upharpoonright S^{[2]}$ in positions 1, then 2, etc. until p-1

• Corollary: If S is a Garside family in a left-cancellative monoid M:

- For each t in S, there is a <u>rational transducer</u> computing N(tw) from N(w).
- ► Garside normalisation satisfies the 2-Fellow Traveller Property on the left.

• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$

• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$

with $\delta_2 := 1$,

• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$

with $\delta_2 := 1$, $\delta_3 := 2|1|2$,

• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$

with $\delta_2 := 1$, $\delta_3 := 2|1|2$, $\delta_4 := 3|2|3|1|2|3$,

• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$

• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$

• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

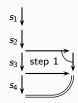
• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w)$$

• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

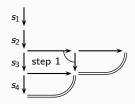
$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w)$$



• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

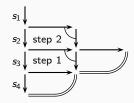
$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w)$$



• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w)$$

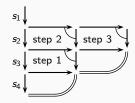


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w)$$

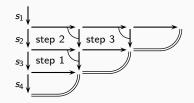


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

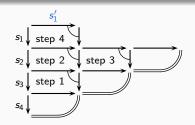
$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w)$$



• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

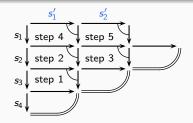
$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$



• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

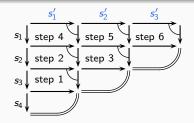
$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$



• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

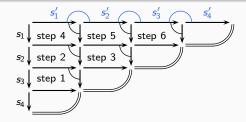
$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w)$$



• Iterating from the right: a <u>universal</u> recipe for normalising words of length p:

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

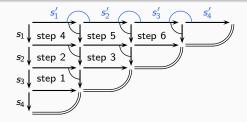
$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$



• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$

with $\delta_2 := 1$, $\delta_3 := 2|1|2$, $\delta_4 := 3|2|3|1|2|3$, $\delta_5 := 4|3|4|2|3|4|1|2|3|4$, etc.



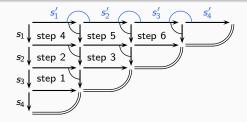
• <u>Corollary</u>: If a monoid M is left-cancellative, has no invertible element \neq 1, and admits a <u>finite</u> Garside family S:

▶ N^{S} can be computed in DTIME (n^{2}) , and the Word Pb for (M, S) lies in DTIME (n^{2}) .

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$

with $\delta_2 := 1$, $\delta_3 := 2|1|2$, $\delta_4 := 3|2|3|1|2|3$, $\delta_5 := 4|3|4|2|3|4|1|2|3|4$, etc.



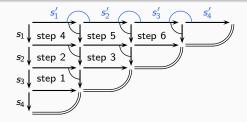
• <u>Corollary</u>: If a monoid M is left-cancellative, has no invertible element \neq 1, and admits a <u>finite</u> Garside family S:

- ▶ N^S can be computed in DTIME (n^2) , and the Word Pb for (M, S) lies in DTIME (n^2) .
- ▶ If M is right-cancellative, M is left-automatic.

• <u>Theorem</u>: If S is a Garside family in a left-cancellative monoid M, and w lies in $S^{[p]}$, the S-normal form of w is given by

$$N^{S}(w) = \overline{N}^{S}_{\delta_{p}}(w),$$

with $\delta_2 := 1$, $\delta_3 := 2|1|2$, $\delta_4 := 3|2|3|1|2|3$, $\delta_5 := 4|3|4|2|3|4|1|2|3|4$, etc.



• <u>Corollary</u>: If a monoid M is left-cancellative, has no invertible element $\neq 1$, and admits a <u>finite</u> Garside family S:

- ▶ N^{S} can be computed in DTIME (n^{2}) , and the Word Pb for (M, S) lies in DTIME (n^{2}) .
- ▶ If M is right-cancellative, M is left-automatic.
- ▶ (Picantin) *M* is an automaton semigroup and is residually finite.

Plan:

- 1. Two examples
 - Free abelian monoids
 - Braid monoids
- 2. Garside normalisation
 - Garside monoids
 - Artin-Tits monoids

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー 釣ん()

- 3. Quadratic normalisation
 - Plactic monoids

• From now on: consider (more) general geodesic normal forms for a monoid.

• <u>Proposition</u>: There exists a notion of a normalisation (S, N), with N a length preserving map $S^* \to S^*$, s.t. defining a geodesic normal form on a monoid M is equivalent to defining a normalisation mod a neutral letter for M.

the normal form has minimal length

• <u>Proposition</u>: There exists a notion of a normalisation (S, N), with N a length preserving map $S^* \to S^*$, s.t. defining a geodesic normal form on a monoid M is equivalent to defining a normalisation mod a neutral letter for M.

a letter *e* satisfying $\forall w \ (N(w|e) = N(e|w) \stackrel{\uparrow}{=} N(w)|e) \stackrel{\uparrow}{M} = \langle S \mid \{w = N(w) \mid w \in S^*\} \cup \{e = 1\} \rangle^+$

• Example (lexicographic): $M = \mathbb{N}^n$ and $N^{\text{Lex}}(w) := w$ lexicographically sorted.

