

Garside and quadratic normalisation: a survey

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

- A survey of normal forms in monoids that are
	- \triangleright based on greedy algorithms (Garside normalisation),
	- \triangleright and, more generally, on local algorithms (quadratic normalisation).
- A common mechanism inducing a universal recipe: the domino rule.

Plan:

- 1. Two examples
	- Free abelian monoids
	- Braid monoids
- 2. Garside normalisation
	- Garside monoids
	- Artin–Tits monoids

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

- 3. Quadratic normalisation
	- Plactic monoids

Plan:

- 1. Two examples
	- Free abelian monoids
	- Braid monoids
- 2. Garside normalisation
	- Garside monoids
	- Artin–Tits monoids

イロト イ母 ト イミト イミト ニヨー りんぐ

- 3. Quadratic normalisation
	- Plactic monoids
- Let M be a <u>free abelian</u> monoid based on $A_n := \{a_1, ..., a_n\}$ ($\simeq (\mathbb{N}, +)^n$).
	- \blacktriangleright each element of M has an A_n -decomposition that is unique

up to the order of letters;

- Fix a linear order \leq on A_n .
	- ► each element of M has a *unique A_n*-decomposition $s_1|\cdots|s_p$ with $s_1\leqslant \cdots \leqslant s_p$:
	- ighthropological form NF^{Lex}(g) (with respect to \leqslant).
- Another (more complicated, but more easily extendible) normal form:

▶ put
$$
S_n := \{\prod_{i \in I} a_i \mid I \subseteq \{1, ..., n\}\}\
$$
 (so $\#S_n = 2^n$)

• Proposition: Each element of M has a unique S_n -decomposition $s_1|\cdots|s_p$ with $s_p\neq 1$, and $\forall s \in S_n$ $(s_i \prec s \Rightarrow s \nless s_i s_{i+1} \cdots s_p).$ (*)

↑ s_i is a proper divisor of s : $\exists t \neq 1$ $(s_it = s)$ $\neg \exists t$ $(st = s_is_{i+1} \cdots s_p)$ hence: $(*)$ means: " s_i is a <u>maximal</u> (left)-divisor of $s_i s_{i+1} \cdots s_p$ lying in S_n "

ighthe greedy normal form $NF^{Gar}(g)$ (with respect to S_n).

(ロ) (日) (日) (日) (日) (日)

• <u>Example</u>: $\mathsf{NF}^{\mathsf{Gar}}(\mathsf{a}^3 \mathsf{bc}^2) = \mathsf{abc} |\mathsf{ac}| \mathsf{a}.$

.

KEL KAR KELKER E VAN

• Definition: The *n*-strand braid monoid is

$$
B_n^+ := \left\langle \sigma_1,...,\sigma_{n-1} \; \Big| \; \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle^+
$$

• Theorem (Artin 1926, Garside 1969): Under the correspondence σ_i \longrightarrow 1 i $i+1$ n \ldots ... λ ... and concatenation (stacking) of diagrams, the elements of B_n^+ interpret as isotopy classes of positive n-strand braid diagrams.

> ↑ continuous deformation of the ambient 3D-space

 \bullet Topological interpretation of the braid relation $\sigma^{}_1 \sigma^{}_2 \sigma^{}_1 = \sigma^{}_2 \sigma^{}_1 \sigma^{}_2$:

 \bullet <u>Proposition</u> (Adyan 1984, Morton–El-Rifai 1988): *Every element* g *of* B_n^+ *has a unique* decomposition $s_1 | \cdots | s_p$ with $s_1, ..., s_p \in S_n$, $s_p \neq 1$, and $\forall s \in S_n$ $(s_i \prec s \Rightarrow s \not\preccurlyeq s_i s_{i+1} \cdots s_p).$

i.e., again: "s_i is a <u>maximal</u> left-divisor of $s_i s_{i+1} \cdots s_p$ lying in S_n "

ighthe greedy (or Garside) normal form $NF^{Gar}(g)$ (with respect to S_n).

