

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Groups, Rings and the Yang-Baxter Equation Spa, June 2017

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Groups, Rings and the Yang-Baxter Equation \$\$\$ Spa, June 2017

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Advertizing for two (superficially unrelated) topics:

- W. Rump's formalism of cycle sets for investigating <u>YBE structure groups</u>:

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Groups, Rings and the Yang-Baxter Equation \$\$\$ Spa, June 2017

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Advertizing for two (superficially unrelated) topics:

- W. Rump's formalism of cycle sets for investigating <u>YBE structure groups</u>: revisit the Garside and the I-structures, and introduce a finite Coxeter-like quotient,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Groups, Rings and the Yang-Baxter Equation Spa, June 2017

• Advertizing for two (superficially unrelated) topics:

- W. Rump's formalism of cycle sets for investigating <u>YBE structure groups</u>: revisit the Garside and the I-structures, and introduce a finite Coxeter-like quotient,

- a new approach to the word problem of <u>Artin-Tits groups</u>, based on an extension of Ore's theorem from fractions to multifractions.

• Structure groups of set-theoretic solutions of YBE

• Structure groups of set-theoretic solutions of YBE

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

▶ 1. RC-calculus

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

- Revisiting the I-structure using RC-calculus

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

- Revisiting the I-structure using RC-calculus
- ▶ 2. A new application: Garside germs

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

- Revisiting the I-structure using RC-calculus
- ▶ 2. A new application: Garside germs
 - The braid germ

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣�()

- Revisiting the I-structure using RC-calculus

▶ 2. A new application: Garside germs

- The braid germ
- The YBE germ

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus

- Revisiting the I-structure using RC-calculus
- ▶ 2. A new application: Garside germs
 - The braid germ
 - The YBE germ
- A new approach to the word problem of Artin-Tits groups

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus
 - Revisiting the I-structure using RC-calculus
 - ▶ 2. A new application: Garside germs
 - The braid germ
 - The YBE germ
- A new approach to the word problem of Artin-Tits groups
 - ▶ 3. Multifraction reduction, an extension of Ore's theorem

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus
 - Revisiting the I-structure using RC-calculus
 - ▶ 2. A new application: Garside germs
 - The braid germ
 - The YBE germ
- A new approach to the word problem of Artin-Tits groups
 - 3. Multifraction reduction, an extension of Ore's theorem
 Ore's classical theorem

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus
 - Revisiting the I-structure using RC-calculus
 - ▶ 2. A new application: Garside germs
 - The braid germ
 - The YBE germ
- A new approach to the word problem of Artin-Tits groups
 - 3. Multifraction reduction, an extension of Ore's theorem
 - Ore's classical theorem
 - Extending free reduction: (i) division, (ii) reduction

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus
 - Revisiting the I-structure using RC-calculus
 - ▶ 2. A new application: Garside germs
 - The braid germ
 - The YBE germ
- A new approach to the word problem of Artin-Tits groups
 - ▶ 3. Multifraction reduction, an extension of Ore's theorem
 - Ore's classical theorem
 - Extending free reduction: (i) division, (ii) reduction
 - The case of Artin-Tits groups: theorems and conjectures

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus
 - Revisiting the I-structure using RC-calculus
 - ▶ 2. A new application: Garside germs
 - The braid germ
 - The YBE germ
- A new approach to the word problem of Artin-Tits groups
 - ▶ 3. Multifraction reduction, an extension of Ore's theorem
 - Ore's classical theorem
 - Extending free reduction: (i) division, (ii) reduction
 - The case of Artin-Tits groups: theorems and conjectures

• <u>Definition</u>: A set-theoretic solution of YBE is a pair (S, r) where S is a set and r is a bijection from $S \times S$ to itself satisfying

 $r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}$ where $r^{ij}:S^3\to S^3$ means r acting on the $i^{\rm th}$ and $j^{\rm th}$ entries.

• <u>Definition</u>: A set-theoretic solution of YBE is a pair (S, r) where S is a set and r is a bijection from $S \times S$ to itself satisfying

 $r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}$ where $r^{ij}: S^3 \to S^3$ means r acting on the i^{th} and j^{th} entries. • A solution $(S, r) = (S, (r_1, r_2))$ is nondegenerate if, for all s, t, the maps $y \mapsto r_1(s, y)$ and $x \mapsto r_2(x, t)$ are bijective.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• <u>Definition</u>: A set-theoretic solution of YBE is a pair (S, r) where S is a set and r is a bijection from $S \times S$ to itself satisfying

 $r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}$ where $r^{ij}: S^3 \to S^3$ means r acting on the i^{th} and j^{th} entries. A solution $(S, r) = (S, (r_1, r_2))$ is nondegenerate if, for all s, t, the maps $y \mapsto r_1(s, y)$ and $x \mapsto r_2(x, t)$ are bijective.

• A solution (S, r) is involutive if $r^2 = id$.

• <u>Definition</u>: A set-theoretic solution of YBE is a pair (S, r) where S is a set and r is a bijection from $S \times S$ to itself satisfying

 $r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}$ where $r^{ij}: S^3 \to S^3$ means r acting on the i^{th} and j^{th} entries. A solution $(S, r) = (S, (r_1, r_2))$ is nondegenerate if, for all s, t, the maps $y \mapsto r_1(s, y)$ and $x \mapsto r_2(x, t)$ are bijective. A solution (S, r) is involutive if $r^2 = \text{id}$.

• Changing framework 1 (folklore): view r as a pair of binary operations on S

• Definition: A set-theoretic solution of YBE is a pair (S, r) where S is a set and r is a bijection from $S \times S$ to itself satisfying

 $r^{12}r^{23}r^{12} - r^{23}r^{12}r^{23}$ where $r^{ij}: S^3 \to S^3$ means r acting on the *i*th and *j*th entries. ▶ A solution $(S, r) = (S, (r_1, r_2))$ is nondegenerate if, for all s, t, the maps $y \mapsto r_1(s, y)$ and $x \mapsto r_2(x, t)$ are bijective.

- A solution (S, r) is involutive if $r^2 = id$.
- Changing framework 1 (folklore): view r as a pair of binary operations on S
 - ▶ "birack": (S,], [) where] and [are binary operations satisfying...

• <u>Definition</u>: A set-theoretic solution of YBE is a pair (S, r) where S is a set and r is a bijection from $S \times S$ to itself satisfying

 $r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}$ where $r^{ij}: S^3 \to S^3$ means r acting on the i^{th} and j^{th} entries. A solution $(S, r) = (S, (r_1, r_2))$ is nondegenerate if, for all s, t, the maps $y \mapsto r_1(s, y)$ and $x \mapsto r_2(x, t)$ are bijective.

- A solution (S, r) is involutive if $r^2 = id$.
- Changing framework 1 (folklore): view r as a pair of binary operations on S
 "birack": (S,], [) where] and [are binary operations satisfying...
- Changing framework 2 (W. Rump): invert the operation(s):

• <u>Definition</u>: A set-theoretic solution of YBE is a pair (S, r) where S is a set and r is a bijection from $S \times S$ to itself satisfying

 $r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}$ where $r^{ij}: S^3 \to S^3$ means r acting on the i^{th} and j^{th} entries. A solution $(S, r) = (S, (r_1, r_2))$ is nondegenerate if, for all s, t, the maps $y \mapsto r_1(s, y)$ and $x \mapsto r_2(x, t)$ are bijective.

- A solution (S, r) is involutive if $r^2 = id$.
- Changing framework 1 (folklore): view *r* as a pair of binary operations on S
 "birack": (S,], [) where] and [are binary operations satisfying...
- Changing framework 2 (W. Rump): invert the operation(s):
 - ▶ If the left translations of a binary operation \star are bijections, there exists $\overline{\star}$ s.t.

 $x \star y = z \iff x \overline{\star} z = y$ (define $x \overline{\star} z :=$ the unique y satisfying $x \star y = z$) • <u>Definition</u>: A set-theoretic solution of YBE is a pair (S, r) where S is a set and r is a bijection from $S \times S$ to itself satisfying

 $\begin{aligned} r^{12}r^{23}r^{12} &= r^{23}r^{12}r^{23} \\ \text{where } r^{ij}: S^3 \to S^3 \text{ means } r \text{ acting on the } i^{\text{th}} \text{ and } j^{\text{th}} \text{ entries.} \end{aligned}$ $\blacktriangleright \text{ A solution } (S,r) = (S,(r_1,r_2)) \text{ is nondegenerate if, for all } s,t, \\ \text{ the maps } y \mapsto r_1(s,y) \text{ and } x \mapsto r_2(x,t) \text{ are bijective.} \end{aligned}$

- A solution (S, r) is involutive if $r^2 = id$.
- Changing framework 1 (folklore): view *r* as a pair of binary operations on S
 "birack": (S,], [) where] and [are binary operations satisfying...
- Changing framework 2 (W. Rump): <u>invert</u> the operation(s):
 - ▶ If the left translations of a binary operation \star are bijections, there exists $\overline{\star}$ s.t.

 $x \star y = z \iff x \overline{\star} z = y$

- (define $x \neq z :=$ the unique y satisfying $x \neq y = z$)
- Apply this to the operation(s) of a birack.

• A (small) miracle occurs: only one operation * and one algebraic law are needed.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

• A (small) miracle occurs: only one operation * and one algebraic law are needed.

• Definition: A (right) cycle set (or RC-system), is a pair (S, *) where * obeys (x * y) * (x * z) = (y * x) * (y * z). (RC)

• A (small) miracle occurs: only <u>one</u> operation * and <u>one</u> algebraic law are needed.

• Definition: A (right) cycle set (or RC-system), is a pair (S, *) where * obeys (x * y) * (x * z) = (y * x) * (y * z). (RC)

► An RC-quasigroup is a cycle set whose left-translations are bijective.

- A (small) miracle occurs: only <u>one</u> operation * and <u>one</u> algebraic law are needed.
- Definition: A (right) cycle set (or RC-system), is a pair (S, *) where * obeys (x * y) * (x * z) = (y * x) * (y * z). (RC)
 - ► An RC-quasigroup is a cycle set whose left-translations are bijective.
 - ▶ A cycle set is bijective if $(s, t) \mapsto (s * t, t * s)$ is a bijection of S^2 .

ショック エー・エー・ エー・ シック

- A (small) miracle occurs: only <u>one</u> operation * and <u>one</u> algebraic law are needed.
- <u>Definition</u>: A (right) cycle set (or RC-system), is a pair (S, *) where * obeys (x * y) * (x * z) = (y * x) * (y * z). (RC)
 - ► An RC-quasigroup is a cycle set whose left-translations are bijective.
 - ▶ A cycle set is bijective if $(s, t) \mapsto (s * t, t * s)$ is a bijection of S^2 .

• <u>Theorem</u> (Rump, 2005): (i) If (S, r) is an involutive nondegenerate solution, then (S, *) is a bijective RC-quasigroup, where s * t := the unique r s.t. $r_1(s, r) = t$.

- A (small) miracle occurs: only one operation * and one algebraic law are needed.
- <u>Definition</u>: A (right) cycle set (or RC-system), is a pair (S, *) where * obeys (x * y) * (x * z) = (y * x) * (y * z). (RC)
 - ► An RC-quasigroup is a cycle set whose left-translations are bijective.
 - ▶ A cycle set is bijective if $(s, t) \mapsto (s * t, t * s)$ is a bijection of S^2 .

<u>Theorem</u> (Rump, 2005): (i) If (S, r) is an involutive nondegenerate solution, then (S, *) is a bijective RC-quasigroup, where s * t := the unique r s.t. r₁(s, r) = t.
(ii) Conversely, is (S, *) is a bijective RC-quasigroup, then (S, r) is an involutive nondegenerate solution, where r(a, b) := the unique pair (a', b') s.t. a*a' = b and a'*a = b'.

- Claim: One can (easily) develop an "RC-calculus".
- <u>Definition</u>: For $n \ge 1$, define $\Omega_1(x_1) := x_1$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣�()

- Claim: One can (easily) develop an "RC-calculus".
- <u>Definition</u>: For $n \ge 1$, define $\Omega_1(x_1) := x_1$ and $\Omega_n(x_1, ..., x_n) := \Omega_{n-1}(x_1, ..., x_{n-1}) * \Omega_{n-1}(x_1, ..., x_{n-2}, x_n).$

• Claim: One can (easily) develop an "RC-calculus".

• Definition: For
$$n \ge 1$$
, define $\Omega_1(x_1) := x_1$ and
 $\Omega_n(x_1, ..., x_n) := \Omega_{n-1}(x_1, ..., x_{n-1}) * \Omega_{n-1}(x_1, ..., x_{n-2}, x_n)$.
Similarly, for $n \ge 1$, let (where \cdot is another binary operation):
 $\Pi_n(x_1, ..., x_n) := \Omega_1(x_1) \cdot \Omega_2(x_1, x_2) \cdot \cdots \cdot \Omega_n(x_1, ..., x_n)$,

• Claim: One can (easily) develop an "RC-calculus".

• Definition: For
$$n \ge 1$$
, define $\Omega_1(x_1) := x_1$ and
 $\Omega_n(x_1, ..., x_n) := \Omega_{n-1}(x_1, ..., x_{n-1}) * \Omega_{n-1}(x_1, ..., x_{n-2}, x_n)$.
Similarly, for $n \ge 1$, let (where \cdot is another binary operation):
 $\Pi_n(x_1, ..., x_n) := \Omega_1(x_1) \cdot \Omega_2(x_1, x_2) \cdot \cdots \cdot \Omega_n(x_1, ..., x_n)$,
• $\Omega_2(x, y) = x * y$.

• Claim: One can (easily) develop an "RC-calculus".

• Definition: For
$$n \ge 1$$
, define $\Omega_1(x_1) := x_1$ and
 $\Omega_n(x_1, ..., x_n) := \Omega_{n-1}(x_1, ..., x_{n-1}) * \Omega_{n-1}(x_1, ..., x_{n-2}, x_n)$.
Similarly, for $n \ge 1$, let (where \cdot is another binary operation):
 $\Pi_n(x_1, ..., x_n) := \Omega_1(x_1) \cdot \Omega_2(x_1, x_2) \cdot \cdots \cdot \Omega_n(x_1, ..., x_n)$,
• $\Omega_2(x, y) = x * y$, and the RC-law is $\Omega_3(x, y, z) = \Omega_3(y, x, z)$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

• Claim: One can (easily) develop an "RC-calculus".

• Definition: For
$$n \ge 1$$
, define $\Omega_1(x_1) := x_1$ and
 $\Omega_n(x_1, ..., x_n) := \Omega_{n-1}(x_1, ..., x_{n-1}) * \Omega_{n-1}(x_1, ..., x_{n-2}, x_n)$.
Similarly, for $n \ge 1$, let (where \cdot is another binary operation):
 $\Pi_n(x_1, ..., x_n) := \Omega_1(x_1) \cdot \Omega_2(x_1, x_2) \cdot \cdots \cdot \Omega_n(x_1, ..., x_n)$,

► $\Omega_2(x, y) = x * y$, and the RC-law is $\Omega_3(x, y, z) = \Omega_3(y, x, z)$.

▶ Think of the Ω_n as (counterparts of) iterated sums in the RC-world,

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

• Claim: One can (easily) develop an "RC-calculus".

► Think of the Ω_n as (counterparts of) iterated sums in the RC-world, and of the Π_n as (counterparts of) iterated products.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Claim: One can (easily) develop an "RC-calculus".

• Lemma: If (S, *) is a cycle set, then, for every π in \mathfrak{S}_{n-1} , one has $\Omega_n(s_{\pi(1)}, ..., s_{\pi(n-1)}, s_n) = \Omega_n(s_1, ..., s_n)$.

• Claim: One can (easily) develop an "RC-calculus".

• Lemma: If (S, *) is a cycle set, then, for every π in \mathfrak{S}_{n-1} , one has $\Omega_n(s_{\pi(1)}, ..., s_{\pi(n-1)}, s_n) = \Omega_n(s_1, ..., s_n).$

▶ In the language of braces, $\Omega_n(x_1, ..., x_n)$ corresponds to $(x_1 + \cdots + x_{n-1}) * x_n$.

• Claim: One can (easily) develop an "RC-calculus".

• Lemma: If (S, *) is a cycle set, then, for every π in \mathfrak{S}_{n-1} , one has $\Omega_n(s_{\pi(1)}, ..., s_{\pi(n-1)}, s_n) = \Omega_n(s_1, ..., s_n).$

▶ In the language of braces, $\Omega_n(x_1, ..., x_n)$ corresponds to $(x_1 + \cdots + x_{n-1}) * x_n$.

