

Multifraction reduction and the Word Problem for Artin-Tits groups

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Calais, 22 février 2018

KEL KAR KELKER E VAN

• A new approach to the Word Problem for Artin-Tits groups (and other groups),

- ► based on a rewrite system extending free reduction,
- \triangleright reminiscent of the Dehn algorithm for hyperbolic groups,
- ▶ proved in particular cases, conjectured in the general case.

• 1. Reduction of multifractions

- The enveloping group of a monoid
- Free reduction
- A two-step extension: (i) division, (ii) reduction

• 2. Artin–Tits monoids I

- The FC case: two theorems
- The general case: three conjectures

• 3. Interval monoids (joint with F. Wehrung)

- The interval monoid of a poset
- Examples and counter-examples

• 4. Artin–Tits monoids II (joint with D. Holt and S. Rees)

- Padded reduction
- The sufficiently large case

- 1. Reduction of multifractions
	- The enveloping group of a monoid
	- Free reduction
	- A two-step extension: (i) division, (ii) reduction
- 2. Artin–Tits monoids I
	- The FC case: two theorems
	- The general case: three conjectures
- 3. Interval monoids (joint with F. Wehrung)
	- The interval monoid of a poset
	- Examples and counter-examples
- 4. Artin–Tits monoids II (joint with D. Holt and S. Rees)

- Padded reduction
- The sufficiently large case

• For every monoid M, there exists a unique group $U(M)$ and a unique morphism $\phi : M \to \mathcal{U}(M)$ s.t. every morphism from M to a group factors through ϕ . If $M = \langle S | R \rangle^+$, then $\mathcal{U}(M) = \langle S | R \rangle$.

 \triangleright Caution! Even if M is cancellative, ϕ need not be injective: Mal'cev conditions.

• Theorem (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in $U(M)$ and every element of $U(M)$ is represented as ab⁻¹ with a, b in M. \blacktriangleright "group of (right) fractions for M"

• Say that a left-divides b, or b is a right-multiple of a, if $\exists x (ax = b)$. $\leftarrow a \leq b$ ▶ 2-Ore condition: any two elements admit a common right-multiple.

• Definition: A gcd-monoid is a cancellative monoid, in which 1 is the only invertible element and any two elements admit a left- and a right-gcd.

a \leqslant - and a $\widehat{\leqslant}$ -greatest lower bound

• Corollary: If M is a gcd-monoid satisfying the 2-Ore condition, then M embeds in $U(M)$ and every element of $U(M)$ is represented by a unique irreducible fraction.

 ab^{-1} with $a,b\in M$ and right-gcd $(a,b)=1$

 $\textsf{then} \leqslant \textsf{is a partial order}$

 \bullet Example: $M = B_n^+$, the *n*-strand braid monoid; more generally, every Garside monoid. (ロ) (日) (모) (모) (모) 모 | ⊙Q (◇ • When the 2-Ore condition fails (no common multiples), no fractional expression.

 \bullet Example: $M = F^+$, a free monoid; then M embeds in $\mathcal{U}(M)$, a free group;

- \triangleright No fractional expression for the elements of $U(M)$,
- ► But: unique expression $a_1 a_2^{-1} a_3 a_4^{-1} \cdots$ with a_1, a_2, \ldots in M and for *i* odd: a_i and a_{i+1} do not finish with the same letter, for *i* even: a_i and a_{i+1} do not begin with the same letter.

▶ a "freely reduced word"

- Proof: (easy) Introduce rewrite rules on finite sequences of positive words:
	- rule $D_{i,x} := \begin{cases}$ for *i* odd, delete x at the end of a_i and a_{i+1} (if possible...),
rule $D_{i,x} := \begin{cases}$ for *i* even delete x at the beginning of a_i and a_{i+1} (if possible...) for *i* even, delete x at the beginning of a_i and a_{i+1} (if possible...).
	- Then the system of all rules $D_{i,x}$ is (locally) confluent:

Every sequence a rewrites into a unique irreducible sequence ("convergence"). \Box

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- When M is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
	- \triangleright no first or last letter.
	- but left- and right-divisors: $x \le a$ means "x is a possible beginning of a".

