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Abstract

◮ Cohen’s work is not the end of History.

◮ Today (much) more is known about (sets and) infinities,
and there is a reasonable hope that the Continuum Problem will be solved.

◮ New types of applications of Set Theory appear.

Plan

◮ I. The Continuum Problem up to Cohen

◮ II. What does discovering new true axioms mean?

◮ III. An application of a new type: Laver tables



I. The Continuum Problem up to Cohen



The Continuum Problem

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880’s): There exist
infinitely many non-equivalent infinities,

which organize in a well-ordered sequence

ℵ0 < ℵ1 < ℵ2 < ··· < ℵω < ··· .

• Facts. - card(N) = ℵ0,
- card(R) = card(P(N)) = 2ℵ0 > card(N).

• Question (Continuum Problem): For which α does card(R) = ℵα hold?

• Conjecture (Continuum Hypothesis, Cantor, 1879): card(R) = ℵ1.

◮ Equivalently: every uncountable set of reals has the cardinality of R.



Formalization

• Theorem (Cantor–Bendixson, 1883): Closed sets satisfy CH.

↑
Every closed set of reals either is countable or has the cardinality of R.

• Theorem (Alexandroff, 1916): Borel sets satisfy CH.

... and then no progress for 70 years.

• In the meanwhile, formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

• First question: Is CH or ¬CH (negation of CH) provable from ZF?



Two major results

• Theorem (Gödel, 1938): Unless ZF is contradictory,
¬CH cannot be proved from ZF.

↑
negation of

• Theorem (Cohen, 1963): Unless ZF is contradictory,
CH cannot be proved from ZF.

• Conclusion: ZF is incomplete.

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...



II. What does discovering new true axioms mean?



Large cardinals

• Which new axioms?

• From 1930’s, axioms of large cardinal (LC):

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ inaccessible cardinals, measurable cardinals, etc.

• Principle: self-similar implies large
◮ X infinite: ∃j :X→X (j injective not bijective)
◮ X super-infinite: ∃j :X→X (j inject. not biject. preserving all ∈-definable notions)

↑
a self-embedding of X

◮ Example: No self-embedding of N may exist, hence N is not super-infinite.

• Then: LC are natural axioms (iteration of the postulate that infinite sets exist),
but no evidence that they are true, or just useful

(no connection with ordinary objects).



Determinacy

• Definition: For A ⊆ R, consider the two player {0, 1}-game GA:

I
II

a1
a2

a3
a4

...
...

where I wins if the real [0, a1a2...]2 belongs to A.
Then A is called determined if one of the players has a winning strategy in GA.

• An infinitary statement of a special type:
∃a1∀a2∃a3...([0, a1a2...]2 ∈ A) or ∀a1∃a2∀a3...([0, a1a2...]2 /∈ A),

and a model for many properties: there exist codings CL,CB : P(R) → P(R) s.t.
A is Lebesgue measurable iff CL(A) is determined,
A has the Baire property iff CB(A) is determined, etc.

• Always true for simple sets and (false) for complicated sets:
◮ All closed sets are determined (Gale–Stewart, 1962),
◮ All Borel sets are determined (Martin, 1975).
◮ “All sets are determined” contradicts AC (Mycielski–Steinhaus, 1962),
◮ “All projective sets are determined” unprovable from ZF (≈ Gödel, 1938).

↑
closure of Borel sets under continuous image and complement



The Axiom of Projective Determinacy

• Definition: Axiom of Projective Determinacy (PD):
“Every projective set of reals is determined”.

• Propositions (Moschovakis, Kechris, ...., 1970s): When added to ZF,
PD provides a complete and satisfactory description of projective sets of reals.

↑
heuristically complete

↑
no pathologies: Lebesgue measurable, etc.

◮ Example: Under ZF + PD, projective sets satisfy CH.

• So: PD is useful (gives a better description of usual sets),
but not natural (why consider it?),

contrary to large cardinal axioms, which are natural but (a priori) not useful.



The axiom PD is true

• Theorem (Martin–Steel 1985, Woodin, 1987): PD is a large cardinal axiom.

↑
infinitely many Woodin
cardinals imply PD

↑
PD (implies) infinitely
many Woodin cardinals

• Corollary (Woodin): PD is true.

“Proof”: PD is both natural (as a large cardinal axiom), and
useful (as a determinacy property). �

• Why “true”?

◮ Compare with the axiom of infinity:
Evidence = (?) interiorization of a long familiarity and of practical efficiency.