• From now on: consider (more) general geodesic normal forms for a monoid.

the normal form has minimal length

• <u>Proposition</u>: There exists a notion of a normalisation (S, N), with N a length preserving map $S^* \to S^*$, s.t. defining a geodesic normal form on a monoid M is equivalent to defining a normalisation mod a neutral letter for M.

a letter *e* satisfying $\forall w \ (N(w|e) = N(e|w) \stackrel{\uparrow}{=} N(w)|e) \stackrel{\uparrow}{M} = \langle S \mid \{w = N(w) \mid w \in S^*\} \cup \{e = 1\} \rangle^+$

- Example (lexicographic): $M = \mathbb{N}^n$ and $N^{\text{Lex}}(w) := w$ lexicographically sorted.
- Example (Garside): $M = B_n^+$, $S = \text{Div}(\Delta_n)$, and $N^{\text{Gar}}(s_1|\cdots|s_p) := (s'_1|\cdots|s'_q|1|\cdots|1)$, with $s'_1|\cdots|s'_q$ the S-normal form of $s_1\cdots s_p$.

• From now on: consider (more) general geodesic normal forms for a monoid.

the normal form has minimal length

• <u>Proposition</u>: There exists a notion of a normalisation (S, N), with N a length preserving map $S^* \to S^*$, s.t. defining a geodesic normal form on a monoid M is equivalent to defining a normalisation mod a neutral letter for M.

a letter *e* satisfying $\forall w \ (N(w|e) = N(e|w) \stackrel{\uparrow}{=} N(w)|e) \stackrel{\uparrow}{M} = \langle S \mid \{w = N(w) \mid w \in S^*\} \cup \{e = 1\} \rangle^+$

- Example (lexicographic): $M = \mathbb{N}^n$ and $N^{\text{Lex}}(w) := w$ lexicographically sorted.
- Example (Garside): $M = B_n^+$, $S = \text{Div}(\Delta_n)$, and $N^{\text{Gar}}(s_1|\cdots|s_p) := (s'_1|\cdots|s'_q|1|\cdots|1)$, with $s'_1|\cdots|s'_q$ the S-normal form of $s_1\cdots s_p$.

Id. for every Garside family S in a left-cancellative monoid M.

• Definition: A normalisation (S, N) is quadratic if

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - ▶ One can go from w to N(w) by normalising length-2 factors.

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - ▶ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - ▶ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

- Examples:
 - (S, N^{Lex}) is quadratic:

ショック エー・エー・ エー・ シック

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - ▶ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

- <u>Examples</u>:
 - ▶ (S, N^{Lex}) is quadratic: a word is <^{Lex}-nondecreasing iff every length-2 factor is,

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - ▶ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

<u>Examples</u>:

▶ (S, N^{Lex}) is quadratic: a word is $<^{\text{Lex}}$ -nondecreasing iff every length-2 factor is, and one can from w to $N^{\text{Lex}}(w)$ by swapping adjacent letters.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - ▶ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

<u>Examples</u>:

▶ (S, N^{Lex}) is quadratic: a word is $<^{\text{Lex}}$ -nondecreasing iff every length-2 factor is, and one can from w to $N^{\text{Lex}}(w)$ by swapping adjacent letters.

• (S, N^{Gar}) is quadratic:

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - ▶ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

<u>Examples</u>:

▶ (S, N^{Lex}) is quadratic: a word is <^{Lex}-nondecreasing iff every length-2 factor is, and one can from w to $N^{\text{Lex}}(w)$ by swapping adjacent letters.

▶ (S, N^{Gar}) is quadratic: a word is S-normal iff every length-2 factor is,

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

Examples:

▶ (S, N^{Lex}) is quadratic: a word is <^{Lex}-nondecreasing iff every length-2 factor is, and one can from w to $N^{\text{Lex}}(w)$ by swapping adjacent letters.

▶ (S, N^{Gar}) is quadratic: a word is S-normal iff every length-2 factor is, and one can from w to $N^{Gar}(w)$ by normalising length-2 factors: domino rule.

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

▶ (S, N^{Lex}) is quadratic: a word is $<^{\text{Lex}}$ -nondecreasing iff every length-2 factor is, and one can from w to $N^{\text{Lex}}(w)$ by swapping adjacent letters.

▶ (S, N^{Gar}) is quadratic: a word is S-normal iff every length-2 factor is, and one can from w to $N^{Gar}(w)$ by normalising length-2 factors: domino rule.

• Fact: If (S, N) is a quadratic normalisation, the set of N-normal words is regular.

• <u>Notation</u>: For (S, N) quadratic: $\overline{N} := N \upharpoonright S^{[2]}$,

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

Examples:

▶ (S, N^{Lex}) is quadratic: a word is $<^{\text{Lex}}$ -nondecreasing iff every length-2 factor is, and one can from w to $N^{\text{Lex}}(w)$ by swapping adjacent letters.

▶ (S, N^{Gar}) is quadratic: a word is S-normal iff every length-2 factor is, and one can from w to $N^{Gar}(w)$ by normalising length-2 factors: domino rule.

• Fact: If (S, N) is a quadratic normalisation, the set of N-normal words is regular.

• <u>Notation</u>: For (S, N) quadratic: $\overline{N} := N \upharpoonright S^{[2]}$,

 $\overline{N}_i := \overline{N}$ applied to the factor in position i, i + 1,

- Definition: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

Examples:

▶ (S, N^{Lex}) is quadratic: a word is <^{Lex}-nondecreasing iff every length-2 factor is, and one can from w to $N^{\text{Lex}}(w)$ by swapping adjacent letters.

▶ (S, N^{Gar}) is quadratic: a word is S-normal iff every length-2 factor is, and one can from w to $N^{Gar}(w)$ by normalising length-2 factors: domino rule.

• Fact: If (S, N) is a quadratic normalisation, the set of N-normal words is regular.