► rule $D_{i,x} := \begin{cases}$ for *i* odd, right-divide a_i and a_{i+1} by x (if possible...),

for *i* even left-divide a_i and a_{i+1} by x (if possible.), for *i* even, left-divide a_i and a_{i+1} by x (if possible...).

- <u>Example</u>: $M = B_3^+ = \langle a, b \mid aba = bab \rangle^+$;
	- start with the sequence (a, aba, b) , better written $a/aba/b$ ("multifraction")

- \blacktriangleright no hope of confluence...
- ▶ consider more general rewrite rules.
- Diagrammatic representation of elements of M: $\frac{a}{a}$ \mapsto a, and multifractions:
	- $\stackrel{a_1}{\longrightarrow} \stackrel{a_2}{\longleftrightarrow} \stackrel{a_3}{\longrightarrow} \cdots$ \mapsto $a_1/a_2/a_3/\dots$ \mapsto $\phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots$ in $\mathcal{U}(M)$.
	- \blacktriangleright Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level *i*): declare <u>a</u> $D_{i,x} = \underline{b}$ for

• Relax "x divides a_i " to "lcm(x, a_i) exists": declare $\underline{a} \cdot R_{i,x} = \underline{b}$ for

• Definition: "b obtained from a by reducing x at level i ": divide a_{i+1} by x, push x through a_i using lcm, multiply a_{i-1} by the remainder y.

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- \triangleright a. $D_{i,x}$ is defined if x divides both a_i and a_{i+1} ; \triangleright a \cdot $R_{i,x}$ is defined if x divides a_{i+1} , and x and a_i have a common multiple.
- Fact: $b = a \cdot R_{i,x}$ implies that a and b represent the same element in $U(M)$.

• In this way: for every gcd-monoid M, a rewrite system \mathcal{R}_M ("reduction"), walking among the various multifractions that represent each given element of $U(M)$.

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

• Theorem: (i) If M is a noetherian gcd-monoid satisfying the 3-Ore condition, then M embeds in $U(M)$ and \mathcal{R}_M is convergent: every element of $U(G)$ is represented by a unique \mathcal{R}_M -irreducible multifraction.

(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, then the word problem for $U(M)$ is decidable.

- \blacktriangleright M is noetherian: no infinite descending sequence for left- and right-divisibility.
- \blacktriangleright M is strongly noetherian: exists a pseudo-length function on M. (\Rightarrow noetherian)
- \blacktriangleright *M* satisfies the 3-Ore condition: three elements that pairwise admit

a common multiple admit a global one. $(2\textrm{-}Ore \Rightarrow 3\textrm{-}Ore)$ \triangleright right-basic elements: obtained from atoms repeatedly using

the right-complement operation: $(x, y) \mapsto x'$ s.t. $yx' = \text{right-lcm}(x, y)$.

- Proof: (i) The rewrite system \mathcal{R}_M is convergent:
	- \triangleright noetherianity of M ensures termination;
	- \triangleright the 3-Ore condition ensures confluence.
- (ii) Finitely many basic elements provides an upper bound for possible

common multiples, ensuring that \Rightarrow is decidable.

- 1. Reduction of multifractions
	- The enveloping group of a monoid
	- Free reduction
	- A two-step extension: (i) division, (ii) reduction

• 2. Artin–Tits monoids I

- The FC case: two theorems
- The general case: three conjectures
- 3. Interval monoids (joint with F. Wehrung)
	- The interval monoid of a poset
	- Examples and counter-examples
- 4. Artin–Tits monoids II (joint with D. Holt and S. Rees)

- Padded reduction
- The sufficiently large case

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- An Artin-Tits monoid: $\langle S | R \rangle^+$ such that, for all s, t in S, there is at most one relation $s... = t...$ in R and, if so, the relation has the form stst... $=$ tsts..., both terms of same length (a "braid relation").
- Proposition (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it of spherical type.