◮ (Woodin) “The statement that PD is consistent is a new mathematical truth. It
predicts facts about our world, for instance that in the next 1000 years there will be no
contradiction discovered from PD by any means.”

◮ New consensus: The base system for 21th century Set Theory is no longer ZF,
but ZF + PD.



What is next?

• Fact: CH and ¬CH not provable from ZF + PD: description not yet complete...
◮ with ZF: (heuristically) complete description of finite sets;
◮ with ZF+PD: (heuristically) complete description of finite and countable sets;
◮ with ZF+PD+??: (heuristically) complete description of sets up to cardinal ℵ1:

... which will necessarily entail a solution to CH.

• Currently most promising approach: identify one canonical reference universe.

(think of C in the world of number fields of characteristic 0)

◮ a typical candidate: Gödel’s universe L of constructible sets (1938).
↑

the minimal universe: only definable sets (think of the prime field Q)

◮ fully understood (“fine structure theory”, Jensen and Silver, 1970s),
but cannot be the reference universe because

- incompatible with large cardinals: contradicts PD,
- implies pathologies: existence of a non-measurable projective subset of R...

• Question: Can one find an L-like universe compatible with large cardinals?



Inner models

• The inner model program (in the world of fields: constructing algebraic closure...)

◮ universe L[U] (Kunen, 1971): compatible with one measurable cardinal;

◮ universe L[E ] (Mitchell–Steel, 1980-90s): compatible with PD;

◮ but: how could this be completed with an endless hierarchy of large cardinals?

• Theorem (Woodin, 2006): There exists an explicit level (one supercompact cardinal)
such that, if an L-like universe is compatible with large cardinals up to that level, it is
automatically compatible with all large cardinals.

• Conjecture (Woodin, 2010): ZF + PD+V=ultimate-L is true.

↑
the L-like universe for one supercompact

◮ means proving that V=ultimate-L is both natural (an aesthetic judgment based
on cumulated experience...) and useful (= provides a description with no pathologies)

• Proposition: ZF + PD+V=ultimate-L implies GCH.

◮ If ZF + PD+V=ultimate-L becomes accepted as the base of Set Theory,
then the Continuum Problem will have been solved.



III. An application of a new type: Laver tables



A Laver table

• The (left) selfdistributivity law:

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z). (LD)

◮ Classical example 1: E module and x ∗ y := (1− λ)x + λy ;
◮ Classical example 2: G group and x ∗ y := xyx−1.

NB: all idempotent (x ∗ x = x), hence no nontrivial monogenerated structure

◮ (Brieskorn,...) Algebraic counterpart of Reidemeister move III...

• A binary operation on {1, 2, 3, 4}: the four element Laver table

4

3

2

1

∗ 1 2 3 4

• Start with +1mod 4 in the first column,

2

3

4

1

and complete so as to obey the rule x ∗ (y ∗ 1) = (x ∗ y) ∗ (x ∗ 1) :

4 ∗ 2 = 4 ∗ (1 ∗ 1) = (4 ∗ 1) ∗ (4 ∗ 1) = 1 ∗ 1 = 2,

2

4 ∗ 3 = 4 ∗ (2 ∗ 1) = (4 ∗ 2) ∗ (4 ∗ 1) = 2 ∗ 1 = 3,

3

4 ∗ 4 = 4 ∗ (3 ∗ 1) = (4 ∗ 3) ∗ (4 ∗ 1) = 3 ∗ 1 = 4,

4

3 ∗ 2 = 3 ∗ (1 ∗ 1) = (3 ∗ 1) ∗ (3 ∗ 1) = 4 ∗ 4 = 4,...

4 4 4

4 3 4

4 2 4



Laver tables

• The same construction works for every size:

• Proposition (Laver): (i) For every N, there exists a unique binary operation ∗ on
{1, ...,N} satisfying x ∗ 1 = x + 1 mod N and

x ∗ (y ∗ 1) = (x ∗ y) ∗ (x ∗ 1).

(ii) The operation thus obtained obeys the LD-law if and only if N is a power of 2.

◮ An := the Laver table with 2n elements.

• For n > 1, one has 1 ∗ 1 = 2 6= 1 in An: not idempotent.

◮ quite different from group conjugacy and other classical LD-structures

◮ a counterpart of cyclic groups Z/nZ in the selfdistributive world:
An presented by 〈1 | 1[2n ] = 1〉LD , with x[p] = (...((x ∗ x) ∗ x)...)∗ x , p terms.