• Notation: For
$$(S, N)$$
 quadratic: $\overline{N} := N \upharpoonright S^{[2]}$,
 $\overline{N}_i := \overline{N}$ applied to the factor in position $i, i + 1$,
 $\overline{N}_{i_1} \dots |_{i_m} := \overline{N}_{i_m} \circ \dots \circ \overline{N}_{i_1}$,

- <u>Definition</u>: A normalisation (S, N) is quadratic if
 - ▶ An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
 - ▶ One can go from w to N(w) by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

▶ (S, N^{Lex}) is quadratic: a word is <^{Lex}-nondecreasing iff every length-2 factor is, and one can from w to $N^{\text{Lex}}(w)$ by swapping adjacent letters.

▶ (S, N^{Gar}) is quadratic: a word is S-normal iff every length-2 factor is, and one can from w to $N^{Gar}(w)$ by normalising length-2 factors: domino rule.

• Fact: If (S, N) is a quadratic normalisation, the set of N-normal words is regular.

Notation: For (S, N) quadratic: N := N | S^[2],
N_i := N applied to the factor in position i, i + 1,
N_{i1} ... | i_m := N_{im} ∘ ... ∘ N_{i1},
If (S, N) is quadratic, there exists for every S-word w a sequence of positions u (depending on w) s.t. N(w) = N_u(w).

• For ||w|| = 3, the only possibilities are u = 121...[c] or u = 212...[c]. \uparrow 1|2|1|..., length c

• For ||w|| = 3, the only possibilities are u = 121...[c] or u = 212...[c]. \uparrow 1|2|1|..., length c

• <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if $\forall w \in S^{[3]} (N(w) = \overline{N}_{121...[c]}(w)).$

- For ||w|| = 3, the only possibilities are u = 121...[c] or u = 212...[c]. \uparrow 1|2|1|..., length c
- <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if $\forall w \in S^{[3]} (N(w) = \overline{N}_{121...[c]}(w)).$... right class $c \dots \overline{N}_{212...[c]}(w)) \dots$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

- For ||w|| = 3, the only possibilities are u = 121...[c] or u = 212...[c]. \uparrow 1|2|1|..., length c
- <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} \ (N(w) = \overline{N}_{121...[c]}(w)).$$

- For ||w|| = 3, the only possibilities are u = 121...[c] or u = 212...[c]. \uparrow 1|2|1|..., length c
- <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} \ (N(w) = \overline{N}_{121...[c]}(w)).$$

... right class $c \dots \overline{N}_{212\dots[c]}(w)$) class (c, c') for left class c and right class c'.

Lemma: If (S, N) is of left class c, then
 (S, N) is of left class c' for every c' ≥ c,

• For ||w|| = 3, the only possibilities are u = 121...[c] or u = 212...[c]. \uparrow 1|2|1|..., length c

• <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} \ (N(w) = \overline{N}_{121...[c]}(w)).$$

... right class $c \dots \overline{N}_{212\dots[c]}(w)$) class (c, c') for left class c and right class c'.

Lemma: If (S, N) is of left class c, then

 (S, N) is of left class c' for every c' ≥ c,
 (S, N) is of right class c'' for every c'' ≥ c+1.

- For ||w|| = 3, the only possibilities are u = 121...[c] or u = 212...[c]. \uparrow 1|2|1|..., length c
- <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} \ (N(w) = \overline{N}_{121...[c]}(w)).$$

- Lemma: If (S, N) is of left class c, then
 (S, N) is of left class c' for every c' ≥ c,
 (S, N) is of right class c'' for every c'' ≥ c+1.
- <u>Examples</u>:
 - ▶ (S, N^{Lex}) is of class

- For ||w|| = 3, the only possibilities are u = 121...[c] or u = 212...[c]. \uparrow 1|2|1|..., length <math>c
- <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} \ (N(w) = \overline{N}_{121...[c]}(w)).$$

- Lemma: If (S, N) is of left class c, then

 (S, N) is of left class c' for every c' ≥ c,
 (S, N) is of right class c'' for every c'' ≥ c+1.
- Examples:
 - (S, N^{Lex}) is of class (3, 3):

• For
$$||w|| = 3$$
, the only possibilities are $u = 121...[c]$ or $u = 212...[c]$.
 \uparrow
 $1|2|1|..., length $c$$

• <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} (N(w) = \overline{N}_{121...[c]}(w)).$$

- Lemma: If (S, N) is of left class c, then

 (S, N) is of left class c' for every c' ≥ c,
 (S, N) is of right class c'' for every c'' ≥ c+1.
- Examples:

▶
$$(S, N^{\text{Lex}})$$
 is of class $(3, 3)$: $\forall w \in S^{[3]}$ $(N^{\text{Lex}}(w) = \overline{N}_{121}(w) = \overline{N}_{212}(w))$.

- For ||w|| = 3, the only possibilities are u = 121...[c] or u = 212...[c]. \uparrow 1|2|1|..., length c
- <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} (N(w) = \overline{N}_{121...[c]}(w)).$$

- Lemma: If (S, N) is of left class c, then

 (S, N) is of left class c' for every c' ≥ c,
 (S, N) is of right class c'' for every c'' ≥ c+1.
- Examples:
 - ► (S, N^{Lex}) is of class (3, 3): $\forall w \in S^{[3]}$ $(N^{\text{Lex}}(w) = \overline{N}_{121}(w) = \overline{N}_{212}(w))$.
 - (S, N^{Gar}) is of class

• For
$$||w|| = 3$$
, the only possibilities are $u = 121...[c]$ or $u = 212...[c]$.
 \uparrow
 $1|2|1|..., \text{ length } c$

• <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} (N(w) = \overline{N}_{121...[c]}(w)).$$

- Lemma: If (S, N) is of left class c, then

 (S, N) is of left class c' for every c' ≥ c,
 (S, N) is of right class c'' for every c'' ≥ c+1.
- Examples:
 - ► (S, N^{Lex}) is of class (3, 3): $\forall w \in S^{[3]}$ $(N^{\text{Lex}}(w) = \overline{N}_{121}(w) = \overline{N}_{212}(w))$.
 - ▶ (*S*, *N*^{Gar}) is of class (4, 3):

• For
$$||w|| = 3$$
, the only possibilities are $u = 121...[c]$ or $u = 212...[c]$.
 \uparrow
 $1|2|1|..., length $c$$

• <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} \ (N(w) = \overline{N}_{121...[c]}(w)).$$

... right class $c \dots \overline{N}_{212\dots[c]}(w)$) class (c, c') for left class c and right class c'.

