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Laboratoire de Mathématiques Nicolas Oresme
Université de Caen
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• Once again, the proof seems easier and more explicit when stated in terms of ∗ and RC.



Plan:

• Structure groups of set-theoretic solutions of YBE

◮ 1. Rump’s RC-calculus
- Solutions of YBE vs. biracks vs. cycle sets
- Revisiting the Garside structure using RC-calculus
- Revisiting the I-structure using RC-calculus

◮ 2. A new application: Garside germs
- The braid germ
- The YBE germ

• A new approach to the word problem of Artin-Tits groups

◮ 3. Multifraction reduction, an extension of Ore’s theorem
- Ore’s classical theorem
- Extending free reduction: (i) division, (ii) reduction
- The case of Artin-Tits groups: theorems and conjectures
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◮ Think of M as of an “unfolding” of W .



The braid germ (cont’d)

• So: the symmetric group Sn is a Garside germ for the braid monoid B+
n :



The braid germ (cont’d)

• So: the symmetric group Sn is a Garside germ for the braid monoid B+
n :

1

s1 s2

s1s2 s2s1

s1s2s1

Cayley graph of S3
w.r.t. adjacent transpositions



The braid germ (cont’d)

• So: the symmetric group Sn is a Garside germ for the braid monoid B+
n :

1

s1 s2

s1s2 s2s1

s1s2s1

Cayley graph of S3
w.r.t. adjacent transpositions

1

σ1 σ2

σ1σ2 σ2σ1

∆3

Hasse diagram of left division
for simple elements of B+

3



The braid germ (cont’d)

• So: the symmetric group Sn is a Garside germ for the braid monoid B+
n :

1

s1 s2

s1s2 s2s1

s1s2s1

Cayley graph of S3
w.r.t. adjacent transpositions

1

σ1 σ2

σ1σ2 σ2σ1

∆3

Hasse diagram of left division
for simple elements of B+

3

≃



The braid germ (cont’d)

• So: the symmetric group Sn is a Garside germ for the braid monoid B+
n :

1

s1 s2

s1s2 s2s1

s1s2s1

Cayley graph of S3
w.r.t. adjacent transpositions

1

σ1 σ2

σ1σ2 σ2σ1

∆3

Hasse diagram of left division
for simple elements of B+

3

≃

adding torsion s2i = 1



The braid germ (cont’d)

• So: the symmetric group Sn is a Garside germ for the braid monoid B+
n :

1

s1 s2

s1s2 s2s1

s1s2s1

Cayley graph of S3
w.r.t. adjacent transpositions

1

σ1 σ2

σ1σ2 σ2σ1

∆3

Hasse diagram of left division
for simple elements of B+

3

≃

adding torsion s2i = 1

removing h = fg
for ℓ(h) < ℓ(f ) + ℓ(g)



The braid germ (cont’d)

• So: the symmetric group Sn is a Garside germ for the braid monoid B+
n :

1

s1 s2

s1s2 s2s1

s1s2s1

Cayley graph of S3
w.r.t. adjacent transpositions

1

σ1 σ2

σ1σ2 σ2σ1

∆3

Hasse diagram of left division
for simple elements of B+

3

≃

adding torsion s2i = 1

removing h = fg
for ℓ(h) < ℓ(f ) + ℓ(g)

• Works similarly for every finite Coxeter group with the associated Artin-Tits monoid.



The braid germ (cont’d)

• So: the symmetric group Sn is a Garside germ for the braid monoid B+
n :

1

s1 s2

s1s2 s2s1

s1s2s1

Cayley graph of S3
w.r.t. adjacent transpositions

1

σ1 σ2

σ1σ2 σ2σ1

∆3

Hasse diagram of left division
for simple elements of B+

3

≃

adding torsion s2i = 1

removing h = fg
for ℓ(h) < ℓ(f ) + ℓ(g)

• Works similarly for every finite Coxeter group with the associated Artin-Tits monoid.

• But: does not extend to arbitrary Garside monoids:



The braid germ (cont’d)

• So: the symmetric group Sn is a Garside germ for the braid monoid B+
n :

1

s1 s2

s1s2 s2s1

s1s2s1

Cayley graph of S3
w.r.t. adjacent transpositions

1

σ1 σ2

σ1σ2 σ2σ1

∆3

Hasse diagram of left division
for simple elements of B+

3

≃

adding torsion s2i = 1

removing h = fg
for ℓ(h) < ℓ(f ) + ℓ(g)

• Works similarly for every finite Coxeter group with the associated Artin-Tits monoid.

• But: does not extend to arbitrary Garside monoids:

?

1

σ1 σ2 σ1σ2σ
−1
1

δ3

Hasse diagram of left division
for simple elements of B+∗

3

≃

adding ??



The braid germ (cont’d)

• So: the symmetric group Sn is a Garside germ for the braid monoid B+
n :

1

s1 s2

s1s2 s2s1

s1s2s1

Cayley graph of S3
w.r.t. adjacent transpositions

1

σ1 σ2

σ1σ2 σ2σ1

∆3

Hasse diagram of left division
for simple elements of B+

3

≃

adding torsion s2i = 1

removing h = fg
for ℓ(h) < ℓ(f ) + ℓ(g)

• Works similarly for every finite Coxeter group with the associated Artin-Tits monoid.

• But: does not extend to arbitrary Garside monoids:

?

1

σ1 σ2 σ1σ2σ
−1
1

δ3

Hasse diagram of left division
for simple elements of B+∗

3

≃

adding ??



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.

• What for YBE monoids?



