
Garside germs for YBE structure groups,
and an extension of Ore’s theorem

Patrick Dehornoy
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Université de Caen

Groups, Rings and the Yang-Baxter Equation
Spa, June 2017

• Advertizing for two (superficially unrelated) topics:

- W.Rump’s formalism of cycle sets for investigating YBE structure groups:
revisit the Garside and the I-structures, and introduce a finite Coxeter-like quotient,

- a new approach to the word problem of Artin-Tits groups, based on
an extension of Ore’s theorem from fractions to multifractions.



Plan:

• Structure groups of set-theoretic solutions of YBE

◮ 1. RC-calculus
- Solutions of YBE vs. biracks vs. cycle sets
- Revisiting the Garside structure using RC-calculus
- Revisiting the I-structure using RC-calculus

◮ 2. A new application: Garside germs
- The braid germ
- The YBE germ

• A new approach to the word problem of Artin-Tits groups

◮ 3. Multifraction reduction, an extension of Ore’s theorem
- Ore’s classical theorem
- Extending free reduction: (i) division, (ii) reduction
- The case of Artin-Tits groups: theorems and conjectures
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Solutions of YBE vs. cycle sets

• Definition: A set-theoretic solution of YBE is a pair (S, r) where S is a set and r is
a bijection from S × S to itself satisfying

r12r23r12 = r23r12r23

where r ij : S3 → S3 means r acting on the i th and j th entries.

◮ A solution (S, r) = (S, (r1, r2)) is nondegenerate if, for all s, t,

the maps y 7→ r1(s, y) and x 7→ r2(x , t) are bijective.

◮ A solution (S, r) is involutive if r2 = id.

• Changing framework 1 (folklore): view r as a pair of binary operations on S
◮ ”birack”: (S, ⌉, ⌈) where ⌉ and ⌈ are binary operations satisfying...

• Changing framework 2 (W.Rump): invert the operation(s):
◮ If the left translations of a binary operation ⋆ are bijections, there exists ⋆ s.t.

x ⋆ y = z ⇐⇒ x ⋆ z = y

(define x ⋆ z := the unique y satisfying x ⋆ y = z)

◮ Apply this to the operation(s) of a birack.



Inverting the operations

• A (small) miracle occurs: only one operation ∗ and one algebraic law are needed.

• Definition: A (right) cycle set (or RC-system), is a pair (S, ∗) where ∗ obeys

(x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z). (RC)

◮ An RC-quasigroup is a cycle set whose left-translations are bijective.
◮ A cycle set is bijective if (s, t) 7→ (s ∗ t, t ∗ s) is a bijection of S2.

• Theorem (Rump, 2005): (i) If (S, r) is an involutive nondegenerate solution,
then (S, ∗) is a bijective RC-quasigroup, where s ∗ t := the unique r s.t. r1(s, r) = t.

(ii) Conversely, is (S, ∗) is a bijective RC-quasigroup, then (S, r) is an involutive nonde-
generate solution, where r(a, b) := the unique pair (a′, b′) s.t. a∗a′ = b and a′∗a = b′.



RC-calculus

• Claim: One can (easily) develop an “RC-calculus”.

• Definition: For n > 1, define Ω1(x1) := x1 and

Ωn(x1, ..., xn) := Ωn−1(x1, ..., xn−1) ∗ Ωn−1(x1, ..., xn−2, xn).

Similarly, for n > 1, let (where · is another binary operation):

Πn(x1, ..., xn) := Ω1(x1) · Ω2(x1, x2) · ··· · Ωn(x1, ..., xn),

◮ Ω2(x , y) = x ∗ y , and the RC-law is Ω3(x , y , z) = Ω3(y , x , z).

◮ Think of the Ωn as (counterparts of) iterated sums in the RC-world,
and of the Πn as (counterparts of) iterated products.

• Lemma: If (S, ∗) is a cycle set, then, for every π in Sn−1, one has

Ωn(sπ(1), ..., sπ(n−1), sn) = Ωn(s1, ..., sn).