- Lemma: If (S, N) is of left class c, then

 (S, N) is of left class c' for every c' ≥ c,
 (S, N) is of right class c'' for every c'' ≥ c+1.
- Examples:
 - ► (S, N^{Lex}) is of class (3, 3): $\forall w \in S^{[3]}$ $(N^{\text{Lex}}(w) = \overline{N}_{121}(w) = \overline{N}_{212}(w))$.
 - ► (S, N^{Gar}) is of class (4, 3): $\forall w \in S^{[3]}$ $(N^{\text{Gar}}(w) = \overline{N}_{1212}(w) = \overline{N}_{212}(w))$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

• For
$$||w|| = 3$$
, the only possibilities are $u = 121...[c]$ or $u = 212...[c]$.
 \uparrow
 $1|2|1|..., length $c$$

• <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} \ (N(w) = \overline{N}_{121...[c]}(w)).$$

- Lemma: If (S, N) is of left class c, then

 (S, N) is of left class c' for every c' ≥ c,
 (S, N) is of right class c'' for every c'' ≥ c+1.
- Examples:
 - ► (S, N^{Lex}) is of class (3, 3): $\forall w \in S^{[3]}$ $(N^{\text{Lex}}(w) = \overline{N}_{121}(w) = \overline{N}_{212}(w))$.
 - ► (S, N^{Gar}) is of class (4, 3): $\forall w \in S^{[3]}$ $(N^{\text{Gar}}(w) = \overline{N}_{1212}(w) = \overline{N}_{212}(w))$.
 - ▶ Define $N_*^{\text{Lex}}(s|t) := \lceil (s+t)/2 \rceil \mid \lfloor (s+t)/2 \rfloor$ for s > t, and s|t otherwise.

- For ||w|| = 3, the only possibilities are u = 121...[c] or u = 212...[c]. \uparrow 1|2|1|..., length c
- <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} (N(w) = \overline{N}_{121...[c]}(w)).$$

- Lemma: If (S, N) is of left class c, then

 (S, N) is of left class c' for every c' ≥ c,
 (S, N) is of right class c'' for every c'' ≥ c+1.
- Examples:
 - ► (S, N^{Lex}) is of class (3, 3): $\forall w \in S^{[3]}$ $(N^{\text{Lex}}(w) = \overline{N}_{121}(w) = \overline{N}_{212}(w))$.
 - ▶ (S, N^{Gar}) is of class (4, 3): $\forall w \in S^{[3]}$ $(N^{Gar}(w) = \overline{N}_{1212}(w) = \overline{N}_{212}(w))$.
 - ▶ Define $N_*^{\text{Lex}}(s|t) := \lceil (s+t)/2 \rceil \lfloor \lfloor (s+t)/2 \rfloor$ for s > t, and s|t otherwise. Then (S, N_*^{Lex}) is of (minimal) class $(3 + \lfloor \log_2(n) \rfloor, 3 + \lfloor \log_2(n) \rfloor)$, where n = #S.

- For ||w|| = 3, the only possibilities are u = 121...[c] or u = 212...[c]. \uparrow 1|2|1|..., length c
- <u>Definition</u>: A quadratic normalisation (S, N) is of left class c if

$$\forall w \in S^{[3]} (N(w) = \overline{N}_{121...[c]}(w)).$$

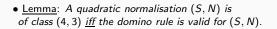
- Lemma: If (S, N) is of left class c, then

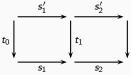
 (S, N) is of left class c' for every c' ≥ c,
 (S, N) is of right class c'' for every c'' ≥ c+1.
- Examples:
 - ► (S, N^{Lex}) is of class (3, 3): $\forall w \in S^{[3]}$ $(N^{\text{Lex}}(w) = \overline{N}_{121}(w) = \overline{N}_{212}(w))$.
 - ▶ (S, N^{Gar}) is of class (4, 3): $\forall w \in S^{[3]}$ $(N^{Gar}(w) = \overline{N}_{1212}(w) = \overline{N}_{212}(w))$.
 - ▶ Define $N_*^{\text{Lex}}(s|t) := \lceil (s+t)/2 \rceil \lfloor \lfloor (s+t)/2 \rfloor$ for s > t, and s|t otherwise. Then (S, N_*^{Lex}) is of (minimal) class $(3 + \lfloor \log_2(n) \rfloor, 3 + \lfloor \log_2(n) \rfloor)$, where n = #S.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• Lemma: A quadratic normalisation (S, N) is of class (4, 3) iff the domino rule is valid for (S, N).

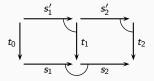
Class (4, 3)





Class (4, 3)

• <u>Lemma</u>: A quadratic normalisation (S, N) is of class (4,3) <u>iff</u> the domino rule is valid for (S, N).

