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e A new approach to the Word Problem for Artin-Tits groups (and other groups),
» based on a rewrite system extending free reduction,
» reminiscent of the Dehn algorithm for hyperbolic groups,
» proved in particular cases, conjectured in the general case.



Plan:

e 1. Reduction of multifractions
- The enveloping group of a monoid
- Free reduction
- A two-step extension: (i) division, (ii) reduction
e 2. Artin—Tits monoids |
- The FC case: two theorems

- The general case: three conjectures

e 3. Interval monoids (joint with F. Wehrung)
- The interval monoid of a poset
- Examples and counter-examples

® 4. Artin—Tits monoids Il (joint with D. Holt and S. Rees)
- Padded reduction

- The sufficiently large case
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The enveloping group of a monoid

e For every monoid M, there exists a unique group /(M) and a unique morphism
¢ M — U(M) s.t. every morphism from M to a group factors through ¢.
If M= (S| R)", then U(M) = (S| R).

e Theorem (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M
embeds in U(M) and every element of (M) is represented as ab—! with a, b in M.
» “group of fractions for M "

e Say that a left-divides b, or b is a right-multiple of a, if Ix(ax = b). <+ a < b
» 2-Ore condition: any two elements admit a common right-multiple.

e Definition: A gcd-monoid is a cancellative monoid, in which 1 is the only invertible
element and any two elements admit a left- and a right-gcd.

e Corollary: If M is a gcd-monoid satisfying the 2-Ore condition, then M embeds |
in U(M) and every element of U(M) is represented by a unique irreducible fraction.

e Example: M = B}, the n-strand braid monoid; more generally, every Garside monoid.



Free reduction

o When the 2-Ore condition fails , no fractional expression.

e Example: M = F*, a free monoid; then M embeds in U(M), a free group;
» No fractional expression for the elements of U/(M),
» But: unique expression 21251332;1 -+ with ag, ap,... in M and
for i odd: a; and aj;1 do not finish with the same letter,
for i even: a; and aj;; do not begin with the same letter.
» a “freely reduced word”

e Proof: Introduce rewrite rules on finite sequences of positive words:
for i odd, delete x at the end of a; and ajy; s
» rule D; , = i .
for i even, delete x at the beginning of a; and a;;1
» Then the system of all rules D; , is confluent:

3d

» Every sequence a rewrites into a unique irreducible sequence (“convergence”). O



Division

e When M is not free, the rewrite rule D; , can still be given a meaning:
» no first or last letter,
» but left- and right-divisors: x < a means “x is a possible beginning of a".

for i odd, right-divide a; and a;;1 by x ,
» rule D; , = . .
for i even, left-divide a; and a;jy; by x

e Example: M = Bf = (a,b | aba = bab)™;

» start with the sequence (a, aba,b), better written a/aba/b ( “multifraction

a/bab/b
N
1/ab/b a/ab/1

{ ‘

» no hope of confluence...
» consider more general rewrite rules.



Reduction

e Diagrammatic representation of elements of M: _2 _ + a, and multifractions:

2L 2B a/m/a/ o d(a)d(a2) L p(as)... in U(M).

» Then: commutative diagram <« equality in U(M).

e Diagram for D; : declare a e Dj , = b for

. aj
aj—1 J aj+1
<—
aj_1 (b— b'
1

® Relax “x divides a;" to "lcm(x, a;) exists”: declare a e R; , = b for

di-1 a1 % a
\L T

e Definition: "“b obtained from a by reducing x at level i":
divide a;;1 by x, push x through a; using lcm, multiply a;_; by the remainder y.




Reduction (cont’d)

e D; , is defined if x divides both a; and a;;1;
o R;

> ae
> ae R; « is defined if x divides aj;1, and x and a; have a common multiple.

e Fact: b= ae« R;  implies that a and b represent the same element in U/(M).

e Example: M = B with 1/ab/b:

b and ab admit a common multiple

ab
1 -~ b
/ \ » we can push b through ab:
\i b/Y » a/ab/1 =1/ab/be Roy
& 1

ab
and now a/aba/b

DL/ w’b

1/ab/b =———> a/ab/1
Rab
» possible confluence (?)

e In this way: for every gcd-monoid M, a rewrite system %, (“reduction”),
walking among the various multifractions that represent each given element of U/(M).



