

Garside germs for YBE structure groups, and an extension of Ore's theorem

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

> Groups, Rings and the Yang-Baxter Equation Spa, June 2017

• Advertizing for two (superficially unrelated) topics:

- W. Rump's formalism of cycle sets for investigating YBE structure groups: revisit the Garside and the I-structures, and introduce a finite Coxeter-like quotient,

- a new approach to the word problem of Artin-Tits groups, based on an extension of Ore's theorem from fractions to multifractions.

Plan:

- Structure groups of set-theoretic solutions of YBE
	- \blacktriangleright 1. RC-calculus
		- Solutions of YBE vs. biracks vs. cycle sets
		- Revisiting the Garside structure using RC-calculus
		- Revisiting the I-structure using RC-calculus
	- ▶ 2. A new application: Garside germs
		- The braid germ
		- The YBE germ
- A new approach to the word problem of Artin-Tits groups
	- ▶ 3. Multifraction reduction, an extension of Ore's theorem
		- Ore's classical theorem
		- Extending free reduction: (i) division, (ii) reduction
		- The case of Artin-Tits groups: theorems and conjectures

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

Plan:

- Structure groups of set-theoretic solutions of YBE
	- \blacktriangleright 1. RC-calculus
		- Solutions of YBE vs. biracks vs. cycle sets
		- Revisiting the Garside structure using RC-calculus
		- Revisiting the I-structure using RC-calculus
	- ▶ 2. A new application: Garside germs
		- The braid germ
		- The YBE germ
- A new approach to the word problem of Artin-Tits groups
	- ▶ 3. Multifraction reduction, an extension of Ore's theorem
		- Ore's classical theorem
		- Extending free reduction: (i) division, (ii) reduction
		- The case of Artin-Tits groups: theorems and conjectures

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

• Definition: A set-theoretic solution of YBE is a pair (S, r) where S is a set and r is a bijection from $S \times S$ to itself satisfying

 $r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}$ where $r^{ij}: S^3 \to S^3$ means r acting on the i^{th} and j^{th} entries. A solution $(S, r) = (S, (r_1, r_2))$ is nondegenerate if, for all s, t, the maps $y \mapsto r_1(s, y)$ and $x \mapsto r_2(x, t)$ are bijective.

A solution (S, r) is involutive if $r^2 = id$.

- Changing framework 1 (folklore): view r as a pair of binary operations on S
	- \triangleright "birack": (S, \rceil, \lceil) where \rceil and \lceil are binary operations satisfying...
- Changing framework 2 (W. Rump): invert the operation(s):
	- ► If the left translations of a binary operation \star are bijections, there exists $\overline{\star}$ s.t.

 $x * v = z \iff x \overline{\star} z = v$

(define $x \overline{*} z :=$ the unique y satisfying $x * y = z$)

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

 \blacktriangleright Apply this to the operation(s) of a birack.

• A (small) miracle occurs: only one operation ∗ and one algebraic law are needed.

- Definition: A (right) cycle set (or RC-system), is a pair $(S, *)$ where $*$ obeys $(x * v) * (x * z) = (v * x) * (v * z).$ (RC)
	- \triangleright An RC-quasigroup is a cycle set whose left-translations are bijective.
	- ► A cycle set is bijective if $(s,t) \mapsto (s * t,t * s)$ is a bijection of $S^2.$

• Theorem (Rump, 2005): (i) If (S, r) is an involutive nondegenerate solution, then $(S, *)$ is a bijective RC-quasigroup, where $s * t :=$ the unique r s.t. $r_1(s, r) = t$. (ii) Conversely, is $(S, *)$ is a bijective RC-quasigroup, then (S, r) is an involutive nondegenerate solution, where $r(a, b) :=$ the unique pair (a', b') s.t. $a * a' = b$ and $a' * a = b'$.

• Claim: One can (easily) develop an "RC-calculus".