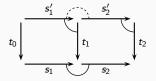


< ロト < 部ト < ヨト < ヨト -

Ξ

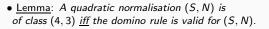
Class (4, 3)

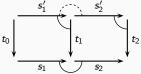
• <u>Lemma</u>: A quadratic normalisation (S, N) is of class (4,3) <u>iff</u> the domino rule is valid for (S, N).



ヘロト ヘロト ヘビト ヘビト

€ 990



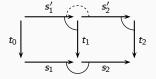


ヘロト ヘロト ヘビト ヘビト

 \equiv

▶ Hence: The mechanism for class (4,3) is the same as in the Garside case.

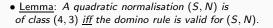
• Lemma: A quadratic normalisation (S, N) is of class (4, 3) *iff* the domino rule is valid for (S, N).

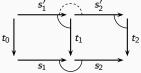


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▶ Hence: The mechanism for class (4,3) is the same as in the Garside case.

• <u>Proposition</u>: If (S, N) is of class (4, 3), then, for every length-p word w, one has $N(w) = \overline{N}_{\delta_p}(w).$

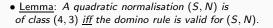


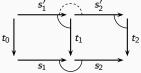


▶ Hence: The mechanism for class (4,3) is the same as in the Garside case.

• <u>Proposition</u>: If (S, N) is of class (4, 3), then, for every length-p word w, one has $N(w) = \overline{N}_{\delta_p}(w).$

(recall: $\delta_2 = 1$, $\delta_3 = 212$, $\delta_4 = 323123$, $\delta_5 = 4342341234$, etc.)





▶ Hence: The mechanism for class (4,3) is the same as in the Garside case.

• <u>Proposition</u>: If (S, N) is of class (4, 3), then, for every length-p word w, one has $N(w) = \overline{N}_{\delta_p}(w).$

(recall: $\delta_2 = 1$, $\delta_3 = 212$, $\delta_4 = 323123$, $\delta_5 = 4342341234$, etc.)

• Catch new examples with the same mechanism:

・ロト < 団ト < 三ト < 三ト < 回ト < ロト

- Catch new examples with the same mechanism:
- Definition: For (X, <) a totally ordered set, the plactic monoid on (X, <) is

$$P_X := \left\langle X \right| \qquad \qquad \right\rangle^+.$$

- Catch new examples with the same mechanism:
- <u>Definition</u>: For (X, <) a totally ordered set, the plactic monoid on (X, <) is

$$P_X := \left\langle X \mid acb = cab \text{ for } a \leq b < c \right\rangle^+.$$

・ロト < 団ト < 三ト < 三ト < 回ト < ロト

- Catch new examples with the same mechanism:
- Definition: For (X, <) a totally ordered set, the plactic monoid on (X, <) is

$$P_X := \left\langle \begin{array}{c} X \end{array} \middle| \begin{array}{c} acb = cab & \text{for } a \leq b < c \\ bac = bca & \text{for } a < b \leq c \end{array} \right\rangle^+.$$

・ロト・4日・4日・4日・4日・900

- Catch new examples with the same mechanism:
- <u>Definition</u>: For (X, <) a totally ordered set, the plactic monoid on (X, <) is

$$P_X := \left\langle \begin{array}{c} X \end{array} \middle| \begin{array}{c} acb = cab & \text{for } a \leqslant b < c \\ bac = bca & \text{for } a < b \leqslant c \end{array} \right\rangle^+.$$

• Connection with Young tableaux:

- Catch new examples with the same mechanism:
- Definition: For (X, <) a totally ordered set, the plactic monoid on (X, <) is

$$P_X := \left\langle \begin{array}{c} X \end{array} \middle| \begin{array}{c} acb = cab & \text{for } a \leqslant b < c \\ bac = bca & \text{for } a < b \leqslant c \end{array} \right\rangle^+.$$

- Connection with Young tableaux:
 - ► Another family of generators: *S* := {columns over *X*}

- Catch new examples with the same mechanism:
- <u>Definition</u>: For (X, <) a totally ordered set, the plactic monoid on (X, <) is

$$P_X := \left\langle \begin{array}{c} X \end{array} \middle| \begin{array}{c} acb = cab & \text{for } a \leqslant b < c \\ bac = bca & \text{for } a < b \leqslant c \end{array} \right\rangle^+.$$

- Connection with Young tableaux:
 - Another family of generators: $S := \{ \text{columns over } X \}$

:= strictly decreasing products of elements of X.

- Catch new examples with the same mechanism:
- <u>Definition</u>: For (X, <) a totally ordered set, the plactic monoid on (X, <) is

$$P_X := \left\langle \begin{array}{c} X \end{array} \middle| \begin{array}{c} acb = cab & \text{for } a \leqslant b < c \\ bac = bca & \text{for } a < b \leqslant c \end{array} \right\rangle^+.$$

- Connection with Young tableaux:
 - Another family of generators: $S := \{ \text{columns over } X \}$

:= strictly decreasing products of elements of X.

▶ Call a pair of columns c|c' normal for

 $\|c\| \ge \|c'\|$ & $\forall k \le \|c'\|$ $(c_k \le c'_k)$.

ション ふゆ ア キョン キョン しょうくしゃ

- Catch new examples with the same mechanism:
- Definition: For (X, <) a totally ordered set, the plactic monoid on (X, <) is

$$P_X := \left\langle \begin{array}{c} X \end{array} \middle| \begin{array}{c} acb = cab & \text{for } a \leqslant b < c \\ bac = bca & \text{for } a < b \leqslant c \end{array} \right\rangle^+.$$

- Connection with Young tableaux:
 - ► Another family of generators: *S* := {columns over *X*}

:= strictly decreasing products of elements of X.

• Call a pair of columns c|c' normal for

 $\|c\| \ge \|c'\|$ & $\forall k \le \|c'\|$ $(c_k \le c'_k)$.