• Lemma: If (S, *) is a bijective RC-quasigroup, there exists $\tilde{*}$, unique, s.t. $(s, t) \mapsto (s \tilde{*} t, t \tilde{*} s)$ is the inverse of $(s, t) \mapsto (s * t, t * s)$.

• Claim: One can (easily) develop an "RC-calculus".

• Lemma: If (S, *) is a cycle set, then, for every π in \mathfrak{S}_{n-1} , one has $\Omega_n(s_{\pi(1)}, ..., s_{\pi(n-1)}, s_n) = \Omega_n(s_1, ..., s_n).$

▶ In the language of braces, $\Omega_n(x_1, ..., x_n)$ corresponds to $(x_1 + \cdots + x_{n-1}) * x_n$.

 Lemma: If (S, *) is a bijective RC-quasigroup, there exists ^x, unique, s.t. (s, t) → (s ^x t, t ^x s) is the inverse of (s, t) → (s * t, t * s).
 Then (S, ^x) is a bijective LC-quasigroup

Claim: One can (easily) develop an "RC-calculus".

• Lemma: If (S, *) is a cycle set, then, for every π in \mathfrak{S}_{n-1} , one has $\Omega_n(s_{\pi(1)}, ..., s_{\pi(n-1)}, s_n) = \Omega_n(s_1, ..., s_n).$

▶ In the language of braces, $\Omega_n(x_1, ..., x_n)$ corresponds to $(x_1 + \cdots + x_{n-1}) * x_n$.

• Lemma: If (S, *) is a bijective RC-quasigroup, there exists $\tilde{*}$, unique, s.t. $(s, t) \mapsto (s \tilde{*} t, t \tilde{*} s)$ is the inverse of $(s, t) \mapsto (s * t, t * s)$. Then $(S, \tilde{*})$ is a bijective LC-quasigroup and, for $\tilde{s}_i := \Omega_n(s_1, ..., \hat{s}_i, ..., s_n, s_i)$, one has $\Omega_i(s_{\pi(1)}, ..., s_{\pi(i)}) = \widetilde{\Omega}_{n+1-i}(\widetilde{s}_{\pi(i)}, ..., \widetilde{s}_{\pi(n)})$, $\Pi_n(s_1, ..., s_n) = \widetilde{\Pi}_n(\widetilde{s}_1, ..., \widetilde{s}_n)$.

• Claim: One can (easily) develop an "RC-calculus".

• Lemma: If (S, *) is a cycle set, then, for every π in \mathfrak{S}_{n-1} , one has $\Omega_n(s_{\pi(1)}, ..., s_{\pi(n-1)}, s_n) = \Omega_n(s_1, ..., s_n).$

▶ In the language of braces, $\Omega_n(x_1, ..., x_n)$ corresponds to $(x_1 + \cdots + x_{n-1}) * x_n$.

• Lemma: If (S, *) is a bijective RC-quasigroup, there exists $\tilde{*}$, unique, s.t. $(s, t) \mapsto (s \tilde{*} t, t \tilde{*} s)$ is the inverse of $(s, t) \mapsto (s * t, t * s)$. Then $(S, \tilde{*})$ is a bijective LC-quasigroup and, for $\tilde{s}_i := \Omega_n(s_1, ..., \hat{s}_i, ..., s_n, s_i)$, one has $\Omega_i(s_{\pi(1)}, ..., s_{\pi(i)}) = \tilde{\Omega}_{n+1-i}(\tilde{s}_{\pi(i)}, ..., \tilde{s}_{\pi(n)})$, $\Pi_n(s_1, ..., s_n) = \tilde{\Pi}_n(\tilde{s}_1, ..., \tilde{s}_n)$.

"Inversion formulas"; etc. etc.

• <u>Definition</u>: The structure group (resp. monoid)

• <u>Definition</u>: The structure group (*resp.* monoid) associated with a (nondegenerate involutive) solution (S, r) of YBE is the group (*resp.* monoid) $\langle S | \{ab = a'b' | a, b, a', b' \in S \text{ satisfying } r(a, b) = (a', b') \} \rangle.$

• <u>Definition</u>: The structure group (*resp.* monoid) associated with a (nondegenerate involutive) solution (S, r) of YBE is the group (*resp.* monoid)

 $\langle S \mid \{ab = a'b' \mid a, b, a', b' \in S \text{ satisfying } r(a, b) = (a', b')\} \rangle.$

The structure group (resp. monoid) associated with a cycle set (S, *) is the group (resp. monoid) is

$$\langle S \mid \{s(s * t) = t(t * s) \mid s \neq t \in S\} \rangle. \tag{\#}$$

• <u>Definition</u>: The structure group (*resp.* monoid) associated with a (nondegenerate involutive) solution (S, r) of YBE is the group (*resp.* monoid)

 $\langle S \mid \{ab = a'b' \mid a, b, a', b' \in S \text{ satisfying } r(a, b) = (a', b')\} \rangle.$

The structure group (resp. monoid) associated with a cycle set (S, *) is the group (resp. monoid) is

$$\langle S | \{ s(s * t) = t(t * s) | s \neq t \in S \} \rangle. \tag{#}$$

• Fact: If (S, r) and (S, *) correspond to one another,

the structure monoids and groups are the same.

(日) (日) (日) (日) (日) (日) (日) (日)

• <u>Definition</u>: The structure group (*resp.* monoid) associated with a (nondegenerate involutive) solution (S, r) of YBE is the group (*resp.* monoid)

 $\langle S \mid \{ab = a'b' \mid a, b, a', b' \in S \text{ satisfying } r(a, b) = (a', b')\} \rangle.$

The structure group (resp. monoid) associated with a cycle set (S, *) is the group (resp. monoid) is

$$\langle S | \{ s(s * t) = t(t * s) | s \neq t \in S \} \rangle. \tag{#}$$

• Fact: If (S, r) and (S, *) correspond to one another,

the structure monoids and groups are the same.

• Claim: RC-calculus gives more simple proofs,

ション ふゆ ア キョン キョン しょうくしゃ

• <u>Definition</u>: The structure group (*resp.* monoid) associated with a (nondegenerate involutive) solution (S, r) of YBE is the group (*resp.* monoid)

 $\langle S \mid \{ab = a'b' \mid a, b, a', b' \in S \text{ satisfying } r(a, b) = (a', b')\} \rangle.$

The structure group (resp. monoid) associated with a cycle set (S, *) is the group (resp. monoid) is

$$\langle S | \{ s(s * t) = t(t * s) | s \neq t \in S \} \rangle. \tag{\#}$$

• Fact: If (S, r) and (S, *) correspond to one another,

the structure monoids and groups are the same.

• <u>Claim</u>: RC-calculus gives more simple proofs, and new results naturally occur.

• <u>Definition</u>: The structure group (*resp.* monoid) associated with a (nondegenerate involutive) solution (S, r) of YBE is the group (*resp.* monoid)

 $\langle S \mid \{ab = a'b' \mid a, b, a', b' \in S \text{ satisfying } r(a, b) = (a', b')\} \rangle.$

The structure group (resp. monoid) associated with a cycle set (S, *) is the group (resp. monoid) is

$$\langle S | \{ s(s * t) = t(t * s) | s \neq t \in S \} \rangle. \tag{#}$$

• Fact: If (S, r) and (S, *) correspond to one another,

the structure monoids and groups are the same.

<u>Claim</u>: RC-calculus gives more simple proofs, and new results naturally occur.
 The relations of (#) are "RC-commutation relations" Π₂(s, t) = Π₂(t, s).

• <u>Definition</u>: The structure group (*resp.* monoid) associated with a (nondegenerate involutive) solution (S, r) of YBE is the group (*resp.* monoid)

 $\langle S \mid \{ab = a'b' \mid a, b, a', b' \in S \text{ satisfying } r(a, b) = (a', b')\} \rangle.$

The structure group (resp. monoid) associated with a cycle set (S, *) is the group (resp. monoid) is

$$\langle S | \{ s(s * t) = t(t * s) | s \neq t \in S \} \rangle. \tag{\#}$$

• Fact: If (S, r) and (S, *) correspond to one another,

the structure monoids and groups are the same.

- <u>Claim</u>: RC-calculus gives more simple proofs, and new results naturally occur.
 - ▶ The relations of (#) are "RC-commutation relations" $\Pi_2(s, t) = \Pi_2(t, s)$.
 - ▶ All rules of RC-calculus apply in the structure monoid.

• <u>Definition</u>: The structure group (*resp.* monoid) associated with a (nondegenerate involutive) solution (S, r) of YBE is the group (*resp.* monoid)

 $\langle S \mid \{ab = a'b' \mid a, b, a', b' \in S \text{ satisfying } r(a, b) = (a', b')\} \rangle.$

The structure group (resp. monoid) associated with a cycle set (S, *) is the group (resp. monoid) is

$$\langle S | \{ s(s * t) = t(t * s) | s \neq t \in S \} \rangle. \tag{\#}$$

• Fact: If (S, r) and (S, *) correspond to one another,

the structure monoids and groups are the same.

- <u>Claim</u>: RC-calculus gives more simple proofs, and new results naturally occur.
 - ▶ The relations of (#) are "RC-commutation relations" $\Pi_2(s, t) = \Pi_2(t, s)$.
 - ▶ All rules of RC-calculus apply in the structure monoid.

▶ What does this mean?

- <u>Theorem</u> (Chouraqui, 2010): The structure monoid of a solution (S, r) is a Garside monoid with atom set S.
 - ▶ What does this mean?
 - «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys

all good divisibility properties of Artin's braid monoids (groups).

- ▶ What does this mean?
- ▶ «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys

all good divisibility properties of Artin's braid monoids (groups).

Divisibility relations of a monoid M:
 a ≤ b means ∃b'∈M (ab' = b),
 ↑
 a left-divides b,

- What does this mean?
- ▶ «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys

all good divisibility properties of Artin's braid monoids (groups).

Divisibility relations of a monoid M:
 a ≤ b means ∃b'∈M (ab' = b),
 ↑
 a left-divides b, or
 b is a right-multiple of a

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Theorem</u> (Chouraqui, 2010): The structure monoid of a solution (S, r) is a Garside monoid with atom set S.

- ▶ What does this mean?
- ▶ «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys
 - all good divisibility properties of Artin's braid monoids (groups).
- Divisibility relations of a monoid M:
 a ≤ b means ∃b'∈M (ab' = b),
 a left-divides b, or
 b is a right-multiple of a

 $a \underset{\uparrow}{\leqslant} b$ means $\exists b' \in M (b'a = b)$. \uparrow right-divides b,

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Theorem</u> (Chouraqui, 2010): The structure monoid of a solution (S, r) is a Garside monoid with atom set S.

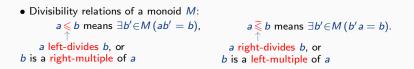
- ▶ What does this mean?
- ► «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys
 - all good divisibility properties of Artin's braid monoids (groups).
- Divisibility relations of a monoid M:
 a ≤ b means ∃b'∈M (ab' = b),
 a left-divides b, or
 b is a right-multiple of a

 $a \underset{\uparrow}{\leqslant} b$ means $\exists b' \in M (b'a = b)$. a right-divides b, or b is a left-multiple of a

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Theorem</u> (Chouraqui, 2010): The structure monoid of a solution (S, r) is a Garside monoid with atom set S.

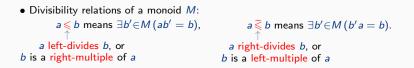
- ▶ What does this mean?
- ► «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys
 - all good divisibility properties of Artin's braid monoids (groups).



• Definition: A Garside monoid is a cancellative monoid M

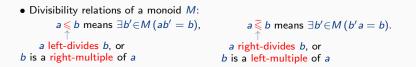
• <u>Theorem</u> (Chouraqui, 2010): The structure monoid of a solution (S, r) is a Garside monoid with atom set S.

- ▶ What does this mean?
- ► «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys
 - all good divisibility properties of Artin's braid monoids (groups).



- Definition: A Garside monoid is a cancellative monoid M s.t.
 - ▶ There exists $\lambda : M \to \mathbb{N}$ s.t. $\lambda(ab) \ge \lambda(a) + \lambda(b)$ and $a \neq 1 \Rightarrow \lambda(a) \neq 0$;

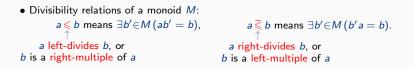
- What does this mean?
- ► «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys
 - all good divisibility properties of Artin's braid monoids (groups).



- Definition: A Garside monoid is a cancellative monoid M s.t.
 - ▶ There exists $\lambda : M \to \mathbb{N}$ s.t. $\lambda(ab) \ge \lambda(a) + \lambda(b)$ and $a \neq 1 \Rightarrow \lambda(a) \neq 0$;

("a pseudo-length function")

- ▶ What does this mean?
- ▶ «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys
 - all good divisibility properties of Artin's braid monoids (groups).



- Definition: A Garside monoid is a cancellative monoid M s.t.
 - ▶ There exists $\lambda : M \to \mathbb{N}$ s.t. $\lambda(ab) \ge \lambda(a) + \lambda(b)$ and $a \neq 1 \Rightarrow \lambda(a) \neq 0$;

```
("a pseudo-length function")
```

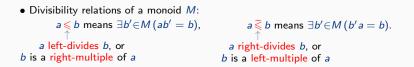
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▶ The left and right divisibility relations in *M* form lattices

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

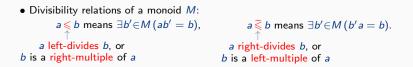
• <u>Theorem</u> (Chouraqui, 2010): The structure monoid of a solution (S, r) is a Garside monoid with atom set S.

- ▶ What does this mean?
- ► «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys
 - all good divisibility properties of Artin's braid monoids (groups).



- <u>Definition</u>: A Garside monoid is a cancellative monoid M s.t.
 - ▶ There exists $\lambda : M \to \mathbb{N}$ s.t. $\lambda(ab) \ge \lambda(a) + \lambda(b)$ and $a \neq 1 \Rightarrow \lambda(a) \neq 0$;
 - ("a pseudo-length function")
 - ▶ The left and right divisibility relations in *M* form lattices ("gcds and lcms exist")

- ▶ What does this mean?
- ▶ «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys
 - all good divisibility properties of Artin's braid monoids (groups).

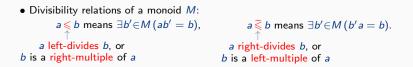


- <u>Definition</u>: A Garside monoid is a cancellative monoid M s.t.
 - ▶ There exists $\lambda : M \to \mathbb{N}$ s.t. $\lambda(ab) \ge \lambda(a) + \lambda(b)$ and $a \neq 1 \Rightarrow \lambda(a) \neq 0$;

("a pseudo-length function")

- ▶ The left and right divisibility relations in *M* form lattices ("gcds and lcms exist")
- ▶ The closure of atoms under right-lcm and right-divisor is finite and it coincides with the closure of the atoms under left-lcm and left-divisor ("simple elements").

- ▶ What does this mean?
- ▶ «<u>Definition</u>»: A Garside monoid (group) is a monoid (group) that enjoys
 - all good divisibility properties of Artin's braid monoids (groups).



- <u>Definition</u>: A Garside monoid is a cancellative monoid M s.t.
 - ▶ There exists $\lambda : M \to \mathbb{N}$ s.t. $\lambda(ab) \ge \lambda(a) + \lambda(b)$ and $a \neq 1 \Rightarrow \lambda(a) \neq 0$;

("a pseudo-length function")

- ▶ The left and right divisibility relations in *M* form lattices ("gcds and lcms exist")
- ▶ The closure of atoms under right-lcm and right-divisor is finite and it coincides with the closure of the atoms under left-lcm and left-divisor ("simple elements").

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

• <u>Definition</u>: A Garside group is a group G that can be expressed, in at least one way, as the group of fractions of a Garside monoid

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

• <u>Definition</u>: A Garside group is a group *G* that can be expressed, in at least one way, as the group of fractions of a Garside monoid (no uniqueness of the monoid in general).

Example: Artin's *n*-strand braid group B_n admits (at least) two Garside structures:
 ▶ one associated with the braid monoid B⁺_n, with n - 1 atoms,
 n! simples (≅ permutations), the maximal one Δ_n of length n(n - 1)/2,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − つへつ

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

• <u>Definition</u>: A Garside group is a group *G* that can be expressed, in at least one way, as the group of fractions of a Garside monoid (no uniqueness of the monoid in general).