\n- \n**Definition:** For
$$
n \geq 1
$$
, define $\Omega_1(x_1) := x_1$ and\n $\Omega_n(x_1, \ldots, x_n) := \Omega_{n-1}(x_1, \ldots, x_{n-1}) * \Omega_{n-1}(x_1, \ldots, x_{n-2}, x_n)$.\n
\n- \n**Similarly, for** $n \geq 1$, let (where \cdot is another binary operation):\n $\Pi_n(x_1, \ldots, x_n) := \Omega_1(x_1) \cdot \Omega_2(x_1, x_2) \cdot \cdots \cdot \Omega_n(x_1, \ldots, x_n)$.\n
\n- \n**Example:** $\Omega_2(x, y) = x * y$, and the RC-law is $\Omega_3(x, y, z) = \Omega_3(y, x, z)$.\n
\n- \n**Example:** Think of the Ω_n as (counterparts of) iterated sums in the RC-world, and of the Π_n as (counterparts of) iterated products.\n
\n

• Lemma: If $(S, *)$ is a cycle set, then, for every π in \mathfrak{S}_{n-1} , one has $\Omega_n(s_{\pi(1)},...,s_{\pi(n-1)},s_n)=\Omega_n(s_1,...,s_n).$

► In the language of braces, $\Omega_n(x_1,...,x_n)$ corresponds to $(x_1 + \cdots + x_{n-1}) * x_n$.

• Lemma: If $(S, *)$ is a bijective RC-quasigroup, there exists $\tilde{*}$, unique, s.t. $(s, t) \mapsto (s * t, t * s)$ is the inverse of $(s, t) \mapsto (s * t, t * s)$. Then $(S,\tilde{*})$ is a bijective LC-quasigroup and, for $\widetilde{s}_i:=\Omega_n(s_1,...,\widehat{s_i},,...,s_n,s_i),$ one has $\Omega_i(\mathsf{s}_{\pi(1)},...,\mathsf{s}_{\pi(i)}) = \Omega_{n+1-i}(\widetilde{\mathsf{s}}_{\pi(i)},...,\widetilde{\mathsf{s}}_{\pi(n)}),$ $\Pi_n(s_1, ..., s_n) = \widetilde{\Pi}_n(\widetilde{s}_1, ..., \widetilde{s}_n).$

▶ "Inversion formulas"; etc. etc.

• Definition: The structure group (resp. monoid) associated with a (nondegenerate involutive) solution (S, r) of YBE is the group (resp. monoid)

 $\langle S | \{ ab = a'b' | a, b, a', b' \in S \text{ satisfying } r(a, b) = (a', b') \} \rangle.$

The structure group (resp. monoid) associated with a cycle set $(S, *)$ is the group (resp. monoid) is

$$
\langle S \, | \, \{s(s*t)=t(t*s) \, | \, s \neq t \in S\} \rangle \tag{\#}
$$

• Fact: If (S, r) and $(S, *)$ correspond to one another,

the structure monoids and groups are the same.

• Claim: RC-calculus gives more simple proofs, and new results naturally occur.

- \blacktriangleright The relations of (#) are "RC-commutation relations" $\Pi_2(s,t) = \Pi_2(t,s)$.
- ▶ All rules of RC-calculus apply in the structure monoid.

• Theorem (Chouraqui, 2010): The structure monoid of a solution (S, r) is a Garside monoid with atom set S.

- \blacktriangleright What does this mean?
- $\triangleright \ll$ Definition»: A Garside monoid (group) is a monoid (group) that enjoys

all good divisibility properties of Artin's braid monoids (groups).

- Definition: A Garside monoid is a cancellative monoid M s.t.
	- **►** There exists $\lambda : M \to \mathbb{N}$ s.t. $\lambda(ab) \geq \lambda(a) + \lambda(b)$ and $a \neq 1 \Rightarrow \lambda(a) \neq 0;$

("a pseudo-length function")

- \blacktriangleright The left and right divisibility relations in M form lattices ("gcds and lcms exist")
- ► The closure of atoms under right-lcm and right-divisor is finite and it coincides with the closure of the atoms under left-lcm and left-divisor ("simple elements").

