

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Self-distributive systems and quandle (co)homology theory in algebra and low-dimensional topology, Pusan, June 2017

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Self-distributive systems and quandle (co)homology theory in algebra and low-dimensional topology, Pusan, June 2017

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Self-distributive systems and quandle (co)homology theory in algebra and low-dimensional topology, Pusan, June 2017

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Many things are known about shelves (SD-structures that need not be racks).

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Self-distributive systems and quandle (co)homology theory in algebra and low-dimensional topology, Pusan, June 2017

- Many things are known about shelves (SD-structures that need not be racks).
- Here special emphasis on the connection with braids and with set theory.

< ロ > < 母 > < 主 > < 主 > 三 の < で</p>

- 1. Braid colorings Diagrams and Reidemeister moves
 - Diagram colorings
 - Quandles, racks, and shelves

- 1. Braid colorings
 - Diagrams and Reidemeister moves

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

- Diagram colorings
- Quandles, racks, and shelves
- 2. The SD-world
 - Classical and exotic examples
 - The world of shelves

- 1. Braid colorings
 - Diagrams and Reidemeister moves
 - Diagram colorings
 - Quandles, racks, and shelves
- 2. The SD-world
 - Classical and exotic examples
 - The world of shelves
- 3. The braid shelf
 - The braid operation
 - Larue's lemma and free subshelves

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

- Special braids

- 1. Braid colorings
 - Diagrams and Reidemeister moves
 - Diagram colorings
 - Quandles, racks, and shelves
- 2. The SD-world
 - Classical and exotic examples
 - The world of shelves
- 3. The braid shelf
 - The braid operation
 - Larue's lemma and free subshelves
 - Special braids
- 4. The free monogenerated shelf
 - Terms and trees
 - The comparison property
 - The Thompson's monoid of SD

- 1. Braid colorings
 - Diagrams and Reidemeister moves
 - Diagram colorings
 - Quandles, racks, and shelves
- 2. The SD-world
 - Classical and exotic examples
 - The world of shelves
- 3. The braid shelf
 - The braid operation
 - Larue's lemma and free subshelves
 - Special braids
- 4. The free monogenerated shelf
 - Terms and trees
 - The comparison property
 - The Thompson's monoid of SD
- 5. The set-theoretic shelf
 - Set theory and large cardinals

- Elementary embeddings
- The iteration shelf

- 1. Braid colorings
 - Diagrams and Reidemeister moves
 - Diagram colorings
 - Quandles, racks, and shelves
- 2. The SD-world
 - Classical and exotic examples
 - The world of shelves
- 3. The braid shelf
 - The braid operation
 - Larue's lemma and free subshelves
 - Special braids
- 4. The free monogenerated shelf
 - Terms and trees
 - The comparison property
 - The Thompson's monoid of SD
- 5. The set-theoretic shelf
 - Set theory and large cardinals
 - Elementary embeddings
 - The iteration shelf
- 6. Using set theory to investigate Laver tables

- Quotients of the iteration shelf
- A dictionary
- Results about periods

- 1. Braid colorings
 - Diagrams and Reidemeister moves
 - Diagram colorings
 - Quandles, racks, and shelves
- 2. The SD-world
 - Classical and exotic examples
 - The world of shelves
- 3. The braid shelf
 - The braid operation
 - Larue's lemma and free subshelves
 - Special braids
- 4. The free monogenerated shelf
 - Terms and trees
 - The comparison property
 - The Thompson's monoid of SD
- 5. The set-theoretic shelf
 - Set theory and large cardinals
 - Elementary embeddings
 - The iteration shelf
- 6. Using set theory to investigate Laver tables

- Quotients of the iteration shelf
- A dictionary
- Results about periods

▶ projections of curves embedded in \mathbb{R}^3

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▶ projections of curves embedded in \mathbb{R}^3

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Generic question: recognizing whether two diagrams are (projections of) isotopic figures

▶ projections of curves embedded in \mathbb{R}^3

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 Generic question: recognizing whether two diagrams are (projections of) isotopic figures
find isotopy invariants.

- type I :

- type I :

 \sim

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type I :

~ ~ \

- type II :

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type III :

• Fix a set (of colors) S equipped with two operations $\triangleleft, \overline{\triangleleft}$,

• Fix a set (of colors) *S* equipped with two operations ⊲, ⊲, and color the strands in diagrams obeying the rules:

• Fix a set (of colors) *S* equipped with two operations ⊲, ⊲, and color the strands in diagrams obeying the rules:

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Fix a set (of colors) *S* equipped with two operations ⊲, ⊲, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Fix a set (of colors) *S* equipped with two operations ⊲, ⊲, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Fix a set (of colors) *S* equipped with two operations ⊲, ⊲, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

• Fix a set (of colors) *S* equipped with two operations ⊲, ⊲, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

• Fix a set (of colors) *S* equipped with two operations ⊲, ⊲, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

 Fix a set (of colors) S equipped with two operations ⊲, ⊲, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

▶ Hence: S-colorings invariant under Reidemeister move III \Leftrightarrow (S, \triangleleft) is a shelf

 Fix a set (of colors) S equipped with two operations ⊲, ⊲, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

- ▶ Hence: S-colorings invariant under Reidemeister move III \Leftrightarrow (S, \triangleleft) is a shelf
- <u>Proposition</u>: Whenever (S, \triangleleft) is a shelf, diagram coloring provides a well defined action of the braid monoid B_n^+ on S^n for every n.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Idem for Reidemeister move II:

• Idem for Reidemeister move II:

• Lemma: There exists *¬* satisfying (x ⊲ y) *¬* y = x and (x ¬ y) *¬* y = x iff the right translations of (S, ¬) are bijections.

Idem for Reidemeister move II:

- Lemma: There exists *¬* satisfying (x ⊲ y) *¬* y = x and (x ¬ y) *¬* y = x iff the right translations of (S, ¬) are bijections.
 - ► Hence: S-colorings invariant under Reidemeister moves $II+III \Leftrightarrow$ (S, \triangleleft) is a shelf with bijective right translations

Idem for Reidemeister move II:

- Lemma: There exists ¬ satisfying (x ⊲ y) ¬y = x and (x ¬y) ¬y = x iff the right translations of (S, ¬) are bijections.
 - ► Hence: S-colorings invariant under Reidemeister moves $II+III \Leftrightarrow$ (S, <) is a shelf with bijective right translations

Idem for Reidemeister move II:

- Lemma: There exists *¬* satisfying (x ⊲ y) *¬* y = x and (x ¬ y) *¬* y = x iff the right translations of (S, ¬) are bijections.
 - ► Hence: S-colorings invariant under Reidemeister moves II+III ⇔ (S, ⊲) is a shelf with bijective right translations a rack
- <u>Proposition</u>: Whenever (S, \triangleleft) is a rack, diagram coloring provides a well defined action of the braid group B_n on S^n for every n.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Idem for Reidemeister move I:

► Hence: S-colorings invariant under Reidemeister moves $I+II+III \Leftrightarrow$ (S, <) is an idempotent rack

• Idem for Reidemeister move I:

• <u>Theorem</u> (Joyce, Matveev): Define the fundamental quandle of the closure of an *n*-strand braid β to be $\langle a_1, ..., a_n \mid a_1 = a'_1, ..., a_n = a'_n \rangle_{quandle}$

Idem for Reidemeister move I:

• Theorem (Joyce, Matveev): Define the fundamental guandle of the closure of an *n*-strand braid β to be $\langle a_1, ..., a_n \mid a_1 = a'_1, ..., a_n = a'_n \rangle_{auandle}$

• Idem for Reidemeister move I:

• <u>Theorem</u> (Joyce, Matveev): Define the fundamental quandle of the closure of an *n*-strand braid β to be $\langle a_1, ..., a_n \mid a_1 = a'_1, ..., a_n = a'_n \rangle_{quandle}$

where $a'_1, ..., a'_n$ are the output colors in (a diagram of) β with input colors $a_1, ..., a_n$.

Then the fundamental quandle is a complete isotopy invariant up to mirror symmetry.

• Example:

The trefoil knot:

• <u>Theorem</u> (Joyce, Matveev): Define the fundamental quandle of the closure of an *n*-strand braid β to be

 $\langle a_1,...,a_n \mid a_1 = a_1',...,a_n = a_n'
angle_{ ext{quandle}}$

• <u>Theorem</u> (Joyce, Matveev): Define the fundamental quandle of the closure of an *n*-strand braid β to be

 $\langle a_1,...,a_n \mid a_1 = a_1',...,a_n = a_n'
angle_{quandle}$

• Theorem (Joyce, Matveev): Define the fundamental guandle of the closure of an *n*-strand braid β to be (a

$$a_1,...,a_n \mid a_1 = a_1',...,a_n = a_n'
angle_{quandle}$$

• <u>Theorem</u> (Joyce, Matveev): Define the fundamental quandle of the closure of an *n*-strand braid β to be

 $\langle a_1,...,a_n \mid a_1 = a_1',...,a_n = a_n'
angle_{\it quandle}$

• Theorem (Joyce, Matveev): Define the fundamental guandle of the closure of an *n*-strand braid β to be (a

$$a_1,...,a_n \mid a_1 = a_1',...,a_n = a_n'
angle_{quandle}$$

• Theorem (Joyce, Matveev): Define the fundamental guandle of the closure of an *n*-strand braid β to be (a

$$a_1,...,a_n\mid a_1=a_1',...,a_n=a_n'
angle_{quandle}$$

where $a'_1, ..., a'_n$ are the output colors in (a diagram of) β with input colors $a_1, ..., a_n$. Then the fundamental quandle is a complete isotopy invariant up to mirror symmetry.

• Theorem (Joyce, Matveev): Define the fundamental guandle of the closure of an *n*-strand braid β to be (a

$$|a_1,...,a_n\mid a_1=a_1',...,a_n=a_n'
angle_{quandle}$$

• Quandles and racks have being used successfully in knot theory

• Quandles and racks have being used successfully in knot theory in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - のへで

• Quandles and racks have being used successfully in knot theory in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

• Quandles and racks have being used successfully in knot theory in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

• <u>Main question</u>: Could shelves that are not racks be useful in topology?

• Bad news: General shelves are very different from racks.

• Quandles and racks have being used successfully in knot theory in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

- Bad news: General shelves are very different from racks.
 - ▶ Precise meaning: free racks are very special shelves...

• Quandles and racks have being used successfully in knot theory in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

- Bad news: General shelves are very different from racks.
 - ▶ Precise meaning: free racks are very special shelves...
 - ▶ Presumably much work to adapt the results. (?)

• Quandles and racks have being used successfully in knot theory in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

- Bad news: General shelves are very different from racks.
 - ▶ Precise meaning: free racks are very special shelves...
 - ▶ Presumably much work to adapt the results. (?)
- Good news: General shelves are very different from racks.

• Quandles and racks have being used successfully in knot theory in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

- Bad news: General shelves are very different from racks.
 - ▶ Precise meaning: free racks are very special shelves...
 - ▶ Presumably much work to adapt the results. (?)
- Good news: General shelves are very different from racks.
 - ▶ If general shelves can be used, one can expect really new applications.

• Quandles and racks have being used successfully in knot theory in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

- Bad news: General shelves are very different from racks.
 - ▶ Precise meaning: free racks are very special shelves...
 - ▶ Presumably much work to adapt the results. (?)
- Good news: General shelves are very different from racks.
 - ▶ If general shelves can be used, one can expect really new applications.
 - Explore the world of shelves...

• An example (of using non-rack shelves): the partial action of braids on a right-cancellative shelf

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

- An example (of using non-rack shelves): the partial action of braids on a right-cancellative shelf
- Assume that (S, \triangleleft) is a right-cancellative shelf $a \triangleleft b = a' \triangleleft b \Rightarrow a = a'$: right translations are injective

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- An example (of using non-rack shelves): the partial action of braids on a right-cancellative shelf
- Assume that (S, \triangleleft) is a right-cancellative shelf $a \triangleleft b = a' \triangleleft b \Rightarrow a = a'$: right translations are injective

Then one can define

$$a \rightarrow b$$
 and $b \rightarrow a$ and $a \rightarrow b$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- An example (of using non-rack shelves): the partial action of braids on a right-cancellative shelf
- Assume that (S, ⊲) is a right-cancellative shelf
 a ⊲ b = a' ⊲ b ⇒ a = a': right translations are injective

Then one can define

$$a \land b$$

 $a \land b$
 $b \land c \land a = b$, if it exists.

- An example (of using non-rack shelves): the partial action of braids on a right-cancellative shelf
- Assume that (S, \triangleleft) is a right-cancellative shelf $a \triangleleft b = a' \triangleleft b \Rightarrow a = a'$: right translations are injective Then one can define $b \longrightarrow a \triangleleft b$ $a \triangleleft b$ $b \longrightarrow a \dashv b$ $a \triangleleft b$ $a \dashv b$ a
- Proposition: One obtains in this way a well-defined partial action of B_n on S^n , s.t.

(日) (日) (日) (日) (日) (日) (日) (日)

- An example (of using non-rack shelves): the partial action of braids on a right-cancellative shelf

$$a \rightarrow b$$

 $a \rightarrow b$ and $b \rightarrow a$
 $a \rightarrow b$ the unique c s.t. $c \triangleleft a = b$, if it exists.

Proposition: One obtains in this way a well-defined partial action of B_n on Sⁿ, s.t.
 For all n-strand braid words w₁,..., w_p,

there exists at least one sequence \vec{a} in S^n s.t. $\vec{a} \cdot w_i$ is defined for each *i*.
- An example (of using non-rack shelves): the partial action of braids on a right-cancellative shelf
- Assume that (S, \triangleleft) is a right-cancellative shelf $a \triangleleft b = a' \triangleleft b \stackrel{!}{\Rightarrow} a = a'$: right translations are injective

Then one can define

$$a \rightarrow b$$

 $a \rightarrow b$
 $b \rightarrow c \rightarrow a$
 $a \rightarrow b$
 $a \rightarrow c \rightarrow b$
 $a \rightarrow c \rightarrow b$, if it exists.

• Proposition: One obtains in this way a well-defined partial action of B_n on S^n , s.t. For all *n*-strand braid words $w_1, ..., w_p$,

there exists at least one sequence \vec{a} in S^n s.t. $\vec{a} \cdot w_i$ is defined for each *i*.

▶ If w, w' are equivalent n-strand braid words and $\vec{a} \cdot w$ and $\vec{a} \cdot w'$ are defined,

then $\vec{a} \cdot w = \vec{a} \cdot w'$ holds.

- An example (of using non-rack shelves): the partial action of braids on a right-cancellative shelf
- Assume that (S, ⊲) is a right-cancellative shelf $a \triangleleft b = a' \triangleleft b \stackrel{!}{\Rightarrow} a = a'$: right translations are injective

Then one can define

$$a \rightarrow b$$

 $a \rightarrow b$
 $b \rightarrow c \rightarrow a$
 $a \rightarrow b$
 $a \rightarrow c \rightarrow b$
 $a \rightarrow c \rightarrow b$, if it exists.

• Proposition: One obtains in this way a well-defined partial action of B_n on S^n , s.t. For all *n*-strand braid words $w_1, ..., w_p$,

there exists at least one sequence \vec{a} in S^n s.t. $\vec{a} \cdot w_i$ is defined for each *i*.

▶ If w, w' are equivalent n-strand braid words and $\vec{a} \cdot w$ and $\vec{a} \cdot w'$ are defined,

then $\vec{a} \cdot w = \vec{a} \cdot w'$ holds.

Proof: Not trivial, uses the Garside structure of braids.

- An example (of using non-rack shelves): the partial action of braids on a right-cancellative shelf

Then one can define

$$a \rightarrow b$$

 $a \rightarrow b$
 $b \rightarrow c \rightarrow a$
 $a \rightarrow b$
 $a \rightarrow c \rightarrow b$
 $a \rightarrow c \rightarrow b$, if it exists.

<u>Proposition</u>: One obtains in this way a well-defined partial action of B_n on Sⁿ, s.t.
 For all n-strand braid words w₁,..., w_p,

there exists at least one sequence \vec{a} in S^n s.t. $\vec{a} \cdot w_i$ is defined for each *i*.

▶ If w, w' are equivalent *n*-strand braid words and $\vec{a} \cdot w$ and $\vec{a} \cdot w'$ are defined,

then $\vec{a} \cdot w = \vec{a} \cdot w'$ holds.

Proof: Not trivial, uses the Garside structure of braids.

→ a usable partial action...

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S

• <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$,

• <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ► An orderable shelf is never a rack.

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

```
b \triangleleft (a \triangleleft a)
```

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

 $b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

 $b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a$

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

 $b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

$$b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$.

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

 $b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$. If (S, \triangleleft) is orderable, $a \triangleleft a < a \triangleleft (a \triangleleft a)$.

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

 $b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$. If (S, \triangleleft) is orderable, $a \triangleleft a < a \triangleleft (a \triangleleft a)$.

► An orderable shelf is right-cancellative:

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

 $b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$. If (S, \triangleleft) is orderable, $a \triangleleft a < a \triangleleft (a \triangleleft a)$.

▶ An orderable shelf is right-cancellative: $a \neq b$ implies a < b or b < a,

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

 $b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$. If (S, \triangleleft) is orderable, $a \triangleleft a < a \triangleleft (a \triangleleft a)$.

▶ An orderable shelf is right-cancellative: $a \neq b$ implies a < b or b < a,

whence $a \triangleleft c < b \triangleleft c$ or $a \triangleleft c > b \triangleleft c$,

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

 $b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$. If (S, \triangleleft) is orderable, $a \triangleleft a < a \triangleleft (a \triangleleft a)$.

▶ An orderable shelf is right-cancellative: $a \neq b$ implies a < b or b < a,

whence $a \triangleleft c < b \triangleleft c$ or $a \triangleleft c > b \triangleleft c$, then $a \triangleleft c \neq b \triangleleft c$.

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

 $b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$. If (S, \triangleleft) is orderable, $a \triangleleft a < a \triangleleft (a \triangleleft a)$.

- ► An orderable shelf is right-cancellative: $a \neq b$ implies a < b or b < a, whence $a \triangleleft c < b \triangleleft c$ or $a \triangleleft c > b \triangleleft c$, then $a \triangleleft c \neq b \triangleleft c$.
- Coloring braids using an orderable shelf directly provides a linear ordering of braids:

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - ▶ An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

$$b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$. If (S, \triangleleft) is orderable, $a \triangleleft a < a \triangleleft (a \triangleleft a)$.

