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◮ Today (much) more is known about (sets and) infinities,
and there is a reasonable hope that the Continuum Problem will be solved.

◮ New types of applications of Set Theory appear.
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◮ II. What does discovering new true axioms mean?
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• Conjecture (Continuum Hypothesis, Cantor, 1879): card(R) = ℵ1.

◮ Equivalently: every uncountable set of reals has the cardinality of R.
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• Theorem (Alexandroff, 1916): Borel sets satisfy CH.
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• First question: Is CH or ¬CH (negation of CH) provable from ZF?
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• Theorem (Gödel, 1938): Unless ZF is contradictory,
¬CH cannot be proved from ZF.

↑
negation of

• Theorem (Cohen, 1963): Unless ZF is contradictory,
CH cannot be proved from ZF.

• Conclusion: ZF is incomplete.

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...
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(no connection with ordinary objects).
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• Definition: Axiom of Projective Determinacy (PD):
“Every projective set of reals is determined”.

• Propositions (Moschovakis, Kechris, ...., 1970s): When added to ZF,
PD provides a complete and satisfactory description of projective sets of reals.

↑
heuristically complete

↑
no pathologies: Lebesgue measurable, etc.

◮ Example: Under ZF + PD, projective sets satisfy CH.

• So: PD is useful (gives a better description of usual sets),
but not natural (why consider it?),

contrary to large cardinal axioms, which are natural but (a priori) not useful.
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↑
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cardinals imply PD

↑
PD (implies) infinitely
many Woodin cardinals

• Corollary (Woodin): PD is true.

“Proof”: PD is both natural (as a large cardinal axiom), and
useful (as a determinacy property). �

• Why “true”?

◮ Compare with the axiom of infinity:
Evidence = (?) interiorization of a long familiarity and of practical efficiency.

◮ (Woodin) “The statement that PD is consistent is a new mathematical truth. It
predicts facts about our world, for instance that in the next 1000 years there will be no
contradiction discovered from PD by any means.”

◮ New consensus: The base system for 21th century Set Theory is no longer ZF,
but ZF + PD.
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• Currently most promising approach: identify one canonical reference universe.

(think of C in the world of number fields of characteristic 0)

◮ a typical candidate: Gödel’s universe L of constructible sets (1938).
↑

the minimal universe: only definable sets (think of the prime field Q)

◮ fully understood (“fine structure theory”, Jensen and Silver, 1970s),
but cannot be the reference universe because

- incompatible with large cardinals: contradicts PD,
- implies pathologies: existence of a non-measurable projective subset of R...

• Question: Can one find an L-like universe compatible with large cardinals?
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• The same construction works for every size:

• Proposition (Laver): (i) For every N, there exists a unique binary operation ∗ on
{1, ...,N} satisfying x ∗ 1 = x + 1 mod N and

x ∗ (y ∗ 1) = (x ∗ y) ∗ (x ∗ 1).

(ii) The operation thus obtained obeys the LD-law if and only if N is a power of 2.

◮ An := the Laver table with 2n elements.

• For n > 1, one has 1 ∗ 1 = 2 6= 1 in An: not idempotent.

◮ quite different from group conjugacy and other classical LD-structures

◮ a counterpart of cyclic groups Z/nZ in the selfdistributive world:
An presented by 〈1 | 1[2n ] = 1〉LD , with x[p] = (...((x ∗ x) ∗ x)...)∗ x , p terms.
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A0 1

1 1

A1 1 2

1 2 2
2 1 2

A2 1 2 3 4

1 2 4 2 4
2 3 4 3 4
3 4 4 4 4
4 1 2 3 4

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
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A4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 12 14 16 2 12 14 16 2 12 14 16 2 12 14 16
2 3 12 15 16 3 12 15 16 3 12 15 16 3 12 15 16
3 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
4 5 6 7 8 13 14 15 16 5 6 7 8 13 14 15 16
5 6 8 14 16 6 8 14 16 6 8 14 16 6 8 14 16
6 7 8 15 16 7 8 15 16 7 8 15 16 7 8 15 16
7 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16
8 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16
9 10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16
10 11 12 15 16 11 12 15 16 11 12 15 16 11 12 15 16
11 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16
12 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16
13 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16
14 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16
15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
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• Proposition (Laver): If there exists a selfsimilar set, πn(2) > πn(1) holds for every n.

• Similar (more difficult) proof for Question 1 (period of 1 in An tends to ∞).

• Alternative proofs without the large cardinal assumption? Not yet...
◮ partial results by Drápal... but no complete proof so far:
◮ a strange situation: why a connection between finite tables and large cardinals?
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