▶ A geodesic normal form on (P_X, S) , computed by Schensted's insertion algorithm.

- Catch new examples with the same mechanism:
- <u>Definition</u>: For (X, <) a totally ordered set, the plactic monoid on (X, <) is

$$P_X := \left\langle \begin{array}{c} X \end{array} \middle| \begin{array}{c} acb = cab & \text{for } a \leqslant b < c \\ bac = bca & \text{for } a < b \leqslant c \end{array} \right\rangle^+.$$

- Connection with Young tableaux:
 - ► Another family of generators: *S* := {columns over *X*}

:= strictly decreasing products of elements of X.

• Call a pair of columns c|c' normal for

 $\|c\| \ge \|c'\|$ & $\forall k \le \|c'\|$ $(c_k \le c'_k)$.

- ▶ A geodesic normal form on (P_X, S) , computed by Schensted's insertion algorithm.
- <u>Proposition</u>: Schensted normalisation is quadratic of class (3, 3).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Catch new examples with the same mechanism:
- <u>Definition</u>: For (X, <) a totally ordered set, the plactic monoid on (X, <) is

$$P_X := \left\langle \begin{array}{c} X \end{array} \middle| \begin{array}{c} acb = cab & \text{for } a \leqslant b < c \\ bac = bca & \text{for } a < b \leqslant c \end{array} \right\rangle^+.$$

- Connection with Young tableaux:
 - ► Another family of generators: *S* := {columns over *X*}
 - := strictly decreasing products of elements of X.
 - Call a pair of columns c|c' normal for

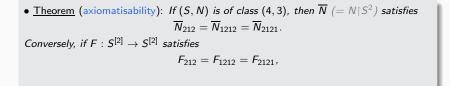
 $\|c\| \ge \|c'\|$ & $\forall k \le \|c'\|$ $(c_k \le c'_k)$.

- ▶ A geodesic normal form on (P_X, S) , computed by Schensted's insertion algorithm.
- <u>Proposition</u>: Schensted normalisation is quadratic of class (3, 3).

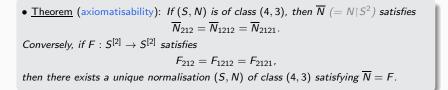
• Similar for the Chinese monoids, now with class (5, 5).

• <u>Theorem</u> (axiomatisability): If (S, N) is of class (4, 3), then \overline{N}

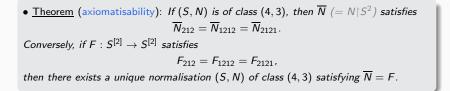
• <u>Theorem</u> (axiomatisability): If (S, N) is of class (4, 3), then $\overline{N} (= N \upharpoonright S^2)$ satisfies $\overline{N}_{212} = \overline{N}_{1212} = \overline{N}_{2121}$.



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

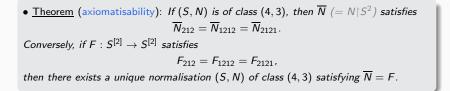


<u>Definition</u>: Call a (quadratic) normalisation (S, N) left-weighted if
 ∀s, t, s', t' (s'|t' = N^{Gar}(s|t) ⇒ s left-divides s' in the associated monoid).



<u>Definition</u>: Call a (quadratic) normalisation (S, N) left-weighted if
 ∀s, t, s', t' (s'|t' = N^{Gar}(s|t) ⇒ s left-divides s' in the associated monoid).

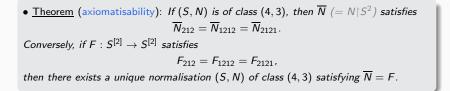
• <u>Theorem</u> (characterization): If M is a left-cancellative monoid and S is a Garside family in M, then (S, N^{Gar}) is of class (4, 3) and is left-weighted.



• <u>Definition</u>: Call a (quadratic) normalisation (S, N) left-weighted if $\forall s, t, s', t' \ (s'|t' = N^{Gar}(s|t) \Longrightarrow s$ left-divides s' in the associated monoid).

• <u>Theorem</u> (characterization): If M is a left-cancellative monoid and S is a Garside family in M, then (S, N^{Gar}) is of class (4, 3) and is left-weighted.

Conversely, if (S, N) is a left-weighted class (4, 3) normalisation, then S is a Garside family in M and $N = N^{Gar}$ holds.



• <u>Definition</u>: Call a (quadratic) normalisation (S, N) left-weighted if $\forall s, t, s', t' \ (s'|t' = N^{Gar}(s|t) \Longrightarrow s$ left-divides s' in the associated monoid).

• <u>Theorem</u> (characterization): If M is a left-cancellative monoid and S is a Garside family in M, then (S, N^{Gar}) is of class (4, 3) and is left-weighted.

Conversely, if (S, N) is a left-weighted class (4, 3) normalisation, then S is a Garside family in M and $N = N^{Gar}$ holds.

• With each normalisation (S, N) comes a rewrite system:

• With each normalisation (S, N) comes a rewrite system: rules: $s|t \rightarrow \overline{N}(s|t)$ when $\overline{N}(s|t) \neq s|t$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- With each normalisation (S, N) comes a rewrite system:
 - $\text{ rules: } s|t \to \overline{N}(s|t) \quad \text{ when } \overline{N}(s|t) \neq s|t.$
 - ▶ then normalising: $\forall w \exists w'$ normal $(w \rightarrow^* w')$,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• With each normalisation (S, N) comes a rewrite system:

rules: $s|t \to \overline{N}(s|t)$ when $\overline{N}(s|t) \neq s|t$.