- Example: Artin's *n*-strand braid group B_n admits (at least) two Garside structures:
 - ▶ one associated with the braid monoid B_n^+ , with n-1 atoms,

n! simples (\cong permutations), the maximal one Δ_n of length n(n-1)/2,

▶ one associated with the dual braid monoid B_n^{+*} , with n(n-1)/2 atoms,

Catalan_n simples (\cong noncrossing partitions), the maximal one δ_n of length n-1.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

- Example: Artin's *n*-strand braid group B_n admits (at least) two Garside structures:

 one associated with the braid monoid B⁺_n, with n − 1 atoms,
 n! simples (≅ permutations), the maximal one Δ_n of length n(n − 1)/2,
 one associated with the dual braid monoid B⁺_n, with n(n − 1)/2 atoms,
 - Catalan_n simples (\cong noncrossing partitions), the maximal one δ_n of length n-1.
- Why do we care about Garside structures?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

- Example: Artin's *n*-strand braid group B_n admits (at least) two Garside structures:
 - ▶ one associated with the braid monoid B_n^+ , with n-1 atoms,
 - *n*! simples (\cong permutations), the maximal one Δ_n of length n(n-1)/2,
 - ▶ one associated with the dual braid monoid B_n^{+*} , with n(n-1)/2 atoms,
 - Catalan_n simples (\cong noncrossing partitions), the maximal one δ_n of length n-1.
- Why do we care about Garside structures?
 - ▶ The word problem is solvable (in quadratic time).

ショック エー・エー・ エー・ ショー

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

- Example: Artin's *n*-strand braid group B_n admits (at least) two Garside structures:
 - ▶ one associated with the braid monoid B_n^+ , with n-1 atoms,
 - *n*! simples (\cong permutations), the maximal one Δ_n of length n(n-1)/2,
 - ▶ one associated with the dual braid monoid B_n^{+*} , with n(n-1)/2 atoms,
 - Catalan_n simples (\cong noncrossing partitions), the maximal one δ_n of length n-1.
- Why do we care about Garside structures?
 - ▶ The word problem is solvable (in quadratic time).
 - ▶ There is a canonical normal form for the elements ("greedy normal form").

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

- Example: Artin's *n*-strand braid group B_n admits (at least) two Garside structures:
 - ▶ one associated with the braid monoid B_n^+ , with n-1 atoms,
 - *n*! simples (\cong permutations), the maximal one Δ_n of length n(n-1)/2,
 - ▶ one associated with the dual braid monoid B_n^{+*} , with n(n-1)/2 atoms,
 - Catalan_n simples (\cong noncrossing partitions), the maximal one δ_n of length n-1.
- Why do we care about Garside structures?
 - ▶ The word problem is solvable (in quadratic time).
 - ▶ There is a canonical normal form for the elements ("greedy normal form").
 - ▶ There is a (bi)-automatic structure.

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

- Example: Artin's *n*-strand braid group B_n admits (at least) two Garside structures:
 - ▶ one associated with the braid monoid B_n^+ , with n-1 atoms,
 - *n*! simples (\cong permutations), the maximal one Δ_n of length n(n-1)/2,
 - ▶ one associated with the dual braid monoid B_n^{+*} , with n(n-1)/2 atoms,
 - Catalan_n simples (\cong noncrossing partitions), the maximal one δ_n of length n-1.
- Why do we care about Garside structures?
 - ▶ The word problem is solvable (in quadratic time).
 - ▶ There is a canonical normal form for the elements ("greedy normal form").
 - ▶ There is a (bi)-automatic structure.
 - The (co)homology is efficiently computable.

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

- Example: Artin's *n*-strand braid group B_n admits (at least) two Garside structures:
 - ▶ one associated with the braid monoid B_n^+ , with n-1 atoms,
 - *n*! simples (\cong permutations), the maximal one Δ_n of length n(n-1)/2,
 - ▶ one associated with the dual braid monoid B_n^{+*} , with n(n-1)/2 atoms,
 - Catalan_n simples (\cong noncrossing partitions), the maximal one δ_n of length n-1.
- Why do we care about Garside structures?
 - ▶ The word problem is solvable (in quadratic time).
 - ▶ There is a canonical normal form for the elements ("greedy normal form").
 - ▶ There is a (bi)-automatic structure.
 - The (co)homology is efficiently computable.
 - ► There is no torsion.

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

• <u>Definition</u>: A Garside group is a group *G* that can be expressed, in at least one way, as the group of fractions of a Garside monoid (no uniqueness of the monoid in general).

- Example: Artin's *n*-strand braid group B_n admits (at least) two Garside structures:
 - ▶ one associated with the braid monoid B_n^+ , with n-1 atoms,
 - *n*! simples (\cong permutations), the maximal one Δ_n of length n(n-1)/2,
 - ▶ one associated with the dual braid monoid B_n^{+*} , with n(n-1)/2 atoms,
 - Catalan_n simples (\cong noncrossing partitions), the maximal one δ_n of length n-1.
- Why do we care about Garside structures?
 - ▶ The word problem is solvable (in quadratic time).
 - ▶ There is a canonical normal form for the elements ("greedy normal form").
 - ▶ There is a (bi)-automatic structure.
 - The (co)homology is efficiently computable.
 - ► There is no torsion.

The whole structure is encoded in the (finite) family of simple elements.

• Assume *M* is the structure monoid of an RC-quasigroup (S, *).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

- Assume *M* is the structure monoid of an RC-quasigroup (S, *).
 - Step 1: *M* is left-cancellative and admits right-lcms.

- Assume *M* is the structure monoid of an RC-quasigroup (S, *).
 - Step 1: M is left-cancellative and admits right-lcms.
 - ▶ Proof: The RC law directly gives the "right cube condition",

- Assume *M* is the structure monoid of an RC-quasigroup (S, *).
 - Step 1: M is left-cancellative and admits right-lcms.
 - ▶ Proof: The RC law directly gives the "right cube condition",

- Step 2: *M* determines (*S*, *).

- Assume *M* is the structure monoid of an RC-quasigroup (S, *).
 - Step 1: *M* is left-cancellative and admits right-lcms.
 - ▶ Proof: The RC law directly gives the "right cube condition",

Step 2: *M* determines (*S*, *).
▶ Proof: *S* is the atom set of *M*, and *s* * *t* := *s**t* for *s* ≠ *t*, *s* * *s* := the unique element of *S* not in {*s**t* | *t*≠*s* ∈ *S*}. □
right-complement of *s* in *t*: the (unique) *t'* s.t. *st'* = right-lcm(*s*, *t*).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Assume M is the structure monoid of an RC-quasigroup (S, *).
 - Step 1: *M* is left-cancellative and admits right-lcms.
 - Proof: The RC law directly gives the "right cube condition",

- Step 2: *M* determines (*S*, *).
 ▶ Proof: *S* is the atom set of *M*, and *s* * *t* := *s**t* for *s* ≠ *t*, *s* * *s* := the unique element of *S* not in {*s**t* | *t*≠*s* ∈ *S*}. □
 right-complement of *s* in *t*: the (unique) *t'* s.t. *st'* = right-lcm(*s*, *t*).
- Assume moreover that (*S*, *) is bijective.

- Assume M is the structure monoid of an RC-quasigroup (S, *).
 - Step 1: *M* is left-cancellative and admits right-lcms.
 - Proof: The RC law directly gives the "right cube condition",

- Step 2: *M* determines (*S*, *).
 ▶ Proof: *S* is the atom set of *M*, and *s* * *t* := *s**t* for *s* ≠ *t*, *s* * *s* := the unique element of *S* not in {*s**t* | *t*≠*s* ∈ *S*}. □
 right-complement of *s* in *t*: the (unique) *t'* s.t. *st'* = right-lcm(*s*, *t*).
- Assume moreover that (*S*, *) is bijective.
 - Step 3: M is cancellative, it admits lcms on both sides,

and its group is a group of fractions.

- Assume M is the structure monoid of an RC-quasigroup (S, *).
 - Step 1: *M* is left-cancellative and admits right-lcms.
 - Proof: The RC law directly gives the "right cube condition",

- Step 2: *M* determines (*S*, *).
 ▶ Proof: *S* is the atom set of *M*, and *s* * *t* := *s**t* for *s* ≠ *t*, *s* * *s* := the unique element of *S* not in {*s**t* | *t*≠*s* ∈ *S*}. □
 right-complement of *s* in *t*: the (unique) *t'* s.t. *st'* = right-lcm(*s*, *t*).
- Assume moreover that (*S*, *) is bijective.
 - Step 3: *M* is cancellative, it admits lcms on both sides,

and its group is a group of fractions.

▶ Proof: Bijectivity implies the existence of $\tilde{*}$ with symmetric properties.

- Assume M is the structure monoid of an RC-quasigroup (S, *).
 - Step 1: *M* is left-cancellative and admits right-lcms.
 - Proof: The RC law directly gives the "right cube condition",

- Step 2: *M* determines (*S*, *).
 ▶ Proof: *S* is the atom set of *M*, and *s* * *t* := *s**t* for *s* ≠ *t*, *s* * *s* := the unique element of *S* not in {*s**t* | *t*≠*s* ∈ *S*}. □
 right-complement of *s* in *t*: the (unique) *t'* s.t. *st'* = right-lcm(*s*, *t*).
- Assume moreover that (*S*, *) is bijective.
 - Step 3: M is cancellative, it admits lcms on both sides,
 - and its group is a group of fractions.
 ▶ Proof: Bijectivity implies the existence of ^{*} with symmetric properties.
 - Step 4: For $s_1, ..., s_n$ pairwise distinct, $\prod_n(s_1, ..., s_n)$ is the right-lcm of $s_1, ..., s_n$,

- Assume M is the structure monoid of an RC-quasigroup (S, *).
 - Step 1: *M* is left-cancellative and admits right-lcms.
 - Proof: The RC law directly gives the "right cube condition",

- Step 2: *M* determines (*S*, *).
 ▶ Proof: *S* is the atom set of *M*, and *s* * *t* := *s**t* for *s* ≠ *t*, *s* * *s* := the unique element of *S* not in {*s**t* | *t*≠*s* ∈ *S*}. □
 right-complement of *s* in *t*: the (unique) *t'* s.t. *st'* = right-lcm(*s*, *t*).
- Assume moreover that (*S*, *) is bijective.
 - Step 3: M is cancellative, it admits lcms on both sides,
 - and its group is a group of fractions. ► Proof: Bijectivity implies the existence of $\tilde{*}$ with symmetric properties.
 - Step 4: For s₁,...,s_n pairwise distinct, Π_n(s₁,...,s_n) is the right-lcm of s₁,...,s_n, and the left-lcm of s̃₁,...,s̃_n defined by š_i = Ω_n(s₁,...,ŝ_i,...,s_n,s_i).

- Assume M is the structure monoid of an RC-quasigroup (S, *).
 - Step 1: *M* is left-cancellative and admits right-lcms.
 - Proof: The RC law directly gives the "right cube condition",

- Step 2: *M* determines (*S*, *).
 ▶ Proof: *S* is the atom set of *M*, and *s* * *t* := *s**t* for *s* ≠ *t*, *s* * *s* := the unique element of *S* not in {*s**t* | *t*≠*s* ∈ *S*}. □
 right-complement of *s* in *t*: the (unique) *t'* s.t. *st'* = right-lcm(*s*, *t*).
- Assume moreover that (*S*, *) is bijective.
 - Step 3: *M* is cancellative, it admits lcms on both sides,
 - and its group is a group of fractions. ► Proof: Bijectivity implies the existence of $\tilde{*}$ with symmetric properties.
 - Step 4: For s₁,...,s_n pairwise distinct, Π_n(s₁,...,s_n) is the right-lcm of s₁,...,s_n, and the left-lcm of s̃₁,...,s̃_n defined by š̃_i = Ω_n(s₁,...,s̃_i,...,s_n,s_i).
 ▶ Proof: Apply the "inversion formulas" of RC-calculus.

• Revisiting the I-structure with the help of RC-calculus:

"the Cayley graph of the structure group is a copy of the Euclidean lattice $\mathbb{Z}^{\# S"}.$

- Revisiting the I-structure with the help of RC-calculus:
 "the Cayley graph of the structure group is a copy of the Euclidean lattice Z#S".
- <u>Theorem</u> (Gateva-Ivanova, Van den Bergh, 1998): If *M* is the monoid of a nondegenerate involutive solution (S, r), then there exists a bijection ν : $\mathbb{N}^{\#S} \to M$

• Revisiting the I-structure with the help of RC-calculus:

"the Cayley graph of the structure group is a copy of the Euclidean lattice $\mathbb{Z}^{\#S"}$.

• <u>Theorem</u> (Gateva-Ivanova, Van den Bergh, 1998): If *M* is the monoid of a nondegenerate involutive solution (S, r), then there exists a bijection ν : $\mathbb{N}^{\#S} \to M$ satisfying $\nu(1) = 1, \nu(s) = s$ for *s* in *S*,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Revisiting the I-structure with the help of RC-calculus:

"the Cayley graph of the structure group is a copy of the Euclidean lattice $\mathbb{Z}^{\#S"}$.

• <u>Theorem</u> (Gateva-Ivanova, Van den Bergh, 1998): If *M* is the monoid of a nondegenerate involutive solution (S, r), then there exists a bijection ν : $\mathbb{N}^{\#S} \to M$ satisfying $\nu(1) = 1, \nu(s) = s$ for *s* in *S*, and

 $\{\nu(as) \mid s \in S\} = \{\nu(a)s \mid s \in S\}$ for every a in $\mathbb{N}^{\#S}$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Revisiting the I-structure with the help of RC-calculus:
 "the Cayley graph of the structure group is a copy of the Euclidean lattice Z^{#S}".

• <u>Theorem</u> (Gateva-Ivanova, Van den Bergh, 1998): If *M* is the monoid of a nondegenerate involutive solution (S, r), then there exists a bijection ν : $\mathbb{N}^{\#S} \to M$ satisfying $\nu(1) = 1, \nu(s) = s$ for *s* in *S*, and

 $\{\nu(as) \mid s \in S\} = \{\nu(a)s \mid s \in S\}$ for every a in $\mathbb{N}^{\#S}$.

Conversely, every monoid with an I-structure arises in this way.

• Revisiting the I-structure with the help of RC-calculus:

• <u>Theorem</u> (Gateva-Ivanova, Van den Bergh, 1998): If *M* is the monoid of a nondegenerate involutive solution (S, r), then there exists a bijection ν : $\mathbb{N}^{\#S} \to M$ satisfying $\nu(1) = 1, \nu(s) = s$ for *s* in *S*, and

 $\{\nu(as) \mid s \in S\} = \{\nu(a)s \mid s \in S\}$ for every a in $\mathbb{N}^{\#S}$.

Conversely, every monoid with an I-structure arises in this way.

Proof: If (S, *) is an RC-quasigroup and M is the associated monoid, then defining $\nu(s_1 \cdots s_n) := \prod_n (s_1, \dots, s_n)$ for n := #S

provides a right I-structure on M.

• Revisiting the I-structure with the help of RC-calculus:

"the Cayley graph of the structure group is a copy of the Euclidean lattice $\mathbb{Z}^{\#S"}$.

• <u>Theorem</u> (Gateva-Ivanova, Van den Bergh, 1998): If *M* is the monoid of a nondegenerate involutive solution (S, r), then there exists a bijection ν : $\mathbb{N}^{\#S} \to M$ satisfying $\nu(1) = 1, \nu(s) = s$ for *s* in *S*, and

 $\{\nu(as) \mid s \in S\} = \{\nu(a)s \mid s \in S\}$ for every a in $\mathbb{N}^{\#S}$.

Conversely, every monoid with an I-structure arises in this way.

Proof: If (S, *) is an RC-quasigroup and M is the associated monoid, then defining $\nu(s_1 \cdots s_n) := \prod_n(s_1, ..., s_n)$ for n := #Sprovides a right *I*-structure on M. Conversely, if ν is an *I*-structure, defining * on S by $\nu(st) = \nu(s) \cdot (s * t)$ provides a bijective RC-quasigroup on S.

• Revisiting the I-structure with the help of RC-calculus:

• <u>Theorem</u> (Gateva-Ivanova, Van den Bergh, 1998): If *M* is the monoid of a nondegenerate involutive solution (S, r), then there exists a bijection ν : $\mathbb{N}^{\#S} \to M$ satisfying $\nu(1) = 1$, $\nu(s) = s$ for *s* in *S*, and

 $\{\nu(as) \mid s \in S\} = \{\nu(a)s \mid s \in S\}$ for every a in $\mathbb{N}^{\#S}$.

Conversely, every monoid with an I-structure arises in this way.