↑ adding $s^2 = 1$ for every s in S yields a <u>finite</u> Coxeter group

- ► "Garside theory"
- Proposition: An Artin-Tits monoid satisfies the 3-Ore condition iff it of FC ("flag complex") type. ↑ if $\forall s,t \in S' \subseteq S \exists s... = t...$ in R, then $\langle S' \rangle$ is spherical
- Theorem 1: If M is a FC-type Artin-Tits monoid, then every element of the group $U(M)$ is represented by a unique \mathcal{R}_M -irreducible multifraction.
	- \blacktriangleright a new normal form $(\neq$ the Niblo–Reeves n.f. deduced from the action on a CAT(0)-complex)

• Theorem 2: For every n, there exists a universal sequence of integers $U(n)$ such that, whenever M is a FC-type Artin-Tits monoid and a is any depth n multifraction representing 1 in $U(M)$, then a reduces to 1 by maximal reductions at levels $U(n)$.

- ► Example: $U(8) = (1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 1, 2, 3, 1).$
- ▶ Works for every gcd-monoid satisfying the 3-Ore condition.
- ► Geometric interpretation: existence of a universal van Kampen diagram Γ_n :

- Every AT-monoid satisfies some of the assumptions:
	- \triangleright is strongly noetherian (relations preserve the length of words),
	- \triangleright has finitely many basic elements (D.-Dyer-Hohlweg, 2015),
	- \triangleright but does not necessarily satisfy the 3-Ore condition, i.e., is of FC-type...
- <u>Example</u>: type A_2 : $\langle a, b, c \mid aba = bab, bcb = cbc, cac = aca \rangle^+$
	- \triangleright the elements a, b, c pairwise admit common multiples, but no global multiple
	- \blacktriangleright the rewrite system \mathcal{R}_M is not confluent:

• Definition: \mathcal{R}_M is semiconvergent if a represents 1 in $U(M)$ iff $a \Rightarrow^* 1$.

► Equivalently: conjunction of $a \Rightarrow^* 1$ and $a \Rightarrow^* b$ implies $b \Rightarrow^* 1$:

• Proposition: (i) If \mathcal{R}_M is convergent, then it is semiconvergent.

<u>∙oposition</u>: (i) If K_M is convergent, then it is semiconvergent.
(ii) If M is a strongly noetherian gcd-monoid with finitely many basic elements and \mathcal{R}_M is semiconvergent, then the word problem for $\mathcal{U}(M)$ is decidable.

1 ∗

∗

a

b ∗

• Conjecture A: For every Artin-Tits monoid M, the system \mathcal{R}_M is semiconvergent.

- \triangleright Would imply the decidability of the word problem for AT groups.
- ► Similarity with the Dehn algorithm: no introduction of pairs ss^{-1} or $s^{-1}s$.
- ▶ Supported by massive computer experiments.
- <u>Example</u>: type A_2 : $\langle a, b, c \mid aba = bab, bcb = cbc, cac = aca \rangle$ ⁺
	- ▶ We have seen $ac/ca/ba$ \Longleftarrow $1/c/aba$ \Longrightarrow $bc/cb/ab$
	- \blacktriangleright The quotient ac/ca/ba/ab/cb/bc represents 1 in $\mathcal{U}(M)$, hence should reduce to 1:

