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Université de Caen

Calais, 22 février 2018

• A new approach to the Word Problem for Artin-Tits groups (and other groups),
◮ based on a rewrite system extending free reduction,



Multifraction reduction
and the Word Problem for Artin-Tits groups

Patrick Dehornoy
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• A new approach to the Word Problem for Artin-Tits groups (and other groups),
◮ based on a rewrite system extending free reduction,
◮ reminiscent of the Dehn algorithm for hyperbolic groups,
◮ proved in particular cases, conjectured in the general case.
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• In this way: for every gcd-monoid M, a rewrite system RM (“reduction”),
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(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, then
the word problem for U(M) is decidable.

◮ M is noetherian: no infinite descending sequence for left- and right-divisibility.
◮ M is strongly noetherian: exists a pseudo-length function on M. (⇒ noetherian)
◮ M satisfies the 3-Ore condition: three elements that pairwise admit

a common multiple admit a global one. (2-Ore ⇒ 3-Ore)
◮ right-basic elements: obtained from atoms repeatedly using

the right-complement operation: (x , y) 7→ x ′ s.t. yx ′ = right-lcm(x , y).

• Proof: (i) The rewrite system RM is convergent:
◮ noetherianity of M ensures termination;
◮ the 3-Ore condition ensures confluence.

(ii) Finitely many basic elements provides an upper bound for possible
common multiples, ensuring that ⇒ is decidable. �



Plan:

• 1. Reduction of multifractions
- The enveloping group of a monoid
- Free reduction
- A two-step extension: (i) division, (ii) reduction

• 2. Artin–Tits monoids I
- The FC case: two theorems
- The general case: three conjectures

• 3. Interval monoids (joint with F. Wehrung)
- The interval monoid of a poset
- Examples and counter-examples

• 4. Artin–Tits monoids II (joint with D. Holt and S. Rees)
- Padded reduction
- The sufficiently large case
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• An Artin-Tits monoid: 〈S | R〉+ such that, for all s, t in S,
there is at most one relation s... = t... in R and, if so, the relation has the form

stst... = tsts..., both terms of same length (a “braid relation”).
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↑
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◮ “Garside theory”

• Proposition: An Artin-Tits monoid satisfies the 3-Ore
condition iff it of FC (“flag complex”) type.

↑
if ∀s, t ∈ S ′ ⊆ S ∃ s... = t... in R, then 〈S ′〉 is spherical

• Theorem 1: If M is a FC-type Artin-Tits monoid, then every element of the
group U(M) is represented by a unique RM -irreducible multifraction.

◮ a new normal form
(6= the Niblo–Reeves n.f. deduced from the action on a CAT(0)-complex)
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and RM is semiconvergent, then the word problem for U(M) is decidable.
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• Example: type Ã2: 〈a, b, c | aba = bab, bcb = cbc, cac = aca〉+



Conjecture A

• Conjecture A: For every Artin-Tits monoid M, the system RM is semiconvergent.

◮ Would imply the decidability of the word problem for AT groups.
◮ Similarity with the Dehn algorithm: no introduction of pairs ss−1 or s−1s.
◮ Supported by massive computer experiments.
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◮ We have seen ac/ca/ba 1/c/aba bc/cb/ab
◮ The quotient ac/ca/ba/ab/cb/bc represents 1 in U(M), hence should reduce to 1:
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• Finite approximation : n-semiconvergence := semiconvergence
restricted to depth n multifractions;

◮ RM is 2-semiconvergent iff M ⊂→ U(M), which is true (L. Paris, 2001).
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• Remember: for FC type, a represents 1 implies a reduces to 1 by the universal recipe.

• Conjecture B: For every Artin-Tits monoid M, if a multifraction a represents 1
in U(M), then a reduces to 1 by the universal recipe.

◮ Implies Conjecture A, hence the decidability of the word problem for the group.
◮ More precise than A, hence (maybe) more difficult to prove, but easier to test.
◮ For depth 4 multifractions, Conjecture A equivalent to Conjecture B.
◮ Implies the existence of universal van Kampen diagrams.

◮ call this property “Conjecture Bgeom”.

• Question: Does Conjecture Bgeom (hence B) imply that U(M) is torsion-free?

• Question (McCammond): Does Conjecture Bgeom (hence B) imply
that U(M) satisfies the K(π, 1)-conjecture?
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• Conjecture C: For every Artin-Tits monoid M, the system RM is cross-confluent.

◮ Implies Conjecture A, hence the decidability of the word problem for the group.
◮ Local version (no ∗ = one step of reduction) is true.
◮ Uniform (stronger) version: ∀a ∃∇a ∀b (a ˜ ∗ b implies b ∗∇a).
◮ True for FC type, with ∇a := red(a).



Plan:

• 1. Reduction of multifractions
- The enveloping group of a monoid
- Free reduction
- A two-step extension: (i) division, (ii) reduction

• 2. Artin–Tits monoids I
- The FC case: two theorems
- The general case: three conjectures

• 3. Interval monoids (joint with F. Wehrung)
- The interval monoid of a poset
- Examples and counter-examples

• 4. Artin–Tits monoids II (joint with D. Holt and S. Rees)
- Padded reduction
- The sufficiently large case
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Int(P) := 〈{[x , y ] | x < y ∈ P} | {[x , y ][y , z ] = [x , z ] | x < y < z ∈ P}〉+.
↑

the intervals of P

• Proposition (D.–Wehrung) If M is the interval monoid of a finite poset P, and M is
a gcd-monoid (which is effectively checkable when P is finite), there is a notion of a
reducible simple circuit in P such that

◮ If all simple circuits of P are reducible, then RM is semiconvergent;
◮ If all length6n simple circuits of P are reducible, then RM is n-semiconvergent.

• Checkable conditions for P finite: finitely many simple circuits.
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• The monoids Int(P) are (very) far from Artin-Tits monoids
◮ A proof of the conjectures must require specific “non-Garside” arguments.
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AT-groups of sufficiently large type

• An Artin–Tits monoid is said to be of sufficiently large type if,
in any triangle in the associated Coxeter diagram,

◮ either no edge has label 2 (“large type”),
◮ or all three edges have label 2 (“right-angled”),
◮ or at least one edge has label ∞ (“free”).

• Theorem (D.–Holt–Rees): If M is an AT-monoid of sufficiently large type, then RM

is semiconvergent up to a quadratic padding.

• The “first” open case (neither FC nor sufficiently large):

〈a, b, c, d | aba = bab, aca = cac, bcb = cbc, ada = dad, bdb = dbd, cd = dc〉+.
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