- ▶ then normalising: $\forall w \exists w'$ normal $(w \rightarrow^* w')$,
- ▶ and confluent: $\forall w, w', w'' ((w \rightarrow^* w' \& w \rightarrow^* w'') \Rightarrow \exists w''' (w' \rightarrow^* w'' \& w'' \rightarrow^* w''')).$

• With each normalisation (S, N) comes a rewrite system:

rules: $s|t \rightarrow \overline{N}(s|t)$ when $\overline{N}(s|t) \neq s|t$.

- ▶ then normalising: $\forall w \exists w'$ normal $(w \rightarrow^* w')$,
- ▶ and confluent: $\forall w, w', w''$ (($w \rightarrow^* w' \& w \rightarrow^* w''$) $\Rightarrow \exists w''' (w' \rightarrow^* w'' \& w'' \rightarrow^* w''')$).
- ▶ but is it terminating: is every rewriting sequence finite?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• With each normalisation (S, N) comes a rewrite system:

rules: $s|t \rightarrow \overline{N}(s|t)$ when $\overline{N}(s|t) \neq s|t$.

- ▶ then normalising: $\forall w \exists w'$ normal $(w \rightarrow^* w')$,
- ▶ and confluent: $\forall w, w', w''$ (($w \rightarrow^* w' \& w \rightarrow^* w''$) $\Rightarrow \exists w''' (w' \rightarrow^* w''' \& w'' \rightarrow^* w'''$)).
- ▶ but is it terminating: is every rewriting sequence finite?

• <u>Proposition</u>: There exists a nonterminating class (4,4) normalisation.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• With each normalisation (S, N) comes a rewrite system:

rules: $s|t \rightarrow \overline{N}(s|t)$ when $\overline{N}(s|t) \neq s|t$.

- ▶ then normalising: $\forall w \exists w'$ normal $(w \rightarrow^* w')$,
- ▶ and confluent: $\forall w, w', w''$ (($w \rightarrow^* w' \& w \rightarrow^* w''$) $\Rightarrow \exists w''' (w' \rightarrow^* w''' \& w'' \rightarrow^* w'''$)).
- ▶ but is it terminating: is every rewriting sequence finite?

• <u>Proposition</u>: There exists a nonterminating class (4, 4) normalisation.

▶ Proof: $ab \rightarrow ab'$, $cd \rightarrow c'd$, $bc' \rightarrow b''c''$, $b'c \rightarrow b''c''$, $b'c' \rightarrow bc$.

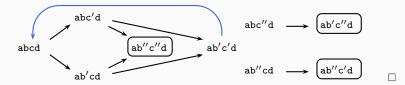
• With each normalisation (S, N) comes a rewrite system:

rules: $s|t \rightarrow \overline{N}(s|t)$ when $\overline{N}(s|t) \neq s|t$.

- ▶ then normalising: $\forall w \exists w'$ normal $(w \rightarrow^* w')$,
- ▶ and confluent: $\forall w, w', w'' ((w \rightarrow^* w' \& w \rightarrow^* w'') \Rightarrow \exists w''' (w' \rightarrow^* w''' \& w'' \rightarrow^* w''')).$
- ▶ but is it terminating: is every rewriting sequence finite?

• <u>Proposition</u>: There exists a nonterminating class (4, 4) normalisation.

▶ Proof: $ab \rightarrow ab'$, $cd \rightarrow c'd$, $bc' \rightarrow b''c''$, $b'c \rightarrow b''c''$, $b'c' \rightarrow bc$.



• <u>Proposition</u>: Every class (3,3) normalisation is terminating:

• <u>Proposition</u>: Every class (3,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most p(p-1)/2.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• <u>Proposition</u>: Every class (3,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most p(p-1)/2.

▶ <u>Proof</u>: Uses Matsumoto's lemma for the symmetric group.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Proposition</u>: Every class (3,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most p(p-1)/2.

▶ <u>Proof</u>: Uses Matsumoto's lemma for the symmetric group.

• <u>Theorem</u>: Every class (4,3) normalisation is terminating:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• <u>Proposition</u>: Every class (3,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most p(p-1)/2.

▶ <u>Proof</u>: Uses Matsumoto's lemma for the symmetric group.

• <u>Theorem</u>: Every class (4,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most $2^p - p - 1$.

• <u>Proposition</u>: Every class (3,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most p(p-1)/2.

▶ <u>Proof</u>: Uses Matsumoto's lemma for the symmetric group.

• <u>Theorem</u>: Every class (4,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most $2^p - p - 1$.

 \blacktriangleright <u>Proof</u>: Because of the domino rule, one inevitably proceeds to the normal form.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: Every class (3,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most p(p-1)/2.

▶ <u>Proof</u>: Uses Matsumoto's lemma for the symmetric group.

• <u>Theorem</u>: Every class (4,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most $2^p - p - 1$.

 \blacktriangleright Proof: Because of the domino rule, one inevitably proceeds to the normal form. \Box

• Corollary: Every Garside normalisation is terminating.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: Every class (3,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most p(p-1)/2.

▶ <u>Proof</u>: Uses Matsumoto's lemma for the symmetric group.

• <u>Theorem</u>: Every class (4,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most $2^p - p - 1$.

 \blacktriangleright <u>Proof</u>: Because of the domino rule, one inevitably proceeds to the normal form. \Box

• Corollary: Every Garside normalisation is terminating.

• <u>Application</u>: Every finite type Artin–Tits monoid has a finite converging presentation.

(日) (日) (日) (日) (日) (日) (日) (日)

• <u>Proposition</u>: Every class (3,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most p(p-1)/2.