$$
\begin{array}{rcl} \mathsf{ac}/\mathsf{ca}/\mathsf{ba}/\mathsf{ab}/\mathsf{cb}/\mathsf{bc} &\Rightarrow& \mathsf{ac}/\mathsf{cac}/\mathsf{b}/1/\mathsf{cb}/\mathsf{bc} &&\text{via } R_{3,\text{ab}}\\ &\Rightarrow& \mathsf{ac}/\mathsf{cac}/\mathsf{bcb}/1/1/\mathsf{bc} &&\text{via } R_{4,\text{cb}}\\ &\Rightarrow& \mathsf{ac}/\mathsf{cac}/\mathsf{bcb}/\mathsf{bc}/1/1 &&\text{via } R_{5,\text{bc}}\\ &\Rightarrow& 1/c/\mathsf{bcb}/\mathsf{bc}/1/1 &&\text{via } R_{3,\text{ac}}\\ &\Rightarrow& \mathsf{bc}/1/1/\mathsf{bc}/1/1 &&\text{via } R_{2,\text{cbc}}\\ &\Rightarrow& \mathsf{bc}/\mathsf{bc}/1/1/1/1 &&\text{via } R_{3,\text{bc}}\\ &\Rightarrow& 1/1/1/1/1/1 &&\text{via } R_{1,\text{bc}}\\ \end{array}
$$

• Finite approximation : n -semiconvergence : = semiconvergence

restricted to depth n multifractions;

► \mathcal{R}_M is 2-semiconvergent iff $M \subseteq \mathcal{U}(M)$, which is true (L. Paris, 2001).

• Remember: for FC type, a represents 1 implies a reduces to 1 by the universal recipe.

• Conjecture B: For every Artin-Tits monoid M, if a multifraction a represents 1 in $U(M)$, then a reduces to 1 by the universal recipe.

- \blacktriangleright Implies Conjecture A, hence the decidability of the word problem for the group.
- \blacktriangleright More precise than A, hence (maybe) more difficult to prove, but easier to test.
- ► For depth 4 multifractions, Conjecture A equivalent to Conjecture B.
- \blacktriangleright Implies the existence of universal van Kampen diagrams.

 \triangleright call this property "Conjecture B^{geom} ".

- Question: Does Conjecture B^{geom} (hence B) imply that $\mathcal{U}(M)$ is torsion-free?
- Question ($McCammod$): Does Conjecture B^{geom} (hence B) imply that $U(M)$ satisfies the $K(\pi, 1)$ -conjecture?
- So far: left reduction: pushing factors to the left
	- ▶ Possible to reverse the definition and push factors to the right
	- A system $\widetilde{\mathcal{R}}_M$ ("right reduction"), with entirely symmetric properties.
- Definition: The system \mathcal{R}_M is cross-confluent if

• Conjecture C: For every Artin-Tits monoid M, the system \mathcal{R}_M is cross-confluent.

- ► Implies Conjecture A, hence the decidability of the word problem for the group.
- ► Local version (no $* =$ one step of reduction) is true.
- ► Uniform (stronger) version: $\forall \underline{a} \exists \nabla \underline{a} \ \forall \underline{b} \ (\underline{a} \leq \underline{\ast} \underline{b} \text{ implies } \underline{b} \implies \nabla \underline{a}).$
- True for FC type, with $\nabla a := \text{red}(a)$.

- 1. Reduction of multifractions
	- The enveloping group of a monoid
	- Free reduction
	- A two-step extension: (i) division, (ii) reduction
- 2. Artin–Tits monoids I
	- The FC case: two theorems
	- The general case: three conjectures
- 3. Interval monoids (joint with F. Wehrung)
	- The interval monoid of a poset
	- Examples and counter-examples
- 4. Artin–Tits monoids II (joint with D. Holt and S. Rees)

- Padded reduction
- The sufficiently large case

• Definition (F.Wehrung): For (P, \leqslant) a poset, the interval monoid of P is $Int(P) := \langle \{ [x, y] \mid x < y \in P \} \mid \{ [x, y][y, z] = [x, z] \mid x < y < z \in P \} \rangle^+.$ the intervals of P

• Proposition $(D,-Wehrung)$ If M is the interval monoid of a finite poset P, and M is a gcd-monoid (which is effectively checkable when P is finite), there is a notion of a reducible simple circuit in P such that

- \blacktriangleright If all simple circuits of P are reducible, then \mathcal{R}_M is semiconvergent;
- ► If all length $\leq n$ simple circuits of P are reducible, then \mathcal{R}_M is n-semiconvergent.