- ► An orderable shelf is right-cancellative: $a \neq b$ implies a < b or b < a, whence $a \triangleleft c < b \triangleleft c$ or $a \triangleleft c > b \triangleleft c$, then $a \triangleleft c \neq b \triangleleft c$.
- Coloring braids using an orderable shelf directly provides a linear ordering of braids:

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

$$b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$. If (S, \triangleleft) is orderable, $a \triangleleft a \triangleleft a \triangleleft (a \triangleleft a)$.

- ► An orderable shelf is right-cancellative: $a \neq b$ implies a < b or b < a, whence $a \triangleleft c < b \triangleleft c$ or $a \triangleleft c > b \triangleleft c$, then $a \triangleleft c \neq b \triangleleft c$.
- Coloring braids using an orderable shelf directly provides a linear ordering of braids:

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t. a < b implies $a \triangleleft c < b \triangleleft c$, and $a < b \triangleleft a$ always holds.
 - ► Orderable shelves exist (see later...)
 - An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

$$b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$. If (S, \triangleleft) is orderable, $a \triangleleft a < a \triangleleft (a \triangleleft a)$.

- ► An orderable shelf is right-cancellative: $a \neq b$ implies a < b or b < a, whence $a \triangleleft c < b \triangleleft c$ or $a \triangleleft c > b \triangleleft c$, then $a \triangleleft c \neq b \triangleleft c$.
- Coloring braids using an orderable shelf directly provides a linear ordering of braids:

⊲ *a*.

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t.
 a < b implies a ⊲ c < b ⊲ c, and a < b ⊲ a always holds.
 - ► Orderable shelves exist (see later...)
 - An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

$$b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b$$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$. If (S, \triangleleft) is orderable, $a \triangleleft a < a \triangleleft (a \triangleleft a)$.

- ► An orderable shelf is right-cancellative: $a \neq b$ implies a < b or b < a, whence $a \triangleleft c < b \triangleleft c$ or $a \triangleleft c > b \triangleleft c$, then $a \triangleleft c \neq b \triangleleft c$.
- Coloring braids using an orderable shelf directly provides a linear ordering of braids:

- <u>Definition</u>: A shelf is orderable if there exists a linear ordering < on S s.t.
 a < b implies a ⊲ c < b ⊲ c, and a < b ⊲ a always holds.
 - Orderable shelves exist (see later...)
 - An orderable shelf is never a rack. If (S, \triangleleft) is a rack:

$$b \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft (a \triangleleft a) = ((b \triangleleft a) \triangleleft a) \triangleleft a = b \triangleleft a,$$

hence in particular $a \triangleleft a = a \triangleleft (a \triangleleft a)$. If (S, \triangleleft) is orderable, $a \triangleleft a < a \triangleleft (a \triangleleft a)$.

- An orderable shelf is right-cancellative: a ≠ b implies a < b or b < a, whence a ⊲ c < b ⊲ c or a ⊲ c > b ⊲ c, then a ⊲ c ≠ b ⊲ c.
- Coloring braids using an orderable shelf directly provides a linear ordering of braids:

► Then define $\beta < \beta'$ iff $\vec{a} \cdot \beta < \overset{\text{Lex}}{\uparrow} \vec{a} \cdot \beta'$.

 $(b_1 < b_1^\prime)$ or $(b_1 = b_1^\prime$ and $b_2 < b_2^\prime)$ or etc.

Plan:

- 1. Braid colorings
 - Diagrams and Reidemeister moves
 - Diagram colorings
 - Quandles, racks, and shelves
- 2. The SD-world
 - Classical and exotic examples
 - The world of shelves
- 3. The braid shelf
 - The braid operation
 - Larue's lemma and free subshelves
 - Special braids
- 4. The free monogenerated shelf
 - Terms and trees
 - The comparison property
 - The Thompson's monoid of SD
- 5. The set-theoretic shelf
 - Set theory and large cardinals
 - Elementary embeddings
 - The iteration shelf
- 6. Using set theory to investigate Laver tables

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Quotients of the iteration shelf
- A dictionary
- Results about periods

• "Trivial" shelves:

• "Trivial" shelves: S a set, f a map $S \rightarrow S$,

• "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - A rack iff f is a permutation of S.

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - A rack iff f is a permutation of S.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves:

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - A rack iff f is a permutation of S.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice,

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - A rack iff f is a permutation of S.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - A rack iff f is a permutation of S.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$:

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - A rack iff f is a permutation of S.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - \blacktriangleright A non-idempotent related example: *B* a Boolean algebra,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - ▶ A non-idempotent related example: *B* a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - ▶ A non-idempotent related example: *B* a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - ▶ A non-idempotent related example: *B* a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Alexander shelves:

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - ▶ A non-idempotent related example: *B* a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - ▶ A non-idempotent related example: *B* a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - ▶ A non-idempotent related example: *B* a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

• A rack (even a quandle) iff t is invertible in R.

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - ▶ A non-idempotent related example: *B* a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- A rack (even a quandle) iff t is invertible in R.
- ▶ In particular: symmetries in \mathbb{R}^n :

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- A rack (even a quandle) iff t is invertible in R.
- ▶ In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -2x + y$

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - ▶ A non-idempotent related example: *B* a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- A rack (even a quandle) iff t is invertible in R.
- ▶ In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -2x + y$ (\rightsquigarrow root systems).

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - ▶ A non-idempotent related example: *B* a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- A rack (even a quandle) iff t is invertible in R.
- ▶ In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -2x + y$ (\rightsquigarrow root systems).
- Conjugacy quandles:

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- A rack (even a quandle) iff t is invertible in R.
- ▶ In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -2x + y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- A rack (even a quandle) iff t is invertible in R.
- ▶ In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -2x + y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
 - ► Always a quandle.

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- A rack (even a quandle) iff t is invertible in R.
- ▶ In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -2x + y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
 - ► Always a quandle.
 - \blacktriangleright In particular: the free quandle based on X when G is the free group based on X.

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- A rack (even a quandle) iff t is invertible in R.
- ▶ In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -2x + y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
 - ► Always a quandle.
 - ▶ In particular: the free quandle based on X when G is the free group based on X.

when viewed as $(Q, \triangleleft, \overline{\triangleleft})$:

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- ▶ A rack (even a quandle) iff t is invertible in R.
- ▶ In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -2x + y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
 - ► Always a quandle.
 - ▶ In particular: the free quandle based on X when G is the free group based on X.

when viewed as (Q, \triangleleft, \neg) : (F_X, \triangleleft) is <u>not</u> a free idempotent shelf, it satisfies other laws: $x \triangleleft (y \triangleleft (y \triangleleft x)) = (x \triangleleft (x \triangleleft y)) \triangleleft (y \triangleleft x), \dots$ (Drápal-Kepka-Musílek, Larue)

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - A rack iff f is a permutation of S.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - ▶ A non-idempotent related example: *B* a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- A rack (even a quandle) iff t is invertible in R.
- ▶ In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -2x + y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
 - ► Always a quandle.
 - ▶ In particular: the free quandle based on X when G is the free group based on X.

when viewed as (Q, \triangleleft, \neg) : (F_X, \triangleleft) is <u>not</u> a free idempotent shelf, it satisfies other laws: $x \triangleleft (y \triangleleft (y \triangleleft x)) = (x \triangleleft (x \triangleleft y)) \triangleleft (y \triangleleft x), \dots$ (Drápal-Kepka-Musílek, Larue)

► Variants: $x \triangleleft y := y^{-n} x y^n$,

- "Trivial" shelves: S a set, f a map $S \rightarrow S$, and $x \triangleleft y := f(x)$.
 - ▶ A rack iff *f* is a permutation of *S*.
 - ▶ In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
 - ▶ In particular: the augmentation rack: \mathbb{Z} with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \lor, 0)$ a (semi)-lattice, and $x \triangleleft y := x \lor y$.
 - ▶ Idempotent; never a rack for $\#L \ge 2$: always $0 \triangleleft x = x \triangleleft x (=x)$.
 - A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \lor y^c$.

• Alexander shelves: R a ring, t an element of R, E an R-module,

and $x \triangleleft y := (1 - t)x + ty$.

- ▶ A rack (even a quandle) iff t is invertible in R.
- ▶ In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -2x + y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
 - ► Always a quandle.
 - ▶ In particular: the free quandle based on X when G is the free group based on X.

when viewed as (Q, \triangleleft, \neg) : (F_X, \triangleleft) is <u>not</u> a free idempotent shelf, it satisfies other laws: $x \triangleleft (y \triangleleft (y \triangleleft x)) = (x \triangleleft (x \triangleleft y)) \triangleleft (y \triangleleft x), \dots$ (Drápal-Kepka-Musílek, Larue)

▶ Variants: $x \triangleleft y := y^{-n}xy^n$, $x \triangleleft y := f(y^{-1}x)y$ with $f \in Aut(G)$, ...

• Core (or sandwich) quandles:

• Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x,g) \triangleleft (y,h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x,g) \triangleleft (y,h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x, g) \triangleleft (y, h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.
 - ▶ the free rack based on X when G is the free group based on X.

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x, g) \triangleleft (y, h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.
 - the free rack based on X when G is the free group based on X.
- The injection shelf:

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x,g) \triangleleft (y,h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.
 - the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \Im_X monoid of all injections from X to itself,

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x,g) \triangleleft (y,h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.
 - the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, ℑ_X monoid of all injections from X to itself, and f ⊲ g(x) := g(f(g⁻¹(x))) for x ∈ Im(g), and f ⊲ g(x) := x otherwise.

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x,g) \triangleleft (y,h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.
 - the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, ℑ_X monoid of all injections from X to itself, and f ⊲ g(x) := g(f(g⁻¹(x))) for x ∈ Im(g), and f ⊲ g(x) := x otherwise.
 - ▶ In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n+1$:

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x,g) \triangleleft (y,h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.
 - ▶ the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, ℑ_X monoid of all injections from X to itself, and f ⊲ g(x) := g(f(g⁻¹(x))) for x ∈ Im(g), and f ⊲ g(x) := x otherwise.
 - ▶ In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x,g) \triangleleft (y,h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.
 - ▶ the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, ℑ_X monoid of all injections from X to itself, and f ⊲ g(x) := g(f(g⁻¹(x))) for x ∈ Im(g), and f ⊲ g(x) := x otherwise.
 - ▶ In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x,g) \triangleleft (y,h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.
 - the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, ℑ_X monoid of all injections from X to itself, and f ⊲ g(x) := g(f(g⁻¹(x))) for x ∈ Im(g), and f ⊲ g(x) := x otherwise.
 - ▶ In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x,g) \triangleleft (y,h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.
 - the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, ℑ_X monoid of all injections from X to itself, and f ⊲ g(x) := g(f(g⁻¹(x))) for x ∈ Im(g), and f ⊲ g(x) := x otherwise.
 - ▶ In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G, and $(x,g) \triangleleft (y,h) := (x, h^{-1}y^{-1}gyh)$ on $X \times G$.
 - ▶ Not idempotent for $X \not\subseteq Z(G)$.
 - the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, ℑ_X monoid of all injections from X to itself, and f ⊲ g(x) := g(f(g⁻¹(x))) for x ∈ Im(g), and f ⊲ g(x) := x otherwise.
 - ▶ In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

• Braid shelf: B_{∞} braid group,

• Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$,
• Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \mathsf{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \mathsf{sh}(\alpha) \cdot \beta$.

• Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.

▶ Part 3 below

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ► A variant: charged braids

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ► A variant: charged braids (realization of free shelves with ≥2 generators)

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥ 2 generators)

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥ 2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

► Another variant: transfinite braids

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ► A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

► Another variant: transfinite braids (with a second, associative operation)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − つへつ

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ► A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

► Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

► Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

Another variant: parenthezised braids

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

► Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

► Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409]

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

► Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

• Free shelves:

A D M A

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

► Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

- Free shelves:
 - ▶ Case of one generator: Part 4 below

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

- Free shelves:
 - ► Case of one generator: Part 4 below
 - \blacktriangleright Case of $\geqslant\!2$ generators: a lexicographic extension of the case of one generator

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

► Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

- Free shelves:
 - Case of one generator: <u>Part 4</u> below
 - ▶ Case of ≥ 2 generators: a lexicographic extension of the case of one generator

[P.D. A canonical ordering for free LD systems, Proc. Amer. Math. Soc. 122 (1994) 31-37]

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

► Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

- Free shelves:
 - ▶ Case of one generator: Part 4 below
 - \blacktriangleright Case of $\geqslant\!2$ generators: a lexicographic extension of the case of one generator

[P.D. A canonical ordering for free LD systems, Proc. Amer. Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory):

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

- Free shelves:
 - Case of one generator: <u>Part 4</u> below
 - \blacktriangleright Case of $\geqslant\!2$ generators: a lexicographic extension of the case of one generator

[P.D. A canonical ordering for free LD systems, Proc. Amer. Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, E_{λ} set of all elementary embeddings from V_{λ} to itself,

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

- Free shelves:
 - Case of one generator: <u>Part 4</u> below
 - ▶ Case of \geq 2 generators: a lexicographic extension of the case of one generator

[P.D. A canonical ordering for free LD systems, Proc. Amer. Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, E_{λ} set of all elementary embeddings from V_{λ} to itself, and $i \triangleleft j := \bigcup_{\alpha \in \lambda} j(i \cap V_{\alpha}^2)$

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

- Free shelves:
 - Case of one generator: <u>Part 4</u> below
 - \blacktriangleright Case of $\geqslant 2$ generators: a lexicographic extension of the case of one generator

[P.D. A canonical ordering for free LD systems, Proc. Amer. Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, E_{λ} set of all elementary embeddings from V_{λ} to itself, and $i \triangleleft j := \bigcup_{\alpha < \lambda} j(i \cap V_{\alpha}^2)$

▶ Part 5 below

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

[P.D. Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

- Free shelves:
 - Case of one generator: <u>Part 4</u> below
 - ► Case of ≥2 generators: a lexicographic extension of the case of one generator [P.D. A canonical ordering for free LD systems, Proc. Amer. Math. Soc. 122 (1994) 31-37]

[1.b. A canonical ordering for nee Eb systems, 1.loc. Amer. Math. 500. 122 (1994) 51-51]

- Iteration shelf (set theory): λ a Laver cardinal, E_{λ} set of all elementary embeddings from V_{λ} to itself, and $i \triangleleft j := \bigcup_{\alpha < \lambda} j(i \cap V_{\alpha}^2)$
 - ► Part 5 below
- Laver tables:

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

- Free shelves:
 - Case of one generator: <u>Part 4</u> below
 - ► Case of ≥2 generators: a lexicographic extension of the case of one generator [P.D. A canonical ordering for free LD systems, Proc. Amer. Math. Soc. 122 (1994) 31-37]
- Iteration shelf (set theory): λ a Laver cardinal, E_{λ} set of all elementary embeddings from V_{λ} to itself, and $i \triangleleft j := \bigcup_{\alpha < \lambda} j(i \cap V_{\alpha}^2)$
 - ► Part 5 below
- Laver tables: a family of finite shelves with 2ⁿ elements

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

- Free shelves:
 - Case of one generator: <u>Part 4</u> below
 - ► Case of ≥2 generators: a lexicographic extension of the case of one generator [P.D. A canonical ordering for free LD systems, Proc. Amer. Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, E_{λ} set of all elementary embeddings from V_{λ} to itself, and $i \triangleleft j := \bigcup_{\alpha < \lambda} j(i \cap V_{\alpha}^2)$

- ▶ Part 5 below
- Laver tables: a family of finite shelves with 2ⁿ elements
 - ► A. Drápal's minicourse

- Braid shelf: B_{∞} braid group, sh : $\sigma_i \mapsto \sigma_{i+1}$, and $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta$.
 - ▶ Part 3 below
 - ▶ A variant: charged braids (realization of free shelves with ≥2 generators)

Another variant: transfinite braids (with a second, associative operation)

[P.D. Transfinite braids and left distributive operations, Math. Z. 228 (1998) 405-433]

► Another variant: parenthezised braids (aka Brin's braided Thompson's group BV)

[P.D. The group of parenthesized braids, Adv. Math. 205 (2006) 354-409] Transfinite braids and left distributive operations;

- Free shelves:
 - Case of one generator: <u>Part 4</u> below
 - ► Case of ≥2 generators: a lexicographic extension of the case of one generator [P.D. A canonical ordering for free LD systems, Proc. Amer. Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, E_{λ} set of all elementary embeddings from V_{λ} to itself, and $i \triangleleft j := \bigcup_{\alpha < \lambda} j(i \cap V_{\alpha}^2)$

- Part 5 below
- Laver tables: a family of finite shelves with 2ⁿ elements
 - ► A. Drápal's minicourse
 - ▶ Part 6 below

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - • ○ ○ ○ ○

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● つへで

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● つへで

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● つへで

Plan:

- 1. Braid colorings
 - Diagrams and Reidemeister moves
 - Diagram colorings
 - Quandles, racks, and shelves
- 2. The SD-world
 - Classical and exotic examples
 - The world of shelves
- 3. The braid shelf
 - The braid operation
 - Larue's lemma and free subshelves
 - Special braids
- 4. The free monogenerated shelf
 - Terms and trees
 - The comparison property
 - The Thompson's monoid of SD
- 5. The set-theoretic shelf
 - Set theory and large cardinals
 - Elementary embeddings
 - The iteration shelf
- 6. Using set theory to investigate Laver tables

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Quotients of the iteration shelf
- A dictionary
- Results about periods

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation $\left\langle \sigma_1, ..., \sigma_{n-1} \right|$

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation

$$\left\langle \sigma_{1},...,\sigma_{n-1} \right| \quad \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \quad \text{ for } |i-j| \ge 2$$

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation

$$\langle \sigma_1, ..., \sigma_{n-1} | \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \rangle.$$

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation $\left\langle \sigma_1, ..., \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle$.

 \simeq { braid diagrams } / isotopy:

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation

$$\Big\langle \sigma_1, ..., \sigma_{n-1} \Big| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2\\ \sigma_i \sigma_j \sigma_i \sigma_j = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \Big\rangle.$$

n

 \simeq { braid diagrams } / isotopy:

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation

$$\langle \sigma_1, ..., \sigma_{n-1} | \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \\ \end{pmatrix}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation $\langle \sigma_i \sigma_i = \sigma_i \sigma_i$ for $|i - j| \ge 2$

$$\sigma_1, ..., \sigma_{n-1} \mid \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \text{ for } |i-j| = 1$$

 \simeq mapping class group of D_n (disk with *n* punctures):

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation

$$\left\langle \sigma_{1}, ..., \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \ge 2 \\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle.$$

 \simeq mapping class group of D_n (disk with *n* punctures):

• <u>Definition</u> (Artin 1925/1948): The braid group B_n is the group with presentation

$$\langle \sigma_1, ..., \sigma_{n-1} | \begin{array}{c} \sigma_i \sigma_j - \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \\ \end{pmatrix}.$$

 \simeq mapping class group of D_n (disk with *n* punctures):

- Adding a strand on the right provides $i_{n,n+1}: B_n \subseteq B_{n+1}$
 - ▶ Direct limit B_{∞}

).