Laver tables: examples

A0 1

1 1

A1 1 2

1 2 2
2 1 2

A2 1 2 3 4

1 2 4 2 4
2 3 4 3 4
3 4 4 4 4
4 1 2 3 4

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8

A4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 12 14 16 2 12 14 16 2 12 14 16 2 12 14 16
2 3 12 15 16 3 12 15 16 3 12 15 16 3 12 15 16
3 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
4 5 6 7 8 13 14 15 16 5 6 7 8 13 14 15 16
5 6 8 14 16 6 8 14 16 6 8 14 16 6 8 14 16
6 7 8 15 16 7 8 15 16 7 8 15 16 7 8 15 16
7 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16
8 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16
9 10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16
10 11 12 15 16 11 12 15 16 11 12 15 16 11 12 15 16
11 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16
12 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16
13 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16
14 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16
15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16



Periods

• Proposition (Laver): For every p 6 2n, there exists a number πn(p), a power of 2,
such that the pth row of An is the periodic repetition

of πn(p) values increasing from p+1mod 2n to 2n.

• Example:

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8 ◮ π3(8) = 8

◮ π3(7) = 1
◮ π3(6) = 2
◮ π3(5) = 2
◮ π3(4) = 4
◮ π3(3) = 2
◮ π3(2) = 4
◮ π3(1) = 4

• A few values of the periods of 1 and 2:

n

πn(1)

πn(2)

0

1

−

1

1

2

2

2

2

3

4

4

4

4

4

5

8

8

6

8

8

7

8

16

8

8

16

9

16

16

10

16

16

11

16

16

...

...

...

◮ Question 1: Does πn(2) > πn(1) always hold?

◮ Question 2: Does πn(1) tend to ∞ with n? Does it reach 32?



Selfsimilar ranks

• Theorem (Laver, 1995):
the answer to the above questions is positive.

If there exists a selfsimilar set, then

• Definition: A rank is a set R such that f :R→R implies f ∈ R. (this exists...)

• Assume that X is selfsimilar (i.e., ∃ self-embedding of X ):
◮ then there exists a selfsimilar rank, say R;
◮ if i , j are self-embeddings of R, then i : R → R and j ∈ R, hence we can apply i to j ;
◮ “being a self-embedding” is definable from ∈, hence i(j) is a self-embedding;
◮ “being the image of” is definable from ∈,

hence ℓ = j(k) implies i(ℓ)=i(j)(i(k)), i.e., i(j(k))=i(j)(i(k)): LD-law.

• Proposition (Laver): Assume j is a self-embedding of a rank R.

(i) The set Iter(j) of iterates of j (i .e., j , j(j), j(j)(j)...) obeys the LD-law.

(ii) For every n, there exists a compatible equivalence relation on Iter(j) with 2n

classes and the first column of its table is a cycle, hence the quotient is An.

(iii) For m 6 n and p 6 2n, the period of p jumps from 2m to 2m+1 between An

and An+1 iff j[p] maps crit(j[2m ]) to crit(j[2n]).

↑
the first ordinal moved by...



Comparing periods of 2 and 1

• Lemma: If j is a self-embedding, then j(j)(α) 6 j(α) holds for every ordinal α.

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)

Taking γ = α in (∗∗) yields j(j)(α) 6 j(α). �

• Proposition (Laver): If there exists a selfsimilar set, πn(2) > πn(1) holds for every n.

• Similar (more difficult) proof for Question 1 (period of 1 in An tends to ∞).

• Alternative proofs without the large cardinal assumption? Not yet...
◮ partial results by Drápal... but no complete proof so far:
◮ a strange situation: why a connection between finite tables and large cardinals?



Summary and last questions

• Set Theory is a theory of infinity: its aim is to explore the various possible infinities.
(nothing less, nothing more: “New Math” was a misunderstanding...)

• History continues:
◮ A coherent theory beyond ZF is possible;
◮ There is a consensus about enriching ZF into ZF+PD;
◮ The next step should include a solution of the Continuum Problem.

• A last question: Are the properties of Laver tables an application of Set Theory?

◮ So far, yes; later, formally no if one finds alternative proofs without Set Theory.
◮ But, in any case, it is Set Theory that made the properties first accessible...
◮ An analogy: In physics: using a physical intuition, guess statements, then pass

them to the mathematician for a formal proof; Here: using a logical intuition
(existence of a selfsimiliar set), guess statements (periods in Laver tables tend to ∞),
then pass them to the mathematician for a formal proof.

◮ No need to believe in the existence of large cardinals to use them...
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... Muito obrigado e da próxima vez !