 \bullet If M is a Garside monoid, it embeds in its enveloping group, which is a group of left and right fractions for M.

 \bullet Definition: A Garside group is a group G that can be expressed, in at least one way, as the group of fractions of a Garside monoid (no uniqueness of the monoid in general).

- Example: Artin's *n*-strand braid group B_n admits (at least) two Garside structures: ► one associated with the braid monoid B_n^+ , with $n-1$ atoms,
	- n! simples (\cong permutations), the maximal one Δ_n of length $n(n-1)/2$,
	- ► one associated with the dual braid monoid B_n^{+*} , with $n(n-1)/2$ atoms,
	- Catalan_n simples (\cong noncrossing partitions), the maximal one δ_n of length $n-1$.
- Why do we care about Garside structures?
	- \blacktriangleright The word problem is solvable (in quadratic time).
	- \blacktriangleright There is a canonical normal form for the elements ("greedy normal form").
	- \blacktriangleright There is a (bi)-automatic structure.
	- \blacktriangleright The (co)homology is efficiently computable.
	- \blacktriangleright There is no torsion.

The whole structure is encoded in the (finite) family of **simple** elements.

- Assume M is the structure monoid of an RC-quasigroup $(S, *)$.
	- Step 1: M is left-cancellative and admits right-lcms. \triangleright Proof: The RC law directly gives the "right cube condition". implying left-cancellativity and right-lcms. \square - Step 2: *M* determines $(S, *)$. \blacktriangleright Proof: S is the atom set of M, and $\mathbf{s} * \mathbf{t} := s \setminus t$ for $s \neq t$, $\mathbf{s} * \mathbf{s} :=$ the unique element of S not in $\{s \setminus t | t \neq s \in S\}$. ↑

right-complement of s in t: the (unique) t' s.t. $st' =$ right-lcm(s, t).

- Assume moreover that $(S, *)$ is bijective.
	- Step 3: M is cancellative, it admits lcms on both sides, and its group is a group of fractions. ▶ Proof: Bijectivity implies the existence of * with symmetric properties. - Step 4: For $s_1, ..., s_n$ pairwise distinct, $\prod_n(s_1, ..., s_n)$ is the right-lcm of $s_1, ..., s_n$, and the left-lcm of $\widetilde{s}_1, ..., \widetilde{s}_n$ defined by $\widetilde{s}_i = \Omega_n(s_1, ..., \widehat{s}_i, ..., s_n, s_i)$.

▶ Proof: Apply the "inversion formulas" of RC-calculus.

• Revisiting the *I-structure* with the help of RC-calculus: "the Cayley graph of the structure group is a copy of the Euclidean lattice $\mathbb{Z}^{\#S}$ ".

• Theorem (Gateva-Ivanova, Van den Bergh, 1998): If M is the monoid of a nondegenerate involutive solution (S, r) , then there exists a bijection $\nu: \mathbb{N}^{*S} \to M$ satisfying $\nu(1) = 1$, $\nu(s) = s$ for s in S, and

 $\{ \nu(as) \mid s \in S \} = \{ \nu(a)s \mid s \in S \}$ for every a in $\mathbb{N}^{\#S}$.

Conversely, every monoid with an I-structure arises in this way.

Proof: If $(S, *)$ is an RC-quasigroup and M is the associated monoid, then defining $\nu(s_1 \cdots s_n) := \prod_n(s_1, ..., s_n)$ for $n := \#S$ provides a right I-structure on M. Conversely, if ν is an *I*-structure, defining $*$ on S by $\nu(st) = \nu(s) \cdot (s * t)$ provides a bijective RC-quasigroup on S. Then $\pi(s)$ belongs to \mathfrak{S}_n , and one has $(r*s)*(r*t) = \pi(rs)(t)$, so $rs = sr$ in \mathbb{N}^n implies the RC law for $*$. More generally, one obtains $\pi(s_1 \cdots s_{p-1})(s_p) = \Omega_p(s_1, ..., s_p)$ for every p. One concludes using $Rump's$ result that every finite RC-quasigroup is bijective. \Box

• Once again, the proof seems easier and more explicit when stated in terms of ∗ and RC.