- Adding a strand on the right provides $i_{n,n+1}: B_n \subset B_{n+1}$
 - Direct limit $B_{\infty} = \left\langle \sigma_1, \sigma_2, \dots \right\rangle$

- Adding a strand on the right provides $i_{n,n+1} : B_n \subset B_{n+1}$ Direct limit $B_{\infty} = \left\langle \sigma_1, \sigma_2, \dots \right| \quad \sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{for } |i-j| \ge 2$.

- Adding a strand on the right provides $i_{n,n+1}: B_n \subset B_{n+1}$
 - ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, ... \mid \begin{matrix} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_i & \text{for } |i-j| = 1 \end{matrix}$

- Adding a strand on the right provides $i_{n,n+1}: B_n \subset B_{n+1}$
 - ► Direct limit $B_{\infty} = \left\langle \sigma_1, \sigma_2, \dots \right| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2\\ \sigma_i \sigma_j \sigma_i = \sigma_i \sigma_i \sigma_i & \text{for } |i-j| = 1 \end{array} \right\rangle.$
 - ▶ Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

(日) (日) (日) (日) (日) (日) (日) (日)

- Adding a strand on the right provides $i_{n,n+1}: B_n \subset B_{n+1}$
 - $\blacktriangleright \text{ Direct limit } \mathcal{B}_{\infty} = \Big\langle \sigma_1, \sigma_2, \dots \quad \Big| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_i \sigma_i \sigma_i = \sigma_i \sigma_i \sigma_i & \text{for } |i-j| = 1 \end{array} \Big\rangle.$
 - ▶ Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.
- <u>Proposition</u>: For α, β in B_{∞} , define $\alpha \triangleright \beta := \alpha \cdot \operatorname{sh}(\beta) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1}$.

(日) (日) (日) (日) (日) (日) (日) (日)

- Adding a strand on the right provides $i_{n,n+1}: B_n \subset B_{n+1}$
 - $\blacktriangleright \text{ Direct limit } \mathcal{B}_{\infty} = \Big\langle \sigma_1, \sigma_2, \dots \quad \Big| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_i \sigma_i \sigma_i = \sigma_i \sigma_i \sigma_i & \text{for } |i-j| = 1 \end{array} \Big\rangle.$
 - ▶ Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.
- <u>Proposition</u>: For α, β in B_{∞} , define $\alpha \triangleright \beta := \alpha \cdot \operatorname{sh}(\beta) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1}$. Then $(B_{\infty}, \triangleright)$ is a left shelf.

- Adding a strand on the right provides $i_{n,n+1}: B_n \subset B_{n+1}$
 - $\blacktriangleright \text{ Direct limit } \mathcal{B}_{\infty} = \Big\langle \sigma_1, \sigma_2, \dots \quad \Big| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_i \sigma_i \sigma_i = \sigma_i \sigma_i \sigma_i & \text{for } |i-j| = 1 \end{array} \Big\rangle.$
 - ▶ Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

- Adding a strand on the right provides $i_{n,n+1}: B_n \subset B_{n+1}$
 - $\blacktriangleright \text{ Direct limit } \mathcal{B}_{\infty} = \Big\langle \sigma_1, \sigma_2, \dots \quad \Big| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_i \sigma_i \sigma_i = \sigma_i \sigma_i \sigma_i & \text{for } |i-j| = 1 \end{array} \Big\rangle.$
 - ▶ Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

• Examples: $1 \triangleright 1 = \sigma_1$,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- Adding a strand on the right provides $i_{n,n+1}: B_n \subset B_{n+1}$
 - ► Direct limit $B_{\infty} = \left\langle \sigma_1, \sigma_2, \dots \right| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2\\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle$.
 - ▶ Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

• Examples: $1 \triangleright 1 = \sigma_1$, $1 \triangleright \sigma_1 = \sigma_2 \sigma_1$,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Adding a strand on the right provides $i_{n,n+1}: B_n \subset B_{n+1}$
 - $\blacktriangleright \text{ Direct limit } \mathcal{B}_{\infty} = \Big\langle \sigma_1, \sigma_2, \dots \quad \Big| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \\ \sigma_i \sigma_i \sigma_i \sigma_i = \sigma_i \sigma_i \sigma_i & \text{for } |i-j| = 1 \end{array} \Big\rangle.$
 - ▶ Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

• Examples: $1 \triangleright 1 = \sigma_1$, $1 \triangleright \sigma_1 = \sigma_2 \sigma_1$, $\sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$,

- Adding a strand on the right provides $i_{n,n+1}: B_n \subset B_{n+1}$
 - ► Direct limit $B_{\infty} = \left\langle \sigma_1, \sigma_2, \dots \right| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2\\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle.$
 - ▶ Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

• Examples: $1 \triangleright 1 = \sigma_1$, $1 \triangleright \sigma_1 = \sigma_2 \sigma_1$, $\sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$, $\sigma_1 \triangleright \sigma_1 = \sigma_2 \sigma_1$, etc.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

► Proof:

▶ Proof: $\alpha \triangleright (\beta \triangleright \gamma) =$

▶ Proof: $\alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \operatorname{sh}(\beta \cdot \operatorname{sh}(\gamma) \cdot \sigma_1 \cdot \operatorname{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1}$

► Proof:
$$\alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \operatorname{sh}(\beta \cdot \operatorname{sh}(\gamma) \cdot \sigma_1 \cdot \operatorname{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1}$$

= $\alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1}$
$$\begin{split} \blacktriangleright \text{ Proof: } \alpha \triangleright (\beta \triangleright \gamma) &= \alpha \cdot \text{sh}(\beta \cdot \text{sh}(\gamma) \cdot \sigma_1 \cdot \text{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ &= \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \cdot \text{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ &= \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1}. \end{split}$$

$$\begin{split} \blacktriangleright \operatorname{Proof:} \ \alpha \triangleright (\beta \triangleright \gamma) &= \alpha \cdot \operatorname{sh}(\beta \cdot \operatorname{sh}(\gamma) \cdot \sigma_1 \cdot \operatorname{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ &= \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ &= \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \operatorname{sh}(\alpha)^{-1} . \\ (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma) \end{split}$$

$$\begin{split} \blacktriangleright \operatorname{Proof:} \ \alpha \triangleright (\beta \triangleright \gamma) &= \alpha \cdot \operatorname{sh}(\beta \cdot \operatorname{sh}(\gamma) \cdot \sigma_1 \cdot \operatorname{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ &= \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ &= \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \operatorname{sh}(\alpha)^{-1}. \\ (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma) \\ &= (\alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}(\alpha)^{-1}) \cdot \operatorname{sh}(\alpha \operatorname{sh}(\gamma) \sigma_1 \operatorname{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}(\alpha)^{-1})^{-1} \end{split}$$

$$\begin{array}{l} \blacktriangleright \mbox{ Proof: } \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \operatorname{sh}(\beta \cdot \operatorname{sh}(\gamma) \cdot \sigma_1 \cdot \operatorname{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ = \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ = \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \operatorname{sh}(\alpha)^{-1}. \\ (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma) \\ = (\alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}(\alpha)^{-1}) \cdot \operatorname{sh}(\alpha \operatorname{sh}(\gamma) \sigma_1 \operatorname{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}(\alpha)^{-1})^{-1} \\ = \alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}(\alpha)^{-1} \operatorname{sh}(\alpha) \operatorname{sh}^2(\gamma) \sigma_2 \operatorname{sh}^2(\alpha)^{-1} \sigma_1 \operatorname{sh}^2(\alpha) \sigma_2^{-1} \operatorname{sh}^2(\beta)^{-1} \operatorname{sh}(\alpha)^{-1} \end{array}$$

$$\begin{split} \bullet \mbox{ Proof: } & \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \operatorname{sh}(\beta \cdot \operatorname{sh}(\gamma) \cdot \sigma_1 \cdot \operatorname{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ & = \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ & = \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \operatorname{sh}(\alpha)^{-1} \\ & (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma) \\ & = (\alpha \operatorname{sh}(\beta) \, \sigma_1 \operatorname{sh}(\alpha)^{-1}) \cdot \operatorname{sh}(\alpha \operatorname{sh}(\gamma) \, \sigma_1 \operatorname{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha \operatorname{sh}(\beta) \, \sigma_1 \operatorname{sh}(\alpha)^{-1})^{-1} \\ & = \alpha \operatorname{sh}(\beta) \, \sigma_1 \operatorname{sh}(\alpha)^{-1} \operatorname{sh}(\alpha) \operatorname{sh}^2(\gamma) \, \sigma_2 \operatorname{sh}^2(\alpha)^{-1} \sigma_1 \operatorname{sh}^2(\alpha) \, \sigma_2^{-1} \operatorname{sh}^2(\beta)^{-1} \operatorname{sh}(\alpha)^{-1} \\ & = \alpha \operatorname{sh}(\beta) \, \sigma_1 \operatorname{sh}^2(\gamma) \, \sigma_2 \sigma_1 \, \sigma_2^{-1} \operatorname{sh}^2(\beta)^{-1} \operatorname{sh}(\alpha)^{-1} \end{split}$$

$$\begin{array}{l} \blacktriangleright \mbox{ Proof: } \alpha \rhd (\beta \rhd \gamma) = \alpha \cdot \operatorname{sh}(\beta \cdot \operatorname{sh}(\gamma) \cdot \sigma_1 \cdot \operatorname{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ = \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ = \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \operatorname{sh}(\alpha)^{-1} \\ (\alpha \rhd \beta) \rhd (\alpha \rhd \gamma) \\ = (\alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}(\alpha)^{-1}) \cdot \operatorname{sh}(\alpha \operatorname{sh}(\gamma) \sigma_1 \operatorname{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}(\alpha)^{-1})^{-1} \\ = \alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}(\alpha)^{-1} \operatorname{sh}(\alpha) \operatorname{sh}^2(\gamma) \sigma_2 \operatorname{sh}^2(\alpha)^{-1} \sigma_1 \operatorname{sh}^2(\alpha) \sigma_2^{-1} \operatorname{sh}^2(\beta)^{-1} \operatorname{sh}(\alpha)^{-1} \\ = \alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}^2(\gamma) \sigma_2 \sigma_1 \sigma_2^{-1} \operatorname{sh}^2(\beta)^{-1} \operatorname{sh}(\alpha)^{-1} \\ = \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1} \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \operatorname{sh}(\alpha)^{-1} \end{array}$$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 4 で</p>

$$\begin{array}{l} \blacktriangleright \mbox{ Proof: } \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot {\rm sh}(\beta \cdot {\rm sh}(\gamma) \cdot \sigma_1 \cdot {\rm sh}(\beta)^{-1}) \cdot \sigma_1 \cdot {\rm sh}(\alpha)^{-1} \\ = \alpha \cdot {\rm sh}(\beta) \cdot {\rm sh}^2(\gamma) \cdot \sigma_2 \cdot {\rm sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot {\rm sh}(\alpha)^{-1} \\ = \alpha \cdot {\rm sh}(\beta) \cdot {\rm sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot {\rm sh}^2(\beta)^{-1} \cdot {\rm sh}(\alpha)^{-1} \\ (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma) \\ = (\alpha \, {\rm sh}(\beta) \, \sigma_1 \, {\rm sh}(\alpha)^{-1}) \cdot {\rm sh}(\alpha \, {\rm sh}(\gamma) \, \sigma_1 \, {\rm sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot {\rm sh}(\alpha \, {\rm sh}(\beta) \, \sigma_1 \, {\rm sh}(\alpha)^{-1})^{-1} \\ = \alpha \, {\rm sh}(\beta) \, \sigma_1 \, {\rm sh}(\alpha)^{-1} \, {\rm sh}(\alpha) \, {\rm sh}^2(\gamma) \, \sigma_2 \, {\rm sh}^2(\alpha)^{-1} \, \sigma_1 \, {\rm sh}^2(\alpha) \, \sigma_2^{-1} \, {\rm sh}^2(\beta)^{-1} \, {\rm sh}(\alpha)^{-1} \\ = \alpha \, {\rm sh}(\beta) \, \sigma_1 \, {\rm sh}^2(\gamma) \, \sigma_2 \sigma_1 \sigma_2^{-1} \, {\rm sh}^2(\beta)^{-1} \, {\rm sh}(\alpha)^{-1} \\ = \alpha \cdot {\rm sh}(\beta) \cdot {\rm sh}^2(\gamma) \cdot \sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1} \cdot {\rm sh}^2(\beta)^{-1} \cdot {\rm sh}(\alpha)^{-1} \end{array}$$

• <u>Remark</u>: Shelf (=right shelf) with

 $\alpha \triangleleft \beta := \mathsf{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \mathsf{sh}(\alpha) \cdot \beta,$

$$\begin{array}{l} \blacktriangleright \mbox{ Proof: } \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \mathrm{sh}(\beta \cdot \mathrm{sh}(\gamma) \cdot \sigma_1 \cdot \mathrm{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \mathrm{sh}(\alpha)^{-1} \\ = \alpha \cdot \mathrm{sh}(\beta) \cdot \mathrm{sh}^2(\gamma) \cdot \sigma_2 \cdot \mathrm{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \mathrm{sh}(\alpha)^{-1} \\ = \alpha \cdot \mathrm{sh}(\beta) \cdot \mathrm{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \mathrm{sh}^2(\beta)^{-1} \cdot \mathrm{sh}(\alpha)^{-1} \\ (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma) \\ = (\alpha \, \mathrm{sh}(\beta) \, \sigma_1 \, \mathrm{sh}(\alpha)^{-1}) \cdot \mathrm{sh}(\alpha \, \mathrm{sh}(\gamma) \, \sigma_1 \, \mathrm{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \mathrm{sh}(\alpha \, \mathrm{sh}(\beta) \, \sigma_1 \, \mathrm{sh}(\alpha)^{-1})^{-1} \\ = \alpha \, \mathrm{sh}(\beta) \, \sigma_1 \, \mathrm{sh}(\alpha)^{-1} \, \mathrm{sh}(\alpha) \, \mathrm{sh}^2(\gamma) \, \sigma_2 \, \mathrm{sh}^2(\alpha)^{-1} \, \sigma_1 \, \mathrm{sh}^2(\alpha) \, \sigma_2^{-1} \, \mathrm{sh}^2(\beta)^{-1} \, \mathrm{sh}(\alpha)^{-1} \\ = \alpha \, \mathrm{sh}(\beta) \, \sigma_1 \, \mathrm{sh}^2(\gamma) \, \sigma_2 \sigma_1 \sigma_2^{-1} \, \mathrm{sh}^2(\beta)^{-1} \, \mathrm{sh}(\alpha)^{-1} \\ = \alpha \cdot \mathrm{sh}(\beta) \cdot \mathrm{sh}^2(\gamma) \cdot \sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1} \cdot \mathrm{sh}^2(\beta)^{-1} \cdot \mathrm{sh}(\alpha)^{-1} \\ \end{array}$$

• <u>Remark</u>: Shelf (=right shelf) with

 $\alpha \triangleleft \beta := \mathsf{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \mathsf{sh}(\alpha) \cdot \beta,$

but less convenient here.

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 4 で</p>

$$\begin{array}{l} \blacktriangleright \mbox{ Proof: } \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \operatorname{sh}(\beta \cdot \operatorname{sh}(\gamma) \cdot \sigma_1 \cdot \operatorname{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ = \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha)^{-1} \\ = \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \operatorname{sh}(\alpha)^{-1} \\ (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma) \\ = (\alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}(\alpha)^{-1}) \cdot \operatorname{sh}(\alpha \operatorname{sh}(\gamma) \sigma_1 \operatorname{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}(\alpha)^{-1})^{-1} \\ = \alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}(\alpha)^{-1} \operatorname{sh}(\alpha) \operatorname{sh}^2(\gamma) \sigma_2 \operatorname{sh}^2(\alpha)^{-1} \sigma_1 \operatorname{sh}^2(\alpha) \sigma_2^{-1} \operatorname{sh}^2(\beta)^{-1} \operatorname{sh}(\alpha)^{-1} \\ = \alpha \operatorname{sh}(\beta) \sigma_1 \operatorname{sh}^2(\gamma) \sigma_2 \sigma_1 \sigma_2^{-1} \operatorname{sh}^2(\beta)^{-1} \operatorname{sh}(\alpha)^{-1} \\ = \alpha \cdot \operatorname{sh}(\beta) \cdot \operatorname{sh}^2(\gamma) \cdot \sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1} \cdot \operatorname{sh}^2(\beta)^{-1} \cdot \operatorname{sh}(\alpha)^{-1} \\ \Box \end{array}$$

• <u>Remark</u>: Shelf (=right shelf) with

 $\alpha \triangleleft \beta := \operatorname{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \operatorname{sh}(\alpha) \cdot \beta,$

but less convenient here.

<ロト 4月ト 4日ト 4日ト 日 900</p>

• <u>Remark</u>: Works similarly with

$$x \triangleright y := x \cdot \phi(y) \cdot e \cdot \phi(x)^{-1}$$

whenever G is a group G, e belongs to G, and ϕ is an endomorphism ϕ satisfying $e \phi(e) e = \phi(e) e \phi(e)$ and $\forall x (e \phi^2(x) = \phi^2(x) e).$ • <u>Proposition</u> (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle.

• <u>Proposition</u> (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle.

 $x \sqsubseteq y$ if $\exists z (x \triangleright z = y)$.

• <u>Proposition</u> (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle.

 $x \sqsubseteq y$ if $\exists z (x \triangleright z = y)$.

▶ Equivalently: $x = (\cdots ((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

(日) (日) (日) (日) (日) (日) (日) (日)

• <u>Proposition</u> (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle.

 $x \sqsubseteq y$ if $\exists z (x \triangleright z = y)$.

▶ Equivalently: $x = (\cdots ((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

• <u>Theorem</u> (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.

▶ Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

ション ふゆ ア キャット キャックタン

• Equivalently: $x = (\cdots ((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

• <u>Theorem</u> (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.

▶ Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

▶ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}):

 $x \sqsubseteq y$ if $\exists z (x \triangleright z = v)$.