イロト イ部 トイモト イモトー \equiv 990

Plan:

- 1. Two examples
	- Free abelian monoids
	- Braid monoids
- 2. Garside normalisation
	- Garside monoids
	- Artin–Tits monoids

イロト イ母 ト イミト イミト ニヨー りんぐ

- 3. Quadratic normalisation
	- Plactic monoids

• Definition: A Garside monoid is a pair (M, Δ) , where M is a cancellative monoid s.t. ► There exists $\lambda : M \to \mathbb{N}$ satisfying, for all f, g,

$$
\lambda(fg) \geqslant \lambda(f) + \lambda(g) \qquad \text{and} \qquad g \neq 1 \Rightarrow \lambda(g) \neq 0.
$$

- Any two elements of M admit left- and right-lcms and gcds.
- \triangleright Δ is a Garside element of M, meaning: the left- and the right-divisors of Δ coincide and generate M.
- ► The family Div(Δ) of all divisors of Δ in M is finite.

• Philosophy: The finite lattice $Div(\Delta)$ encodes the whole structure of M.

• Example: Put $\Delta_n := a_1 + \cdots + a_n$. Then (\mathbb{N}^n, Δ_n) is a Garside monoid. \blacktriangleright Here the lattice Div(Δ_n) is an *n*-dimensional cube (2^n elements) :

KEL KAR KELKER E VAN

and many more... ask Matthieu Picantin!

• Proposition: If (M, Δ) is a Garside monoid, every element g of M has a unique decomposition $s_1|\cdots|s_p$ satisfying $s_1, ..., s_p \in Div(\Delta)$, $s_p \neq 1$, and $\forall s \in Div(\Delta)$ $(s_i \prec s \Rightarrow s \nless s_i s_{i+1} \cdots s_n).$

once more: s_i is a <u>maximal</u> left-divisor of $s_i s_{i+1} \cdots s_p$ lying in Div (Δ) .

- \triangleright A "greedy" normal form
- <u>Proof</u> (existence): Left-dividing s <u>and</u> Δ means left-dividing $gcd_L(s, \Delta)$. ► Write $g = s_1 g'$ with $s_1 = \gcd_L(g, \Delta)$. ► Then iterate: $g' = s_2 g''$, $g'' = s_3 g'''$, etc.

• Question: How to effectively compute this normal form? What is the mechanism?

▶ Go to a more general scheme: Garside families.

if then $\frac{f}{\sqrt{g}} \rightarrow$ for fg, (= think of the monoid as of a category) \blacktriangleright and g f ′ g' for $fg = f'g'$.

• Lemma: If (M, Δ) is a Garside monoid, then Div (Δ) is a Garside family in M; an S-word is S-normal for $S := Div(\Delta)$ iff it is normal in the sense of Garside monoids.

 \blacktriangleright Hence: we recover the previous framework...

... but also catch new examples:

- Example (stupid): Every left-cancellative monoid is a Garside family in itself. ▶ Only proper (finite) subfamilies may be interesting.
- <u>Example</u>: ("Klein bottle monoid") Let $K^+ := \langle a, b \mid a = bab \rangle^+$. Then $Div(a^2)$ is a Garside family in M.

• Theorem: Assume that M is a left-cancellative monoid that is noetherian and any two elements of M admit a unique left-gcd. Then S is a Garside family in M iff S

- \triangleright contains the atoms of M.
- is closed under right-lcm (if two elements of S have a right-lcm, it lies in S),
- \blacktriangleright and is closed under right-divisor.

 \blacktriangleright In this case, there must exist a smallest Garside family.