Plan:

• Structure groups of set-theoretic solutions of YBE

- \blacktriangleright 1. Rump's RC-calculus
	- Solutions of YBE vs. biracks vs. cycle sets
	- Revisiting the Garside structure using RC-calculus
	- Revisiting the I-structure using RC-calculus

▶ 2. A new application: Garside germs

- The braid germ
- The YBE germ
- A new approach to the word problem of Artin-Tits groups
	- ▶ 3. Multifraction reduction, an extension of Ore's theorem
		- Ore's classical theorem
		- Extending free reduction: (i) division, (ii) reduction
		- The case of Artin-Tits groups: theorems and conjectures

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

• The *n*-strand braid monoid B_n^+ and group B_n admit the presentation

$$
\left\langle \sigma_1,...,\sigma_{n-1} \left| \begin{array}{cc} \sigma_i\sigma_j=\sigma_j\sigma_i & \text{for} & |i-j| \geqslant 2 \\ \sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j & \text{for} & |i-j|=1 \end{array} \right. \right\rangle.
$$

Adding the torsion relations $\sigma_i^2 = 1$ gives the Coxeter presentation of \mathfrak{S}_n in terms of the family Σ of adjacent transpositions, with

$$
1 \longrightarrow PB_n \longrightarrow B_n \stackrel{\pi}{\longrightarrow} \mathfrak{S}_n \longrightarrow 1.
$$

 \bullet Claim: The Garside structure of B_n based on B_n^+ "comes from" the group \mathfrak{S}_n : There exists a (set-theoretic) section $\sigma : \mathfrak{S}_n \subseteq \rightarrow B_n^+$ of π s.t. $\text{Im}(\sigma)$ is the set of simples of B_n^+ and, for all f, g in \mathfrak{S}_n , (*) $\sigma(f)\sigma(g) = \sigma(fg)$ holds in B_n^+ iff $\ell_{\Sigma}(f) + \ell_{\Sigma}(g) = \ell_{\Sigma}(fg)$ holds in \mathfrak{S}_n , where $\ell_{\Sigma}(f)$ is the Σ -length of $f := \#$ of inversions).

• Definition: A group W with generating family Σ is a germ for a monoid M if there exists a projection $\pi : M \to W$ and a section $\sigma : W \hookrightarrow M$ of π s.t. M is generated by $\text{Im}(\sigma)$ and (the counterpart of) (*) holds. It is a Garside germ if, in addition, M is a Garside monoid and $\text{Im}(\sigma)$ is the set of simples of M.

 \blacktriangleright Think of M as of an "unfolding" of W.

• So: the symmetric group \mathfrak{S}_n is a Garside germ for the braid monoid B_n^+ :

• Works similarly for every finite Coxeter group with the associated Artin-Tits monoid.

- Finding a germ is difficult: partly open for **braid groups of complex reflection groups**: very recent (partial) positive results by Neaime building on Corran–Picantin.
- What for YRF monoids?
	- ► Partial positive result by Chouraqui and Godelle $(= "RC-systems of class 2")$.
	- ▶ Complete positive result, once again based on RC-calculus.
- Definition: An RC-quasigroup $(S, *)$ is of class d if, for all s, t in S $\Omega_{d+1}(s, ..., s, t) = t.$
	- rial class 1: $s * t = t$,
	- ► class 2: $(s * s) * (s * t) = t$, etc.
	- ► for ϕ an order d permutation, $s * t := \phi(t)$ is of class d.
- \bullet Lemma: Every RC-quasigroup of cardinal n is of class d for some $d < (n^2)!$.

Proof: The map $(s, t) \mapsto (s * s, s * t)$ on $S \times S$ is bijective, hence of order $\leqslant (n^2)!$. \Box • <u>Notation</u>: $x^{[d]}$ for $\Pi_d(x, ..., x)$.