ション ふゆ ア キャット キャックタン

• <u>Proposition</u> (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubseteq on S has no cycle.

• Equivalently: $x = (\cdots ((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

• <u>Theorem</u> (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.

▶ Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

▶ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}$,

 $\mathbf{x} \vdash \mathbf{v}$ if $\exists z (x \triangleright z = \mathbf{v})$.

(日) (日) (日) (日) (日) (日) (日) (日)

• <u>Proposition</u> (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubseteq on S has no cycle.

• Equivalently: $x = (\cdots ((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

• <u>Theorem</u> (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.

▶ Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

▶ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}, \quad \rho(\sigma_i)(x_{i+1}) := x_i,$

 $x \sqsubseteq y$ if $\exists z (x \triangleright z = y)$.

A D M A

• <u>Proposition</u> (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle.

• Equivalently: $x = (\cdots ((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

• <u>Theorem</u> (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.

▶ Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

▶ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}, \quad \rho(\sigma_i)(x_{i+1}) := x_i, \quad \rho(\sigma_i)(x_k) := x_k \text{ for } k \neq i, i+1,$

 $x \sqsubseteq y$ if $\exists z (x \triangleright z = y)$.

(日) (日) (日) (日) (日) (日) (日) (日)

• <u>Proposition</u> (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubseteq on S has no cycle.

• Equivalently: $x = (\cdots ((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

• <u>Theorem</u> (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.

▶ Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

▶ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}$, $\rho(\sigma_i)(x_{i+1}) := x_i$, $\rho(\sigma_i)(x_k) := x_k$ for $k \neq i, i+1$, Want to prove: $\rho(\alpha) \neq \rho(\cdots ((\alpha \triangleright \beta_1) \triangleright \beta_2) \triangleright \cdots) \triangleright \beta_n)$. • <u>Proposition</u> (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubseteq on S has no cycle.

 $\mathbf{x} \sqsubseteq \mathbf{y} \text{ if } \exists z \, (x \triangleright z = y).$

▶ Equivalently: $x = (\cdots ((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

• <u>Theorem</u> (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.

▶ Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

▶ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}$, $\rho(\sigma_i)(x_{i+1}) := x_i$, $\rho(\sigma_i)(x_k) := x_k$ for $k \neq i, i+1$, Want to prove: $\rho(\alpha) \neq \rho(\cdots ((\alpha \triangleright \beta_1) \triangleright \beta_2) \triangleright \cdots) \triangleright \beta_n)$. By definition: $\rho(\cdots ((\alpha \triangleright \beta_1) \triangleright \beta_2) \triangleright \cdots) \triangleright \beta_n) = \rho(\alpha) \circ \rho(\gamma)$, with γ a braid of the form sh(γ_0) σ_1 sh(γ_1) σ_1 sh(γ_2) $\cdots \sigma_1$ sh(γ_n), with no σ_1^{-1} . • <u>Proposition</u> (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubseteq on S has no cycle.

 $x \sqsubseteq y \text{ if } \exists z \ (x \triangleright z = y).$

▶ Equivalently: $x = (\cdots ((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

• <u>Theorem</u> (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.

▶ Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

▶ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}$, $\rho(\sigma_i)(x_{i+1}) := x_i$, $\rho(\sigma_i)(x_k) := x_k$ for $k \neq i, i+1$, Want to prove: $\rho(\alpha) \neq \rho(\cdots ((\alpha \triangleright \beta_1) \triangleright \beta_2) \triangleright \cdots) \triangleright \beta_n)$. By definition: $\rho(\cdots ((\alpha \triangleright \beta_1) \triangleright \beta_2) \triangleright \cdots) \triangleright \beta_n) = \rho(\alpha) \circ \rho(\gamma)$, with γ a braid of the form $\operatorname{sh}(\gamma_0) \sigma_1 \operatorname{sh}(\gamma_1) \sigma_1 \operatorname{sh}(\gamma_2) \cdots \sigma_1 \operatorname{sh}(\gamma_n)$, with no σ_1^{-1} . Call such a braid σ_1 -positive. • <u>Proposition</u> (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubseteq on S has no cycle.

 $x \sqsubseteq y \text{ if } \exists z (x \triangleright z = y).$

▶ Equivalently: $x = (\cdots ((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

• <u>Theorem</u> (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.

▶ Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

▶ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}$, $\rho(\sigma_i)(x_{i+1}) := x_i$, $\rho(\sigma_i)(x_k) := x_k$ for $k \neq i, i+1$, Want to prove: $\rho(\alpha) \neq \rho(\cdots ((\alpha \triangleright \beta_1) \triangleright \beta_2) \triangleright \cdots) \triangleright \beta_n)$. By definition: $\rho(\cdots ((\alpha \triangleright \beta_1) \triangleright \beta_2) \triangleright \cdots) \triangleright \beta_n) = \rho(\alpha) \circ \rho(\gamma)$, with γ a braid of the form $\operatorname{sh}(\gamma_0) \sigma_1 \operatorname{sh}(\gamma_1) \sigma_1 \operatorname{sh}(\gamma_2) \cdots \sigma_1 \operatorname{sh}(\gamma_n)$, with no σ_1^{-1} . Call such a braid σ_1 -positive. It suffices to prove: " β is σ_1 -positive $\Rightarrow \rho(\beta) \neq \operatorname{id}_{F_{\infty}}$ ".

► Proof:

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$).

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$.

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $\boldsymbol{W} := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $\boldsymbol{W} := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $\boldsymbol{W} := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1))$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $\boldsymbol{W} := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}$. If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}$. If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1x_2x_1^{-1}$

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

Proof: Identify F_∞ with the set of freely reduced words on {x₁, x₂, ...} (no ss⁻¹ or s⁻¹s). Use sh also for F_∞: x_i → x_{i+1}. Let
W := {w | w reduced word finishing with x₁⁻¹}. If β contains no σ₁^{±1}, then ρ(β)(x₁) = x₁. If β = σ₁ sh(γ), then ρ(β)(x₁) = ρ(σ₁)(ρ(sh(γ))(x₁)) = ρ(σ₁)(x₁) = x₁x₂x₁⁻¹ ∈ W. So, it suffices to show: w ∈ W implies ρ(σ₁)(w) ∈ W and ρ(σ_i^{±1})(w) ∈ W for i ≥ 2.

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

Proof: Identify F_∞ with the set of freely reduced words on {x₁, x₂, ...} (no ss⁻¹ or s⁻¹s). Use sh also for F_∞: x_i → x_{i+1}. Let W := {w | w reduced word finishing with x₁⁻¹}. If β contains no σ₁^{±1}, then ρ(β)(x₁) = x₁. If β = σ₁ sh(γ), then ρ(β)(x₁) = ρ(σ₁)(ρ(sh(γ))(x₁)) = ρ(σ₁)(x₁) = x₁x₂x₁⁻¹ ∈ W. So, it suffices to show: w ∈ W implies ρ(σ₁)(w) ∈ W and ρ(σ_i^{±1})(w) ∈ W for i ≥ 2. Assume w ∈ W, say w = w'x₁⁻¹, and consider ρ(σ₁)(w) ∈ W?

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

Proof: Identify F_∞ with the set of freely reduced words on {x₁, x₂, ...} (no ss⁻¹ or s⁻¹s). Use sh also for F_∞: x_i → x_{i+1}. Let W := {w | w reduced word finishing with x₁⁻¹}. If β contains no σ₁^{±1}, then ρ(β)(x₁) = x₁. If β = σ₁ sh(γ), then ρ(β)(x₁) = ρ(σ₁)(ρ(sh(γ))(x₁)) = ρ(σ₁)(x₁) = x₁x₂x₁⁻¹ ∈ W. So, it suffices to show: w ∈ W implies ρ(σ₁)(w) ∈ W and ρ(σ_i^{±1})(w) ∈ W for i ≥ 2. Assume w ∈ W, say w = w'x₁⁻¹, and consider ρ(σ₁)(w) ∈ W? Write φ for ρ(σ₁).

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

Proof: Identify F_∞ with the set of freely reduced words on {x₁, x₂, ...} (no ss⁻¹ or s⁻¹s). Use sh also for F_∞: x_i → x_{i+1}. Let W := {w | w reduced word finishing with x₁⁻¹}. If β contains no σ₁^{±1}, then ρ(β)(x₁) = x₁. If β = σ₁ sh(γ), then ρ(β)(x₁) = ρ(σ₁)(ρ(sh(γ))(x₁)) = ρ(σ₁)(x₁) = x₁x₂x₁⁻¹ ∈ W. So, it suffices to show: w ∈ W implies ρ(σ₁)(w) ∈ W and ρ(σ_i^{±1})(w) ∈ W for i ≥ 2. Assume w ∈ W, say w = w'x₁⁻¹, and consider ρ(σ₁)(w) ∈ W? Write φ for ρ(σ₁). Then φ(w) = red(φ(w') x₁x₂⁻¹x₁⁻¹).

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

Proof: Identify F_∞ with the set of freely reduced words on {x₁, x₂, ...} (no ss⁻¹ or s⁻¹s). Use sh also for F_∞: x_i → x_{i+1}. Let W := {w | w reduced word finishing with x₁⁻¹}. If β contains no σ₁^{±1}, then ρ(β)(x₁) = x₁. If β = σ₁ sh(γ), then ρ(β)(x₁) = ρ(σ₁)(ρ(sh(γ))(x₁)) = ρ(σ₁)(x₁) = x₁x₂x₁⁻¹ ∈ W. So, it suffices to show: w ∈ W implies ρ(σ₁)(w) ∈ W and ρ(σ_i^{±1})(w) ∈ W for i ≥ 2. Assume w ∈ W, say w = w'x₁⁻¹, and consider ρ(σ₁)(w) ∈ W? Write φ for ρ(σ₁). Then φ(w) = red(φ(w') x₁x₂⁻¹x₁⁻¹). If φ(w) does not finish with x₁⁻¹, an x₁ in φ(w') cancels the final x₁⁻¹.

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

Proof: Identify F_∞ with the set of freely reduced words on {x₁, x₂, ...} (no ss⁻¹ or s⁻¹s). Use sh also for F_∞: x_i → x_{i+1}. Let W := {w | w reduced word finishing with x₁⁻¹}. If β contains no σ₁^{±1}, then ρ(β)(x₁) = x₁. If β = σ₁ sh(γ), then ρ(β)(x₁) = ρ(σ₁)(ρ(sh(γ))(x₁)) = ρ(σ₁)(x₁) = x₁x₂x₁⁻¹ ∈ W. So, it suffices to show: w ∈ W implies ρ(σ₁)(w) ∈ W and ρ(σ_i^{±1})(w) ∈ W for i ≥ 2. Assume w ∈ W, say w = w'x₁⁻¹, and consider ρ(σ₁)(w) ∈ W? Write φ for ρ(σ₁). Then φ(w) = red(φ(w') x₁x₂⁻¹x₁⁻¹). If φ(w) does not finish with x₁⁻¹, an x₁ in φ(w') cancels the final x₁⁻¹. This x₁ comes either from an x₁, or an x₁⁻¹, or an x₂ in w.
• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use shalso for $F_{\infty}: x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}$. If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1x_2x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w'x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w')x_1x_2^{-1}x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = ux_1v$,

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use shalso for $F_{\infty}: x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}$. If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1x_2x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w'x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w')x_1x_2^{-1}x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = ux_1v$, we find $\phi(w) = \operatorname{red}(\phi(u)x_1x_2x_1^{-1}\phi(v)x_1x_2^{-1}x_1^{-1})$,

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use shalso for $F_{\infty}: x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}$. If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1x_2x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w'x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w')x_1x_2^{-1}x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = ux_1v$, we find $\phi(w) = \operatorname{red}(\phi(u)x_1x_2x_1^{-1}\phi(v)x_1x_2^{-1}x_1^{-1})$, with $\operatorname{red}(x_2x_1^{-1}\phi(v)x_1x_2^{-1}) = 1$.

► Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for $F_{\infty}: x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}$. If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1x_2x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w'x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w')x_1x_2^{-1}x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = ux_1v$, we find $\phi(w) = \operatorname{red}(\phi(u)x_1x_2x_1^{-1}\phi(v)x_1x_2^{-1}x_1^{-1})$, with $\operatorname{red}(x_2x_1^{-1}\phi(v)x_1x_2^{-1}) = 1$. Hence $\phi(v) = 1$,

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for $F_{\infty}: x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}$. If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1x_2x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w'x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w')x_1x_2^{-1}x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = ux_1v$, we find $\phi(w) = \operatorname{red}(\phi(u)x_1x_2x_1^{-1}\phi(v)x_1x_2^{-1}x_1^{-1})$, with $\operatorname{red}(x_2x_1^{-1}\phi(v)x_1x_2^{-1}) = 1$. Hence $\phi(v) = 1$, then v = 1,

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for $F_{\infty}: x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}$. If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1x_2x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w'x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w')x_1x_2^{-1}x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = ux_1v$, we find $\phi(w) = \operatorname{red}(\phi(u)x_1x_2x_1^{-1}\phi(v)x_1x_2^{-1}x_1^{-1})$, with $\operatorname{red}(x_2x_1^{-1}\phi(v)x_1x_2^{-1}) = 1$. Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$,

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for $F_{\infty}: x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}$. If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1x_2x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w'x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w')x_1x_2^{-1}x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = ux_1v$, we find $\phi(w) = \operatorname{red}(\phi(u)x_1x_2x_1^{-1}\phi(v)x_1x_2^{-1}x_1^{-1})$, with $\operatorname{red}(x_2x_1^{-1}\phi(v)x_1x_2^{-1}) = 1$. Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$, contradicting " $w'x_1^{-1}$ reduced".

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1 x_2 x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w' x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w') x_1 x_2^{-1} x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = u \mathbf{x}_1 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$, contradicting " $w'x_1^{-1}$ reduced". - For $w' = u x_1^{-1} v$,

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1 x_2 x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w' x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w') x_1 x_2^{-1} x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = u \mathbf{x}_1 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$, contradicting " $w'x_1^{-1}$ reduced". - For $w' = u x_1^{-1} v$, we find

$$\phi(w) = \operatorname{red}(\phi(u)\mathbf{x_1}x_2^{-1}x_1^{-1}\phi(v)x_1x_2^{-1}\mathbf{x_1^{-1}}),$$

• Lemma (Larue, 1992) If β is σ_1 -positive, then $\rho(\beta)(x_1)$ finishes with x_1^{-1} .

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1 x_2 x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w' x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w') x_1 x_2^{-1} x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = u \mathbf{x}_1 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$, contradicting " $w'x_1^{-1}$ reduced". - For $w' = u x_1^{-1} v$, we find

$$\phi(w) = \operatorname{red}(\phi(u)\mathbf{x_1}\mathbf{x_2}^{-1}\mathbf{x_1}^{-1}\phi(v)\mathbf{x_1}\mathbf{x_2}^{-1}\mathbf{x_1}^{-1}), \text{ with } \operatorname{red}(\mathbf{x_2}^{-1}\mathbf{x_1}^{-1}\phi(v)\mathbf{x_1}\mathbf{x_2}^{-1}) = 1.$$

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1 x_2 x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w' x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w') x_1 x_2^{-1} x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = u \mathbf{x}_1 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$, contradicting " $w'x_1^{-1}$ reduced". - For $w' = u x_1^{-1} v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = x_1 x_2^2 x_1^{-1}$.

・ロト ・ 日 ・ モ ト ・ モ ・ ・ 日 ・ つ へ ()・

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1 x_2 x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w' x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w') x_1 x_2^{-1} x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = u \mathbf{x}_1 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$, contradicting " $w'x_1^{-1}$ reduced". - For $w' = u x_1^{-1} v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = x_1 x_2^2 x_1^{-1}$, then $v = x_1^2$,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()・

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1 x_2 x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w' x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w') x_1 x_2^{-1} x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = u \mathbf{x}_1 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$, contradicting " $w'x_1^{-1}$ reduced". - For $w' = u x_1^{-1} v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = x_1 x_2^2 x_1^{-1}$, then $v = x_1^2$, and $w' = u x_1^{-1} x_1^2$, contradicting "w' reduced".

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1 x_2 x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w' x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w') x_1 x_2^{-1} x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = u \mathbf{x}_1 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$, contradicting " $w'x_1^{-1}$ reduced". - For $w' = u x_1^{-1} v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = x_1 x_2^2 x_1^{-1}$, then $v = x_1^2$, and $w' = u x_1^{-1} x_1^2$, contradicting "w' reduced". - For $w' = u x_2 v$.

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1 x_2 x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w' x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w') x_1 x_2^{-1} x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = u \mathbf{x}_1 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$, contradicting " $w'x_1^{-1}$ reduced". - For $w' = u x_1^{-1} v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = x_1 x_2^2 x_1^{-1}$, then $v = x_1^2$, and $w' = u x_1^{-1} x_1^2$, contradicting "w' reduced". - For $w' = u x_2 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\phi(v)x_1x_2^{-1}\mathbf{x}_1^{-1})$ with $\operatorname{red}(\phi(v)x_1x_2^{-1}) = 1$.

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1 x_2 x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w' x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w') x_1 x_2^{-1} x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = u \mathbf{x}_1 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$, contradicting " $w'x_1^{-1}$ reduced". - For $w' = u x_1^{-1} v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x_1}\mathbf{x_2}^{-1}\mathbf{x_1}^{-1}\phi(v)\mathbf{x_1}\mathbf{x_2}^{-1}\mathbf{x_1}^{-1}), \text{ with } \operatorname{red}(\mathbf{x_2}^{-1}\mathbf{x_1}^{-1}\phi(v)\mathbf{x_1}\mathbf{x_2}^{-1}) = 1.$ Hence $\phi(v) = x_1 x_2^2 x_1^{-1}$, then $v = x_1^2$, and $w' = u x_1^{-1} x_1^2$, contradicting "w' reduced". - For $w' = u \mathbf{x}_2 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\phi(v)x_1x_2^{-1}\mathbf{x}_1^{-1})$ with $\operatorname{red}(\phi(v)x_1x_2^{-1}) = 1$. Hence $\phi(v) = x_2^{-1}x_1$, then $v = x_2^{-1}x_1$, and $w' = ux_2x_2^{-1}x_1$, contradicting "w' reduced".