▶ <u>Proof</u>: Uses Matsumoto's lemma for the symmetric group.

• <u>Theorem</u>: Every class (4,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most $2^p - p - 1$.

 \blacktriangleright <u>Proof</u>: Because of the domino rule, one inevitably proceeds to the normal form. \Box

• Corollary: Every Garside normalisation is terminating.

• <u>Application</u>: Every finite type Artin–Tits monoid has a finite converging presentation.

▶ <u>Proof</u>: Take for S a finite Garside family, with relations $s|t = N^{Gar}(s|t)$.

- F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20 (1969) 235-254
- H. Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Quart. J. Math. Oxford 20 (1969) 235-254

Part 1:

- F.A. Garside, The braid group and other groups
- H. Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

- <u>P. Dehornoy</u>, <u>L. Paris</u>, Gaussian groups and Garside groups, two generalizations of Artin groups Proc. London Math. Soc. 79 (1999) 569-604
- <u>P. Dehornoy</u>, *Groupes de Garside* Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306

- F.A. Garside, The braid group and other groups
- H. Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

- <u>P. Dehornoy</u>, <u>L. Paris</u>, Gaussian groups and Garside groups, two generalizations of Artin groups Proc. London Math. Soc. 79 (1999) 569-604
- <u>P. Dehornoy</u>, *Groupes de Garside* Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306
- <u>P. Dehornoy</u>, with <u>F. Digne</u>, <u>E. Godelle</u>, <u>D. Krammer</u>, <u>J. Michel</u>, Foundations of Garside Theory EMS Tracts in Mathematics, vol. 22 (2015)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- F.A. Garside, The braid group and other groups
- H. Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

- <u>P. Dehornoy</u>, <u>L. Paris</u>, Gaussian groups and Garside groups, two generalizations of Artin groups Proc. London Math. Soc. 79 (1999) 569-604
- <u>P. Dehornoy</u>, *Groupes de Garside* Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306
- <u>P. Dehornoy</u>, with <u>F. Digne</u>, <u>E. Godelle</u>, <u>D. Krammer</u>, <u>J. Michel</u>, Foundations of Garside Theory EMS Tracts in Mathematics, vol. 22 (2015)
- <u>P. Dehornoy</u>, <u>M. Dyer</u>, <u>C. Hohlweg</u>, Garside families in Artin-Tits monoids and low elements in Coxeter groups Comtes-Rendus Math. 353 (2015) 403-408

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

Quart. J. Math. Oxford 20 (1969) 235-254

- F.A. Garside, The braid group and other groups
- H. Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

- <u>P. Dehornoy</u>, <u>L. Paris</u>, Gaussian groups and Garside groups, two generalizations of Artin groups Proc. London Math. Soc. 79 (1999) 569-604
- <u>P. Dehornoy</u>, *Groupes de Garside* Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306
- <u>P. Dehornoy</u>, with <u>F. Digne</u>, <u>E. Godelle</u>, <u>D. Krammer</u>, <u>J. Michel</u>, Foundations of Garside Theory EMS Tracts in Mathematics, vol. 22 (2015)

• <u>P. Dehornoy, M. Dyer</u>, <u>C. Hohlweg</u>, Garside families in Artin-Tits monoids and low elements in Coxeter groups Comtes-Rendus Math. 353 (2015) 403-408

Part 3:

• P. Dehornoy, Y. Guiraud, Quadratic normalisation in monoids

arXiv:1504.02717

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- F.A. Garside, The braid group and other groups
- H. Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

- <u>P. Dehornoy</u>, <u>L. Paris</u>, Gaussian groups and Garside groups, two generalizations of Artin groups Proc. London Math. Soc. 79 (1999) 569-604
- <u>P. Dehornoy</u>, *Groupes de Garside* Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306
- <u>P. Dehornoy</u>, with <u>F. Digne</u>, <u>E. Godelle</u>, <u>D. Krammer</u>, <u>J. Michel</u>, Foundations of Garside Theory EMS Tracts in Mathematics, vol. 22 (2015)

• <u>P. Dehornoy, M. Dyer</u>, <u>C. Hohlweg</u>, Garside families in Artin-Tits monoids and low elements in Coxeter groups Comtes-Rendus Math. 353 (2015) 403-408

Part 3:

• P. Dehornoy, Y. Guiraud, Quadratic normalisation in monoids

• <u>A. Hess</u>, <u>V. Ozornova</u>, Factorability, string rewriting and discrete Morse theory arXiv:1412.3025

Quart. J. Math. Oxford 20 (1969) 235-254

References

Part 1:

- F.A. Garside, The braid group and other groups
- H. Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

- <u>P. Dehornoy</u>, <u>L. Paris</u>, Gaussian groups and Garside groups, two generalizations of Artin groups Proc. London Math. Soc. 79 (1999) 569-604
- <u>P. Dehornoy</u>, *Groupes de Garside* Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306
- <u>P. Dehornoy</u>, with <u>F. Digne</u>, <u>E. Godelle</u>, <u>D. Krammer</u>, <u>J. Michel</u>, Foundations of Garside Theory EMS Tracts in Mathematics, vol. 22 (2015)
- <u>P. Dehornoy</u>, <u>M. Dyer</u>, <u>C. Hohlweg</u>, *Garside families in Artin-Tits monoids and low elements in Coxeter groups* Comtes-Rendus Math. 353 (2015) 403-408

Part 3:

• P. Dehornoy, Y. Guiraud, Quadratic normalisation in monoids

- arXiv:1504.02717
- A. Hess, V. Ozornova, Factorability, string rewriting and discrete Morse theory arXiv:1412.3025

www.math.unicaen.fr/~dehornoy

 $) \land (\bigcirc$