◮ In the language of braces, Ωn(x1, ..., xn) corresponds to (x1 + ··· + xn−1) ∗ xn.

• Lemma: If (S, ∗) is a bijective RC-quasigroup, there exists ∗̃, unique, s.t.

(s, t) 7→ (s ∗̃ t, t ∗̃ s) is the inverse of (s, t) 7→ (s ∗ t, t ∗ s).

Then (S, ∗̃) is a bijective LC-quasigroup and, for s̃i := Ωn(s1, ..., ŝi , , ..., sn, si ), one has

Ωi (sπ(1), ..., sπ(i)) = Ω̃n+1−i (s̃π(i), ..., s̃π(n)),

Πn(s1, ..., sn) = Π̃n(s̃1, ..., s̃n).

◮ “Inversion formulas”; etc. etc.



Structure monoid and group

• Definition: The structure group (resp. monoid) associated with a (nondegenerate
involutive) solution (S, r) of YBE is the group (resp. monoid)

〈S | {ab = a′b′ | a, b, a′, b′ ∈ S satisfying r(a, b) = (a′, b′)}〉.

The structure group (resp. monoid) associated with a cycle set (S, ∗) is the group
(resp. monoid) is

〈S | {s(s ∗ t) = t(t ∗ s) | s 6= t ∈ S}〉. (#)

• Fact: If (S, r) and (S, ∗) correspond to one another,
the structure monoids and groups are the same.

• Claim: RC-calculus gives more simple proofs, and new results naturally occur.
◮ The relations of (#) are “RC-commutation relations” Π2(s, t) = Π2(t, s).
◮ All rules of RC-calculus apply in the structure monoid.



Garside monoids

• Theorem (Chouraqui, 2010): The structure monoid of a solution (S, r) is a Garside
monoid with atom set S.

◮ What does this mean?
◮ «Definition»: A Garside monoid (group) is a monoid (group) that enjoys

all good divisibility properties of Artin’s braid monoids (groups).

• Divisibility relations of a monoid M:

a6 b means ∃b′∈M (ab′ = b),
↑

a left-divides b, or
b is a right-multiple of a

a 6̃ b means ∃b′∈M (b′a = b).
↑

a right-divides b, or
b is a left-multiple of a

• Definition: A Garside monoid is a cancellative monoid M s.t.
◮ There exists λ : M → N s.t. λ(ab) > λ(a) + λ(b) and a 6= 1 ⇒ λ(a) 6= 0;

(”a pseudo-length function”)
◮ The left and right divisibility relations in M form lattices (”gcds and lcms exist”)
◮ The closure of atoms under right-lcm and right-divisor is finite and it coincides
with the closure of the atoms under left-lcm and left-divisor (”simple elements”).



Garside groups

• If M is a Garside monoid, it embeds in its enveloping group, which is a group of left
and right fractions for M.

• Definition: A Garside group is a group G that can be expressed, in at least one way,
as the group of fractions of a Garside monoid (no uniqueness of the monoid in general).

• Example: Artin’s n-strand braid group Bn admits (at least) two Garside structures:
◮ one associated with the braid monoid B+

n , with n − 1 atoms,
n! simples (∼= permutations), the maximal one ∆n of length n(n − 1)/2,

◮ one associated with the dual braid monoid B+∗

n , with n(n − 1)/2 atoms,
Catalann simples (∼= noncrossing partitions), the maximal one δn of length n − 1.

• Why do we care about Garside structures?

◮ The word problem is solvable (in quadratic time).
◮ There is a canonical normal form for the elements (”greedy normal form”).
◮ There is a (bi)-automatic structure.
◮ The (co)homology is efficiently computable.
◮ There is no torsion.

The whole structure is encoded in the (finite) family of simple elements.



Garside structure via RC-calculus

• Assume M is the structure monoid of an RC-quasigroup (S, ∗).