Proof: If (S, *) is an RC-quasigroup and M is the associated monoid, then defining $\nu(s_1 \cdots s_n) := \prod_n(s_1, ..., s_n)$ for n := #Sprovides a right *I*-structure on M. Conversely, if ν is an *I*-structure, defining * on S by $\nu(st) = \nu(s) \cdot (s * t)$ provides a bijective RC-quasigroup on S. Then $\pi(s)$ belongs to \mathfrak{S}_n ,

and one has $(r*s)*(r*t) = \pi(rs)(t)$,

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

• Revisiting the I-structure with the help of RC-calculus:

• <u>Theorem</u> (Gateva-Ivanova, Van den Bergh, 1998): If *M* is the monoid of a nondegenerate involutive solution (S, r), then there exists a bijection ν : $\mathbb{N}^{\#S} \to M$ satisfying $\nu(1) = 1$, $\nu(s) = s$ for *s* in *S*, and

 $\{\nu(as) \mid s \in S\} = \{\nu(a)s \mid s \in S\}$ for every a in $\mathbb{N}^{\#S}$.

Conversely, every monoid with an I-structure arises in this way.

Proof: If (S, *) is an RC-quasigroup and M is the associated monoid, then defining $\nu(s_1 \cdots s_n) := \prod_n (s_1, \dots, s_n)$ for n := #S

provides a right I-structure on M.

Conversely, if ν is an *I*-structure, defining * on *S* by

$$\nu(st) = \nu(s) \cdot (s * t)$$

provides a bijective RC-quasigroup on S. Then $\pi(s)$ belongs to \mathfrak{S}_n , and one has $(r*s)*(r*t) = \pi(rs)(t)$, so rs = sr in \mathbb{N}^n implies the RC law for *.

• Revisiting the I-structure with the help of RC-calculus:

• <u>Theorem</u> (Gateva-Ivanova, Van den Bergh, 1998): If *M* is the monoid of a nondegenerate involutive solution (S, r), then there exists a bijection ν : $\mathbb{N}^{\#S} \to M$ satisfying $\nu(1) = 1$, $\nu(s) = s$ for *s* in *S*, and

 $\{\nu(as) \mid s \in S\} = \{\nu(a)s \mid s \in S\}$ for every a in $\mathbb{N}^{\#S}$.

Conversely, every monoid with an I-structure arises in this way.

Proof: If (S, *) is an RC-quasigroup and M is the associated monoid, then defining $\nu(s_1 \cdots s_n) := \prod_n (s_1, ..., s_n)$ for n := #S

provides a right I-structure on M.

Conversely, if ν is an *I*-structure, defining * on *S* by

$$\nu(st) = \nu(s) \cdot (s * t)$$

provides a bijective RC-quasigroup on S. Then $\pi(s)$ belongs to \mathfrak{S}_n , and one has $(r*s)*(r*t) = \pi(rs)(t)$, so rs = sr in \mathbb{N}^n implies the RC law for *. More generally, one obtains $\pi(s_1 \cdots s_{p-1})(s_p) = \Omega_p(s_1, \dots, s_p)$ for every p.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Revisiting the I-structure with the help of RC-calculus:

• <u>Theorem</u> (Gateva-Ivanova, Van den Bergh, 1998): If *M* is the monoid of a nondegenerate involutive solution (S, r), then there exists a bijection ν : $\mathbb{N}^{\#S} \to M$ satisfying $\nu(1) = 1$, $\nu(s) = s$ for *s* in *S*, and

 $\{\nu(as) \mid s \in S\} = \{\nu(a)s \mid s \in S\}$ for every a in $\mathbb{N}^{\#S}$.

Conversely, every monoid with an I-structure arises in this way.

Proof: If (S, *) is an RC-quasigroup and M is the associated monoid, then defining $\nu(\mathbf{s}_1 \cdots \mathbf{s}_n) := \prod_n (\mathbf{s}_1, ..., \mathbf{s}_n)$ for n := #S

provides a right I-structure on M.

Conversely, if ν is an *I*-structure, defining * on *S* by

$$\nu(st) = \nu(s) \cdot (s * t)$$

provides a bijective RC-quasigroup on S. Then $\pi(s)$ belongs to \mathfrak{S}_n , and one has $(r*s)*(r*t) = \pi(rs)(t)$, so rs = sr in \mathbb{N}^n implies the RC law for *. More generally, one obtains $\pi(s_1 \cdots s_{p-1})(s_p) = \Omega_p(s_1, \ldots, s_p)$ for every p. One concludes using Rump's result that every finite RC-quasigroup is bijective. \Box

<ロト < 団 > < 三 > < 三 > < 三 > < ○<</p>

• Revisiting the I-structure with the help of RC-calculus:

• <u>Theorem</u> (Gateva-Ivanova, Van den Bergh, 1998): If *M* is the monoid of a nondegenerate involutive solution (S, r), then there exists a bijection ν : $\mathbb{N}^{\#S} \to M$ satisfying $\nu(1) = 1$, $\nu(s) = s$ for *s* in *S*, and

 $\{\nu(as) \mid s \in S\} = \{\nu(a)s \mid s \in S\}$ for every a in $\mathbb{N}^{\#S}$.

Conversely, every monoid with an I-structure arises in this way.

Proof: If (S, *) is an RC-quasigroup and M is the associated monoid, then defining $\nu(\mathbf{s}_1 \cdots \mathbf{s}_n) := \prod_n (\mathbf{s}_1, ..., \mathbf{s}_n)$ for n := #Sprovides a right *I*-structure on M. Conversely, if ν is an *I*-structure, defining * on S by $\nu(\mathbf{s}t) = \nu(\mathbf{s}) \cdot (\mathbf{s} * t)$ provides a bijective RC-quasigroup on S. Then $\pi(\mathbf{s})$ belongs to \mathfrak{S}_n , and one has $(r*s)*(r*t) = \pi(rs)(t)$, so rs = sr in \mathbb{N}^n implies the RC law for *. More generally, one obtains $\pi(s_1 \cdots s_{p-1})(s_p) = \Omega_p(\mathbf{s}_1, ..., \mathbf{s}_p)$ for every p. One concludes using Rump's result that every finite RC-quasigroup is bijective. \Box

Once again, the proof seems easier and more explicit when stated in terms of * and RC.

Plan:

• Structure groups of set-theoretic solutions of YBE

- ▶ 1. Rump's RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus
 - Revisiting the I-structure using RC-calculus
- ▶ 2. A new application: Garside germs
 - The braid germ
 - The YBE germ
- A new approach to the word problem of Artin-Tits groups
 - ▶ 3. Multifraction reduction, an extension of Ore's theorem
 - Ore's classical theorem
 - Extending free reduction: (i) division, (ii) reduction
 - The case of Artin-Tits groups: theorems and conjectures

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• The *n*-strand braid monoid B_n^+ and group B_n admit the presentation

$$\left\langle \sigma_1,...,\sigma_{n-1} \; \middle| \; \begin{matrix} \sigma_i\sigma_j=\sigma_j\sigma_i & \text{for} & |i-j| \geqslant 2 \\ \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j & \text{for} & |i-j|=1 \end{matrix} \right\rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• The *n*-strand braid monoid B_n^+ and group B_n admit the presentation

$$\left\langle \sigma_1,...,\sigma_{n-1} \; \middle| \; \begin{array}{c} \sigma_i\sigma_j=\sigma_j\sigma_i & \text{for} \quad |i-j| \geqslant 2\\ \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j & \text{for} \quad |i-j|=1 \end{array} \right\rangle.$$

Adding the torsion relations $\sigma_i^2 = 1$ gives the Coxeter presentation of \mathfrak{S}_n in terms of the family Σ of adjacent transpositions,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• The *n*-strand braid monoid B_n^+ and group B_n admit the presentation

$$\left\langle \sigma_1,...,\sigma_{n-1} \; \middle| \; \begin{array}{c} \sigma_i\sigma_j=\sigma_j\sigma_i & \text{for} \quad |i-j| \geqslant 2\\ \sigma_i\sigma_j\sigma_i\sigma_j=\sigma_j\sigma_i\sigma_j & \text{for} \quad |i-j|=1 \end{array} \right\rangle.$$

Adding the torsion relations $\sigma_i^2 = 1$ gives the Coxeter presentation of \mathfrak{S}_n in terms of the family Σ of adjacent transpositions, with

$$1 \longrightarrow PB_n \longrightarrow B_n \xrightarrow{\pi} \mathfrak{S}_n \longrightarrow 1.$$

• The *n*-strand braid monoid B_n^+ and group B_n admit the presentation

$$\left\langle \sigma_1,...,\sigma_{n-1} \; \middle| \; \begin{matrix} \sigma_i\sigma_j=\sigma_j\sigma_i & \text{for} & |i-j| \geqslant 2 \\ \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j & \text{for} & |i-j|=1 \end{matrix} \right\rangle.$$

Adding the torsion relations $\sigma_i^2 = 1$ gives the Coxeter presentation of \mathfrak{S}_n in terms of the family Σ of adjacent transpositions, with

$$1 \longrightarrow PB_n \longrightarrow B_n \xrightarrow{\pi} \mathfrak{S}_n \longrightarrow 1.$$

• <u>Claim</u>: The Garside structure of B_n based on B_n^+ "comes from" the group \mathfrak{S}_n :

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• The *n*-strand braid monoid B_n^+ and group B_n admit the presentation

$$\left\langle \sigma_1,...,\sigma_{n-1} \; \middle| \; \begin{matrix} \sigma_i\sigma_j=\sigma_j\sigma_i & \text{for} & |i-j| \geqslant 2 \\ \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j & \text{for} & |i-j|=1 \end{matrix} \right\rangle.$$

Adding the torsion relations $\sigma_i^2 = 1$ gives the Coxeter presentation of \mathfrak{S}_n in terms of the family Σ of adjacent transpositions, with

$$1 \longrightarrow PB_n \longrightarrow B_n \xrightarrow{\pi} \mathfrak{S}_n \longrightarrow 1.$$

• <u>Claim</u>: The Garside structure of B_n based on B_n^+ "comes from" the group \mathfrak{S}_n : There exists a (set-theoretic) section $\sigma : \mathfrak{S}_n \hookrightarrow B_n^+$ of π s.t. $\operatorname{Im}(\sigma)$ is the set of simples of B_n^+ and, for all f, g in \mathfrak{S}_n , (*) $\sigma(f)\sigma(g) = \sigma(fg)$ holds in B_n^+ iff $\ell_{\Sigma}(f) + \ell_{\Sigma}(g) = \ell_{\Sigma}(fg)$ holds in \mathfrak{S}_n ,

• The *n*-strand braid monoid B_n^+ and group B_n admit the presentation

$$\left\langle \sigma_1,...,\sigma_{n-1} \; \middle| \; \begin{matrix} \sigma_i\sigma_j=\sigma_j\sigma_i & \text{for} & |i-j| \geqslant 2 \\ \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j & \text{for} & |i-j|=1 \end{matrix} \right\rangle.$$

Adding the torsion relations $\sigma_i^2 = 1$ gives the Coxeter presentation of \mathfrak{S}_n in terms of the family Σ of adjacent transpositions, with

$$1 \longrightarrow PB_n \longrightarrow B_n \xrightarrow{\pi} \mathfrak{S}_n \longrightarrow 1.$$

• <u>Claim</u>: The Garside structure of B_n based on B_n^+ "comes from" the group \mathfrak{S}_n : There exists a (set-theoretic) section $\sigma : \mathfrak{S}_n \hookrightarrow B_n^+$ of π s.t. $\operatorname{Im}(\sigma)$ is the set of simples of B_n^+ and, for all f, g in \mathfrak{S}_n , (*) $\sigma(f)\sigma(g) = \sigma(fg)$ holds in B_n^+ iff $\ell_{\Sigma}(f) + \ell_{\Sigma}(g) = \ell_{\Sigma}(fg)$ holds in \mathfrak{S}_n , where $\ell_{\Sigma}(f)$ is the Σ -length of f (:= # of inversions). • The *n*-strand braid monoid B_n^+ and group B_n admit the presentation

$$\left\langle \sigma_1,...,\sigma_{n-1} \; \middle| \; \begin{matrix} \sigma_i\sigma_j=\sigma_j\sigma_i & \text{for} & |i-j| \geqslant 2 \\ \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j & \text{for} & |i-j|=1 \end{matrix} \right\rangle.$$

Adding the torsion relations $\sigma_i^2 = 1$ gives the Coxeter presentation of \mathfrak{S}_n in terms of the family Σ of adjacent transpositions, with

$$1 \longrightarrow PB_n \longrightarrow B_n \xrightarrow{\pi} \mathfrak{S}_n \longrightarrow 1.$$

• <u>Claim</u>: The Garside structure of B_n based on B_n^+ "comes from" the group \mathfrak{S}_n : There exists a (set-theoretic) section $\sigma : \mathfrak{S}_n \hookrightarrow B_n^+$ of π s.t. $\operatorname{Im}(\sigma)$ is the set of simples of B_n^+ and, for all f, g in \mathfrak{S}_n , (*) $\sigma(f)\sigma(g) = \sigma(fg)$ holds in B_n^+ iff $\ell_{\Sigma}(f) + \ell_{\Sigma}(g) = \ell_{\Sigma}(fg)$ holds in \mathfrak{S}_n , where $\ell_{\Sigma}(f)$ is the Σ -length of f (:= # of inversions).

• <u>Definition</u>: A group W with generating family Σ is a germ for a monoid M if there exists a projection $\pi: M \to W$ and a section $\sigma: W \hookrightarrow M$ of π s.t. M is generated by $Im(\sigma)$ and (the counterpart of) (*) holds.

• The *n*-strand braid monoid B_n^+ and group B_n admit the presentation

$$\left\langle \sigma_1,...,\sigma_{n-1} \; \middle| \; \begin{matrix} \sigma_i\sigma_j=\sigma_j\sigma_i & \text{for} & |i-j| \geqslant 2 \\ \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j & \text{for} & |i-j|=1 \end{matrix} \right\rangle.$$

Adding the torsion relations $\sigma_i^2 = 1$ gives the Coxeter presentation of \mathfrak{S}_n in terms of the family Σ of adjacent transpositions, with

$$1 \longrightarrow PB_n \longrightarrow B_n \xrightarrow{\pi} \mathfrak{S}_n \longrightarrow 1.$$

• <u>Claim</u>: The Garside structure of B_n based on B_n^+ "comes from" the group \mathfrak{S}_n : There exists a (set-theoretic) section $\sigma : \mathfrak{S}_n \hookrightarrow B_n^+$ of π s.t. $\operatorname{Im}(\sigma)$ is the set of simples of B_n^+ and, for all f, g in \mathfrak{S}_n , (*) $\sigma(f)\sigma(g) = \sigma(fg)$ holds in B_n^+ iff $\ell_{\Sigma}(f) + \ell_{\Sigma}(g) = \ell_{\Sigma}(fg)$ holds in \mathfrak{S}_n , where $\ell_{\Sigma}(f)$ is the Σ -length of f (:= # of inversions).

• <u>Definition</u>: A group W with generating family Σ is a germ for a monoid M if there exists a projection $\pi : M \to W$ and a section $\sigma : W \hookrightarrow M$ of π s.t. M is generated by $Im(\sigma)$ and (the counterpart of) (*) holds. It is a Garside germ if, in addition, M is a Garside monoid and $Im(\sigma)$ is the set of simples of M.

• The *n*-strand braid monoid B_n^+ and group B_n admit the presentation

$$\left\langle \sigma_1,...,\sigma_{n-1} \; \middle| \; \begin{matrix} \sigma_i\sigma_j=\sigma_j\sigma_i & \text{for} & |i-j| \geqslant 2 \\ \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j & \text{for} & |i-j|=1 \end{matrix} \right\rangle.$$

Adding the torsion relations $\sigma_i^2 = 1$ gives the Coxeter presentation of \mathfrak{S}_n in terms of the family Σ of adjacent transpositions, with

$$1 \longrightarrow PB_n \longrightarrow B_n \xrightarrow{\pi} \mathfrak{S}_n \longrightarrow 1.$$

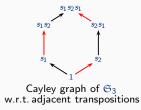
• <u>Claim</u>: The Garside structure of B_n based on B_n^+ "comes from" the group \mathfrak{S}_n : There exists a (set-theoretic) section $\sigma : \mathfrak{S}_n \hookrightarrow B_n^+$ of π s.t. $\operatorname{Im}(\sigma)$ is the set of simples of B_n^+ and, for all f, g in \mathfrak{S}_n , (*) $\sigma(f)\sigma(g) = \sigma(fg)$ holds in B_n^+ iff $\ell_{\Sigma}(f) + \ell_{\Sigma}(g) = \ell_{\Sigma}(fg)$ holds in \mathfrak{S}_n , where $\ell_{\Sigma}(f)$ is the Σ -length of f (:= # of inversions).