• Checkable conditions for P finite: finitely many simple circuits.

- Proposition (D.-Wehrung): There exist noetherian gcd-monoids such that (i) \mathcal{R}_M is semiconvergent but not convergent,
	- (ii) \mathcal{R}_M is n'-semiconvergent for $n' < n$ but not n-semiconvergent.

• The monoids $Int(P)$ are (very) far from Artin-Tits monoids

 \triangleright A proof of the conjectures must require specific "non-Garside" arguments.

- 1. Reduction of multifractions
	- The enveloping group of a monoid
	- Free reduction
	- A two-step extension: (i) division, (ii) reduction
- 2. Artin–Tits monoids I
	- The FC case: two theorems
	- The general case: three conjectures
- 3. Interval monoids (joint with F. Wehrung)
	- The interval monoid of a poset
	- Examples and counter-examples
- 4. Artin–Tits monoids II (joint with D. Holt and S. Rees)

- Padded reduction
- The sufficiently large case
- Recall: \mathcal{R}_M semiconvergent if "a represents 1 in $\mathcal{U}(M)$ implies $a \Rightarrow^* 1$ ".
- Definition: \mathcal{R}_M is semiconvergent up to f-padding if "<u>a</u> represents 1 in $U(M)$ implies $\underline{1}_{2f(\underline{a})}/\underline{a} \Rightarrow^* \underline{1}$ ". adding $2f(\underline{a})$ "dummy 1s" at the beginning of \underline{a} \triangleright a \Rightarrow^* 1 implies $1_{2m}/a \Rightarrow^* 1$,
	- ▶ but, conversely, adding dummy 1s ("padding") allows for more reductions,
	- ► so $1_{2m}/a \Rightarrow^* 1$ need not imply $a \Rightarrow^* 1$.

• Proposition: If M is a strongly noetherian gcd-monoid with finitely many basic elements and \mathcal{R}_M is semiconvergent up to f-padding for some Turing-computable f, then the word problem for $U(M)$ is decidable.

• Conjecture A^{padded}: For every Artin-Tits monoid M, the system \mathcal{R}_M is semiconvergent up to Turing-computable padding.

 \triangleright Would imply the decidability of the word problem for AT groups.

• An Artin–Tits monoid is said to be of sufficiently large type if. in any triangle in the associated Coxeter diagram,

- \triangleright either no edge has label 2 ("large type"),
- \triangleright or all three edges have label 2 ("right-angled"),
- ► or at least one edge has label ∞ ("free").

• Theorem (D.–Holt–Rees): If M is an AT-monoid of sufficiently large type, then \mathcal{R}_M is semiconvergent up to a quadratic padding.

• The "first" open case (neither FC nor sufficiently large):

 $\langle a, b, c, d \mid aba = bab, aca = cac, bcb = cbc, ada = dad, bdb = dbd, cd = dc \rangle +$.

- P. Dehornoy, Multifraction reduction I: The 3-Ore case and Artin-Tits groups of type FC J. Combinat. Algebra 1 (2017) 185-228, arXiv:1606.08991
- P. Dehornoy, Multifraction reduction II: Conjectures for Artin-Tits groups J. Combinat. Algebra 1 (2017) 229-287, arXiv:1606.08995
- P. Dehornoy & F. Wehrung, Multifraction reduction III: The case of interval monoids J. Combinat. Algebra1 (2017) 341-370, arXiv:1606.09018
- P. Dehornoy, D. Holt, & S. Rees, Multifraction reduction IV: Padding and Artin-Tits groups of sufficiently large type J . Pure Appl. Algebra, to appear, arXiv:1701.06413
- F. Wehrung, Gcd-monoids arising from homotopy groupoids hal:01338106

• P. Dehornoy, MoKa ("monoid calculus"), MacOS/Docker executable binaries www.math.unicaen.fr/∼dehornoy/programs/.