- Step 1: M is left-cancellative and admits right-lcms.
◮ Proof: The RC law directly gives the ”right cube condition”,

implying left-cancellativity and right-lcms. �

- Step 2: M determines (S, ∗).
◮ Proof: S is the atom set of M, and
s ∗ t := s\t for s 6= t, s ∗ s := the unique element of S not in {s\t | t 6=s ∈ S}. �

↑
right-complement of s in t: the (unique) t′ s.t. st′ = right-lcm(s, t).

• Assume moreover that (S, ∗) is bijective.

- Step 3: M is cancellative, it admits lcms on both sides,
and its group is a group of fractions.

◮ Proof: Bijectivity implies the existence of ∗̃ with symmetric properties. �

- Step 4: For s1, ..., sn pairwise distinct, Πn(s1, ..., sn) is the right-lcm of s1, ..., sn,
and the left-lcm of s̃1, ..., s̃n defined by s̃i = Ωn(s1, ..., ŝi , ..., sn, si ).

◮ Proof: Apply the “inversion formulas” of RC-calculus. �



The I-structure

• Revisiting the I-structure with the help of RC-calculus:
“the Cayley graph of the structure group is a copy of the Euclidean lattice Z

#S”.

• Theorem (Gateva-Ivanova, Van den Bergh, 1998): If M is the monoid of a nondege-
nerate involutive solution (S, r), then there exists a bijection ν: N#S → M satisfying
ν(1) = 1, ν(s) = s for s in S, and

{ν(as) | s ∈ S} = {ν(a)s | s ∈ S} for every a in N
#S .

Conversely, every monoid with an I -structure arises in this way.

Proof: If (S, ∗) is an RC-quasigroup and M is the associated monoid, then defining
ν(s1 ··· sn) := Πn(s1, ..., sn) for n := #S

provides a right I -structure on M.

Conversely, if ν is an I -structure, defining ∗ on S by
ν(st) = ν(s) · (s ∗ t)

provides a bijective RC-quasigroup on S. Then π(s) belongs to Sn,
and one has (r∗s)∗(r∗t) = π(rs)(t), so rs = sr in N

n implies the RC law for ∗.
More generally, one obtains π(s1 ··· sp−1)(sp) = Ωp(s1, ..., sp) for every p.
One concludes using Rump’s result that every finite RC-quasigroup is bijective. �

• Once again, the proof seems easier and more explicit when stated in terms of ∗ and RC.
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The braid germ

• The n-strand braid monoid B+
n and group Bn admit the presentation

〈
σ1, ..., σn−1

∣∣∣∣
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

〉
.

Adding the torsion relations σ2
i = 1 gives the Coxeter presentation of Sn in terms of

the family Σ of adjacent transpositions, with

1 −→ PBn −→ Bn
π

−→ Sn −→ 1.

• Claim: The Garside structure of Bn based on B+
n ”comes from” the group Sn:

There exists a (set-theoretic) section σ : Sn ⊂→ B+
n of π s.t.

Im(σ) is the set of simples of B+
n and, for all f , g in Sn,

(∗) σ(f )σ(g) = σ(fg) holds in B+
n iff ℓΣ(f ) + ℓΣ(g) = ℓΣ(fg) holds in Sn,

where ℓΣ(f ) is the Σ-length of f (:= # of inversions).

• Definition: A group W with generating family Σ is a germ for a monoid M if there
exists a projection π : M → W and a section σ : W ⊂→ M of π s.t. M is generated
by Im(σ) and (the counterpart of) (∗) holds. It is a Garside germ if, in addition, M is
a Garside monoid and Im(σ) is the set of simples of M.

◮ Think of M as of an “unfolding” of W .



The braid germ (cont’d)

• So: the symmetric group Sn is a Garside germ for the braid monoid B+
n :

1

s1 s2

s1s2 s2s1

s1s2s1

Cayley graph of S3
w.r.t. adjacent transpositions

1

σ1 σ2

σ1σ2 σ2σ1

∆3

Hasse diagram of left division
for simple elements of B+

3

≃

adding torsion s2i = 1

removing h = fg
for ℓ(h) < ℓ(f ) + ℓ(g)

• Works similarly for every finite Coxeter group with the associated Artin-Tits monoid.