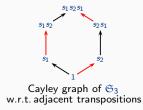
• <u>Definition</u>: A group W with generating family Σ is a germ for a monoid M if there exists a projection $\pi : M \to W$ and a section $\sigma : W \hookrightarrow M$ of π s.t. M is generated by $Im(\sigma)$ and (the counterpart of) (*) holds. It is a Garside germ if, in addition, M is a Garside monoid and $Im(\sigma)$ is the set of simples of M.

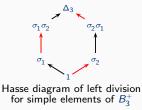
▶ Think of *M* as of an "<u>unfolding</u>" of *W*.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• So: the symmetric group \mathfrak{S}_n is a Garside germ for the braid monoid B_n^+ :

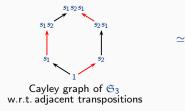


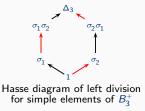




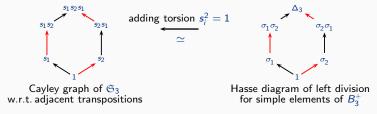
イロト イポト イヨト

 \equiv





◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 = ∽へ⊙

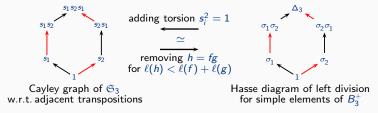


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

・ロト ・ 同ト ・ ヨト ・ ヨト

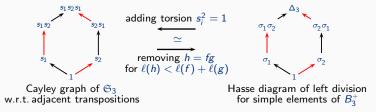
 \exists

• So: the symmetric group \mathfrak{S}_n is a Garside germ for the braid monoid B_n^+ :



・ロト ・ 同ト ・ ヨト ・ ヨト

=

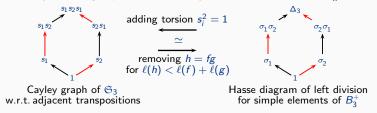


• Works similarly for every finite Coxeter group with the associated Artin-Tits monoid.

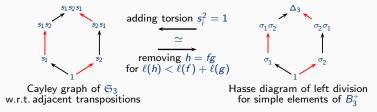
・ロト ・ 同ト ・ ヨト ・ ヨト

=

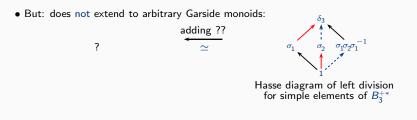
• So: the symmetric group \mathfrak{S}_n is a Garside germ for the braid monoid B_n^+ :

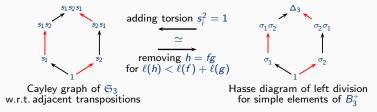


- Works similarly for every finite Coxeter group with the associated Artin-Tits monoid.
- But: does not extend to arbitrary Garside monoids:

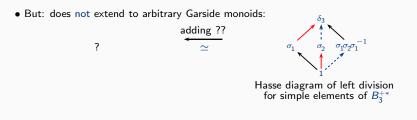


• Works similarly for every finite Coxeter group with the associated Artin-Tits monoid.





• Works similarly for every finite Coxeter group with the associated Artin-Tits monoid.



• Finding a germ is difficult: partly open for braid groups of complex reflection groups:

• Finding a germ is difficult: partly open for braid groups of complex reflection groups: very recent (partial) positive results by Neaime building on Corran–Picantin.

- Finding a germ is difficult: partly open for braid groups of complex reflection groups: very recent (partial) positive results by Neaime building on Corran–Picantin.
- What for YBE monoids?

- Finding a germ is difficult: partly open for braid groups of complex reflection groups: very recent (partial) positive results by Neaime building on Corran–Picantin.
- What for YBE monoids?
 - ▶ Partial positive result by Chouraqui and Godelle (= "RC-systems of class 2").

- Finding a germ is difficult: partly open for braid groups of complex reflection groups: very recent (partial) positive results by Neaime building on Corran–Picantin.
- What for YBE monoids?
 - ▶ Partial positive result by Chouraqui and Godelle (= "RC-systems of class 2").
 - ▶ Complete positive result,

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Finding a germ is difficult: partly open for braid groups of complex reflection groups: very recent (partial) positive results by Neaime building on Corran–Picantin.
- What for YBE monoids?
 - ▶ Partial positive result by Chouraqui and Godelle (= "RC-systems of class 2").
 - ► Complete positive result, once again based on RC-calculus.

- Finding a germ is difficult: partly open for braid groups of complex reflection groups: very recent (partial) positive results by Neaime building on Corran–Picantin.
- What for YBE monoids?
 - ▶ Partial positive result by Chouraqui and Godelle (= "RC-systems of class 2").
 - ► Complete positive result, once again based on RC-calculus.
- <u>Definition</u>: An RC-quasigroup (S, *) is of class *d* if, for all *s*, *t* in *S* $\Omega_{d+1}(s, ..., s, t) = t.$

- Finding a germ is difficult: partly open for braid groups of complex reflection groups: very recent (partial) positive results by Neaime building on Corran–Picantin.
- What for YBE monoids?
 - ▶ Partial positive result by Chouraqui and Godelle (= "RC-systems of class 2").
 - ► Complete positive result, once again based on RC-calculus.
- <u>Definition</u>: An RC-quasigroup (S, *) is of class *d* if, for all *s*, *t* in *S* $\Omega_{d+1}(s, ..., s, t) = t.$

▶ class 1: s * t = t,

- Finding a germ is difficult: partly open for braid groups of complex reflection groups: very recent (partial) positive results by Neaime building on Corran–Picantin.
- What for YBE monoids?
 - ▶ Partial positive result by Chouraqui and Godelle (= "RC-systems of class 2").
 - ► Complete positive result, once again based on RC-calculus.
- <u>Definition</u>: An RC-quasigroup (S, *) is of class *d* if, for all *s*, *t* in *S* $\Omega_{d+1}(s, ..., s, t) = t.$
 - ▶ class 1: s * t = t,
 - ► class 2: (s * s) * (s * t) = t, etc.

ヘロト (日) (日) (日) (日) (日) (日)

- Finding a germ is difficult: partly open for braid groups of complex reflection groups: very recent (partial) positive results by Neaime building on Corran–Picantin.
- What for YBE monoids?
 - ▶ Partial positive result by Chouraqui and Godelle (= "RC-systems of class 2").
 - ▶ Complete positive result, once again based on RC-calculus.
- <u>Definition</u>: An RC-quasigroup (S, *) is of class *d* if, for all *s*, *t* in *S* $\Omega_{d+1}(s, ..., s, t) = t.$
 - ► class 1: s * t = t,
 - class 2: (s * s) * (s * t) = t, etc.
 - ▶ for ϕ an order d permutation, $s * t := \phi(t)$ is of class d.

- Finding a germ is difficult: partly open for braid groups of complex reflection groups: very recent (partial) positive results by Neaime building on Corran–Picantin.
- What for YBE monoids?
 - ▶ Partial positive result by Chouraqui and Godelle (= "RC-systems of class 2").
 - Complete positive result, once again based on RC-calculus.
- <u>Definition</u>: An RC-quasigroup (S, *) is of class *d* if, for all *s*, *t* in *S* $\Omega_{d+1}(s, ..., s, t) = t.$
 - class 1: s * t = t,
 - ▶ class 2: (s * s) * (s * t) = t, etc.
 - for ϕ an order d permutation, $s * t := \phi(t)$ is of class d.
- Lemma: Every RC-quasigroup of cardinal *n* is of class *d* for some $d < (n^2)!$.

- Finding a germ is difficult: partly open for braid groups of complex reflection groups: very recent (partial) positive results by Neaime building on Corran–Picantin.
- What for YBE monoids?
 - ▶ Partial positive result by Chouraqui and Godelle (= "RC-systems of class 2").
 - ▶ Complete positive result, once again based on RC-calculus.
- <u>Definition</u>: An RC-quasigroup (S, *) is of class *d* if, for all *s*, *t* in *S* $\Omega_{d+1}(s, ..., s, t) = t.$
 - class 1: s * t = t,
 - ▶ class 2: (s * s) * (s * t) = t, etc.
 - for ϕ an order d permutation, $s * t := \phi(t)$ is of class d.
- Lemma: Every RC-quasigroup of cardinal *n* is of class *d* for some $d < (n^2)!$.

Proof: The map $(s, t) \mapsto (s * s, s * t)$ on $S \times S$ is bijective, hence of order $\leq (n^2)!$.

• <u>Notation</u>: $x^{[d]}$ for $\Pi_d(x, ..., x)$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• <u>Notation</u>: $x^{[d]}$ for $\Pi_d(x, ..., x)$.

• <u>Theorem</u>: Let (S, *) be an RC-quasigroup of cardinal n and class d, and let M and G be associated monoid and group.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Notation</u>: $x^{[d]}$ for $\Pi_d(x, ..., x)$.

• <u>Theorem</u>: Let (S, *) be an RC-quasigroup of cardinal n and class d, and let M and G be associated monoid and group. Then collapsing $s^{[d]}$ to 1 in G for every s in S gives a finite group \overline{G} of order d^n that provides a Garside germ for M,

(日) (日) (日) (日) (日) (日) (日) (日)

• <u>Notation</u>: $x^{[d]}$ for $\Pi_d(x, ..., x)$.

• <u>Theorem</u>: Let (S, *) be an RC-quasigroup of cardinal n and class d, and let M and G be associated monoid and group. Then collapsing $s^{[d]}$ to 1 in G for every s in S gives a finite group \overline{G} of order d^n that provides a Garside germ for M, with an exact sequence

 $1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow \overline{G} \longrightarrow 1.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Notation</u>: $x^{[d]}$ for $\Pi_d(x, ..., x)$.

• <u>Theorem</u>: Let (S, *) be an RC-quasigroup of cardinal n and class d, and let M and G be associated monoid and group. Then collapsing $s^{[d]}$ to 1 in G for every s in S gives a finite group \overline{G} of order d^n that provides a Garside germ for M, with an exact sequence

 $1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow \overline{G} \longrightarrow 1.$

▶ Entirely similar to the ArtinTits/Coxeter case, with the "RC-torsion" relations $s^{[d]} = 1$ replacing $s^2 = 1$.

• <u>Notation</u>: $x^{[d]}$ for $\Pi_d(x, ..., x)$.

• <u>Theorem</u>: Let (S, *) be an RC-quasigroup of cardinal n and class d, and let M and G be associated monoid and group. Then collapsing $s^{[d]}$ to 1 in G for every s in S gives a finite group \overline{G} of order d^n that provides a Garside germ for M, with an exact sequence

 $1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow \overline{G} \longrightarrow 1.$

▶ Entirely similar to the ArtinTits/Coxeter case, with the "RC-torsion" relations $s^{[d]} = 1$ replacing $s^2 = 1$.

▶ Proof: Use the *I*-structure to carry the results from the (trivial) case of \mathbb{Z}^n .

A D M A

• <u>Notation</u>: $x^{[d]}$ for $\Pi_d(x, ..., x)$.

• <u>Theorem</u>: Let (S, *) be an RC-quasigroup of cardinal n and class d, and let M and G be associated monoid and group. Then collapsing $s^{[d]}$ to 1 in G for every s in S gives a finite group \overline{G} of order d^n that provides a Garside germ for M, with an exact sequence

 $1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow \overline{G} \longrightarrow 1.$

▶ Entirely similar to the ArtinTits/Coxeter case, with the "RC-torsion" relations $s^{[d]} = 1$ replacing $s^2 = 1$.

▶ Proof: Use the *I*-structure to carry the results from the (trivial) case of \mathbb{Z}^n . Express the *I*-structure ν in terms of the RC-polynomials Ω and Π ,

• <u>Notation</u>: $x^{[d]}$ for $\Pi_d(x, ..., x)$.

• <u>Theorem</u>: Let (S, *) be an RC-quasigroup of cardinal n and class d, and let M and G be associated monoid and group. Then collapsing $s^{[d]}$ to 1 in G for every s in S gives a finite group \overline{G} of order d^n that provides a Garside germ for M, with an exact sequence

 $1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow \overline{G} \longrightarrow 1.$

▶ Entirely similar to the ArtinTits/Coxeter case, with the "RC-torsion" relations $s^{[d]} = 1$ replacing $s^2 = 1$.

► Proof: Use the *I*-structure to carry the results from the (trivial) case of \mathbb{Z}^n . Express the *I*-structure ν in terms of the RC-polynomials Ω and Π , typically $\nu(s^d a) = \Pi_{d+q}(s, ..., s, t_1, ..., t_q)$ $= \Pi_d(s, ..., s) \Pi_q(\Omega_{d+1}(s, ..., s, t_1), ..., \Omega_{d+1}(s, ..., s, t_q))$ $= \Pi_d(s, ..., s) \Pi_q(t_1, ..., t_q) = \nu(s^d)\nu(t_1 \cdots t_q) = s^{[d]}\nu(a).$ • <u>Notation</u>: $x^{[d]}$ for $\Pi_d(x, ..., x)$.

• <u>Theorem</u>: Let (S, *) be an RC-quasigroup of cardinal n and class d, and let M and G be associated monoid and group. Then collapsing $s^{[d]}$ to 1 in G for every s in S gives a finite group \overline{G} of order d^n that provides a Garside germ for M, with an exact sequence

 $1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow \overline{G} \longrightarrow 1.$

▶ Entirely similar to the ArtinTits/Coxeter case, with the "RC-torsion" relations $s^{[d]} = 1$ replacing $s^2 = 1$.

► Proof: Use the *I*-structure to carry the results from the (trivial) case of \mathbb{Z}^n . Express the *I*-structure ν in terms of the RC-polynomials Ω and Π , typically $\nu(s^d a) = \Pi_{d+q}(s, ..., s, t_1, ..., t_q)$ $= \Pi_d(s, ..., s)\Pi_q(\Omega_{d+1}(s, ..., s, t_1), ..., \Omega_{d+1}(s, ..., s, t_q))$ $= \Pi_d(s, ..., s)\Pi_q(t_1, ..., t_q) = \nu(s^d)\nu(t_1 \cdots t_q) = \mathbf{s}^{[d]}\nu(a).$

Then \overline{G} is G/\equiv where $g \equiv g'$ means $\forall s \in S(\#_s(\nu^{-1}(g)) = \#_s(\nu^{-1}(g')) \mod d)$. \Box

• Example: Let $S := \{a, b, c\}$, with $s * t = \phi(t)$, $\phi : a \mapsto b \mapsto c \mapsto a$,

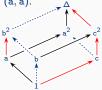
• Example: Let $S := \{a, b, c\}$, with $s * t = \phi(t)$, $\phi : a \mapsto b \mapsto c \mapsto a$, of class 3.

- Example: Let $S := \{a, b, c\}$, with $s * t = \phi(t)$, $\phi : a \mapsto b \mapsto c \mapsto a$, of class 3.
 - ▶ Corresponds to r(a, c) = (b, b), r(b, a) = (c, c), r(c, b) = (a, a).