▶ Proof: Identify F_{∞} with the set of freely reduced words on $\{x_1, x_2, ...\}$ (no ss^{-1} or $s^{-1}s$). Use sh also for F_{∞} : $x_i \mapsto x_{i+1}$. Let $W := \{w \mid w \text{ reduced word finishing with } x_1^{-1}\}.$ If β contains no $\sigma_1^{\pm 1}$, then $\rho(\beta)(x_1) = x_1$. If $\beta = \sigma_1 \operatorname{sh}(\gamma)$, then $\rho(\beta)(x_1) = \rho(\sigma_1)(\rho(\operatorname{sh}(\gamma))(x_1)) = \rho(\sigma_1)(x_1) = x_1 x_2 x_1^{-1} \in W$. So, it suffices to show: $w \in W$ implies $\rho(\sigma_1)(w) \in W$ and $\rho(\sigma_i^{\pm 1})(w) \in W$ for $i \ge 2$. Assume $w \in W$, say $w = w' x_1^{-1}$, and consider $\rho(\sigma_1)(w) \in W$? Write ϕ for $\rho(\sigma_1)$. Then $\phi(w) = \operatorname{red}(\phi(w') x_1 x_2^{-1} x_1^{-1})$. If $\phi(w)$ does not finish with x_1^{-1} , an x_1 in $\phi(w')$ cancels the final x_1^{-1} . This x_1 comes either from an x_1 , or an x_1^{-1} , or an x_2 in w. - For $w' = u \mathbf{x}_1 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}\mathbf{x}_1^{-1}), \text{ with } \operatorname{red}(\mathbf{x}_2\mathbf{x}_1^{-1}\phi(v)\mathbf{x}_1\mathbf{x}_2^{-1}) = 1.$ Hence $\phi(v) = 1$, then v = 1, and $w' = ux_1$, contradicting " $w'x_1^{-1}$ reduced". - For $w' = u x_1^{-1} v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x_1}\mathbf{x_2}^{-1}\mathbf{x_1}^{-1}\phi(v)\mathbf{x_1}\mathbf{x_2}^{-1}\mathbf{x_1}^{-1}), \text{ with } \operatorname{red}(\mathbf{x_2}^{-1}\mathbf{x_1}^{-1}\phi(v)\mathbf{x_1}\mathbf{x_2}^{-1}) = 1.$ Hence $\phi(v) = x_1 x_2^2 x_1^{-1}$, then $v = x_1^2$, and $w' = u x_1^{-1} x_1^2$, contradicting "w' reduced". - For $w' = u \mathbf{x}_2 v$, we find $\phi(w) = \operatorname{red}(\phi(u)\mathbf{x}_1\phi(v)x_1x_2^{-1}\mathbf{x}_1^{-1})$ with $\operatorname{red}(\phi(v)x_1x_2^{-1}) = 1$. Hence $\phi(v) = x_2^{-1}x_1$, then $v = x_2^{-1}x_1$, and $w' = ux_2x_2^{-1}x_1$, contradicting "w' reduced".

- <u>Definition</u>: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .
 - ► Examples: 1 is special;

- <u>Definition</u>: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .
 - Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special;

- <u>Definition</u>: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .
 - ► Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special;

► Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

► Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

• <u>Proposition</u>: Let B^{sp}_{∞} be the family of all special braids.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• <u>Definition</u>: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .

► Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

 <u>Proposition</u>: Let B^{sp}_∞ be the family of all special braids. Then (B^{sp}_∞, ▷) is a realization of the free monogenerated left shelf.

(日) (日) (日) (日) (日) (日) (日) (日)

• Definition: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .

► Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

- <u>Proposition</u>: Let B_{sp}^{sp} be the family of all special braids. Then $(B_{sp}^{sp}, \triangleright)$ is a realization of the free monogenerated left shelf.
- Corollary ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are SD-equivalent

(日) (日) (日) (日) (日) (日) (日) (日)

• <u>Definition</u>: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .

► Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

- <u>Proposition</u>: Let B_{p}^{sp} be the family of all special braids. Then $(B_{p}^{sp}, \triangleright)$ is a realization of the free monogenerated left shelf.
- <u>Corollary</u> ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are <u>SD</u>-equivalent iff the braids T(1) and T'(1) evaluated in B_{∞} are equal.

• Definition: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .

• Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

 <u>Proposition</u>: Let B^{sp}_{sp} be the family of all special braids. Then (B^{sp}_{sp}, ▷) is a realization of the free monogenerated left shelf.

• <u>Corollary</u> ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are <u>SD</u>-equivalent iff the braids T(1) and T'(1) evaluated in B_{∞} are equal.

• Lemma: If β is a special braid, we have

 $(1, 1, ...) \bullet \beta = (\beta, 1, 1, ...).$

• Definition: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .

• Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

 <u>Proposition</u>: Let B^{sp}_{sp} be the family of all special braids. Then (B^{sp}_{sp}, ▷) is a realization of the free monogenerated left shelf.

• <u>Corollary</u> ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are <u>SD-equivalent</u> iff the braids T(1) and T'(1) evaluated in B_{∞} are equal.

• Lemma: If β is a special braid, we have

 $(1, 1, ...) \bullet \beta = (\beta, 1, 1, ...).$

▶ Proof: Induction on β special.

• Definition: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .

• Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

 <u>Proposition</u>: Let B^{sp}_{sp} be the family of all special braids. Then (B^{sp}_{sp}, ▷) is a realization of the free monogenerated left shelf.

• <u>Corollary</u> ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are <u>SD-equivalent</u> iff the braids T(1) and T'(1) evaluated in B_{∞} are equal.

• Lemma: If β is a special braid, we have

 $(1, 1, ...) \bullet \beta = (\beta, 1, 1, ...).$

▶ Proof: Induction on β special. True for 1.

• <u>Definition</u>: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .

• Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

 <u>Proposition</u>: Let B^{sp}_{sp} be the family of all special braids. Then (B^{sp}_{sp}, ▷) is a realization of the free monogenerated left shelf.

• <u>Corollary</u> ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are <u>SD-equivalent</u> iff the braids T(1) and T'(1) evaluated in B_{∞} are equal.

• Lemma: If β is a special braid, we have

 $(1, 1, ...) \bullet \beta = (\beta, 1, 1, ...).$

▶ Proof: Induction on β special. True for 1. Then (1, 1, ...) • ($\alpha \triangleright \beta$) =

• Definition: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .

• Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

 <u>Proposition</u>: Let B^{sp}_{sp} be the family of all special braids. Then (B^{sp}_{sp}, ▷) is a realization of the free monogenerated left shelf.

• <u>Corollary</u> ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are <u>SD</u>-equivalent iff the braids T(1) and T'(1) evaluated in B_{∞} are equal.

• Lemma: If β is a special braid, we have

 $(1, 1, ...) \bullet \beta = (\beta, 1, 1, ...).$

▶ Proof: Induction on β special. True for 1. Then $(1, 1, ...) \bullet (\alpha \triangleright \beta) = (((1, 1, ...) \bullet \alpha) \bullet \operatorname{sh}(\alpha)) \bullet \sigma_1) \bullet \operatorname{sh}(\beta)^{-1}$

• Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

 <u>Proposition</u>: Let B^{sp}_{sp} be the family of all special braids. Then (B^{sp}_{sp}, ▷) is a realization of the free monogenerated left shelf.

• <u>Corollary</u> ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are <u>SD-equivalent</u> iff the braids T(1) and T'(1) evaluated in B_{∞} are equal.

• Lemma: If β is a special braid, we have

 $(1, 1, ...) \bullet \beta = (\beta, 1, 1, ...).$

▶ Proof: Induction on β special. True for 1. Then $(1, 1, ...) \bullet (\alpha \triangleright \beta) = (((1, 1, ...) \bullet \alpha) \bullet \operatorname{sh}(\alpha)) \bullet \sigma_1) \bullet \operatorname{sh}(\beta)^{-1}$ $= ((\alpha, 1, 1, ...) \bullet \operatorname{sh}(\beta)) \bullet \sigma_1) \bullet \operatorname{sh}(\alpha)^{-1}$

<ロト < @ ト < E ト < E ト E の < @</p>

• Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

 <u>Proposition</u>: Let B^{sp}_{sp} be the family of all special braids. Then (B^{sp}_{sp}, ▷) is a realization of the free monogenerated left shelf.

• <u>Corollary</u> ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are <u>SD-equivalent</u> iff the braids T(1) and T'(1) evaluated in B_{∞} are equal.

• Lemma: If β is a special braid, we have

 $(1, 1, ...) \bullet \beta = (\beta, 1, 1, ...).$

$$\begin{split} \blacktriangleright \mbox{ Proof: Induction on } \beta \mbox{ special. True for 1. Then} \\ (1,1,\ldots) \bullet (\alpha \rhd \beta) &= (((1,1,\ldots) \bullet \alpha) \bullet \operatorname{sh}(\alpha)) \bullet \sigma_1) \bullet \operatorname{sh}(\beta)^{-1} \\ &= ((\alpha,1,1,\ldots) \bullet \operatorname{sh}(\beta)) \bullet \sigma_1) \bullet \operatorname{sh}(\alpha)^{-1} \\ &= (\alpha,\beta,1,\ldots) \bullet \sigma_1) \bullet \operatorname{sh}(\alpha)^{-1} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

 <u>Proposition</u>: Let B^{sp}_{sp} be the family of all special braids. Then (B^{sp}_{sp}, ▷) is a realization of the free monogenerated left shelf.

• <u>Corollary</u> ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are <u>SD-equivalent</u> iff the braids T(1) and T'(1) evaluated in B_{∞} are equal.

• Lemma: If β is a special braid, we have

 $(1, 1, ...) \bullet \beta = (\beta, 1, 1, ...).$

▶ Proof: Induction on
$$\beta$$
 special. True for 1. Then
 $(1, 1, ...) \bullet (\alpha \triangleright \beta) = (((1, 1, ...) \bullet \alpha) \bullet \operatorname{sh}(\alpha)) \bullet \sigma_1) \bullet \operatorname{sh}(\beta)^{-1}$
 $= ((\alpha, 1, 1, ...) \bullet \operatorname{sh}(\beta)) \bullet \sigma_1) \bullet \operatorname{sh}(\alpha)^{-1}$
 $= (\alpha, \beta, 1, ...) \bullet \sigma_1) \bullet \operatorname{sh}(\alpha)^{-1}$
 $= (\alpha \triangleright \beta, \alpha, 1, ...) \bullet \operatorname{sh}(\alpha)^{-1}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

• Definition: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .

► Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

 <u>Proposition</u>: Let B^{sp}_{sp} be the family of all special braids. Then (B^{sp}_{sp}, ▷) is a realization of the free monogenerated left shelf.

• <u>Corollary</u> ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are <u>SD-equivalent</u> iff the braids T(1) and T'(1) evaluated in B_{∞} are equal.

• Lemma: If β is a special braid, we have

 $(1, 1, ...) \bullet \beta = (\beta, 1, 1, ...).$

▶ Proof: Induction on
$$\beta$$
 special. True for 1. Then
 $(1, 1, ...) \bullet (\alpha \triangleright \beta) = (((1, 1, ...) \bullet \alpha) \bullet \operatorname{sh}(\alpha)) \bullet \sigma_1) \bullet \operatorname{sh}(\beta)^{-1}$
 $= ((\alpha, 1, 1, ...) \bullet \operatorname{sh}(\beta)) \bullet \sigma_1) \bullet \operatorname{sh}(\alpha)^{-1}$
 $= (\alpha, \beta, 1, ...) \bullet \sigma_1) \bullet \operatorname{sh}(\alpha)^{-1}$
 $= (\alpha \triangleright \beta, \alpha, 1, ...) \bullet \operatorname{sh}(\alpha)^{-1}$
 $= (\alpha \triangleright \beta, 1, 1, ...)$

• Definition: A braid β is special if it belongs to the closure of $\{1\}$ under \triangleright .

► Examples: 1 is special; $1 \triangleright 1 = \sigma_1$ is special; $1 \triangleright (1 \triangleright 1) = 1 \triangleright \sigma_1 = \sigma_1 \sigma_2$ is special; $(1 \triangleright 1) \triangleright 1 = \sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$ is special, etc.

 <u>Proposition</u>: Let B^{sp}_{sp} be the family of all special braids. Then (B^{sp}_{sp}, ▷) is a realization of the free monogenerated left shelf.

• <u>Corollary</u> ("word problem of SD"): Two terms T, T' (in \times and \triangleright) are <u>SD-equivalent</u> iff the braids T(1) and T'(1) evaluated in B_{∞} are equal.

• Lemma: If β is a special braid, we have

 $(1, 1, ...) \bullet \beta = (\beta, 1, 1, ...).$

▶ Proof: Induction on
$$\beta$$
 special. True for 1. Then
 $(1, 1, ...) \bullet (\alpha \triangleright \beta) = (((1, 1, ...) \bullet \alpha) \bullet \operatorname{sh}(\alpha)) \bullet \sigma_1) \bullet \operatorname{sh}(\beta)^{-1}$
 $= ((\alpha, 1, 1, ...) \bullet \operatorname{sh}(\beta)) \bullet \sigma_1) \bullet \operatorname{sh}(\alpha)^{-1}$
 $= (\alpha, \beta, 1, ...) \bullet \sigma_1) \bullet \operatorname{sh}(\alpha)^{-1}$
 $= (\alpha \triangleright \beta, \alpha, 1, ...) \bullet \operatorname{sh}(\alpha)^{-1}$
 $= (\alpha \triangleright \beta, 1, 1, ...)$
• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $\mathcal{B}_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$,

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $B_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$,

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $\mathcal{B}_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $\mathcal{B}_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $\mathcal{B}_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

▶ Applies in particular to every positive braid.

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $\mathcal{B}_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

- ▶ Applies in particular to every positive braid.
- ▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$.

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $B_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

- ▶ Applies in particular to every positive braid.
- ▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special.

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $B_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

Applies in particular to every positive braid.

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1, ...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$.

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $B_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

▶ Applies in particular to every positive braid.

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1, ...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$. Conversely, assume $\beta = \prod^{sh} \vec{\beta}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

Applies in particular to every positive braid.

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$. Conversely, assume $\beta = \prod^{sh} \vec{\beta}$. Then $(1, 1, 1, ...) \bullet \beta$ is defined,

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $B_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

Applies in particular to every positive braid.

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$. Conversely, assume $\beta = \prod^{sh} \vec{\beta}$. Then $(1, 1, 1, ...) \bullet \beta$ is defined, and it must be equal to $(\beta_1, \beta_2, ...)$,

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $B_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

Applies in particular to every positive braid.

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$. Conversely, assume $\beta = \prod^{sh} \vec{\beta}$. Then $(1, 1, 1, ...) \bullet \beta$ is defined, and it must be equal to $(\beta_1, \beta_2, ...)$, whence the uniqueness.

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $B_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

▶ Applies in particular to every positive braid.

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1, ...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$. Conversely, assume $\beta = \prod^{sh} \vec{\beta}$. Then $(1, 1, 1, ...) \bullet \beta$ is defined, and it must be equal to $(\beta_1, \beta_2, ...)$, whence the uniqueness.

.../...

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $\mathcal{B}_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \cdot \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

▶ Applies in particular to every positive braid.

..../...

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$. Conversely, assume $\beta = \prod^{sh} \vec{\beta}$. Then $(1, 1, 1, ...) \bullet \beta$ is defined, and it must be equal to $(\beta_1, \beta_2, ...)$, whence the uniqueness.

[P.D. Strange questions about braids, J. Knot Th. Ramif. 8 (1999) 589-620]

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $\mathcal{B}_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

▶ Applies in particular to every positive braid.

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$. Conversely, assume $\beta = \prod^{sh} \vec{\beta}$. Then $(1, 1, 1, ...) \bullet \beta$ is defined, and it must be equal to $(\beta_1, \beta_2, ...)$, whence the uniqueness.

[P.D. Strange questions about braids, J. Knot Th. Ramif. 8 (1999) 589-620]

• At this point, two main questions:

.../...

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

Applies in particular to every positive braid.

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$. Conversely, assume $\beta = \prod^{sh} \vec{\beta}$. Then $(1, 1, 1, ...) \bullet \beta$ is defined, and it must be equal to $(\beta_1, \beta_2, ...)$, whence the uniqueness.

[P.D. Strange questions about braids, J. Knot Th. Ramif. 8 (1999) 589-620]

• At this point, two main questions:

.../...

▶ Can one use the braid shelf and the associated diagram colorings in topology?

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

Applies in particular to every positive braid.

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$. Conversely, assume $\beta = \prod^{sh} \vec{\beta}$. Then $(1, 1, 1, ...) \bullet \beta$ is defined, and it must be equal to $(\beta_1, \beta_2, ...)$, whence the uniqueness.

[P.D. Strange questions about braids, J. Knot Th. Ramif. 8 (1999) 589-620]

• At this point, two main questions:

.../...

► Can one use the braid shelf and the associated diagram colorings in topology? → already used to define and investigate the braid ordering

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

Applies in particular to every positive braid.

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1, ...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$. Conversely, assume $\beta = \prod^{sh} \vec{\beta}$. Then $(1, 1, 1, ...) \bullet \beta$ is defined, and it must be equal to $(\beta_1, \beta_2, ...)$, whence the uniqueness.

[P.D. Strange questions about braids, J. Knot Th. Ramif. 8 (1999) 589-620]

• At this point, two main questions:

.../...

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Lemma: For $\vec{\alpha} = (\alpha_1, \alpha_2, ...)$ in $\mathcal{B}_{\infty}^{(\mathbb{N})}$, write $\prod^{\text{sh}} \vec{\alpha}$ for $\alpha_1 \cdot \text{sh}(\alpha_2) \cdot \text{sh}^2(\alpha_3) \cdot ...$. Then $\vec{\alpha} \cdot \beta = \vec{\gamma}$ implies $\prod^{\text{sh}} \vec{\alpha} \cdot \beta = \prod^{\text{sh}} \vec{\gamma}$.

▶ Proof: Suffices to consider $\beta = \sigma_i^{\pm 1}$. Assume e.g. $\beta = \sigma_1$. Then $\vec{\alpha}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \cdots$, whereas $\vec{\gamma}$ contributes $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \operatorname{sh}(\alpha_1)^{-1} \cdot \operatorname{sh}(\alpha_1) \cdot \cdots$, i.e., $\alpha_1 \cdot \operatorname{sh}(\alpha_2) \cdot \sigma_1 \cdot \cdots$. As σ_1 commutes with every entry $\operatorname{sh}^2(\alpha_i)$, that's OK.

• <u>Proposition</u>: Every braid β s.t. $(1, 1, 1, ...) \bullet \beta$ is defined admits a unique decomposition as $\beta_1 \cdot \operatorname{sh}(\beta_2) \cdot \operatorname{sh}^2(\beta_3) \cdot \cdots$ with $\beta_1, \beta_2, ...$ special.