• Example (D.–Dyer–Hohlweg): Every finitely generated Artin–Tits monoid admits a finite Garside family. defined by relations $sts... = tst...$, same length

Typically ("type A_2 "): $\langle \sigma_1, \sigma_2, \sigma_3 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2, \sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_3, \sigma_3 \sigma_1 \sigma_3 = \sigma_1 \sigma_3 \sigma_1 \rangle^+$

- \bullet The Garside normal form NF^S is indeed a greedy normal form:
- Proposition: If S is a Garside family in a left-cancellative monoid M:
	- \triangleright The S-normal form is (essentially) unique when it exists.
	- \triangleright If S is finite, the language of S-normal words is regular.
	- A word $s_1|\cdots|s_p$ is S-normal iff

 $\forall s \in S$ $(s_i \prec s \Rightarrow s \not\preccurlyeq s_i s_{i+1} \cdots s_n).$

once again: s_i is a maximal left-divisor of $s_i s_{i+1} \cdots s_p$ lying in S

• Main question: How to compute the S-normal form? What is the mechanism?

► Equivalently: how to compute the normalisation map $N^S: S^* \to S^*$?

• Lemma: If S is a Garside family in a left-cancellative monoid M, then, for all s_1, s_2 in S, the S-normal form of s_1s_2 has length ≤ 2 . t_1

 \blacktriangleright Makes sense to consider the restriction $\overline{\mathit{N}}^S:=\mathit{N}^S\restriction S$

 $t₂$

 52

 s_1

• Lemma ("domino rule"): If S is a Garside family in a left-cancellative monoid M,

► Proof:

(ロ) (個) (ミ) (ミ) = ミーのQQ

 \Box

• Proposition: If S is a Garside family in a left-cancellative monoid M, and $s_1|\cdots|s_p$ is S-normal, and t lies in S, then the S-normal form of $ts_1 \cdots s_p$ is

that is, $N^S(t|s_1|\cdots|s_p)=\overline{N^S_{1|2|}}\bigcup\limits_{\uparrow\;\;\sqcup\;\;\subset\;\;\subset\;\;S} (t|s_1|\cdots|s_p).$ applying $\overline{\mathcal{N}}^S:=\mathcal{N}^S\mathcal{\restriction} S^{[2]}$ in positions 1, then 2, etc. until $\boldsymbol{\mathcal{p}}-1$

• Corollary: If S is a Garside family in a left-cancellative monoid M:

- ► For each t in S, there is a <u>rational transducer</u> computing $N(tw)$ from $N(w)$.
- ► Garside normalisation satisfies the 2-Fellow Traveller Property on the left.

• Iterating from the right: a universal recipe for normalising words of length p :

 \bullet Theorem: If S is a Garside family in a left-cancellative monoid M, and w lies in S $^{[p]}$, the S-normal form of w is given by

$$
N^S(w)=\overline{N}^S_{\delta_p}(w),
$$

with $\delta_2 := 1$, $\delta_3 := 2|1|2$, $\delta_4 := 3|2|3|1|2|3$, $\delta_5 := 4|3|4|2|3|4|1|2|3|4$, etc.

• Corollary: If a monoid M is left-cancellative, has no invertible element $\neq 1$, and admits a finite Garside family S:

- \blacktriangleright $\mathsf{N}^\mathcal{S}$ can be computed in <code>DTIME(n^2), and the Word Pb for (M, S) lies in DTIME(n^2).</code>
- \blacktriangleright If M is right-cancellative, M is left-automatic.
- \triangleright (Picantin) M is an automaton semigroup and is residually finite.

Plan:

- 1. Two examples
	- Free abelian monoids
	- Braid monoids
- 2. Garside normalisation
	- Garside monoids
	- Artin–Tits monoids

イロト イ母 ト イミト イミト ニヨー りんぐ

- 3. Quadratic normalisation
	- Plactic monoids

• From now on: consider (more) general geodesic normal forms for a monoid.

↑ the normal form has minimal length

• Proposition: There exists a notion of a normalisation (S, N) , with N a length preserving map $S^* \to S^*$, s.t. defining a geodesic normal form on a monoid M is equivalent to defining a normalisation mod a neutral letter for M.

a letter e satisfying $\forall w\ (N(w|e) = N(e|w) \stackrel{\uparrow}{=} N(w)|e)$ $M = \langle S | \{ w = N(w) | w \in S^* \} \cup \{ e = 1 \} \rangle^+$

- Example (lexicographic): $M = \mathbb{N}^n$ and $N^{\text{Lex}}(w) := w$ lexicographically sorted.
- \bullet <u>Example</u> (Garside): $M = B_n^+$, $S = Div(\Delta_n)$, and $N^{Gar}(s_1|...|s_p) := (s'_1|...|s'_q|1|...|1)$, with $s'_1 | \cdots | s'_q$ the S-normal form of $s_1 \cdots s_p$. Id. for every Garside family S in a left-cancellative monoid M .