• Theorem: Let $(S, *)$ be an RC-quasigroup of cardinal n and class d, and let M and G be associated monoid and group. Then collapsing s^[d] to 1 in G for every s in S gives a finite group \overline{G} of order d^n that provides a Garside germ for M, with an exact sequence $1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow \overline{G} \longrightarrow 1.$

 \blacktriangleright Entirely similar to the ArtinTits/Coxeter case. with the "RC-torsion" relations $\mathbf{s}^{[d]} = 1$ replacing $s^2 = 1$.

▶ Proof: Use the *I*-structure to carry the results from the (trivial) case of \mathbb{Z}^n . Express the *I*-structure ν in terms of the RC-polynomials Ω and Π , typically

$$
\nu(\mathbf{s}^d \mathbf{a}) = \Pi_{d+q}(s, ..., s, t_1, ..., t_q) \n= \Pi_d(s, ..., s) \Pi_q(\Omega_{d+1}(s, ..., s, t_1), ..., \Omega_{d+1}(s, ..., s, t_q)) \n= \Pi_d(s, ..., s) \Pi_q(t_1, ..., t_q) = \nu(\mathbf{s}^d) \nu(t_1 \cdots t_q) = \mathbf{s}^{[d]} \nu(\mathbf{a}).
$$

Then \overline{G} is G/\equiv where $g\equiv g'$ means $\forall s\in S\,(\#_{\bm{s}}(\nu^{-1}(g))=\#_{\bm{s}}(\nu^{-1}(g'))$ mod $\bm{d})$. \Box

 $\mathbf{E} = \mathbf{A} \in \mathbb{R} \times \mathbf{A} \in \mathbb{R} \times \mathbb{R$ OQ

 \bullet Q<u>uestion</u>: Coxeter-like groups are in general larger than the "Go"s of [Etingof et al., 98].
We have a Which finite groups appear in this way?

- \blacktriangleright Those groups admitting a "pseudo-1-structure", with $(\mathbb{Z}/d\mathbb{Z})^n$ replacing \mathbb{Z}^n
- ► Those groups embedding in $\mathbb{Z}/d\mathbb{Z} \wr \mathfrak{S}_n$, like [Jespers-Okninski, 2005] with $(\mathbb{Z}/d\mathbb{Z})^n$.

• Question: To construct the Garside and I-structures, one uses Rump's result that finite RC-quasigroups are bijective. Can one instead prove this result using the Garside structure?

• Question: Does the brace approach make the cycle set approach obsolete?

- \triangleright Can the RC-approach be used to address the left-orderability of the structure group?
- \triangleright Could there exist a skew version of the RC-approach?
- References:
	- \triangleright W. Rump: A decomposition theorem for square-free unitary solutions of the quantum

Yang–Baxter equation, Adv. Math. 193 (2005) 40–55

- ► P. Dehornoy, Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs Adv. Math. 282 (2015) 93–127
- ▶ P. Dehornoy, with F. Digne, E. Godelle, D. Krammer, J. Michel, Chapter XIII of: Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 22 (2015)

Plan:

- Structure groups of set-theoretic solutions of YBE
	- \blacktriangleright 1. Rump's RC-calculus
		- Solutions of YBE vs. biracks vs. cycle sets
		- Revisiting the Garside structure using RC-calculus
		- Revisiting the I-structure using RC-calculus
	- ▶ 2. A new application: Garside germs
		- The braid germ
		- The YBE germ
- A new approach to the word problem of Artin-Tits groups
	- ▶ 3. Multifraction reduction, an extension of Ore's theorem
		- Ore's classical theorem
		- Extending free reduction: (i) division, (ii) reduction
		- The case of Artin-Tits groups: theorems and conjectures

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

- Notation: $U(M)$ = enveloping group of a monoid M.
	- $\blacktriangleright \exists \phi : M \rightarrow \mathcal{U}(M)$ s.t. every morphism from M to a group factors through ϕ . If $M = \langle S | R \rangle^{\dagger}$, then $U(M) = \langle S | R \rangle$.