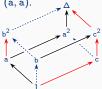
- Example: Let $S := \{a, b, c\}$, with $s * t = \phi(t)$, $\phi : a \mapsto b \mapsto c \mapsto a$, of class 3.
 - ▶ Corresponds to r(a, c) = (b, b), r(b, a) = (c, c), r(c, b) = (a, a).
 - ▶ Then $M = \langle a, b, c | ac = b^2, ba = c^2, cb = a^2 \rangle^+$,

- Example: Let $S := \{a, b, c\}$, with $s * t = \phi(t)$, $\phi : a \mapsto b \mapsto c \mapsto a$, of class 3.
 - Corresponds to r(a, c) = (b, b), r(b, a) = (c, c), r(c, b) = (a, a).
 - ► Then $M = \langle a, b, c | ac = b^2, ba = c^2, cb = a^2 \rangle^+$,

a Garside monoid with 2^3 simple elements:

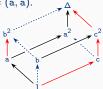


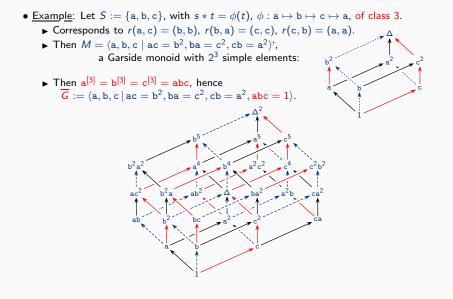
- Example: Let $S := \{a, b, c\}$, with $s * t = \phi(t)$, $\phi : a \mapsto b \mapsto c \mapsto a$, of class 3.
 - ▶ Corresponds to r(a, c) = (b, b), r(b, a) = (c, c), r(c, b) = (a, a).
 - ► Then $M = \langle a, b, c | ac = b^2, ba = c^2, cb = a^2 \rangle^+$, a Garside monoid with 2^3 simple elements:
 - Then $a^{[3]} = b^{[3]} = c^{[3]} = abc$,



500

- Example: Let $S := \{a, b, c\}$, with $s * t = \phi(t)$, $\phi : a \mapsto b \mapsto c \mapsto a$, of class 3.
 - ▶ Corresponds to r(a, c) = (b, b), r(b, a) = (c, c), r(c, b) = (a, a).
 - ► Then $M = \langle \mathbf{a}, \mathbf{b}, \mathbf{c} \mid \mathbf{ac} = \mathbf{b}^2, \mathbf{ba} = \mathbf{c}^2, \mathbf{cb} = \mathbf{a}^2 \rangle^+$, a Garside monoid with 2³ simple elements:
 - ► Then $a^{[3]} = b^{[3]} = c^{[3]} = abc$, hence $\overline{G} := \langle a, b, c | ac = b^2, ba = c^2, cb = a^2, abc = 1 \rangle.$





▲ロト ▲母 ▶ ▲ 臣 ▶ ▲ 臣 ● りへぐ

- Question: Coxeter-like groups are in general larger than the " G_5^{0} "s of [Etingof et al., 98]. Which finite groups appear in this way?
 - ▶ Those groups admitting a "pseudo-*I*-structure", with $(\mathbb{Z}/d\mathbb{Z})^n$ replacing \mathbb{Z}^n

- Question: Coxeter-like groups are in general larger than the " G_5^{0} "s of [Etingof et al., 98]. Which finite groups appear in this way?
 - ▶ Those groups admitting a "pseudo-*I*-structure", with $(\mathbb{Z}/d\mathbb{Z})^n$ replacing \mathbb{Z}^n
 - ▶ Those groups embedding in $\mathbb{Z}/d\mathbb{Z} \wr \mathfrak{S}_n$, like [Jespers-Okninski, 2005] with $(\mathbb{Z}/d\mathbb{Z})^n$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Question: Coxeter-like groups are in general larger than the " G_5^{0} "s of [Etingof et al., 98]. Which finite groups appear in this way?
 - ▶ Those groups admitting a "pseudo-*I*-structure", with $(\mathbb{Z}/d\mathbb{Z})^n$ replacing \mathbb{Z}^n
 - ▶ Those groups embedding in $\mathbb{Z}/d\mathbb{Z} \wr \mathfrak{S}_n$, like [Jespers-Okninski, 2005] with $(\mathbb{Z}/d\mathbb{Z})^n$.

• Question: To construct the Garside and I-structures, one uses Rump's result that finite RC-quasigroups are bijective.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Question: Coxeter-like groups are in general larger than the " G_5^{0} "s of [Etingof et al., 98]. Which finite groups appear in this way?
 - ▶ Those groups admitting a "pseudo-*I*-structure", with $(\mathbb{Z}/d\mathbb{Z})^n$ replacing \mathbb{Z}^n
 - ▶ Those groups embedding in $\mathbb{Z}/d\mathbb{Z} \wr \mathfrak{S}_n$, like [Jespers-Okninski, 2005] with $(\mathbb{Z}/d\mathbb{Z})^n$.

• Question: To construct the Garside and I-structures, one uses Rump's result that finite RC-quasigroups are bijective. Can one instead prove this result using the Garside structure?

(日) (日) (日) (日) (日) (日) (日) (日)

• Question: Coxeter-like groups are in general larger than the " G_5^{0} "s of [Etingof et al., 98]. Which finite groups appear in this way?

- ▶ Those groups admitting a "pseudo-*I*-structure", with $(\mathbb{Z}/d\mathbb{Z})^n$ replacing \mathbb{Z}^n
- ▶ Those groups embedding in $\mathbb{Z}/d\mathbb{Z} \wr \mathfrak{S}_n$, like [Jespers-Okninski, 2005] with $(\mathbb{Z}/d\mathbb{Z})^n$.

• Question: To construct the Garside and I-structures, one uses Rump's result that finite RC-quasigroups are bijective. Can one instead prove this result using the Garside structure?

• Question: Does the brace approach make the cycle set approach obsolete?

• Question: Coxeter-like groups are in general larger than the " G_5^{0} "s of [Etingof et al., 98]. Which finite groups appear in this way?

- ▶ Those groups admitting a "pseudo-*I*-structure", with $(\mathbb{Z}/d\mathbb{Z})^n$ replacing \mathbb{Z}^n
- ▶ Those groups embedding in $\mathbb{Z}/d\mathbb{Z} \wr \mathfrak{S}_n$, like [Jespers-Okninski, 2005] with $(\mathbb{Z}/d\mathbb{Z})^n$.

• Question: To construct the Garside and I-structures, one uses Rump's result that finite RC-quasigroups are bijective. Can one instead prove this result using the Garside structure?

• Question: Does the brace approach make the cycle set approach obsolete?

► Can the RC-approach be used to address the left-orderability of the structure group?

(日) (日) (日) (日) (日) (日) (日) (日)

• Question: Coxeter-like groups are in general larger than the " G_5^{0} "s of [Etingof et al., 98]. Which finite groups appear in this way?

- ▶ Those groups admitting a "pseudo-*I*-structure", with $(\mathbb{Z}/d\mathbb{Z})^n$ replacing \mathbb{Z}^n
- ▶ Those groups embedding in $\mathbb{Z}/d\mathbb{Z} \wr \mathfrak{S}_n$, like [Jespers-Okninski, 2005] with $(\mathbb{Z}/d\mathbb{Z})^n$.

• Question: To construct the Garside and I-structures, one uses Rump's result that finite RC-quasigroups are bijective. Can one instead prove this result using the Garside structure?

• Question: Does the brace approach make the cycle set approach obsolete?

- ► Can the RC-approach be used to address the left-orderability of the structure group?
- ► Could there exist a skew version of the RC-approach?

- ▶ Those groups admitting a "pseudo-*I*-structure", with $(\mathbb{Z}/d\mathbb{Z})^n$ replacing \mathbb{Z}^n
- ▶ Those groups embedding in $\mathbb{Z}/d\mathbb{Z} \wr \mathfrak{S}_n$, like [Jespers-Okninski, 2005] with $(\mathbb{Z}/d\mathbb{Z})^n$.

• Question: To construct the Garside and I-structures, one uses Rump's result that finite RC-quasigroups are bijective. Can one instead prove this result using the Garside structure?

• Question: Does the brace approach make the cycle set approach obsolete?

- ► Can the RC-approach be used to address the left-orderability of the structure group?
- ▶ Could there exist a skew version of the RC-approach?
- References:
 - ► <u>W. Rum</u>p: A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation. Adv. Math. 193 (2005) 40–55

- ▶ Those groups admitting a "pseudo-*I*-structure", with $(\mathbb{Z}/d\mathbb{Z})^n$ replacing \mathbb{Z}^n
- ▶ Those groups embedding in $\mathbb{Z}/d\mathbb{Z} \wr \mathfrak{S}_n$, like [Jespers-Okninski, 2005] with $(\mathbb{Z}/d\mathbb{Z})^n$.

• Question: To construct the Garside and I-structures, one uses Rump's result that finite RC-quasigroups are bijective. Can one instead prove this result using the Garside structure?

• Question: Does the brace approach make the cycle set approach obsolete?

- ► Can the RC-approach be used to address the left-orderability of the structure group?
- ▶ Could there exist a skew version of the RC-approach?
- References:
 - ▶ <u>W. Rum</u>p: A decomposition theorem for square-free unitary solutions of the quantum

Yang-Baxter equation, Adv. Math. 193 (2005) 40-55

<u>P. Dehorno</u>y, Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs Adv. Math. 282 (2015) 93–127

- ▶ Those groups admitting a "pseudo-*I*-structure", with $(\mathbb{Z}/d\mathbb{Z})^n$ replacing \mathbb{Z}^n
- ▶ Those groups embedding in $\mathbb{Z}/d\mathbb{Z} \wr \mathfrak{S}_n$, like [Jespers-Okninski, 2005] with $(\mathbb{Z}/d\mathbb{Z})^n$.

• Question: To construct the Garside and I-structures, one uses Rump's result that finite RC-quasigroups are bijective. Can one instead prove this result using the Garside structure?

• Question: Does the brace approach make the cycle set approach obsolete?

- ► Can the RC-approach be used to address the left-orderability of the structure group?
- ▶ Could there exist a skew version of the RC-approach?
- References:
 - ▶ <u>W. Rump</u>: A decomposition theorem for square-free unitary solutions of the quantum

Yang-Baxter equation, Adv. Math. 193 (2005) 40-55

- P. Dehornoy, Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs Adv. Math. 282 (2015) 93–127
- <u>P. Dehornoy</u>, with <u>F. Digne</u>, <u>E. Godelle</u>, <u>D. Krammer</u>, <u>J. Michel</u>, Chapter XIII of: Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 22 (2015)

Plan:

- Structure groups of set-theoretic solutions of YBE
 - ▶ 1. Rump's RC-calculus
 - Solutions of YBE vs. biracks vs. cycle sets
 - Revisiting the Garside structure using RC-calculus
 - Revisiting the I-structure using RC-calculus
 - ▶ 2. A new application: Garside germs
 - The braid germ
 - The YBE germ
- A new approach to the word problem of Artin-Tits groups
 - 3. Multifraction reduction, an extension of Ore's theorem
 - Ore's classical theorem
 - Extending free reduction: (i) division, (ii) reduction
 - The case of Artin-Tits groups: theorems and conjectures

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Notation</u>: $\mathcal{U}(M)$:= enveloping group of a monoid M.

• <u>Notation</u>: $\mathcal{U}(M)$:= enveloping group of a monoid M.

▶ $\exists \phi : M \rightarrow \mathcal{U}(M)$ s.t. every morphism from *M* to a group factors through ϕ .

- <u>Notation</u>: $\mathcal{U}(M)$:= enveloping group of a monoid M.
 - ▶ $\exists \phi : M \to \mathcal{U}(M)$ s.t. every morphism from *M* to a group factors through ϕ . ▶ If $M = \langle S \mid R \rangle^+$, then $\mathcal{U}(M) = \langle S \mid R \rangle$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- <u>Notation</u>: $\mathcal{U}(M)$:= enveloping group of a monoid M.
 - ∃φ : M → U(M) s.t. every morphism from M to a group factors through φ.
 If M = ⟨S | R⟩⁺, then U(M) = ⟨S | R⟩.
- <u>Theorem</u> (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented as ab^{-1} with a, b in M.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- <u>Notation</u>: $\mathcal{U}(M)$:= enveloping group of a monoid M.
 - ∃φ : M → U(M) s.t. every morphism from M to a group factors through φ.
 If M = ⟨S | R⟩⁺, then U(M) = ⟨S | R⟩.
- <u>Theorem</u> (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented as ab^{-1} with a, b in M.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- <u>Notation</u>: $\mathcal{U}(M)$:= enveloping group of a monoid M.
 - ∃φ : M → U(M) s.t. every morphism from M to a group factors through φ.
 If M = ⟨S | R⟩⁺, then U(M) = ⟨S | R⟩.
- <u>Theorem</u> (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented as ab^{-1} with a, b in M.

"group of (right) fractions for M" (a/b)

- <u>Notation</u>: $\mathcal{U}(M)$:= enveloping group of a monoid M.
 - ▶ $\exists \phi : M \to \mathcal{U}(M)$ s.t. every morphism from *M* to a group factors through ϕ . ▶ If $M = \langle S \mid R \rangle^+$, then $\mathcal{U}(M) = \langle S \mid R \rangle$.
- <u>Theorem</u> (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented as ab^{-1} with a, b in M.

"group of (right) fractions for M" (a/b)

▶ 2-Ore condition: any two elements admit a common right-multiple.

- <u>Notation</u>: $\mathcal{U}(M)$:= enveloping group of a monoid M.
 - ▶ $\exists \phi : M \to U(M)$ s.t. every morphism from M to a group factors through ϕ . ▶ If $M = \langle S \mid R \rangle^+$, then $U(M) = \langle S \mid R \rangle$.
- <u>Theorem</u> (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented as ab^{-1} with a, b in M.

"group of (right) fractions for M" (a/b)

- ▶ 2-Ore condition: any two elements admit a common right-multiple.
- Definition: A gcd-monoid is a cancellative monoid,

in which 1 is the only invertible element (so \leq and $\tilde{\leq}$ are partial orders) and any two elements admit a left and a right gcd (greatest lower bounds for \leq and $\tilde{\leq}$).

- <u>Notation</u>: $\mathcal{U}(M)$:= enveloping group of a monoid M.
 - ▶ $\exists \phi : M \to U(M)$ s.t. every morphism from M to a group factors through ϕ . ▶ If $M = \langle S \mid R \rangle^+$, then $U(M) = \langle S \mid R \rangle$.
- <u>Theorem</u> (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented as ab^{-1} with a, b in M.

"group of (right) fractions for M" (a/b)

- ▶ 2-Ore condition: any two elements admit a common right-multiple.
- Definition: A gcd-monoid is a cancellative monoid,

in which 1 is the only invertible element (so \leq and $\widetilde{\leq}$ are partial orders) and any two elements admit a left and a right gcd (greatest lower bounds for \leq and $\widetilde{\leq}$).

• <u>Corollary</u>: If M is a gcd-monoid satisfying the 2-Ore condition, then M embeds in U(M) and every element of U(M) is represented by a unique irreducible fraction.

- <u>Notation</u>: $\mathcal{U}(M)$:= enveloping group of a monoid M.
 - ▶ $\exists \phi : M \to U(M)$ s.t. every morphism from M to a group factors through ϕ . ▶ If $M = \langle S \mid R \rangle^+$, then $U(M) = \langle S \mid R \rangle$.
- <u>Theorem</u> (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented as ab^{-1} with a, b in M.

"group of (right) fractions for M" (a/b)

- ▶ 2-Ore condition: any two elements admit a common right-multiple.
- Definition: A gcd-monoid is a cancellative monoid,

in which 1 is the only invertible element (so \leq and $\widetilde{\leq}$ are partial orders) and any two elements admit a left and a right gcd (greatest lower bounds for \leq and $\widetilde{\leq}$).

• <u>Corollary</u>: If M is a gcd-monoid satisfying the 2-Ore condition, then M embeds in U(M) and every element of U(M) is represented by a unique irreducible fraction.

 ab^{-1} with $a, b \in M$ and right-gcd(a, b) = 1

- <u>Notation</u>: $\mathcal{U}(M)$:= enveloping group of a monoid M.
 - ▶ $\exists \phi : M \to U(M)$ s.t. every morphism from M to a group factors through ϕ . ▶ If $M = \langle S \mid R \rangle^+$, then $U(M) = \langle S \mid R \rangle$.
- <u>Theorem</u> (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented as ab^{-1} with a, b in M.

"group of (right) fractions for M" (a/b)

- ▶ 2-Ore condition: any two elements admit a common right-multiple.
- Definition: A gcd-monoid is a cancellative monoid,

in which 1 is the only invertible element (so \leq and $\widetilde{\leq}$ are partial orders) and any two elements admit a left and a right gcd (greatest lower bounds for \leq and $\widetilde{\leq}$).

• <u>Corollary</u>: If M is a gcd-monoid satisfying the 2-Ore condition, then M embeds in U(M) and every element of U(M) is represented by a unique irreducible fraction.

 ab^{-1} with $a, b \in M$ and right-gcd(a, b) = 1

• Example: every Garside monoid.

• When the 2-Ore condition fails (no common multiples), no fractional expression.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- When the 2-Ore condition fails (no common multiples), no fractional expression.
- Example: $M = F^+$, a free monoid;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- When the 2-Ore condition fails (no common multiples), no fractional expression.
- Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- When the 2-Ore condition fails (no common multiples), no fractional expression.
- Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;
 - ▶ No fractional expression for the elements of $\mathcal{U}(M)$,

- When the 2-Ore condition fails (no common multiples), no fractional expression.
- Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;
 - ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
 - But: unique expression a₁a₂⁻¹a₃a₄⁻¹ ··· with a₁, a₂, ... in M and for i odd: a_i and a_{i+1} do not finish with the same letter,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- When the 2-Ore condition fails (no common multiples), no fractional expression.
- Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;
 - ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
 - But: unique expression a₁a₂⁻¹a₃a₄⁻¹ ··· with a₁, a₂, ... in M and for i odd: a_i and a_{i+1} do not finish with the same letter, for i even: a_i and a_{i+1} do not begin with the same letter.

• Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;

- ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
- But: unique expression a₁a₂⁻¹a₃a₄⁻¹ ··· with a₁, a₂, ... in M and for i odd: a_i and a_{i+1} do not finish with the same letter, for i even: a_i and a_{i+1} do not begin with the same letter.