The 3-Ore case

e Theorem: (i) If M is a noetherian gcd-monoid satisfying the 3-Ore condition, then
M embeds in U(M) and R, is convergent: every element of U(G) is represented by a
unique Ry -irreducible multifraction.

(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, then
the word problem for U(M) is decidable.

» M is noetherian: no infinite descending sequence for left- and right-divisibility.
» M is strongly noetherian: exists a pseudo-length function on M. (= noetherian)
» M satisfies the 3-Ore condition: three elements that pairwise admit
a common multiple admit a global one. (2-Ore = 3-Ore)
» right-basic elements: obtained from atoms repeatedly using
the right-complement operation: (x,y) — x’ s.t. yx’ = right-lem(x, y).

e Proof: (i) The rewrite system R, is convergent:
» noetherianity of M ensures termination;
» the 3-Ore condition ensures confluence.
(ii) Finitely many basic elements provides an upper bound for possible
common multiples, ensuring that = is decidable. [
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Artin—Tits monoids

e An Artin-Tits monoid: (S | R)* such that, for all s, t in S,
there is at most one relation s... = t... in R and, if so, the relation has the form
stst... = tsts..., both terms of same length (a “braid relation™).

e Proposition (Brieskorn—Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore

condition iff it of spherical type.
I

adding s2 = 1 for every s in S yields a finite Coxeter group
» “Garside theory”

e Proposition: An Artin-Tits monoid satisfies the 3-Ore
condition iff it of FC (“flag complex”) type.

if Vs,t € S’ C S Js... = t... in R, then (S’) is spherical

e Theorem 1: [If M is a FC-type Artin-Tits monoid, then every element of the
group U(M) is represented by a unique Ry -irreducible multifraction. J

» a new normal form
(# the Niblo—Reeves n.f. deduced from the action on a CAT(0)-complex)



The universal recipe

e Theorem 2: For every n, there exists a universal sequence of integers U(n) such
that, whenever M is a FC-type Artin-Tits monoid and a is any depth n multifraction
representing 1 in U(M), then a reduces to 1 by maximal reductions at levels U(n).

» Example: U(8) =(1,2,3,4,5,6,7,1,2,3,4,5,1,2,3,1).
» Works for every gcd-monoid satisfying the 3-Ore condition.
» Geometric interpretation: existence of a universal van Kampen diagram [;:

NS

ar




General Artin—Tits monoids

e Every AT-monoid satisfies some of the assumptions:
» is strongly noetherian ,
» has finitely many basic elements (D.-Dyer-Hohlweg, 2015),
» but does not necessarily satisfy the 3-Ore condition, i.e., is of FC-type...

e Example: type As: (a,b,c | aba = bab, bcb = cbc, cac = aca)*
» the elements a, b, ¢ pairwise admit common multiples, but no global multiple
» the rewrite system R, is not confluent:

1/c/aba

R“/ \R“

ac/ca/ba bc/cb/ab
e Definition: Ry, is semiconvergent if
arepresents 1 in U(M) iff a=*1.
« \«
» Equivalently: conjunction of a =* 1 and a =* b implies b=*1: 1 < e b
e Proposition: (i) If Ry is convergent, then it is semiconvergent.

(i) If M is a strongly noetherian gcd-monoid with finitely many basic elements
and Ry is semiconvergent, then the word problem for U(M) is decidable.



Conjecture A

e Conjecture A: For every Artin-Tits monoid M, the system R, is semiconvergent.

» Would imply the decidability of the word problem for AT groups.
» Similarity with the Dehn algorithm: no introduction of pairs ss~1 or s~ !s.

» Supported by massive computer experiments.

e Example: type Rz: (a,b, c | aba = bab, bcb = cbc, cac = aca)*
» We have seen ac/ca/ba «—= 1/c/aba =—> bc/cb/ab
» The quotient ac/ca/ba/ab/cb/bc represents 1 in U(M), hence should reduce to 1:

ac/ca/ba/ab/cb/bc = ac/cac/b/1l/cb/bc via R3 ap
= ac/cac/bcb/1/1/bc via Ry
= ac/cac/bcb/bc/1/1 via Rs pc
= 1/c/becb/bec/1/1 via Ri ac
= bc/1/1/bc/1/1 via R cbe
= bc/bc/1/1/1/1 via R3pc
= 1/1/1/1/121 via Ry b

e Finite approximation : n-semiconvergence := semiconvergence
restricted to depth n multifractions;
» R is 2-semiconvergent iff M C_y U(M), which is true (L. Paris, 2001).