• Theorem (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in $U(M)$ and every element of $U(M)$ is represented as ab⁻¹ with a, b in M.

"group of (right) fractions for M" (a/b)

▶ 2-Ore condition: any two elements admit a common right-multiple.

• Definition: A gcd-monoid is a cancellative monoid.

in which 1 is the only invertible element (so \leq and \leq are partial orders) and any two elements admit a left and a right gcd (greatest lower bounds for \leq and \leq).

• Corollary: If M is a gcd-monoid satisfying the 2-Ore condition, then M embeds in $U(M)$ and every element of $U(M)$ is represented by a unique irreducible fraction.

 ab^{-1} with $a,b\in M$ and right-gcd $(a,b)=1$

• Example: every Garside monoid.

• When the 2-Ore condition fails (no common multiples), no fractional expression.

Example: $M = F^+$, a free monoid; then M embeds in $\mathcal{U}(M)$, a free group;

- \triangleright No fractional expression for the elements of $U(M)$,
- ► But: unique expression $a_1 a_2^{-1} a_3 a_4^{-1} \cdots$ with a_1, a_2, \ldots in M and for *i* odd: a_i and a_{i+1} do not finish with the same letter, for *i* even: a_i and a_{i+1} do not begin with the same letter.

▶ a "freely reduced word"

- Proof: (easy) Introduce rewrite rules on finite sequences of positive words:
	- rule $D_{i,x} := \begin{cases}$ for *i* odd, delete x at the end of a_i and a_{i+1} (if possible...), for *i* even, delete x at the beginning of a_i and a_{i+1} (if possible...).
	- \blacktriangleright Then the system of all rules $D_{i,x}$ is (locally) confluent:

Every sequence a rewrites into a unique irreducible sequence ("convergence"). \Box

- When M is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
	- \blacktriangleright no first or last letter.
	- but left- and right-divisors: $x \le a$ means "x is a possible beginning of a".
	- rule $D_{i,x} := \begin{cases}$ for *i* odd, right-divide a_i and a_{i+1} by *x* (if possible...), for *i* even, left-divide a_i and a_{i+1} by x (if possible...).
- <u>Example</u>: $M = B_3^+ = \langle a, b \mid aba = bab \rangle^+;$
	- start with the sequence (a, aba, b) , better written as a "multifraction" $a/aba/b$: (think of $a_1/a_2/a_3/...$ as a sequence representing $a_1 a_2^{-1} a_3 a_4^{-1}...$ in $\mathcal{U}(M)$)

▶ no hope of confluence... hence consider more general rewrite rules.

- Diagrammatic representation of elements of $M: \quad \frac{a}{\sqrt{a}} \mapsto a$, and multifractions:
	- a_1 a_2 a_3 \ldots \mapsto $a_1/a_2/a_3/\ldots$ \mapsto $\phi(a_1)\phi(a_2)^{-1}\phi(a_3)\ldots$ in $\mathcal{U}(M)$.
	- \blacktriangleright Then: commutative diagram \leftrightarrow equality in $\mathcal{U}(M)$.
- Diagram for $D_{i,x}$ (division by x at level *i*): declare <u>a</u> $D_{i,x} = \underline{b}$ for

• Relax "x divides a_i " to "lcm(x, a_i) exists": declare $\underline{a} \cdot R_{i,x} = \underline{b}$ for

• Definition: "b obtained from a by reducing x at level i ": divide a_{i+1} by x, push x through a_i using lcm, multiply a_{i-1} by the remainder y.

KEL KAR KELKER E VAN

- Fact: $b = a \cdot R_{i,x}$ implies that a and b represent the same element in $U(M)$.
	- \blacktriangleright Proof: We walk in the Cayley graph, replacing one path with an equivalent one. \square
- <u>Example</u>: $M = B_3^+$ with $1/\text{ab}/\text{b}$:

- b and ab admit a common multiple
	- \triangleright we can push b through ab:
	- \triangleright a/ab/1 = 1/ab/b \cdot $R_{2,b}$

and now

▶ possible confluence ?