• But: does not extend to arbitrary Garside monoids:

?

1

σ1 σ2 σ1σ2σ
−1
1

δ3

Hasse diagram of left division
for simple elements of B+∗

3

≃

adding ??



The class of an RC-quasigroup

• Finding a germ is difficult: partly open for braid groups of complex reflection groups:
very recent (partial) positive results by Neaime building on Corran–Picantin.

• What for YBE monoids?

◮ Partial positive result by Chouraqui and Godelle (= ”RC-systems of class 2”).

◮ Complete positive result, once again based on RC-calculus.

• Definition: An RC-quasigroup (S, ∗) is of class d if, for all s, t in S

Ωd+1(s, ..., s, t) = t.

◮ class 1: s ∗ t = t,
◮ class 2: (s ∗ s) ∗ (s ∗ t) = t, etc.
◮ for φ an order d permutation, s ∗ t := φ(t) is of class d.

• Lemma: Every RC-quasigroup of cardinal n is of class d for some d < (n2)!.

Proof: The map (s, t) 7→ (s ∗ s, s ∗ t) on S × S is bijective, hence of order 6 (n2)!.
�



A YBE germ

• Notation: x [d ] for Πd (x , ..., x).

• Theorem: Let (S, ∗) be an RC-quasigroup of cardinal n and class d, and let M and G
be associated monoid and group. Then collapsing s [d ] to 1 in G for every s in S gives a
finite group G of order dn that provides a Garside germ for M, with an exact sequence

1 −→ Z
n −→ G −→ G −→ 1.

◮ Entirely similar to the ArtinTits/Coxeter case,
with the ”RC-torsion” relations s [d ] = 1 replacing s2 = 1.

◮ Proof: Use the I -structure to carry the results from the (trivial) case of Zn.
Express the I -structure ν in terms of the RC-polynomials Ω and Π, typically

ν(sda) = Πd+q(s, ..., s, t1, ..., tq)
= Πd (s, ..., s)Πq(Ωd+1(s, ..., s, t1), ...,Ωd+1(s, , ..., s, tq))
= Πd (s, ..., s)Πq(t1, ..., tq) = ν(sd )ν(t1 ··· tq) = s [d ] ν(a).

Then G is G/≡ where g ≡ g ′ means ∀s∈S (#s(ν−1(g)) = #s(ν−1(g ′))mod d). �



An example

• Example: Let S := {a, b, c}, with s ∗ t = φ(t), φ : a 7→ b 7→ c 7→ a, of class 3.

◮ Corresponds to r(a, c) = (b, b), r(b, a) = (c, c), r(c, b) = (a, a).

◮ Then M = 〈a, b, c | ac = b
2, ba = c

2, cb = a
2〉+,

a Garside monoid with 23 simple elements:

1

a b c

b
2

a
2

c
2

∆

◮ Then a
[3] = b

[3] = c
[3] = abc, hence

G := 〈a, b, c | ac = b
2, ba = c

2, cb = a
2, abc = 1〉.

1

a b c

ab b
2 bc a

2
c
2 ca

ac
2

b
2
a ab

2 ∆ ba
2

a
2
b ca

2

b
2
a
2

a
4

b
4

a
2
c
2

c
4

c
2
b
2

b
5

a
5

c
5

∆2



Questions

• Question: Coxeter-like groups are in general larger than the “G 0
S ”s of [Etingof et al., 98].

Which finite groups appear in this way?

◮ Those groups admitting a ”pseudo-I -structure”, with (Z/dZ)n replacing Zn

◮ Those groups embedding in Z/dZ ≀Sn, like [Jespers-Okninski, 2005] with (Z/dZ)n .

• Question: To construct the Garside and I-structures, one uses Rump’s result that finite
RC-quasigroups are bijective. Can one instead prove this result using the Garside structure?

• Question: Does the brace approach make the cycle set approach obsolete?

◮ Can the RC-approach be used to address the left-orderability of the structure group?
◮ Could there exist a skew version of the RC-approach?