Conjecture B

o Remember: for FC type, a represents 1 implies a reduces to 1 by the universal recipe.

o Conjecture B: For every Artin-Tits monoid M, if a multifraction a represents 1

in U(M), then a reduces to 1 by the universal recipe.

» Implies Conjecture A, hence the decidability of the word problem for the group.
» More precise than A, hence (maybe) more difficult to prove, but easier to test.
» For depth 4 multifractions, Conjecture A equivalent to Conjecture B.

» Implies the existence of universal van Kampen diagrams.

» call this property “Conjecture B&eo™".

e Question: Does Conjecture B&™ (hence B) imply that /(M) is torsion-free?
e Question (McCammond): Does Conjecture B&*™ (hence B) imply
that U(M) satisfies the K(m,1)-conjecture?

o <& = = Dac



Conjecture C

e So far: left reduction: pushing factors to the left
» Possible to reverse the definition and push factors to the right
» A system Ry (“right reduction”), with entirely symmetric properties.

e Definition: The system R, is cross-confluent if

a a
* ol * >k
b c and b G
e o
A g S%
3d dd

e Conjecture C: For every Artin-Tits monoid M, the system R, is cross-confluent.

» Implies Conjecture A, hence the decidability of the word problem for the group.
» Local version (no * = one step of reduction) is true.

» Uniform (stronger) version: Va 3Va Vb (a == b implies b = Va).

» True for FC type, with Va := red(a).

o F = = DA™
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Interval monoids

e Definition (F.Wehrung): For (P, <) a poset, the interval monoid of P is
Int(P) := ({[x,y] | x <y € P} [ {[x,¥lly,2l = [x, 2] [ x <y <z € P})*.

the intervals of P

e Proposition (D.—\Wehrung) If M is the interval monoid of a finite poset P, and M is
a gcd-monoid , there is a notion of a
reducible simple circuit in P such that

» If all simple circuits of P are reducible, then Ry, is semiconvergent;

» If all length <n simple circuits of P are reducible, then Ry, is n-semiconvergent.

e Checkable conditions for P finite: finitely many simple circuits.



Counter-examples

e Proposition (D.-Wehrung): There exist noetherian gcd-monoids such that
(i) Rum is semiconvergent but not convergent,
(i) R is n’-semiconvergent for n’ < n but not n-semiconvergent.

e Proof: For (i), consider the interval monoid of

2 H 4 Q/T\ﬁ

o
lo o o5 T/ \T
For ( ||) con5|der the |nterva| mon0|d of (here n=6):

/ \ 10
14 /T\IS/T\ 16
W >§\ BNk
\13/1\17/1‘
2 \T/I\T/ 6
/

» a necklace of n connected diamonds, 18
plus a central cross connecting each other extremal vertex. [

e The monoids Int(P) are far from Artin-Tits monoids
» A proof of the conjectures must require specific arguments.
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Padded semi-convergence

e Recall: Ry semiconvergent if “a represents 1 in (M) implies 2 =* 1".

e Definition: Ry, is semiconvergent up to f-padding if

“a represents 1 in U(M) implies lzf(é)/g =*1".
» a="1implies 1,,/a=*1,

adding 2f(a) “dummy 1s” at the beginning of a
» but, conversely, adding dummy 1s (“padding”) allows for more reductions,
» so 1, /a="*1 need not imply a =* 1.

e Proposition: If M is a strongly noetherian gcd-monoid with finitely many basic

elements and R, is semiconvergent up to f-padding for some Turing-computable f,

then the word problem for U(M) is decidable.
e Conjecture AP*9d: For every Artin-Tits monoid M,

the system R, is semiconvergent up to Turing-computable padding.

» Would imply the decidability of the word problem for AT groups.

Dac



AT-groups of sufficiently large type

e An Artin—Tits monoid is said to be of sufficiently large type if,
in any triangle in the associated Coxeter diagram,

» either no edge has label 2 (“large type”),

» or all three edges have label 2 (“right-angled”),

» or at least one edge has label co (“free").

e Theorem (D.—Holt—Rees): If M is an AT-monoid of sufficiently large type, then R
is semiconvergent up to a quadratic padding.
v,

e The “first” open case (neither FC nor sufficiently large):

{a,b,c,d | aba = bab, aca = cac, bcb = cbc, ada = dad, bdb = dbd, cd = dc) ™.
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