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.

• What for YBE monoids?

◮ Partial positive result by Chouraqui and Godelle (= ”RC-systems of class 2”).



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.

• What for YBE monoids?

◮ Partial positive result by Chouraqui and Godelle (= ”RC-systems of class 2”).

◮ Complete positive result,



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.

• What for YBE monoids?

◮ Partial positive result by Chouraqui and Godelle (= ”RC-systems of class 2”).

◮ Complete positive result, once again based on RC-calculus.



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.

• What for YBE monoids?

◮ Partial positive result by Chouraqui and Godelle (= ”RC-systems of class 2”).

◮ Complete positive result, once again based on RC-calculus.

• Definition: An RC-quasigroup (S, ∗) is of class d if, for all s, t in S

Ωd+1(s, ..., s, t) = t.



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.

• What for YBE monoids?

◮ Partial positive result by Chouraqui and Godelle (= ”RC-systems of class 2”).

◮ Complete positive result, once again based on RC-calculus.

• Definition: An RC-quasigroup (S, ∗) is of class d if, for all s, t in S

Ωd+1(s, ..., s, t) = t.

◮ class 1: s ∗ t = t,



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.

• What for YBE monoids?

◮ Partial positive result by Chouraqui and Godelle (= ”RC-systems of class 2”).

◮ Complete positive result, once again based on RC-calculus.

• Definition: An RC-quasigroup (S, ∗) is of class d if, for all s, t in S

Ωd+1(s, ..., s, t) = t.

◮ class 1: s ∗ t = t,
◮ class 2: (s ∗ s) ∗ (s ∗ t) = t, etc.



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.

• What for YBE monoids?

◮ Partial positive result by Chouraqui and Godelle (= ”RC-systems of class 2”).

◮ Complete positive result, once again based on RC-calculus.

• Definition: An RC-quasigroup (S, ∗) is of class d if, for all s, t in S

Ωd+1(s, ..., s, t) = t.

◮ class 1: s ∗ t = t,
◮ class 2: (s ∗ s) ∗ (s ∗ t) = t, etc.
◮ for φ an order d permutation, s ∗ t := φ(t) is of class d.



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.

• What for YBE monoids?

◮ Partial positive result by Chouraqui and Godelle (= ”RC-systems of class 2”).

◮ Complete positive result, once again based on RC-calculus.

• Definition: An RC-quasigroup (S, ∗) is of class d if, for all s, t in S

Ωd+1(s, ..., s, t) = t.

◮ class 1: s ∗ t = t,
◮ class 2: (s ∗ s) ∗ (s ∗ t) = t, etc.
◮ for φ an order d permutation, s ∗ t := φ(t) is of class d.

• Lemma: Every RC-quasigroup of cardinal n is of class d for some d < (n2)!.



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.

• What for YBE monoids?

◮ Partial positive result by Chouraqui and Godelle (= ”RC-systems of class 2”).

◮ Complete positive result, once again based on RC-calculus.

• Definition: An RC-quasigroup (S, ∗) is of class d if, for all s, t in S

Ωd+1(s, ..., s, t) = t.

◮ class 1: s ∗ t = t,
◮ class 2: (s ∗ s) ∗ (s ∗ t) = t, etc.
◮ for φ an order d permutation, s ∗ t := φ(t) is of class d.

• Lemma: Every RC-quasigroup of cardinal n is of class d for some d < (n2)!.

Proof: The map (s, t) 7→ (s ∗ s, s ∗ t) on S × S is bijective, hence of order 6 (n2)!.
�
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Plan:

• Structure groups of set-theoretic solutions of YBE

◮ 1. Rump’s RC-calculus
- Solutions of YBE vs. biracks vs. cycle sets
- Revisiting the Garside structure using RC-calculus
- Revisiting the I-structure using RC-calculus

◮ 2. A new application: Garside germs
- The braid germ
- The YBE germ

• A new approach to the word problem of Artin-Tits groups

◮ 3. Multifraction reduction, an extension of Ore’s theorem
- Ore’s classical theorem
- Extending free reduction: (i) division, (ii) reduction
- The case of Artin-Tits groups: theorems and conjectures
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◮ In this way: for every gcd-monoid M, a rewrite system RM (“reduction”).
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• Theorem 1: (i) If M is a noetherian gcd-monoid satisfying the 3-Ore condition, then M
embeds in U(M) and every element of U(M) is represented by a unique RM -irreducible
multifraction; in particular, a multifraction a represents 1 in U(M) iff it reduces to 1.

(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, the
above method makes the word problem for U(M) decidable.

◮ M is noetherian: no infinite descending sequence for left- and right-divisibility.
◮ M is strongly noetherian: exists a pseudo-length function on M. (⇒ noetherian)
◮ M satisfies the 3-Ore condition: three elements that pairwise admit

a common multiple admit a global one. (2-Ore ⇒ 3-Ore)
◮ right-basic elements: obtained from atoms repeatedly using

the right-complement operation: (x , y) 7→ x ′ s.t. yx ′ = right-lcm(x , y).
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• Theorem: An Artin-Tits monoid satisfies the 3-Ore condition
iff it is of FC type (= parabolic subgroups with no ∞-relation are spherical).

◮ Reduction is convergent: group of multifractions of the monoid

• Conjecture: Say that reduction is semi-convergent for M if
every multifraction representing 1 in U(M) reduces to 1.

Then reduction is semi-convergent for every Artin-Tits monoid.

◮ Sufficient for solving the word problem (in the case of an Artin-Tits group).
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