• References:

◮ W.Rump: A decomposition theorem for square-free unitary solutions of the quantum
Yang–Baxter equation, Adv. Math. 193 (2005) 40–55

◮ P.Dehornoy, Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, andGarside germs
Adv. Math. 282 (2015) 93–127

◮ P.Dehornoy, with F. Digne, E. Godelle, D.Krammer, J.Michel, Chapter XIII of:

Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 22 (2015)
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The classical Ore theorem

• Notation: U(M):= enveloping group of a monoid M.
◮ ∃φ : M → U(M) s.t. every morphism from M to a group factors through φ.
◮ If M = 〈S | R〉+, then U(M) = 〈S | R〉.

• Theorem (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M
embeds in U(M) and every element of U(M) is represented as ab−1 with a,b in M.

“group of (right) fractions for M ” (a/b)

◮ 2-Ore condition: any two elements admit a common right-multiple.

• Definition: A gcd-monoid is a cancellative monoid,
in which 1 is the only invertible element (so 6 and 6̃ are partial orders) and

any two elements admit a left and a right gcd (greatest lower bounds for 6 and 6̃).

• Corollary: If M is a gcd-monoid satisfying the 2-Ore condition, then M embeds
in U(M) and every element of U(M) is represented by a unique irreducible fraction.

↑
ab−1 with a, b ∈ M and right-gcd(a, b) = 1

• Example: every Garside monoid.



Free reduction

• When the 2-Ore condition fails (no common multiples), no fractional expression.

• Example: M = F+, a free monoid; then M embeds in U(M), a free group;

◮ No fractional expression for the elements of U(M),

◮ But: unique expression a1a
−1
2 a3a

−1
4 ··· with a1, a2, ... in M and

for i odd: ai and ai+1 do not finish with the same letter,
for i even: ai and ai+1 do not begin with the same letter.

◮ a “freely reduced word”

• Proof: (easy) Introduce rewrite rules on finite sequences of positive words:

◮ rule Di,x :=

{
for i odd, delete x at the end of ai and ai+1 (if possible...),

for i even, delete x at the beginning of ai and ai+1 (if possible...).

◮ Then the system of all rules Di,x is (locally) confluent:

a

b c

Di,x Dj,y

∃d

◮ Every sequence a rewrites into a unique irreducible sequence (“convergence”). �



Division

• When M is not free, the rewrite rule Di,x can still be given a meaning:
◮ no first or last letter,
◮ but left- and right-divisors: x 6 a means “x is a possible beginning of a”.

◮ rule Di,x :=

{
for i odd, right-divide ai and ai+1 by x (if possible...),

for i even, left-divide ai and ai+1 by x (if possible...).

• Example: M = B+
3 = 〈a, b | aba = bab〉+;

◮ start with the sequence (a, aba, b), better written as a “multifraction” a/aba/b:

(think of a1/a2/a3/... as a sequence representing a1a
−1
2 a3a

−1
4 ... in U(M))

a/aba/ba/aba/b

1/ab/b

D1,a

a/bab/ba/bab/b

a/ab/1

D2,b

∃d

◮ no hope of confluence... hence consider more general rewrite rules.



Reduction

• Diagrammatic representation of elements of M: a 7→ a, and multifractions:

a1 a2 a3 ... 7→ a1/a2/a3/... 7→ φ(a1)φ(a2)
−1φ(a3)... in U(M).

◮ Then: commutative diagram ↔ equality in U(M).

• Diagram for Di,x (division by x at level i): declare a • Di,x = b for

...
ai−1

ai ai+1

...x
ai−1

ai ai+1

bi bi+1

x
ai−1

ai ai+1

bi bi+1

x ......

ai−1

ai−1

ai ai+1

bi
bi+1

x ...

ai−1
ai ai+1

ai−1 bi
bi+1

x ...

• Relax “x divides ai” to ”lcm(x , ai ) exists”: declare a • R i,x = b for

...

ai−1
ai ai+1

...x

ai−1
ai ai+1

x

bi+1bi

y

bi−1

ai−1
ai ai+1

bi−1 bi
bi+1

xy ...