• Definition: A normalisation (S, N) is quadratic if

- An S-word w is N-normal (= fixed under N) iff every length-2 factor of w is,
- \triangleright One can go from w to $N(w)$ by normalising length-2 factors.

(independent conditions: neither implies the other)

• Examples:

 \blacktriangleright (S, N^{Lex}) is quadratic: a word is \lt^{Lex} -nondecreasing iff every length-2 factor is, and one can from w to $N^{\text{Lex}}(w)$ by swapping adjacent letters.

 \triangleright (S, N^{Gar}) is quadratic: a word is S-normal iff every length-2 factor is, and one can from w to $N^{Gar}(w)$ by normalising length-2 factors: domino rule.

• Fact: If (S, N) is a quadratic normalisation, the set of N-normal words is regular.

- <u>Notation</u>: For (S, N) quadratic: $\overline{N} := N\,S^{[2]}$, $N_i := N$ applied to the factor in position $i, i + 1$, $N_{i_1} | \dots | i_m := N_{i_m} \circ \cdots \circ N_{i_1},$ If (S, N) is quadratic, there exists for every S-word w
	- a sequence of positions u (depending on w) s.t. $N(w) = \overline{N}_u(w)$.
- For $||w|| = 3$, the only possibilities are $u = 121...[c]$ or $u = 212...[c]$. ↑ $1|2|1|...$, length c
- Definition: A quadratic normalisation (S, N) is of left class c if

$$
\forall w \in S^{[3]} \; (N(w) = \overline{N}_{121\dots[c]}(w)).
$$

... right class $c \ldots N_{212\ldots [c]}(w)$) class (c, c') for left class c and right class c' .

- Lemma: If (S, N) is of left class c, then \blacktriangleright (S, N) is of left class c' for every $c' \geqslant c$, ► (S, N) is of right class c'' for every c'' \ge c+1.
- Examples:
	- ► (S, N^{Lex}) is of class $(3, 3)$: $\forall w {\in} S^{[3]}$ $(N^{\text{Lex}}(w) = \overline{N}_{121}(w) = \overline{N}_{212}(w))$.
	- ► (S, N^{Gar}) is of class $(4, 3)$: $\forall w {\in} S^{[3]}$ $(N^{\text{Gar}}(w) = \overline{N}_{1212}(w) = \overline{N}_{212}(w))$.
	- ► Define $N^{\text{Lex}}_{*}(s|t) := \lceil (s+t)/2 \rceil |\lfloor (s+t)/2 \rfloor$ for $s > t$, and $s|t$ otherwise. Then (S, N^{Lex}_{*}) is of (minimal) class $(3 + \lfloor \log_2(n) \rfloor, 3 + \lfloor \log_2(n) \rfloor)$, where $n = \#S$.

(ロ) (日) (모) (모) (모) 모 | ⊙Q (◇

 \blacktriangleright Hence: The mechanism for class (4,3) is the same as in the Garside case.

• Proposition: If (S, N) is of class $(4, 3)$, then, for every length-p word w, one has $N(w) = N_{\delta_p}(w)$.

(recall: $\delta_2 = 1$, $\delta_3 = 212$, $\delta_4 = 323123$, $\delta_5 = 4342341234$, etc.)

- Catch new examples with the same mechanism:
- Definition: For $(X, <)$ a totally ordered set, the plactic monoid on $(X, <)$ is

$$
P_X:=\Big\langle\ X\ \Big|\ \begin{array}{l}\text{acb}=\text{cab}\ \text{for}\ \text{a}\leqslant \text{b}<\text{c}\\ \text{bac}=\text{bca}\ \text{for}\ \text{a}<\text{b}\leqslant \text{c}\end{array}\Big\rangle^+.
$$

- Connection with Young tableaux:
	- Another family of generators: $S := \{ \text{columns over } X \}$

:= strictly decreasing products of elements of X .