In this way: for every gcd-monoid M, a rewrite system \mathcal{R}_M ("reduction").

• Theorem 1: (i) If M is a noetherian gcd-monoid satisfying the 3-Ore condition, then M embeds in $U(M)$ and every element of $U(M)$ is represented by a unique \mathcal{R}_M -irreducible multifraction; in particular, a multifraction a represents 1 in $U(M)$ iff it reduces to 1.

(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, the above method makes the word problem for $U(M)$ decidable.

- \blacktriangleright M is noetherian: no infinite descending sequence for left- and right-divisibility.
- ► M is strongly noetherian: exists a pseudo-length function on M. (\Rightarrow noetherian)
- \blacktriangleright *M* satisfies the 3-Ore condition: three elements that pairwise admit a common multiple admit a global one. $(2\textrm{-}Ore \Rightarrow 3\textrm{-}Ore)$
- \triangleright right-basic elements: obtained from atoms repeatedly using the right-complement operation: $(x, y) \mapsto x'$ s.t. $yx' = \text{right-lcm}(x, y)$.

• Fact: If a noetherian gcd-monoid M satisfies the 3-Ore condition, then, for every multifraction a and every $i < ||a||$ (depth of $a := \#$ entries in a), there exists a unique maximal level i reduction applying to a.

• Theorem 2: For every n, there exists a universal sequence of integers $U(n)$ s.t., if M is any noetherian gcd-monoid satisfying the 3-Ore condition and a is any depth n multifraction representing 1 in $U(M)$. then a reduces to 1 by maximal reductions at successive levels $U(n)$.

► Example: $U(8) = (1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 1, 2, 3, 1).$

• Corollary: For every n, there exists a universal diagram Γ_n s.t., if M is any noetherian gcd-monoid satisfying the 3-Ore condition and \underline{a} is any depth n multifraction representing 1 in $U(M)$, then some M-labelling of Γ_n is a van Kampen diagram with boundary a.

- An Artin-Tits monoid: $\langle S | R \rangle^{\dagger}$ such that, for all s,t in S , there is at most one relation $s... = t...$ in R and, if so, the relation has the form $stst... = tsts...$ both terms of same length (a "braid relation").
- Theorem (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it is of spherical type $(=$ the associated Coxeter group is finite).
	- ► "Garside theory": group of fractions of the monoid
- Theorem: An Artin-Tits monoid satisfies the 3-Ore condition **iff it is of FC type** (= parabolic subgroups with no ∞ -relation are spherical).
	- \triangleright Reduction is convergent: group of multifractions of the monoid

• Conjecture: Say that reduction is semi-convergent for M if every multifraction representing 1 in $U(M)$ reduces to 1. Then reduction is semi-convergent for every Artin-Tits monoid.

 \triangleright Sufficient for solving the word problem (in the case of an Artin-Tits group).

- Question: How to prove the conjecture for general Artin-Tits groups?
	- ▶ Partial results known (all Artin-Tits groups of "sufficiently large type").
	- \triangleright Most probably relies on the theory of the underlying Coxeter groups.
- Question: Does the convergence of reduction imply torsion-freeness?
- Question: Does this extension of Ore's theorem in the "monoid/group" context make sense in a "ring/skew field" context?
- References:
	- \triangleright P. Dehornoy, Multifraction reduction I: The 3-Ore case and Artin-Tits groups of type FC, J. Comb. Algebra 1 (2017) 185–228 ▶ P. Dehornoy, Multifraction reduction II: Conjectures for Artin-Tits groups J. Comb. Algebra, to appear, arXiv:1606.08995 P. Dehornoy & F. Wehrung, Multifraction reduction III: The case of interval monoids J. Comb. Algebra, to appear, arXiv:1606.09018 ▶ P. Dehornoy, D. Holt, & S. Rees, Multifraction reduction IV: Padding and Artin-Tits groups of sufficiently large type, arXiv:1701.06413

www.math.unicaen.fr/∼dehornoy/