▶ Applies in particular to every positive braid.

▶ Proof: Assume $(1, 1, 1, ...) \bullet \beta = (\beta_1, \beta_2, \beta_3, ...)$. Then $\beta_1, \beta_2, ...$ are special. As $\prod^{sh}(1, 1, 1...) = 1$, the lemma implies $\beta = \prod^{sh} \vec{\beta}$. Conversely, assume $\beta = \prod^{sh} \vec{\beta}$. Then $(1, 1, 1, ...) \bullet \beta$ is defined, and it must be equal to $(\beta_1, \beta_2, ...)$, whence the uniqueness.

[P.D. Strange questions about braids, J. Knot Th. Ramif. 8 (1999) 589-620]

• At this point, two main questions:

.../...

- ▶ Where does this (strange) operation come from?

Plan:

- 1. Braid colorings
 - Diagrams and Reidemeister moves
 - Diagram colorings
 - Quandles, racks, and shelves
- 2. The SD-world
 - Classical and exotic examples
 - The world of shelves
- 3. The braid shelf
 - The braid operation
 - Larue's lemma and free subshelves
 - Special braids
- 4. The free monogenerated shelf
 - Terms and trees
 - The comparison property
 - The Thompson's monoid of SD
- 5. The set-theoretic shelf
 - Set theory and large cardinals
 - Elementary embeddings
 - The iteration shelf
- 6. Using set theory to investigate Laver tables

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Quotients of the iteration shelf
- A dictionary
- Results about periods

• Describe the free (left) shelf based on a set X

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of) Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

• Lemma: Let \mathcal{T}_X be the family of all terms built from X and \triangleright ,

 Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

Lemma: Let T_X be the family of all terms built from X and ▷, and =_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs
 (T₁ ▷ (T₂ ▷ T₃), (T₁ ▷ T₂) ▷ (T₁ ▷ T₃)).

 Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

Lemma: Let T_X be the family of all terms built from X and ▷, and =_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs
 (T₁ ▷ (T₂ ▷ T₃), (T₁ ▷ T₂) ▷ (T₁ ▷ T₃)).

 Then T_X/=_{SD} is the free left-shelf based on X.

 Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

Lemma: Let T_X be the family of all terms built from X and ▷, and =_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs
 (T₁ ▷ (T₂ ▷ T₃), (T₁ ▷ T₂) ▷ (T₁ ▷ T₃)).

 Then T_X/=_{SD} is the free left-shelf based on X.

▶ Proof: trivial.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

 Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

Lemma: Let T_X be the family of all terms built from X and ▷, and =_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs
 (T₁ ▷ (T₂ ▷ T₃), (T₁ ▷ T₂) ▷ (T₁ ▷ T₃)).

 Then T_X/=_{SD} is the free left-shelf based on X.

- ▶ Proof: trivial.
- ▶ ...but says nothing: $=_{SD}$ not under control so far.

 Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

Lemma: Let T_X be the family of all terms built from X and ▷, and =_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs
 (T₁ ▷ (T₂ ▷ T₃), (T₁ ▷ T₂) ▷ (T₁ ▷ T₃)).

 Then T_X/=_{SD} is the free left-shelf based on X.

- ▶ Proof: trivial.
- \blacktriangleright ...but says nothing: =_{SD} not under control so far. In particular, is it decidable?

- Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)
- Lemma: Let *T_X* be the family of all terms built from X and ▷, and =_{SD} be the congruence (i.e., compatible equiv. rel.) on *T_X* generated by all pairs
 (*T*₁ ▷ (*T*₂ ▷ *T*₃), (*T*₁ ▷ *T*₂) ▷ (*T*₁ ▷ *T*₃)).

 Then *T_X*/=_{SD} is the free left-shelf based on X.
 - ▶ Proof: trivial.
 - \blacktriangleright ...but says nothing: =_{SD} not under control so far. In particular, is it decidable?
- Terms on X as binary trees with nodes \triangleright and leaves in X:

ヘロト (日) (日) (日) (日) (日) (日)

- Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)
- Lemma: Let T_X be the family of all terms built from X and ▷, and =_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs
 (T₁ ▷ (T₂ ▷ T₃), (T₁ ▷ T₂) ▷ (T₁ ▷ T₃)).

 Then T_X/=_{SD} is the free left-shelf based on X.
 - Proof: trivial.
 - \blacktriangleright ...but says nothing: =_{SD} not under control so far. In particular, is it decidable?
- Terms on X as binary trees with nodes \triangleright and leaves in X: assuming $X = \{a, b, c\}$,

• a

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)
- Lemma: Let T_X be the family of all terms built from X and ▷, and =_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs
 (T₁ ▷ (T₂ ▷ T₃), (T₁ ▷ T₂) ▷ (T₁ ▷ T₃)).

 Then T_X/=_{SD} is the free left-shelf based on X.
 - ▶ Proof: trivial.
 - ▶ ...but says nothing: =_{SD} not under control so far. In particular, is it decidable?
- Terms on X as binary trees with nodes \triangleright and leaves in X: assuming $X = \{a, b, c\}$,

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)
- Lemma: Let T_X be the family of all terms built from X and ▷, and =_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs
 (T₁ ▷ (T₂ ▷ T₃), (T₁ ▷ T₂) ▷ (T₁ ▷ T₃)).

 Then T_X/=_{SD} is the free left-shelf based on X.
 - ▶ Proof: trivial.
 - \blacktriangleright ...but says nothing: =_{SD} not under control so far. In particular, is it decidable?
- Terms on X as binary trees with nodes \triangleright and leaves in X: assuming $X = \{a, b, c\}$,

Then $T_1 =_{SD} T_2$ holds iff

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of \rightarrow_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a \rightarrow_{SD} -zigzag from T_1 to T_2 .

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of \rightarrow_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a \rightarrow_{SD} -zigzag from T_1 to T_2 . Suffices to show: if $T \rightarrow_{SD} T_1$ and $T \rightarrow_{SD} T_2$, then $\exists T' (T_1 \rightarrow_{SD} T' \text{ and } T_2 \rightarrow_{SD} T')$.

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of \rightarrow_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a \rightarrow_{SD} -zigzag from T_1 to T_2 . Suffices to show: if $T \rightarrow_{SD} T_1$ and $T \rightarrow_{SD} T_2$, then $\exists T'(T_1 \rightarrow_{SD} T' \text{ and } T_2 \rightarrow_{SD} T')$. Define $T \triangleright^* x := T \triangleright x$ and $T \triangleright^* (T_1 \triangleright T_2) := (T \triangleright^* T_1) \triangleright (T \triangleright^* T_2)$,

• Lemma (confluence): Let \rightarrow_{SD} be the <u>semi</u>-congruence on \mathcal{T}_X gen'd by all pairs $(\mathcal{T}_1 \triangleright (\mathcal{T}_2 \triangleright \mathcal{T}_3), (\mathcal{T}_1 \triangleright \mathcal{T}_2) \triangleright (\mathcal{T}_1 \triangleright \mathcal{T}_3)).$

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of →_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a →_{SD}-zigzag from T_1 to T_2 . Suffices to show: if $T \to_{SD} T_1$ and $T \to_{SD} T_2$, then $\exists T' (T_1 \to_{SD} T' \text{ and } T_2 \to_{SD} T')$. Define $T \triangleright^* x := T \triangleright x$ and $T \triangleright^* (T_1 \triangleright T_2) := (T \triangleright^* T_1) \triangleright (T \triangleright^* T_2)$, and then $\partial x := x$ and $\partial (T_1 \triangleright T_2) := \partial T_1 \triangleright^* \partial T_2$.

• Lemma (confluence): Let \rightarrow_{SD} be the <u>semi</u>-congruence on \mathcal{T}_X gen'd by all pairs $(\mathcal{T}_1 \triangleright (\mathcal{T}_2 \triangleright \mathcal{T}_3), (\mathcal{T}_1 \triangleright \mathcal{T}_2) \triangleright (\mathcal{T}_1 \triangleright \mathcal{T}_3)).$

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of →_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a →_{SD}-zigzag from T_1 to T_2 . Suffices to show: if $T \to_{SD} T_1$ and $T \to_{SD} T_2$, then $\exists T'(T_1 \to_{SD} T' \text{ and } T_2 \to_{SD} T')$. Define $T \triangleright^* x := T \triangleright x$ and $T \triangleright^* (T_1 \triangleright T_2) := (T \triangleright^* T_1) \triangleright (T \triangleright^* T_2)$, and then $\partial x := x$ and $\partial(T_1 \triangleright T_2) := \partial T_1 \triangleright^* \partial T_2$. Then • $T \to_{SD} \partial T$ (easy induction),

• Lemma (confluence): Let \rightarrow_{SD} be the <u>semi</u>-congruence on \mathcal{T}_X gen'd by all pairs $(\mathcal{T}_1 \triangleright (\mathcal{T}_2 \triangleright \mathcal{T}_3), (\mathcal{T}_1 \triangleright \mathcal{T}_2) \triangleright (\mathcal{T}_1 \triangleright \mathcal{T}_3)).$

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of →_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a →_{SD}-zigzag from T_1 to T_2 . Suffices to show: if $T \to_{SD} T_1$ and $T \to_{SD} T_2$, then $\exists T'(T_1 \to_{SD} T' \text{ and } T_2 \to_{SD} T')$. Define $T \triangleright^* x := T \triangleright x$ and $T \triangleright^* (T_1 \triangleright T_2) := (T \triangleright^* T_1) \triangleright (T \triangleright^* T_2)$, and then $\partial x := x$ and $\partial(T_1 \triangleright T_2) := \partial T_1 \triangleright^* \partial T_2$. Then • $T \to_{SD} \partial T$ (easy induction),

• $T \rightarrow_{SD}^{1} T'$ implies $T' \rightarrow_{SD} \partial T$ (semi-easy induction),

• Lemma (confluence): Let \rightarrow_{SD} be the <u>semi</u>-congruence on \mathcal{T}_X gen'd by all pairs $(\mathcal{T}_1 \triangleright (\mathcal{T}_2 \triangleright \mathcal{T}_3), (\mathcal{T}_1 \triangleright \mathcal{T}_2) \triangleright (\mathcal{T}_1 \triangleright \mathcal{T}_3)).$

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of →_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a →_{SD}-zigzag from T_1 to T_2 . Suffices to show: if $T \to_{SD} T_1$ and $T \to_{SD} T_2$, then $\exists T'(T_1 \to_{SD} T' \text{ and } T_2 \to_{SD} T')$. Define $T \triangleright^* x := T \triangleright x$ and $T \triangleright^* (T_1 \triangleright T_2) := (T \triangleright^* T_1) \triangleright (T \triangleright^* T_2)$, and then $\partial x := x$ and $\partial(T_1 \triangleright T_2) := \partial T_1 \triangleright^* \partial T_2$. Then • $T \to_{SD} \partial T$ (easy induction),

- $T \rightarrow_{SD}^{1} T'$ implies $T' \rightarrow_{SD} \partial T$ (semi-easy induction),
- $T \rightarrow_{SD} T'$ implies $\partial T \rightarrow_{SD} \partial T'$ (more delicate induction).

• Lemma (confluence): Let \rightarrow_{SD} be the <u>semi</u>-congruence on \mathcal{T}_X gen'd by all pairs $(\mathcal{T}_1 \triangleright (\mathcal{T}_2 \triangleright \mathcal{T}_3), (\mathcal{T}_1 \triangleright \mathcal{T}_2) \triangleright (\mathcal{T}_1 \triangleright \mathcal{T}_3)).$

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of →_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a →_{SD}-zigzag from T_1 to T_2 . Suffices to show: if $T \to_{SD} T_1$ and $T \to_{SD} T_2$, then $\exists T'(T_1 \to_{SD} T' \text{ and } T_2 \to_{SD} T')$. Define $T \triangleright^* x := T \triangleright x$ and $T \triangleright^* (T_1 \triangleright T_2) := (T \triangleright^* T_1) \triangleright (T \triangleright^* T_2)$, and then $\partial x := x$ and $\partial(T_1 \triangleright T_2) := \partial T_1 \triangleright^* \partial T_2$. Then • $T \to_{SD} \partial T$ (easy induction), • $T \to_{SD}^{1} T'$ implies $T' \to_{SD} \partial T$ (semi-easy induction), • $T \to_{SD}^{1} T'$ implies $T' \to_{SD} \partial T$ (semi-easy induction),

• $T \rightarrow_{SD} T'$ implies $\partial T \rightarrow_{SD} \partial T'$ (more delicate induction).

From there, $T \rightarrow_{SD}^{p} T'$ implies $T' \rightarrow_{SD} \partial^{p} T$ (easy),

• Lemma (confluence): Let \rightarrow_{SD} be the <u>semi</u>-congruence on \mathcal{T}_X gen'd by all pairs $(\mathcal{T}_1 \triangleright (\mathcal{T}_2 \triangleright \mathcal{T}_3), (\mathcal{T}_1 \triangleright \mathcal{T}_2) \triangleright (\mathcal{T}_1 \triangleright \mathcal{T}_3)).$

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of →_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a →_{SD}-zigzag from T_1 to T_2 . Suffices to show: if $T \to_{SD} T_1$ and $T \to_{SD} T_2$, then $\exists T' (T_1 \to_{SD} T' \text{ and } T_2 \to_{SD} T')$. Define $T \triangleright^* x := T \triangleright x$ and $T \triangleright^* (T_1 \triangleright T_2) := (T \triangleright^* T_1) \triangleright (T \triangleright^* T_2)$, and then $\partial x := x$ and $\partial (T_1 \triangleright T_2) := \partial T_1 \triangleright^* \partial T_2$. Then • $T \to_{SD} \partial T$ (easy induction), • $T \to_{SD}^1 D'$ implies $T' \to_{SD} \partial T$ (semi-easy induction),

• $T \rightarrow_{SD} T'$ implies $\partial T \rightarrow_{SD} \partial T'$ (more delicate induction).

From there, $T \rightarrow_{SD}^{p} T'$ implies $T' \rightarrow_{SD} \partial^{p} T$ (easy), whence

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of \rightarrow_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a \rightarrow_{SD} -zigzag from T_1 to T_2 . Suffices to show: if $T \rightarrow_{SD} T_1$ and $T \rightarrow_{SD} T_2$, then $\exists T' (T_1 \rightarrow_{SD} T' \text{ and } T_2 \rightarrow_{SD} T')$. Define $T \triangleright^* x := T \triangleright x$ and $T \triangleright^* (T_1 \triangleright T_2) := (T \triangleright^* T_1) \triangleright (T \triangleright^* T_2)$, and then $\partial x := x$ and $\partial(T_1 \triangleright T_2) := \partial T_1 \triangleright^* \partial T_2$. Then

• $T \rightarrow_{SD} \partial T$ (easy induction),

• $T \rightarrow^{1}_{SD} T'$ implies $T' \rightarrow_{SD} \partial T$ (semi-easy induction),

• $T \rightarrow_{SD} T'$ implies $\partial T \rightarrow_{SD} \partial T'$ (more delicate induction).

From there, $T \rightarrow_{\text{SD}}^{p} T'$ implies $T' \rightarrow_{\text{SD}} \partial^{p} T$ (easy), whence $T \rightarrow_{\text{SD}}^{p} T_{1}$ and $T \rightarrow_{\text{SD}}^{q} T_{2}$ implies $T_{1} \rightarrow_{\text{SD}} \partial^{r} T$ and $T_{2} \rightarrow_{\text{SD}} \partial^{r} T$ for $r \ge \max(p, q)$. \Box

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of \rightarrow_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a \rightarrow_{SD} -zigzag from T_1 to T_2 . Suffices to show: if $T \rightarrow_{SD} T_1$ and $T \rightarrow_{SD} T_2$, then $\exists T'(T_1 \rightarrow_{SD} T' \text{ and } T_2 \rightarrow_{SD} T')$. Define $T \triangleright^* x := T \triangleright x$ and $T \triangleright^* (T_1 \triangleright T_2) := (T \triangleright^* T_1) \triangleright (T \triangleright^* T_2)$, and then $\partial x := x$ and $\partial(T_1 \triangleright T_2) := \partial T_1 \triangleright^* \partial T_2$. Then

• $T \rightarrow_{SD} \partial T$ (easy induction),

• $T \rightarrow^{1}_{SD} T'$ implies $T' \rightarrow_{SD} \partial T$ (semi-easy induction),

• $T \rightarrow_{SD} T'$ implies $\partial T \rightarrow_{SD} \partial T'$ (more delicate induction).

From there, $T \rightarrow_{\text{SD}}^{\rho} T'$ implies $T' \rightarrow_{\text{SD}} \partial^{\rho} T$ (easy), whence $T \rightarrow_{\text{SD}}^{\rho} T_1$ and $T \rightarrow_{\text{SD}}^{q} T_2$ implies $T_1 \rightarrow_{\text{SD}} \partial^{r} T$ and $T_2 \rightarrow_{\text{SD}} \partial^{r} T$ for $r \ge \max(p, q)$. \Box

Then $T_1 =_{SD} T_2$ holds iff one has $T_1 \rightarrow_{SD} T$ and $T_2 \rightarrow_{SD} T$ for some T.

"SD-equivalent iff admit a common SD-expansion"

▶ Proof: =_{SD} is the symmetric closure of →_{SD} (clear): $T_1 =_{SD} T_2$ holds iff there is a →_{SD}-zigzag from T_1 to T_2 . Suffices to show: if $T \to_{SD} T_1$ and $T \to_{SD} T_2$, then $\exists T' (T_1 \to_{SD} T' \text{ and } T_2 \to_{SD} T')$. Define $T \triangleright^* x := T \triangleright x$ and $T \triangleright^* (T_1 \triangleright T_2) := (T \triangleright^* T_1) \triangleright (T \triangleright^* T_2)$, and then $\partial x := x$ and $\partial (T_1 \triangleright T_2) := \partial T_1 \triangleright^* \partial T_2$. Then

• $T \rightarrow_{SD} \partial T$ (easy induction),

• $T \rightarrow^{1}_{SD} T'$ implies $T' \rightarrow_{SD} \partial T$ (semi-easy induction),

• $T \rightarrow_{SD} T'$ implies $\partial T \rightarrow_{SD} \partial T'$ (more delicate induction).