 \blacktriangleright Call a pair of columns $c|c'$ normal for

 $||c|| \ge ||c'||$ & $\forall k \le ||c'||$ $(c_k \le c'_k)$.

- A geodesic normal form on (P_X, S) , computed by Schensted's insertion algorithm.
- Proposition: Schensted normalisation is quadratic of class (3, 3).

• Similar for the Chinese monoids, now with class (5, 5).

• Definition: Call a (quadratic) normalisation (S, N) left-weighted if \forall s, t, s', t' (s' $|t' = N^\textrm{Gar}(\mathsf{s}|t) \Longrightarrow$ s left-divides s' in the associated monoid).

• Theorem (characterization): If M is a left-cancellative monoid and S is a Garside family in M, then (S, N^{Gar}) is of class $(4, 3)$ and is left-weighted.

Conversely, if (S, N) is a left-weighted class $(4, 3)$ normalisation, then S is a Garside family in M and $N = N^{Gar}$ holds.

 \bullet With each normalisation (S, N) comes a rewrite system:

rules: $s|t \to \overline{N}(s|t)$ when $\overline{N}(s|t) \neq s|t$.

- \blacktriangleright then normalising: ∀w ∃w'normal $(w \rightarrow^* w')$,
- ► and confluent: ∀w,w′,w′′ ((w \rightarrow^* w′&w \rightarrow^* w′′) \rightarrow ∃w′′′ (w′ \rightarrow^* w′′′ &w′′ \rightarrow^* w′′′)).
- \triangleright but is it terminating: is every rewriting sequence finite?

• Proposition: There exists a nonterminating class (4, 4) normalisation.

► Proof: ab \rightarrow ab', cd \rightarrow c'd, bc' \rightarrow b''c'', b'c \rightarrow b''c'', b'c' \rightarrow bc.

KEL KAR KELKER E VAN

• Proposition: Every class (3,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most $p(p-1)/2$.

▶ Proof: Uses Matsumoto's lemma for the symmetric group.

• Theorem: Every class (4,3) normalisation is terminating: every rewriting sequence from a length-p word has length at most $2^p - p - 1$.

► Proof: Because of the domino rule, one inevitably proceeds to the normal form. \Box

• Corollary: Every Garside normalisation is terminating.

• Application: Every finite type Artin–Tits monoid has a finite converging presentation.

Proof: Take for S a finite Garside family, with relations $s|t = N^{Gar}(s|t)$.

Part 1:

- F.A. Garside, The braid group and other groups Quart. J. Math. Oxford 20 (1969) 235-254
- H. Morton, E. El-Rifai, Algorithms for positive braids Quart. J. Math. Oxford 45 (1994) 479-497

Part 2:

- P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalizations of Artin groups Proc. London Math. Soc. 79 (1999) 569-604
- P. Dehornoy, Groupes de Garside Ann. Scient. Ec. Norm. Sup. 35 (2002) 267-306
- P. Dehornoy, with F. Digne, E. Godelle, D. Krammer, J. Michel, Foundations of Garside Theory EMS Tracts in Mathematics, vol. 22 (2015)
- P. Dehornoy, M. Dyer, C. Hohlweg, Garside families in Artin-Tits monoids and low elements in Coxeter groups Comtes-Rendus Math. 353 (2015) 403-408

Part 3:

• P. Dehornoy, Y. Guiraud, Quadratic normalisation in monoids arXiv:1504.02717

• A. Hess, V. Ozornova, Factorability, string rewriting and discrete Morse theory arXiv:1412.3025

[www](#page-27-0)[.m](#page-28-0)[at](#page-27-0)[h.uni](#page-28-0)[cae](#page-0-0)[n.fr/](#page-28-0)[∼](#page-0-0)[d](#page-0-0)[eho](#page-28-0)[rno](#page-0-0)[y](#page-28-0) OQ