• Definition: “b obtained from a by reducing x at level i”:
divide ai+1 by x, push x through ai using lcm, multiply ai−1 by the remainder y.



Reduction (cont’d)

• Fact: b = a • Ri,x implies that a and b represent the same element in U(M).

◮ Proof: We walk in the Cayley graph, replacing one path with an equivalent one. �

• Example: M = B+
3 with 1/ab/b:

1
ab

b

b

1

b and ab admit a common multiple
◮ we can push b through ab:

ab

a

a

◮ a/ab/1 = 1/ab/b • R2,b

and now
a/aba/b

1/ab/b

D1,a

a/ab/1

D2,b

R2,b

◮ possible confluence ?

◮ In this way: for every gcd-monoid M, a rewrite system RM (“reduction”).



The 3-Ore case

• Theorem 1: (i) If M is a noetherian gcd-monoid satisfying the 3-Ore condition, then M
embeds in U(M) and every element of U(M) is represented by a unique RM -irreducible
multifraction; in particular, a multifraction a represents 1 in U(M) iff it reduces to 1.

(ii) If, moreover, M is strongly noetherian and has finitely many basic elements, the
above method makes the word problem for U(M) decidable.

◮ M is noetherian: no infinite descending sequence for left- and right-divisibility.
◮ M is strongly noetherian: exists a pseudo-length function on M. (⇒ noetherian)
◮ M satisfies the 3-Ore condition: three elements that pairwise admit

a common multiple admit a global one. (2-Ore ⇒ 3-Ore)
◮ right-basic elements: obtained from atoms repeatedly using

the right-complement operation: (x , y) 7→ x ′ s.t. yx ′ = right-lcm(x , y).



The universal recipe

• Fact: If a noetherian gcd-monoid M satisfies the 3-Ore condition, then,
for every multifraction a and every i < ‖a‖ (depth of a:= # entries in a),

there exists a unique maximal level i reduction applying to a.

• Theorem 2: For every n, there exists a universal sequence of integers U(n) s.t.,
if M is any noetherian gcd-monoid satisfying the 3-Ore condition

and a is any depth n multifraction representing 1 in U(M),
then a reduces to 1 by maximal reductions at successive levels U(n).

◮ Example: U(8) = (1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 1, 2, 3, 1).



The universal van Kampen diagrams

• Corollary: For every n, there exists a universal diagram Γn s.t.,
if M is any noetherian gcd-monoid satisfying the 3-Ore condition

and a is any depth n multifraction representing 1 in U(M),
then some M-labelling of Γn is a van Kampen diagram with boundary a.

a1

a2 a3

a4
∗

Γ4

a1

a2

a3 a4

a5

a6∗

Γ6

a1

a2

a3

a4 a5

a6

a7

a8∗

Γ8



Artin–Tits groups

• An Artin-Tits monoid: 〈S | R〉+ such that, for all s, t in S,
there is at most one relation s... = t... in R and, if so, the relation has the form

stst... = tsts..., both terms of same length (a “braid relation”).

• Theorem (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition
iff it is of spherical type (= the associated Coxeter group is finite).

◮ “Garside theory”: group of fractions of the monoid

• Theorem: An Artin-Tits monoid satisfies the 3-Ore condition
iff it is of FC type (= parabolic subgroups with no ∞-relation are spherical).

◮ Reduction is convergent: group of multifractions of the monoid

• Conjecture: Say that reduction is semi-convergent for M if
every multifraction representing 1 in U(M) reduces to 1.

Then reduction is semi-convergent for every Artin-Tits monoid.

◮ Sufficient for solving the word problem (in the case of an Artin-Tits group).



Questions

• Question: How to prove the conjecture for general Artin-Tits groups?

◮ Partial results known (all Artin-Tits groups of “sufficiently large type”).
◮ Most probably relies on the theory of the underlying Coxeter groups.

• Question: Does the convergence of reduction imply torsion-freeness?

• Question: Does this extension of Ore’s theorem in the “monoid/group” context
make sense in a “ring/skew field” context?
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