▶ a "freely reduced word"

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;

- ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
- ▶ But: unique expression a₁a₂⁻¹a₃a₄⁻¹ ··· with a₁, a₂, ... in M and for i odd: a_i and a_{i+1} do not finish with the same letter, for i even: a_i and a_{i+1} do not begin with the same letter.
 - ▶ a "freely reduced word"

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Proof: (easy)

• Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;

- ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
- But: unique expression a₁a₂⁻¹a₃a₄⁻¹... with a₁, a₂,... in M and for *i* odd: a_i and a_{i+1} do not finish with the same letter, for *i* even: a_i and a_{i+1} do not begin with the same letter.

▶ a "freely reduced word"

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Proof: (easy) Introduce rewrite rules on finite sequences of positive words:

• Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;

- ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
- But: unique expression a₁a₂⁻¹a₃a₄⁻¹ ··· with a₁, a₂, ... in M and for i odd: a_i and a_{i+1} do not finish with the same letter, for i even: a_i and a_{i+1} do not begin with the same letter.

a "freely reduced word"

(日) (日) (日) (日) (日) (日) (日) (日)

• <u>Proof</u>: (easy) Introduce rewrite rules on finite sequences of positive words:

▶ rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, delete } x \text{ at the end of } a_i \text{ and } a_{i+1} \text{ (if possible...)}, \end{cases}$

• Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;

- ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
- But: unique expression a₁a₂⁻¹a₃a₄⁻¹ ··· with a₁, a₂, ... in M and for i odd: a_i and a_{i+1} do not finish with the same letter, for i even: a_i and a_{i+1} do not begin with the same letter.

a "freely reduced word"

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• <u>Proof</u>: (easy) Introduce rewrite rules on finite sequences of positive words:

▶ rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, delete } x \text{ at the end of } a_i \text{ and } a_{i+1} \text{ (if possible...)}, \\ \text{for } i \text{ even, delete } x \text{ at the beginning of } a_i \text{ and } a_{i+1} \text{ (if possible...)}. \end{cases}$

• Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;

- ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
- But: unique expression a₁a₂⁻¹a₃a₄⁻¹ ··· with a₁, a₂, ... in M and for i odd: a_i and a_{i+1} do not finish with the same letter, for i even: a_i and a_{i+1} do not begin with the same letter.

a "freely reduced word"

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• <u>Proof</u>: (easy) Introduce rewrite rules on finite sequences of positive words:

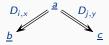
- ▶ rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, delete } x \text{ at the end of } a_i \text{ and } a_{i+1} \text{ (if possible...)}, \\ \text{for } i \text{ even, delete } x \text{ at the beginning of } a_i \text{ and } a_{i+1} \text{ (if possible...)}. \end{cases}$
- ▶ Then the system of all rules $D_{i,x}$ is (locally) confluent:

• Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;

- ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
- But: unique expression a₁a₂⁻¹a₃a₄⁻¹ ··· with a₁, a₂, ... in M and for i odd: a_i and a_{i+1} do not finish with the same letter, for i even: a_i and a_{i+1} do not begin with the same letter.

a "freely reduced word"

- Proof: (easy) Introduce rewrite rules on finite sequences of positive words:
 - ▶ rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, delete } x \text{ at the end of } a_i \text{ and } a_{i+1} \text{ (if possible...)}, \\ \text{for } i \text{ even, delete } x \text{ at the beginning of } a_i \text{ and } a_{i+1} \text{ (if possible...)}. \end{cases}$
 - ▶ Then the system of all rules $D_{i,x}$ is (locally) confluent:

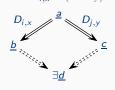


• Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;

- ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
- But: unique expression a₁a₂⁻¹a₃a₄⁻¹ ··· with a₁, a₂, ... in M and for i odd: a_i and a_{i+1} do not finish with the same letter, for i even: a_i and a_{i+1} do not begin with the same letter.

a "freely reduced word"

- Proof: (easy) Introduce rewrite rules on finite sequences of positive words:
 - ▶ rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, delete } x \text{ at the end of } a_i \text{ and } a_{i+1} \text{ (if possible...)}, \\ \text{for } i \text{ even, delete } x \text{ at the beginning of } a_i \text{ and } a_{i+1} \text{ (if possible...)}. \end{cases}$
 - ▶ Then the system of all rules $D_{i,x}$ is (locally) confluent:



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

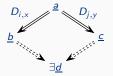
• Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;

- ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
- But: unique expression a₁a₂⁻¹a₃a₄⁻¹ ··· with a₁, a₂, ... in M and for i odd: a_i and a_{i+1} do not finish with the same letter, for i even: a_i and a_{i+1} do not begin with the same letter.

a "freely reduced word"

(日) (日) (日) (日) (日) (日) (日) (日)

- Proof: (easy) Introduce rewrite rules on finite sequences of positive words:
 - ▶ rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, delete } x \text{ at the end of } a_i \text{ and } a_{i+1} \text{ (if possible...),} \\ \text{for } i \text{ even, delete } x \text{ at the beginning of } a_i \text{ and } a_{i+1} \text{ (if possible...).} \end{cases}$
 - ▶ Then the system of all rules $D_{i,x}$ is (locally) confluent:



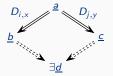
Every sequence <u>a</u> rewrites into a unique irreducible sequence

• Example: $M = F^+$, a free monoid; then M embeds in U(M), a free group;

- ▶ No fractional expression for the elements of $\mathcal{U}(M)$,
- But: unique expression a₁a₂⁻¹a₃a₄⁻¹ ··· with a₁, a₂, ... in M and for i odd: a_i and a_{i+1} do not finish with the same letter, for i even: a_i and a_{i+1} do not begin with the same letter.

► a "freely reduced word"

- Proof: (easy) Introduce rewrite rules on finite sequences of positive words:
 - ▶ rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, delete } x \text{ at the end of } a_i \text{ and } a_{i+1} \text{ (if possible...),} \\ \text{for } i \text{ even, delete } x \text{ at the beginning of } a_i \text{ and } a_{i+1} \text{ (if possible...).} \end{cases}$
 - ▶ Then the system of all rules $D_{i,x}$ is (locally) confluent:



▶ Every sequence <u>a</u> rewrites into a unique irreducible sequence ("convergence").

• When M is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:

When *M* is not free, the rewrite rule *D_{i,×}* can still be given a meaning:
 ▶ no first or last letter,

- When M is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors:

- When M is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".

- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ▶ rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$

- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ► rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;

- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ► rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;
 - start with the sequence (a, aba, b),

- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ► rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;
 - ► start with the sequence (a, aba, b), better written as a "multifraction" a/aba/b: (think of a₁/a₂/a₃/... as a sequence representing a₁a₂⁻¹a₃a₄⁻¹... in U(M))

- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ► rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;
 - ► start with the sequence (a, aba, b), better written as a "multifraction" a/aba/b: (think of a₁/a₂/a₃/... as a sequence representing a₁a₂⁻¹a₃a₄⁻¹... in U(M))

a/aba/b

- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ► rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;
 - ► start with the sequence (a, aba, b), better written as a "multifraction" a/aba/b: (think of a₁/a₂/a₃/... as a sequence representing a₁a₂⁻¹a₃a₄⁻¹... in U(M))

a/aba/b

- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ► rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;
 - ► start with the sequence (a, aba, b), better written as a "multifraction" a/aba/b: (think of a₁/a₂/a₃/... as a sequence representing a₁a₂⁻¹a₃a₄⁻¹... in U(M))

a/aba/b 1/ab/b

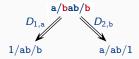
- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ► rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;
 - ► start with the sequence (a, aba, b), better written as a "multifraction" a/aba/b: (think of a₁/a₂/a₃/... as a sequence representing a₁a₂⁻¹a₃a₄⁻¹... in U(M))

a/bab/b D_{1,a} 1/ab/b

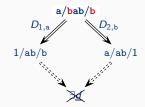
- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ► rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;
 - ► start with the sequence (a, aba, b), better written as a "multifraction" a/aba/b: (think of a₁/a₂/a₃/... as a sequence representing a₁a₂⁻¹a₃a₄⁻¹... in U(M))

a/bab/b 1/ab/b

- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ► rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;
 - ► start with the sequence (a, aba, b), better written as a "multifraction" a/aba/b: (think of a₁/a₂/a₃/... as a sequence representing a₁a₂⁻¹a₃a₄⁻¹... in U(M))

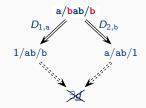


- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ▶ rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;
 - ► start with the sequence (a, aba, b), better written as a "multifraction" a/aba/b: (think of a₁/a₂/a₃/... as a sequence representing a₁a₂⁻¹a₃a₄⁻¹... in U(M))



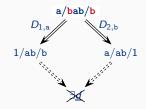
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ▶ rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;
 - ► start with the sequence (a, aba, b), better written as a "multifraction" a/aba/b: (think of a₁/a₂/a₃/... as a sequence representing a₁a₂⁻¹a₃a₄⁻¹... in U(M))



▶ no hope of confluence...

- When *M* is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
 - ▶ no first or last letter,
 - ▶ but left- and right-divisors: $x \leq a$ means "x is a possible beginning of a".
 - ► rule $D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$
- Example: $M = B_3^+ = \langle a, b | aba = bab \rangle^+$;
 - ► start with the sequence (a, aba, b), better written as a "multifraction" a/aba/b: (think of a₁/a₂/a₃/... as a sequence representing a₁a₂⁻¹a₃a₄⁻¹... in U(M))



▶ no hope of confluence... hence consider more general rewrite rules.

• Diagrammatic representation of elements of M: $a \rightarrow a$,

• Diagrammatic representation of elements of M: $\xrightarrow{a} \mapsto a$, and multifractions:

 $\xrightarrow{a_1} \underbrace{a_2} \xrightarrow{a_3} \dots \mapsto a_1/a_2/a_3/\dots$

• Diagrammatic representation of elements of M: $\xrightarrow{a} \mapsto a$, and multifractions:

 $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \ \mapsto \ a_1/a_2/a_3/\dots \ \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \ \text{in } \mathcal{U}(M).$

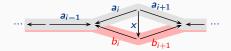
- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \quad a_1/a_2/a_3/\dots \quad \mapsto \quad \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.

- Diagrammatic representation of elements of M: $\xrightarrow{a} \mapsto a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare <u>a</u> $D_{i,x} = \underline{b}$ for

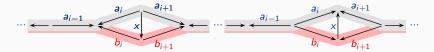
- Diagrammatic representation of elements of M: $\xrightarrow{a} \mapsto a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for



- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for



- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \underbrace{a_2}_{\longrightarrow} \underbrace{a_3}_{\longrightarrow} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

- Diagrammatic representation of elements of M: $\xrightarrow{a} \mapsto a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

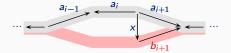
• Relax "x divides a_i " to "lcm(x, a_i) exists":

- Diagrammatic representation of elements of M: $\xrightarrow{a} \mapsto a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

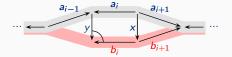
- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

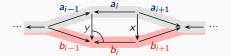
- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for



- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for



- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for



- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

• <u>Definition</u>: "<u>b</u> obtained from <u>a</u> by reducing x at level i":

- Diagrammatic representation of elements of M: $\xrightarrow{a} \mapsto a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

 <u>Definition</u>: "<u>b</u> obtained from <u>a</u> by reducing x at level i": <u>divide</u> a_{i+1} by x,

- Diagrammatic representation of elements of M: $a \rightarrow a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

 <u>Definition</u>: "<u>b</u> obtained from <u>a</u> by reducing x at level i": <u>divide</u> a_{i+1} by x, push x through a_i using lcm,

- Diagrammatic representation of elements of M: $\xrightarrow{a} \mapsto a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

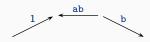
 <u>Definition</u>: "<u>b</u> obtained from <u>a</u> by reducing x at level i": <u>divide</u> a_{i+1} by x, push x through a_i using lcm, <u>multiply</u> a_{i-1} by the remainder y.

- Diagrammatic representation of elements of M: $\xrightarrow{a} \mapsto a$, and multifractions:
 - $\xrightarrow{a_1} \xleftarrow{a_2} \xrightarrow{a_3} \dots \quad \mapsto \ a_1/a_2/a_3/\dots \quad \mapsto \ \phi(a_1)\phi(a_2)^{-1}\phi(a_3)\dots \text{ in } \mathcal{U}(M).$
 - ▶ Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level i): declare $\underline{a} \cdot D_{i,x} = \underline{b}$ for

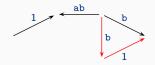
 <u>Definition</u>: "<u>b</u> obtained from <u>a</u> by reducing x at level i": <u>divide</u> a_{i+1} by x, push x through a_i using lcm, <u>multiply</u> a_{i-1} by the remainder y. • <u>Fact</u>: $\underline{b} = \underline{a} \bullet R_{i,\times}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- <u>Fact</u>: $\underline{b} = \underline{a} \cdot R_{i,x}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.
 - \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \Box
- Example: $M = B_3^+$ with 1/ab/b:

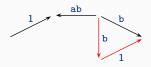


- <u>Fact</u>: $\underline{b} = \underline{a} \cdot R_{i,x}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.
 - \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \Box
- Example: $M = B_3^+$ with 1/ab/b:



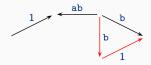
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- <u>Fact</u>: $\underline{b} = \underline{a} \cdot R_{i,x}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.
 - \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \Box
- Example: $M = B_3^+$ with 1/ab/b:



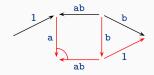
b and ab admit a common multiple

- <u>Fact</u>: $\underline{b} = \underline{a} \cdot R_{i,x}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.
 - \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \Box
- Example: $M = B_3^+$ with 1/ab/b:



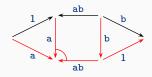
- b and ab admit a common multiple
 - ▶ we can push b through ab:

- <u>Fact</u>: $\underline{b} = \underline{a} \cdot R_{i,x}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.
 - \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \Box
- Example: $M = B_3^+$ with 1/ab/b:



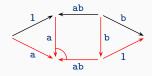
- b and ab admit a common multiple
 - ▶ we can push b through ab:

- <u>Fact</u>: $\underline{b} = \underline{a} \cdot R_{i,\times}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.
 - \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \Box
- Example: $M = B_3^+$ with 1/ab/b:



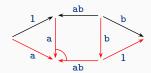
- b and ab admit a common multiple
 - ▶ we can push b through ab:

- <u>Fact</u>: $\underline{b} = \underline{a} \cdot R_{i,x}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.
 - \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \Box
- Example: $M = B_3^+$ with 1/ab/b:



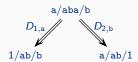
- b and ab admit a common multiple
 - ▶ we can push b through ab:
 - ▶ $a/ab/1 = 1/ab/b \bullet R_{2,b}$

- <u>Fact</u>: $\underline{b} = \underline{a} \cdot R_{i,x}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.
 - \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \Box
- Example: $M = B_3^+$ with 1/ab/b:

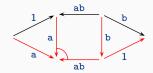


- b and ab admit a common multiple
 - ▶ we can push b through ab:
 - ▶ $a/ab/1 = 1/ab/b \bullet R_{2,b}$

and now

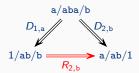


- <u>Fact</u>: $\underline{b} = \underline{a} \cdot R_{i,x}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.
 - \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \Box
- Example: $M = B_3^+$ with 1/ab/b:



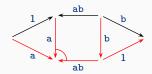
- b and ab admit a common multiple
 - ▶ we can push b through ab:
 - ▶ $a/ab/1 = 1/ab/b \bullet R_{2,b}$

and now



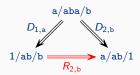
◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

- <u>Fact</u>: $\underline{b} = \underline{a} \cdot R_{i,x}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.
 - \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \Box
- Example: $M = B_3^+$ with 1/ab/b:



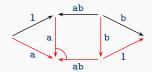
- b and ab admit a common multiple
 - ▶ we can push b through ab:
 - ▶ $a/ab/1 = 1/ab/b \bullet R_{2,b}$

and now



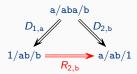
▶ possible confluence ?

- <u>Fact</u>: $\underline{b} = \underline{a} \cdot R_{i,x}$ implies that \underline{a} and \underline{b} represent the same element in $\mathcal{U}(M)$.
 - \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \Box
- Example: $M = B_3^+$ with 1/ab/b:



- b and ab admit a common multiple
 - ▶ we can push b through ab:
 - ▶ $a/ab/1 = 1/ab/b \bullet R_{2,b}$

and now



- ▶ possible confluence ?
- ▶ In this way: for every gcd-monoid M, a rewrite system \mathcal{R}_M ("reduction").

• <u>Theorem 1</u>: (i) If *M* is a noetherian gcd-monoid satisfying the 3-Ore condition, then *M* embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented by a unique \mathcal{R}_M -irreducible multifraction;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − つへつ

• <u>Theorem 1</u>: (i) If *M* is a noetherian gcd-monoid satisfying the 3-Ore condition, then *M* embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented by a unique \mathcal{R}_M -irreducible multifraction; in particular, a multifraction <u>a</u> represents 1 in $\mathcal{U}(M)$ iff it reduces to <u>1</u>.

• <u>Theorem 1</u>: (i) If *M* is a noetherian gcd-monoid satisfying the 3-Ore condition, then *M* embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented by a unique \mathcal{R}_M -irreducible multifraction; in particular, a multifraction <u>a</u> represents 1 in $\mathcal{U}(M)$ iff it reduces to <u>1</u>.

(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, the above method makes the word problem for U(M) decidable.

• <u>Theorem 1</u>: (i) If *M* is a noetherian gcd-monoid satisfying the 3-Ore condition, then *M* embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented by a unique \mathcal{R}_M -irreducible multifraction; in particular, a multifraction <u>a</u> represents 1 in $\mathcal{U}(M)$ iff it reduces to <u>1</u>.

(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, the above method makes the word problem for U(M) decidable.

► *M* is noetherian: no infinite descending sequence for left- and right-divisibility.

• <u>Theorem 1</u>: (i) If *M* is a noetherian gcd-monoid satisfying the 3-Ore condition, then *M* embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented by a unique \mathcal{R}_M -irreducible multifraction; in particular, a multifraction <u>a</u> represents 1 in $\mathcal{U}(M)$ iff it reduces to <u>1</u>.

(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, the above method makes the word problem for U(M) decidable.

- ► *M* is noetherian: no infinite descending sequence for left- and right-divisibility.
- ▶ *M* is strongly noetherian: exists a pseudo-length function on *M*. (\Rightarrow noetherian)

• <u>Theorem 1</u>: (i) If *M* is a noetherian gcd-monoid satisfying the 3-Ore condition, then *M* embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented by a unique \mathcal{R}_M -irreducible multifraction; in particular, a multifraction <u>a</u> represents 1 in $\mathcal{U}(M)$ iff it reduces to <u>1</u>.

(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, the above method makes the word problem for U(M) decidable.

- \blacktriangleright *M* is noetherian: no infinite descending sequence for left- and right-divisibility.
- ▶ *M* is strongly noetherian: exists a pseudo-length function on *M*. (\Rightarrow noetherian)
- ► *M* satisfies the 3-Ore condition: three elements that pairwise admit a common multiple admit a global one.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Theorem 1</u>: (i) If *M* is a noetherian gcd-monoid satisfying the 3-Ore condition, then *M* embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented by a unique \mathcal{R}_M -irreducible multifraction; in particular, a multifraction <u>a</u> represents 1 in $\mathcal{U}(M)$ iff it reduces to <u>1</u>.

(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, the above method makes the word problem for U(M) decidable.

- ► *M* is noetherian: no infinite descending sequence for left- and right-divisibility.
- ▶ *M* is strongly noetherian: exists a pseudo-length function on *M*. (\Rightarrow noetherian)
- M satisfies the 3-Ore condition: three elements that pairwise admit a common multiple admit a global one. (2-Ore ⇒ 3-Ore)

• <u>Theorem 1</u>: (i) If *M* is a noetherian gcd-monoid satisfying the 3-Ore condition, then *M* embeds in $\mathcal{U}(M)$ and every element of $\mathcal{U}(M)$ is represented by a unique \mathcal{R}_M -irreducible multifraction; in particular, a multifraction <u>a</u> represents 1 in $\mathcal{U}(M)$ iff it reduces to <u>1</u>.

(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, the above method makes the word problem for U(M) decidable.

- ► *M* is noetherian: no infinite descending sequence for left- and right-divisibility.
- ▶ *M* is strongly noetherian: exists a pseudo-length function on *M*. (\Rightarrow noetherian)
- ▶ *M* satisfies the 3-Ore condition: three elements that pairwise admit a common multiple admit a global one. (2-Ore \Rightarrow 3-Ore)
- ▶ right-basic elements: obtained from atoms repeatedly using the right-complement operation: $(x, y) \mapsto x'$ s.t. yx' = right-lcm(x, y).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣�()

 <u>Fact</u>: If a noetherian gcd-monoid M satisfies the 3-Ore condition, then, for every multifraction <u>a</u> and every i < <u>||a|</u> (depth of <u>a</u>:= # entries in <u>a</u>), there exists a unique maximal level i reduction applying to <u>a</u>.

 <u>Fact</u>: If a noetherian gcd-monoid M satisfies the 3-Ore condition, then, for every multifraction <u>a</u> and every i < <u>||a||</u> (depth of <u>a</u>:= # entries in <u>a</u>), there exists a unique maximal level i reduction applying to <u>a</u>.

• Theorem 2: For every n, there exists a universal sequence of integers U(n) s.t.,

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

 <u>Fact</u>: If a noetherian gcd-monoid M satisfies the 3-Ore condition, then, for every multifraction <u>a</u> and every i < <u>||a||</u> (depth of <u>a</u>:= # entries in <u>a</u>), there exists a unique maximal level i reduction applying to <u>a</u>.

 <u>Theorem 2</u>: For every n, there exists a universal sequence of integers U(n) s.t., if M is any noetherian gcd-monoid satisfying the 3-Ore condition and <u>a</u> is any depth n multifraction representing 1 in U(M),

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

 <u>Fact</u>: If a noetherian gcd-monoid M satisfies the 3-Ore condition, then, for every multifraction <u>a</u> and every i < <u>||a||</u> (depth of <u>a</u>:= # entries in <u>a</u>), there exists a unique maximal level i reduction applying to <u>a</u>.

 <u>Theorem 2</u>: For every n, there exists a universal sequence of integers U(n) s.t., if M is any noetherian gcd-monoid satisfying the 3-Ore condition and <u>a</u> is any depth n multifraction representing 1 in U(M), then <u>a</u> reduces to <u>1</u> by maximal reductions at successive levels U(n).

(日) (日) (日) (日) (日) (日) (日) (日)

 <u>Fact</u>: If a noetherian gcd-monoid M satisfies the 3-Ore condition, then, for every multifraction <u>a</u> and every i < <u>||a||</u> (depth of <u>a</u>:= # entries in <u>a</u>), there exists a unique maximal level i reduction applying to <u>a</u>.

 <u>Theorem 2</u>: For every n, there exists a universal sequence of integers U(n) s.t., if M is any noetherian gcd-monoid satisfying the 3-Ore condition and <u>a</u> is any depth n multifraction representing 1 in U(M), then <u>a</u> reduces to <u>1</u> by maximal reductions at successive levels U(n).

• Example: U(8) = (1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 1, 2, 3, 1).

(日) (日) (日) (日) (日) (日) (日) (日)

 <u>Fact</u>: If a noetherian gcd-monoid M satisfies the 3-Ore condition, then, for every multifraction <u>a</u> and every i < <u>||a||</u> (depth of <u>a</u>:= # entries in <u>a</u>), there exists a unique maximal level i reduction applying to <u>a</u>.

 <u>Theorem 2</u>: For every n, there exists a universal sequence of integers U(n) s.t., if M is any noetherian gcd-monoid satisfying the 3-Ore condition and <u>a</u> is any depth n multifraction representing 1 in U(M), then <u>a</u> reduces to <u>1</u> by maximal reductions at successive levels U(n).

• Example: U(8) = (1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 1, 2, 3, 1).

• Corollary: For every n, there exists a universal diagram Γ_n s.t.,

 <u>Corollary</u>: For every n, there exists a <u>universal diagram</u> Γ_n s.t., if M is any noetherian gcd-monoid satisfying the 3-Ore condition and <u>a</u> is any depth n multifraction representing 1 in U(M),

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 <u>Corollary</u>: For every n, there exists a <u>universal diagram Γ_n s.t.</u>, if M is any noetherian gcd-monoid satisfying the 3-Ore condition and <u>a</u> is any depth n multifraction representing 1 in U(M), then some M-labelling of Γ_n is a van Kampen diagram with boundary <u>a</u>.

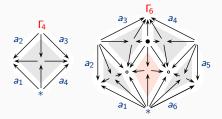
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 <u>Corollary</u>: For every n, there exists a <u>universal diagram Γ_n s.t.</u>, if M is any noetherian gcd-monoid satisfying the 3-Ore condition and <u>a</u> is any depth n multifraction representing 1 in U(M), then some M-labelling of Γ_n is a van Kampen diagram with boundary <u>a</u>.

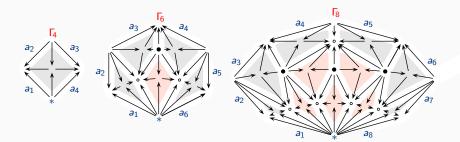
<ロト < 部ト < 注ト < 注ト 三 注</p>

DQC

 <u>Corollary</u>: For every n, there exists a universal diagram Γ_n s.t., if M is any noetherian gcd-monoid satisfying the 3-Ore condition and <u>a</u> is any depth n multifraction representing 1 in U(M), then some M-labelling of Γ_n is a van Kampen diagram with boundary <u>a</u>.



 <u>Corollary</u>: For every n, there exists a universal diagram Γ_n s.t., if M is any noetherian gcd-monoid satisfying the 3-Ore condition and <u>a</u> is any depth n multifraction representing 1 in U(M), then some M-labelling of Γ_n is a van Kampen diagram with boundary <u>a</u>.



• An Artin-Tits monoid:

 An Artin-Tits monoid: ⟨S | R⟩⁺ such that, for all s, t in S, there is at most one relation s... = t... in R and, if so, the relation has the form stst... = tsts..., both terms of same length (a "braid relation").

- An Artin-Tits monoid: ⟨S | R⟩⁺ such that, for all s, t in S, there is at most one relation s... = t... in R and, if so, the relation has the form stst... = tsts..., both terms of same length (a "braid relation").
- <u>Theorem</u> (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it is of spherical type (= the associated Coxeter group is finite).

- An Artin-Tits monoid: ⟨S | R⟩⁺ such that, for all s, t in S, there is at most one relation s... = t... in R and, if so, the relation has the form stst... = tsts..., both terms of same length (a "braid relation").
- <u>Theorem</u> (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it is of spherical type (= the associated Coxeter group is finite).
 - "Garside theory": group of fractions of the monoid

- An Artin-Tits monoid: ⟨S | R⟩⁺ such that, for all s, t in S, there is at most one relation s... = t... in R and, if so, the relation has the form stst... = tsts..., both terms of same length (a "braid relation").
- <u>Theorem</u> (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it is of spherical type (= the associated Coxeter group is finite).
 - ▶ "Garside theory": group of fractions of the monoid
- <u>Theorem</u>: An Artin-Tits monoid satisfies the 3-Ore condition iff it is of FC type (= parabolic subgroups with no ∞-relation are spherical).

- An Artin-Tits monoid: ⟨S | R⟩⁺ such that, for all s, t in S, there is at most one relation s... = t... in R and, if so, the relation has the form stst... = tsts..., both terms of same length (a "braid relation").
- <u>Theorem</u> (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it is of spherical type (= the associated Coxeter group is finite).
 - ▶ "Garside theory": group of fractions of the monoid
- <u>Theorem</u>: An Artin-Tits monoid satisfies the 3-Ore condition iff it is of FC type (= parabolic subgroups with no ∞-relation are spherical).
 - Reduction is convergent

- An Artin-Tits monoid: ⟨S | R⟩⁺ such that, for all s, t in S, there is at most one relation s... = t... in R and, if so, the relation has the form stst... = tsts..., both terms of same length (a "braid relation").
- <u>Theorem</u> (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it is of spherical type (= the associated Coxeter group is finite).
 - "Garside theory": group of fractions of the monoid
- <u>Theorem</u>: An Artin-Tits monoid satisfies the 3-Ore condition iff it is of FC type (= parabolic subgroups with no ∞-relation are spherical).
 - Reduction is convergent: group of multifractions of the monoid

- An Artin-Tits monoid: ⟨S | R⟩⁺ such that, for all s, t in S, there is at most one relation s... = t... in R and, if so, the relation has the form stst... = tsts..., both terms of same length (a "braid relation").
- <u>Theorem</u> (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it is of spherical type (= the associated Coxeter group is finite).
 - "Garside theory": group of fractions of the monoid
- <u>Theorem</u>: An Artin-Tits monoid satisfies the 3-Ore condition iff it is of FC type (= parabolic subgroups with no ∞-relation are spherical).
 - Reduction is convergent: group of multifractions of the monoid

• <u>Conjecture</u>: Say that reduction is <u>semi-convergent</u> for M if every multifraction representing 1 in U(M) reduces to <u>1</u>.

- An Artin-Tits monoid: ⟨S | R⟩⁺ such that, for all s, t in S, there is at most one relation s... = t... in R and, if so, the relation has the form stst... = tsts..., both terms of same length (a "braid relation").
- <u>Theorem</u> (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it is of spherical type (= the associated Coxeter group is finite).
 - "Garside theory": group of fractions of the monoid
- <u>Theorem</u>: An Artin-Tits monoid satisfies the 3-Ore condition iff it is of FC type (= parabolic subgroups with no ∞-relation are spherical).
 - Reduction is convergent: group of multifractions of the monoid

• <u>Conjecture</u>: Say that reduction is <u>semi-convergent</u> for M if every multifraction representing 1 in U(M) reduces to <u>1</u>. Then reduction is semi-convergent for every Artin-Tits monoid.

- An Artin-Tits monoid: ⟨S | R⟩⁺ such that, for all s, t in S, there is at most one relation s... = t... in R and, if so, the relation has the form stst... = tsts..., both terms of same length (a "braid relation").
- <u>Theorem</u> (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it is of spherical type (= the associated Coxeter group is finite).
 - "Garside theory": group of fractions of the monoid
- <u>Theorem</u>: An Artin-Tits monoid satisfies the 3-Ore condition iff it is of FC type (= parabolic subgroups with no ∞-relation are spherical).
 - Reduction is convergent: group of multifractions of the monoid

• <u>Conjecture</u>: Say that reduction is <u>semi-convergent</u> for M if every multifraction representing 1 in U(M) reduces to <u>1</u>. Then reduction is semi-convergent for every Artin-Tits monoid.

▶ Sufficient for solving the word problem (in the case of an Artin-Tits group).

• Question: How to prove the conjecture for general Artin-Tits groups?

• Question: How to prove the conjecture for general Artin-Tits groups?

▶ Partial results known (all Artin-Tits groups of "sufficiently large type").

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Question: How to prove the conjecture for general Artin-Tits groups?

▶ Partial results known (all Artin-Tits groups of "sufficiently large type").

▶ Most probably relies on the theory of the underlying Coxeter groups.

- Question: How to prove the conjecture for general Artin-Tits groups?
 - ▶ Partial results known (all Artin-Tits groups of "sufficiently large type").
 - ▶ Most probably relies on the theory of the underlying Coxeter groups.
- Question: Does the convergence of reduction imply torsion-freeness?

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Question: How to prove the conjecture for general Artin-Tits groups?
 - ▶ Partial results known (all Artin-Tits groups of "sufficiently large type").
 - ▶ Most probably relies on the theory of the underlying Coxeter groups.
- Question: Does the convergence of reduction imply torsion-freeness?
- Q<u>uestion</u>: Does this extension of Ore's theorem in the "monoid/group" context make sense in a "ring/skew field" context?

- Question: How to prove the conjecture for general Artin-Tits groups?
 - ▶ Partial results known (all Artin-Tits groups of "sufficiently large type").
 - ▶ Most probably relies on the theory of the underlying Coxeter groups.
- Question: Does the convergence of reduction imply torsion-freeness?
- Question: Does this extension of Ore's theorem in the "monoid/group" context make sense in a "ring/skew field" context?

<u>References</u>:

 <u>P. Dehornoy</u>, Multifraction reduction I: The 3-Ore case and Artin-Tits groups of type FC, J. Comb. Algebra 1 (2017) 185–228
 <u>P. Dehornoy</u>, Multifraction reduction II: Conjectures for Artin-Tits groups J. Comb. Algebra, to appear, arXiv:1606.08995
 <u>P. Dehornoy</u> & <u>F. Wehrung</u>, Multifraction reduction III: The case of interval monoids J. Comb. Algebra, to appear, arXiv:1606.09018
 <u>P. Dehornoy</u>, <u>D. Holt</u>, & <u>S. Rees</u>, Multifraction reduction IV: Padding and Artin-Tits groups of sufficiently large type, arXiv:1701.06413

www.math.unicaen.fr/~dehornoy/