From there, $T \rightarrow_{\text{SD}}^{\rho} T'$ implies $T' \rightarrow_{\text{SD}} \partial^{\rho} T$ (easy), whence $T \rightarrow_{\text{SD}}^{\rho} T_1$ and $T \rightarrow_{\text{SD}}^{q} T_2$ implies $T_1 \rightarrow_{\text{SD}} \partial^{r} T$ and $T_2 \rightarrow_{\text{SD}} \partial^{r} T$ for $r \ge \max(p, q)$. \Box

• <u>Lemma</u> (absorption):

• Lemma (absorption): Define $x^{[1]} := x$ and $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$.

holds for n > ht(T),

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣�()

• Lemma (absorption): Define $x^{[1]} := x$ and $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =_{SD} T \triangleright x^{[n]}$ holds for n > ht(T), where ht(x) := 0

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Lemma (absorption): Define $x^{[1]} := x$ and $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =_{SD} T \triangleright x^{[n]}$

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

▶ Proof: Induction on T.

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

▶ Proof: Induction on *T*. For T = x, direct from the definitions.

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

▶ Proof: Induction on *T*. For *T* = *x*, direct from the definitions. Assume $T = T_1 \triangleright T_2$ and n > ht(T).

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

▶ Proof: Induction on *T*. For *T* = x, direct from the definitions. Assume *T* = *T*₁ \triangleright *T*₂ and *n* > ht(*T*). Then *n* − 1 > ht(*T*₁) and *n* − 1 > ht(*T*₂).

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

▶ Proof: Induction on *T*. For *T* = *x*, direct from the definitions. Assume *T* = *T*₁ ▷ *T*₂ and *n* > ht(*T*). Then *n* − 1 > ht(*T*₁) and *n* − 1 > ht(*T*₂). Then $x^{[n+1]} =_{SD} T_1 ▷ x^{[n]}$ by induction hypothesis for *T*₁

• Lemma (absorption): Define $x^{[1]} := x$ and $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =_{SD} T \triangleright x^{[n]}$

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

▶ Proof: Induction on *T*. For *T* = *x*, direct from the definitions. Assume *T* = *T*₁ ▷ *T*₂ and *n* > ht(*T*). Then *n* − 1 > ht(*T*₁) and *n* − 1 > ht(*T*₂). Then $x^{[n+1]} =_{\text{SD}} T_1 ▷ x^{[n]}$ by induction hypothesis for *T*₁ $=_{\text{SD}} T_1 ▷ (T_2 ▷ x^{[n-1]})$ by induction hypothesis for *T*₂

• Lemma (absorption): Define $x^{[1]} := x$ and $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =_{SD} T \triangleright x^{[n]}$

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

• Lemma (absorption): Define $x^{[1]} := x$ and $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =_{SD} T \triangleright x^{[n]}$

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Lemma (absorption): Define $x^{[1]} := x$ and $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =_{SD} T \triangleright x^{[n]}$

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Lemma (absorption): Define $x^{[1]} := x$ and $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =_{SD} T \triangleright x^{[n]}$

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

イロト イポト イヨト

 \equiv

• Lemma (absorption): Define $x^{[1]} := x$ and $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =_{SD} T \triangleright x^{[n]}$

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

▶ Proof: Induction on *T*. For *T* = *x*, direct from the definitions.
Assume *T* = *T*₁ ▷ *T*₂ and *n* > ht(*T*). Then *n* − 1 > ht(*T*₁) and *n* − 1 > ht(*T*₂).
Then
$$x^{[n+1]} =_{SD} T_1 ▷ x^{[n]}$$
 by induction hypothesis for *T*₁
 $=_{SD} T_1 ▷ (T_2 ▷ x^{[n-1]})$ by induction hypothesis for *T*₂
 $=_{SD} (T_1 ▷ T_2) ▷ (T_1 ▷ x^{[n-1]})$ by applying SD
 $=_{SD} (T_1 ▷ T_2) ▷ x^{[n]}$ by induction hypothesis for *T*₁
 $= T ▷ x^{[n]}$.

イロト イポト イヨト

• Lemma (absorption): Define $x^{[1]} := x$ and $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =_{SD} T \triangleright x^{[n]}$

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

holds for n > ht(T), where ht(x) := 0 and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

▶ Proof: Induction on *T*. For *T* = *x*, direct from the definitions.
Assume *T* = *T*₁ ▷ *T*₂ and *n* > ht(*T*). Then *n* − 1 > ht(*T*₁) and *n* − 1 > ht(*T*₂).
Then
$$x^{[n+1]} =_{SD} T_1 ▷ x^{[n]}$$
 by induction hypothesis for *T*₁
 $=_{SD} T_1 ▷ (T_2 ▷ x^{[n-1]})$ by induction hypothesis for *T*₂
 $=_{SD} (T_1 ▷ T_2) ▷ (T_1 ▷ x^{[n-1]})$ by applying SD
 $=_{SD} (T_1 ▷ T_2) ▷ x^{[n]}$ by induction hypothesis for *T*₁
 $= T ▷ x^{[n]}$.

• Lemma (comparison I): Write $T \sqsubseteq_{SD} T'$ for $\exists T'' (T' =_{SD} T \triangleright T'')$,
• Lemma (comparison I): Write $T \sqsubseteq_{SD} T'$ for $\exists T'' (T' =_{SD} T \triangleright T'')$, and \sqsubset_{SD}^* for the transitive closure of \sqsubset_{SD} .

• Lemma (comparison I): Write $T \underset{SD}{\sqsubset} T'$ for $\exists T'' (T' = \underset{SD}{\leftarrow} T \triangleright T'')$, and $\underset{SD}{\leftarrow}$ for the transitive closure of $\underset{SD}{\leftarrow}$. Then, for all T, T' in \mathcal{T}_x , one has at least one of

• Lemma (comparison I): Write $T \underset{\text{SD}}{=} T'$ for $\exists T'' (T' \underset{\text{SD}}{=} T \triangleright T'')$, and $\underset{\text{SD}}{=} T''$ for the transitive closure of $\underset{\text{SD}}{=} SD$. Then, for all T, T' in \mathcal{T}_x , one has at least one of $T \underset{\text{SD}}{=} T'$,

• Lemma (comparison I): Write $T \underset{\text{SD}}{\sqsubset} T'$ for $\exists T'' (T' =_{\text{SD}} T \triangleright T'')$, and $\underset{\text{SD}}{\sqsubset}$ for the transitive closure of $\underset{\text{SD}}{\sqsubset}$. Then, for all T, T' in \mathcal{T}_x , one has at least one of $T \underset{\text{SD}}{\sqsubset} T'$, $T =_{\text{SD}} T'$,

• Lemma (comparison I): Write $T {}_{\Box SD} T'$ for $\exists T'' (T' {}_{SD} T {}^{\triangleright} T'')$, and ${}_{\Box SD}^{*}$ for the transitive closure of ${}_{\Box SD}$. Then, for all T, T' in \mathcal{T}_x , one has at least one of $T {}_{\Box SD}^{*} T'$, $T {}_{SD} T'$, $T' {}_{\Box SD}^{*} T$.

• Lemma (comparison I): Write $T \underset{\text{CSD}}{=} T'$ for $\exists T'' (T' =_{\text{SD}} T \triangleright T'')$, and $\underset{\text{CSD}}{=} T$ for the transitive closure of $\underset{\text{CSD}}{=}$. Then, for all T, T' in T_x , one has at least one of $T \underset{\text{CSD}}{=} T'$, $T =_{\text{SD}} T'$, $T' \underset{\text{CSD}}{=} T$.

▲ロト ▲母 ト ▲ヨ ト ▲ヨ ト _ ヨ _ りへぐ

• Lemma (comparison I): Write $T \underset{\text{SD}}{=} T'$ for $\exists T'' (T' =_{\text{SD}} T \triangleright T'')$, and $\underset{\text{SD}}{=} T''$ for the transitive closure of $\underset{\text{SD}}{=}$. Then, for all T, T' in T_x , one has at least one of $T \underset{\text{SD}}{=} T'$, $T =_{\text{SD}} T'$, $T' \underset{\text{SD}}{=} T$.

◆ロ ▶ ◆母 ▶ ◆ ヨ ▶ ◆ 日 ▶ ◆ ○ ♪

• Lemma (comparison I): Write $T \underset{\text{SD}}{=} T'$ for $\exists T'' (T' =_{\text{SD}} T \triangleright T'')$, and $\underset{\text{SD}}{=} T''$ for the transitive closure of $\underset{\text{SD}}{=}$. Then, for all T, T' in T_x , one has at least one of $T \underset{\text{SD}}{=} T'$, $T =_{\text{SD}} T'$, $T' \underset{\text{SD}}{=} T$.

◆ロ ▶ ◆母 ▶ ◆ ヨ ▶ ◆ 日 ▶ ◆ ○ ♪

• Lemma (comparison I): Write $T \sqsubset_{SD} T'$ for $\exists T'' (T' =_{SD} T \triangleright T'')$, and \sqsubset_{SD}^* for the transitive closure of \sqsubset_{SD} . Then, for all T, T' in \mathcal{T}_x , one has at least one of $T \sqsubset_{SD}^* T'$, $T =_{SD} T'$, $T' \sqsubset_{SD}^* T$.

► Proof:

・ロト < 団 > < 三 > < 三 > < 回 > < 回 > < < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Lemma (comparison I): Write $T \underset{D}{\sqsubset} T'$ for $\exists T'' (T' \underset{D}{=} T \triangleright T'')$, and $\underset{D}{\sqsubset} T''$ for the transitive closure of $\underset{D}{\sqsubset}$. Then, for all T, T' in \mathcal{T}_x , one has at least one of $T \underset{D}{\sqsubset} T' \underset{D}{\leftarrow} T'$, $T \underset{D}{=} T'$, $T' \underset{D}{\sqsubset} T'$.

► Proof:

◆ロト ◆昼 ト ◆臣 ト ◆臣 - 今へ⊙

• Lemma (comparison I): Write $T \underset{D}{\sqsubset} T'$ for $\exists T'' (T' \underset{D}{=} T \triangleright T'')$, and $\underset{D}{\sqsubset} T''$ for the transitive closure of $\underset{D}{\sqsubset}$. Then, for all T, T' in \mathcal{T}_x , one has at least one of $T \underset{D}{\sqsubset} T' \underset{D}{\leftarrow} T'$, $T \underset{D}{=} T'$, $T' \underset{D}{\sqsubset} T'$.

► Proof:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Lemma (comparison I): Write $T \underset{D}{\sqsubset} T'$ for $\exists T'' (T' \underset{D}{=} T \triangleright T'')$, and $\underset{D}{\sqsubset} T''$ for the transitive closure of $\underset{D}{\sqsubset}$. Then, for all T, T' in \mathcal{T}_x , one has at least one of $T \underset{D}{\sqsubset} T' \underset{D}{\leftarrow} T'$, $T \underset{D}{=} T'$, $T' \underset{D}{\sqsubset} T'$.

► Proof:

◆ロト ◆昼 ト ◆臣 ト ◆臣 - 今へ⊙

► Proof:

◆ロト ◆昼 ト ◆臣 ト ◆臣 - 今へ⊙

• Lemma (comparison II): If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are ${}_{\!\!\!\!\!\!\!}^*$ -comparable.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Lemma (comparison II): If (S, ▷) is a monogenerated left-shelf, any two distinct elements of S are c*-comparable.

 ↑
 transitive closure of c = iterated left divisibility relation

 Proof: Assume S gen'd by g and a ≠ a' in S.

▶ Proof: Assume S gen'd by g and $a \neq a'$ in S. By def, a = T(g) and a' = T'(g) for some terms T, T'.

• Lemma (comparison II): If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of *S* are $_^*$ -comparable. transitive closure of \Box = iterated left divisibility relation

▶ Proof: Assume S gen'd by g and $a \neq a'$ in S. By def, a = T(g) and a' = T'(g)for some terms T, T'. If $T {}_{SD}^* T'$, then $a {}_{\Box}^* a'$ in S;

▶ Proof: Assume S gen'd by g and $a \neq a'$ in S. By def, a = T(g) and a' = T'(g) for some terms T, T'. If $T {}_{\Box_{SD}^*} T'$, then $a {}_{\Box_{SD}^*} a'$ in S; if $T' {}_{\Box_{SD}^*} T$, then $a' {}_{\Box_{SD}^*} a$ in S;

• Lemma (comparison II): If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are \sqsubset^* -comparable.

transitive closure of \Box = iterated left divisibility relation

▶ Proof: Assume S gen'd by g and $a \neq a'$ in S. By def, a = T(g) and a' = T'(g) for some terms T, T'. If $T {}_{SD} T'$, then $a {}_{\Box} * a'$ in S; if $T' {}_{SD} T$, then $a' {}_{\Box} * a$ in S; otherwise, $T = {}_{SD} T'$, hence a = a' in S.

Lemma (comparison II): If (S, ▷) is a monogenerated left-shelf, any two distinct elements of S are c*-comparable.

↑
transitive closure of c = iterated left divisibility relation

Proof: Assume S gen'd by g and a ≠ a' in S. By def, a = T(g) and a' = T'(g) for some terms T, T'. If T csD T', then a c* a' in S; if T' csD T, then a' c* a in S; otherwise, T = SD T', hence a = a' in S.

• <u>Proposition</u> (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

Lemma (comparison II): If (S, ▷) is a monogenerated left-shelf, any two distinct elements of S are c*-comparable.

↑
transitive closure of c = iterated left divisibility relation

Proof: Assume S gen'd by g and a ≠ a' in S. By def, a = T(g) and a' = T'(g) for some terms T, T'. If T csD T', then a c* a' in S; if T' csD T, then a' c* a in S; otherwise, T = SD T', hence a = a' in S.

• <u>Proposition</u> (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

▶ Proof: Assume S gen'd by g.

▲ロ ▶ ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ●

Lemma (comparison II): If (S, ▷) is a monogenerated left-shelf, any two distinct elements of S are c*-comparable.

↑
transitive closure of c = iterated left divisibility relation

Proof: Assume S gen'd by g and a ≠ a' in S. By def, a = T(g) and a' = T'(g) for some terms T, T'. If T csD T', then a c* a' in S; if T' csD T, then a' c* a in S; otherwise, T = SD T', hence a = a' in S.

• <u>Proposition</u> (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

▶ Proof: Assume S gen'd by g. "S is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ".

Lemma (comparison II): If (S, ▷) is a monogenerated left-shelf, any two distinct elements of S are c*-comparable.

↑
transitive closure of c = iterated left divisibility relation

Proof: Assume S gen'd by g and a ≠ a' in S. By def, a = T(g) and a' = T'(g) for some terms T, T'. If T csD T', then a c* a' in S; if T' csD T, then a' c* a in S; otherwise, T = SD T', hence a = a' in S.

• <u>Proposition</u> (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

▶ Proof: Assume S gen'd by g. "S is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$

Lemma (comparison II): If (S, ▷) is a monogenerated left-shelf, any two distinct elements of S are c*-comparable.

↑
transitive closure of c = iterated left divisibility relation

Proof: Assume S gen'd by g and a ≠ a' in S. By def, a = T(g) and a' = T'(g) for some terms T, T'. If T csD T', then a c* a' in S; if T' csD T, then a' c* a in S; otherwise, T = SD T', hence a = a' in S.

• <u>Proposition</u> (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

▶ Proof: Assume *S* gen'd by *g*. "*S* is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$ implies $T \sqsubset_{SD}^* T'$ or $T' \sqsubset_{SD}^* T$,

A D M A

Lemma (comparison II): If (S, ▷) is a monogenerated left-shelf, any two distinct elements of S are c*-comparable.

↑
transitive closure of c = iterated left divisibility relation

Proof: Assume S gen'd by g and a ≠ a' in S. By def, a = T(g) and a' = T'(g) for some terms T, T'. If T csD T', then a c* a' in S; if T' csD T, then a' c* a in S; otherwise, T = SD T', hence a = a' in S.

• <u>Proposition</u> (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

▶ Proof: Assume *S* gen'd by *g*. "*S* is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$ implies $T \sqsubset_{SD}^* T'$ or $T' \sqsubset_{SD}^* T$, whence $T(g) \sqsubset^* T'(g)$

Lemma (comparison II): If (S, ▷) is a monogenerated left-shelf, any two distinct elements of S are c*-comparable.

↑
transitive closure of c = iterated left divisibility relation

Proof: Assume S gen'd by g and a ≠ a' in S. By def, a = T(g) and a' = T'(g) for some terms T, T'. If T csD T', then a c* a' in S; if T' csD T, then a' c* a in S; otherwise, T = SD T', hence a = a' in S.

• <u>Proposition</u> (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

▶ Proof: Assume *S* gen'd by *g*. "*S* is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$ implies $T \sqsubset_{SD}^* T'$ or $T' \sqsubset_{SD}^* T$, whence $T(g) \sqsubset^* T'(g)$ or $T'(g) \sqsubset^* T(g)$. Lemma (comparison II): If (S, ▷) is a monogenerated left-shelf, any two distinct elements of S are c*-comparable.

transitive closure of c = iterated left divisibility relation

Proof: Assume S gen'd by g and a ≠ a' in S. By def, a = T(g) and a' = T'(g) for some terms T, T'. If T c*n T', then a c* a' in S; if T' c*n T, then a' c* a in S;

otherwise, $T =_{SD} T'$, hence a = a' in S.

• <u>Proposition</u> (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

▶ Proof: Assume *S* gen'd by *g*. "*S* is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$ implies $T \sqsubset_{SD}^* T'$ or $T' \sqsubset_{SD}^* T$, whence $T(g) \sqsubset^* T'(g)$ or $T'(g) \sqsubset^* T(g)$. As \sqsubset has no cycle in *S*, both imply $T(g) \neq T'(g)$.

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 = つへぐ

• <u>Definition</u>: For α a binary address (= finite sequence of 0s and 1s),

• <u>Definition</u>: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ".

• <u>Definition</u>: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD_{α} and their inverses.
• <u>Definition</u>: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD_{α} and their inverses.

• Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.

• <u>Definition</u>: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD_{α} and their inverses.

- Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.
- Now, for every term T, select an element XT of M_{SD} that maps x^[n+1] to T ▷ x^[n].
 Follow the inductive proof of the absorption property:

 $\chi_{x} := 1, \quad \chi_{T_{1} \triangleright T_{2}} := \chi_{T_{1}} \cdot \operatorname{sh}_{1}(\chi_{T_{2}}) \cdot \operatorname{SD}_{\emptyset} \cdot \operatorname{sh}_{1}(\chi_{T_{1}})^{-1}.$ (*)

• Next, identify relations in \mathcal{M}_{SD} :

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Definition</u>: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD_{α} and their inverses.

- Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.
- Now, for every term T, select an element XT of M_{SD} that maps x^[n+1] to T ▷ x^[n].
 Follow the inductive proof of the absorption property:

 $\chi_{x} := 1, \quad \chi_{T_{1} \triangleright T_{2}} := \chi_{T_{1}} \cdot \operatorname{sh}_{1}(\chi_{T_{2}}) \cdot \operatorname{SD}_{\emptyset} \cdot \operatorname{sh}_{1}(\chi_{T_{1}})^{-1}.$ (*)

• Next, identify relations in \mathcal{M}_{SD} : SD_{11 α}SD_{α} = SD_{α}SD_{11 α}. • <u>Definition</u>: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD_{α} and their inverses.

- Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.
- Now, for every term T, select an element XT of M_{SD} that maps x^[n+1] to T ▷ x^[n].
 Follow the inductive proof of the absorption property:

$$\chi_{x} := 1, \quad \chi_{T_{1} \triangleright T_{2}} := \chi_{T_{1}} \cdot \operatorname{sh}_{1}(\chi_{T_{2}}) \cdot \operatorname{SD}_{\emptyset} \cdot \operatorname{sh}_{1}(\chi_{T_{1}})^{-1}.$$
(*)

• Next, identify relations in \mathcal{M}_{SD} : $SD_{11\alpha}SD_{\alpha} = SD_{\alpha}SD_{11\alpha}$, $SD_{1\alpha}SD_{\alpha}SD_{1\alpha}SD_{0\alpha} = SD_{\alpha}SD_{1\alpha}SD_{\alpha}$, etc. (**)

• <u>Definition</u>: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD_{α} and their inverses.

- Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.
- Now, for every term T, select an element XT of M_{SD} that maps x^[n+1] to T ▷ x^[n].
 Follow the inductive proof of the absorption property:

$$\chi_{x} := 1, \quad \chi_{T_{1} \triangleright T_{2}} := \chi_{T_{1}} \cdot \operatorname{sh}_{1}(\chi_{T_{2}}) \cdot \operatorname{SD}_{\emptyset} \cdot \operatorname{sh}_{1}(\chi_{T_{1}})^{-1}.$$
 (*)

• Next, identify relations in \mathcal{M}_{SD} :

 $SD_{11\alpha}SD_{\alpha} = SD_{\alpha}SD_{11\alpha}$, $SD_{1\alpha}SD_{\alpha}SD_{1\alpha}SD_{0\alpha} = SD_{\alpha}SD_{1\alpha}SD_{\alpha}$, etc. (**)

▶ When every SD_{α} s.t. α contains 0 is collapsed, only the $SD_{11...1}$ s remain.

• <u>Definition</u>: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD_{α} and their inverses.

- Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.
- Now, for every term T, select an element XT of M_{SD} that maps x^[n+1] to T ▷ x^[n].
 Follow the inductive proof of the absorption property:

$$\chi_{x} := 1, \quad \chi_{T_{1} \triangleright T_{2}} := \chi_{T_{1}} \cdot \operatorname{sh}_{1}(\chi_{T_{2}}) \cdot \operatorname{SD}_{\emptyset} \cdot \operatorname{sh}_{1}(\chi_{T_{1}})^{-1}.$$
(*)

• Next, identify relations in \mathcal{M}_{SD} :

• <u>Definition</u>: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD_{α} and their inverses.

- Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.
- Now, for every term T, select an element XT of M_{SD} that maps x^[n+1] to T ▷ x^[n].
 Follow the inductive proof of the absorption property:

$$\chi_{\mathsf{x}} := 1, \quad \chi_{T_1 \triangleright T_2} := \chi_{T_1} \cdot \mathsf{sh}_1(\chi_{T_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{T_1})^{-1}. \tag{(*)}$$

• Next, identify relations in \mathcal{M}_{SD} :

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD $_{\alpha}$ be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD $_{\alpha}$ and their inverses.

- Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.
- Now, for every term T, select an element χ_T of \mathcal{M}_{SD} that maps $x^{[n+1]}$ to $T \triangleright x^{[n]}$. ▶ Follow the inductive proof of the absorption property:

$$\chi_{\mathsf{x}} := 1, \quad \chi_{T_1 \triangleright T_2} := \chi_{T_1} \cdot \mathsf{sh}_1(\chi_{T_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{T_1})^{-1}. \tag{(*)}$$

• Next, identify relations in \mathcal{M}_{SD} :

(**) ▶ When every SD_{α} s.t. α contains 0 is collapsed, only the $SD_{11...1}$ s remain.

▶ The resulting quotient of \mathcal{M}_{SD} is B_{∞} (!).

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD $_{\alpha}$ be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD α and their inverses.

- Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.
- Now, for every term T, select an element χ_T of \mathcal{M}_{SD} that maps $x^{[n+1]}$ to $T \triangleright x^{[n]}$. ▶ Follow the inductive proof of the absorption property:

$$\chi_{x} := 1, \quad \chi_{T_{1} \triangleright T_{2}} := \chi_{T_{1}} \cdot \operatorname{sh}_{1}(\chi_{T_{2}}) \cdot \operatorname{SD}_{\emptyset} \cdot \operatorname{sh}_{1}(\chi_{T_{1}})^{-1}.$$
(*)

• Next, identify relations in \mathcal{M}_{SD} :

(**)

- ▶ When every SD_{α} s.t. α contains 0 is collapsed, only the $SD_{11...1}$ s remain.

- ▶ The resulting quotient of \mathcal{M}_{SD} is B_{∞} (!).
- ▶ If ϕ maps T to T', then $sh_0(\phi)$ maps $T \triangleright x^{[n]}$ to $T' \triangleright x^{[n]}$.

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD $_{\alpha}$ be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD $_{\alpha}$ and their inverses.

- Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.
- Now, for every term T, select an element χ_T of \mathcal{M}_{SD} that maps $x^{[n+1]}$ to $T \triangleright x^{[n]}$. ▶ Follow the inductive proof of the absorption property:

$$\chi_{\mathsf{x}} := 1, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1}. \tag{(*)}$$

• Next, identify relations in \mathcal{M}_{SD} :

(**)

- ▶ When every SD_{α} s.t. α contains 0 is collapsed, only the $SD_{11...1}$ s remain.
- - ▶ The resulting quotient of \mathcal{M}_{SD} is B_{∞} (!).
 - ▶ If ϕ maps T to T', then $sh_0(\phi)$ maps $T \triangleright x^{[n]}$ to $T' \triangleright x^{[n]}$. so collapsing all $sh_0(\phi)$ must give an SD-operation on the quotient, i.e., on B_{∞} .

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD $_{\alpha}$ be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid \mathcal{M}_{SD} gen'd by all SD $_{\alpha}$ and their inverses.

- Fact: Two terms T, T' are SD-equivalent iff some element of \mathcal{M}_{SD} maps T to T'.
- Now, for every term T, select an element χ_T of \mathcal{M}_{SD} that maps $x^{[n+1]}$ to $T \triangleright x^{[n]}$. ▶ Follow the inductive proof of the absorption property:

$$\chi_{\mathsf{x}} := 1, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1}.$$

(**)

- $SD_{11\alpha}SD_{\alpha} = SD_{\alpha}SD_{11\alpha}, SD_{1\alpha}SD_{\alpha}SD_{1\alpha}SD_{0\alpha} = SD_{\alpha}SD_{1\alpha}SD_{\alpha}, \text{ etc.}$ $\bullet \text{ When every } SD_{\alpha} \text{ s.t. } \alpha \text{ contains } 0 \text{ is collapsed } s^{-1}$ $\bullet \text{ Write } \sigma = f^{-1}$ ▶ When every SD_{α} s.t. α contains 0 is collapsed, only the $SD_{11...1}$ s remain.
 - Write $\sigma_{i\perp 1}$ for the image of SD_{11...1}, *i* times 1. Then (**) becomes
 - Write σ_{i+1} for the image of j = 1. $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|j i| \ge 2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for |j i| = 1.
 - ▶ The resulting quotient of \mathcal{M}_{SD} is B_{∞} (!).
 - so collapsing all $sh_0(\phi)$ maps $T \triangleright x^{[n]}$ to $T' \triangleright x^{[n]}$, $to T' \models x^{[n]}$, ▶ If ϕ maps T to T', then $sh_0(\phi)$ maps $T \triangleright x^{[n]}$ to $T' \triangleright x^{[n]}$.
 - ▶ Its definition is the projection of (*), i.e.,

$$a \triangleright b := a \cdot \operatorname{sh}(b) \cdot \sigma_i \cdot \operatorname{sh}(a)^{-1}$$

(*)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○ ○

 $\overset{\mathsf{sh}_1(\chi \tau_2)}{\underset{\mathsf{SD}}{\mapsto}}$ $\begin{array}{c} X T_1 \\ \mapsto \\ =_{SD} \\ T_1 \end{array}$

ヘロト スピト メヨト

Ξ

< ロ > < 同 > < 回 > < 回 >

• The "magic rule" revisited:

whence $\chi_{T_1 \triangleright T_2} = \chi_{T_1} \cdot \operatorname{sh}_1(\chi_{T_2}) \cdot \operatorname{SD}_{\emptyset} \cdot \operatorname{sh}_1(\chi_{T_1}^{-1})$,

which projects to the braid operation.

• The "magic rule" revisited:

$$\begin{array}{c|c} \chi_{T_1} & \underset{\mapsto}{\overset{\mapsto}{\rightarrow}} \\ = s_D & \mathcal{T}_1 & \underset{=}{\overset{\mapsto}{\rightarrow}} \\ \chi_{T_1} & \underset{=}{\overset{\mapsto}{\rightarrow}} \\ = s_D & \mathcal{T}_1 & \mathcal{T}_2 & \underset{=}{\overset{\to}{\rightarrow}} \\ \chi_{T_1} & \underset{=}{\overset{\to}{\rightarrow} \\ \chi_{T_1} & \underset{=}{\overset{\to}{\rightarrow}} \\ \chi_{T_1} & \underset{=}{\overset{\to}{\overset{\to}{\rightarrow}} \\ \chi_{T_1} & \underset{=}{\overset{\to}{\rightarrow}} \\ \chi_{T_1} & \underset{=}{\overset{\to}{\rightarrow} \\ \chi$$

whence $\chi_{T_1 \triangleright T_2} = \chi_{T_1} \cdot \operatorname{sh}_1(\chi_{T_2}) \cdot \operatorname{SD}_{\emptyset} \cdot \operatorname{sh}_1(\chi_{T_1}^{-1})$,

which projects to the braid operation.

.../...

• See more in [P.D., Braids and selfdistributivity, PM192, Birkhaüser (1999)]

Plan:

- 1. Braid colorings
 - Diagrams and Reidemeister moves
 - Diagram colorings
 - Quandles, racks, and shelves
- 2. The SD-world
 - Classical and exotic examples
 - The world of shelves
- 3. The braid shelf
 - The braid operation
 - Larue's lemma and free subshelves
 - Special braids
- 4. The free monogenerated shelf
 - Terms and trees
 - The comparison property
 - The Thompson's monoid of SD
- 5. The set-theoretic shelf
 - Set theory and large cardinals
 - Elementary embeddings
 - The iteration shelf
- 6. Using set theory to investigate Laver tables

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Quotients of the iteration shelf
- A dictionary
- Results about periods

• From the very beginning, Set Theory is a theory of infinity.

• From the very beginning, Set Theory is a theory of infinity.

- From the very beginning, Set Theory is a theory of infinity.
- <u>Theorem</u> (Cantor, 1873): There exist at least two non-equivalent infinities.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

- From the very beginning, Set Theory is a theory of infinity.
- <u>Theorem</u> (Cantor, 1873): There exist at least two non-equivalent infinities.
- <u>Theorem</u> (Cantor, 1880s): There exist infinitely many non-equivalent infinities,

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- From the very beginning, Set Theory is a theory of infinity.
- <u>Theorem</u> (Cantor, 1873): There exist at least two non-equivalent infinities.
- <u>Theorem</u> (Cantor, 1880s): There exist infinitely many non-equivalent infinities, which organize in a well-ordered sequence

 $\aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \cdots .$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- From the very beginning, Set Theory is a theory of infinity.
- <u>Theorem</u> (Cantor, 1873): There exist at least two non-equivalent infinities.
- <u>Theorem</u> (Cantor, 1880s): There exist infinitely many non-equivalent infinities, which organize in a well-ordered sequence

 $\aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \cdots .$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Facts</u>: $card(\mathbb{N}) = \aleph_0$,

- From the very beginning, Set Theory is a theory of infinity.
- <u>Theorem</u> (Cantor, 1873): There exist at least two non-equivalent infinities.
- <u>Theorem</u> (Cantor, 1880s): There exist infinitely many non-equivalent infinities, which organize in a well-ordered sequence

 $\aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \cdots .$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Facts</u>: card(\mathbb{N}) = \aleph_0 , and card(\mathbb{R})

- From the very beginning, Set Theory is a theory of infinity.
- <u>Theorem</u> (Cantor, 1873): There exist at least two non-equivalent infinities.

 $\aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \cdots .$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Facts</u>: card(\mathbb{N}) = \aleph_0 , and card(\mathbb{R}) (= card($\mathfrak{P}(\mathbb{N})$) = 2^{\aleph_0})

- From the very beginning, Set Theory is a theory of infinity.
- <u>Theorem</u> (Cantor, 1873): There exist at least two non-equivalent infinities.

 $\aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \cdots .$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• <u>Facts</u>: card(\mathbb{N}) = \aleph_0 , and card(\mathbb{R}) (= card($\mathfrak{P}(\mathbb{N})$) = 2^{\aleph_0}) > card(\mathbb{N}).

- From the very beginning, Set Theory is a theory of infinity.
- <u>Theorem</u> (Cantor, 1873): There exist at least two non-equivalent infinities.

 $\aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \cdots$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- <u>Facts</u>: card(\mathbb{N}) = \aleph_0 , and card(\mathbb{R}) (= card($\mathfrak{P}(\mathbb{N})$) = 2^{\aleph_0}) > card(\mathbb{N}).
- Question: For which α (necessarily ≥ 1) does card(\mathbb{R}) = \aleph_{α} hold?

- From the very beginning, Set Theory is a theory of infinity.
- <u>Theorem</u> (Cantor, 1873): There exist at least two non-equivalent infinities.

 $\aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \cdots$.

- <u>Facts</u>: card(\mathbb{N}) = \aleph_0 , and card(\mathbb{R}) (= card($\mathfrak{P}(\mathbb{N})$) = 2^{\aleph_0}) > card(\mathbb{N}).
- Question: For which α (necessarily ≥ 1) does card(\mathbb{R}) = \aleph_{α} hold?
 - ▶ <u>Conjecture</u> (Continuum Hypothesis, Cantor, 1879):

- From the very beginning, Set Theory is a theory of infinity.
- <u>Theorem</u> (Cantor, 1873): There exist at least two non-equivalent infinities.

 $\aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \cdots$.

- <u>Facts</u>: card(\mathbb{N}) = \aleph_0 , and card(\mathbb{R}) (= card($\mathfrak{P}(\mathbb{N})$) = 2^{\aleph_0}) > card(\mathbb{N}).
- Question: For which α (necessarily ≥ 1) does card(\mathbb{R}) = \aleph_{α} hold?
 - ▶ <u>Conjecture</u> (Continuum Hypothesis, Cantor, 1879): $card(\mathbb{R}) = \aleph_1$.

- From the very beginning, Set Theory is a theory of infinity.
- <u>Theorem</u> (Cantor, 1873): There exist at least two non-equivalent infinities.

 $\aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \cdots$.

- <u>Facts</u>: card(\mathbb{N}) = \aleph_0 , and card(\mathbb{R}) (= card($\mathfrak{P}(\mathbb{N})$) = 2^{\aleph_0}) > card(\mathbb{N}).
- Question: For which α (necessarily ≥ 1) does card(\mathbb{R}) = \aleph_{α} hold?
 - ▶ Conjecture (Continuum Hypothesis, Cantor, 1879): $card(\mathbb{R}) = \aleph_1$.
 - ▶ Equivalently: every uncountable set of reals has the cardinality of \mathbb{R} .

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)

 Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ► Consensus: "We agree that these properties express our current intuition of sets."

 Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

► Consensus: "We agree that these properties express

our current intuition of sets." (but this may change in the future...)

- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ► Consensus: "We agree that these properties express

our current intuition of sets." (but this may change in the future...)

▶ First question:
- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ► Consensus: "We agree that these properties express
 - our current intuition of sets." (but this may change in the future...)
 - ▶ First question: Is CH or ¬CH (negation of CH) provable from ZF?

- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ▶ Consensus: "We agree that these properties express
 - our current intuition of sets." (but this may change in the future...)
 - ▶ First question: Is CH or ¬CH (negation of CH) provable from ZF?

- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ► Consensus: "We agree that these properties express
 - our current intuition of sets." (but this may change in the future...)
 - ► First question: Is CH or ¬CH (negation of CH) provable from ZF?

• Theorem (Gödel, 1938): Unless ZF is contradictory,

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ▶ Consensus: "We agree that these properties express
 - our current intuition of sets." (but this may change in the future...)
 - ▶ First question: Is CH or ¬CH (negation of CH) provable from ZF?

negation of

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ▶ Consensus: "We agree that these properties express
 - our current intuition of sets." (but this may change in the future...)
 - ► First question: Is CH or ¬CH (negation of CH) provable from ZF?

negation of

- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ▶ Consensus: "We agree that these properties express
 - our current intuition of sets." (but this may change in the future...)
 - ► First question: Is CH or ¬CH (negation of CH) provable from ZF?

- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ▶ Consensus: "We agree that these properties express
 - our current intuition of sets." (but this may change in the future...)
 - ► First question: Is CH or ¬CH (negation of CH) provable from ZF?

Method of proof: Investigate models of ZF = abstract structures satisfying the axioms of ZF

- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ▶ Consensus: "We agree that these properties express
 - our current intuition of sets." (but this may change in the future...)
 - ► First question: Is CH or ¬CH (negation of CH) provable from ZF?

▶ Method of proof: Investigate models of ZF = abstract structures satisfying the axioms of ZF (\approx investigate abstract groups or fields).

- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ▶ Consensus: "We agree that these properties express
 - our current intuition of sets." (but this may change in the future...)
 - ► First question: Is CH or ¬CH (negation of CH) provable from ZF?

 Method of proof: Investigate models of ZF = abstract structures satisfying the axioms of ZF (≈ investigate abstract groups or fields).
For Gödel: every model has a submodel that satisfies AC.

- Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...) and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):
 - ▶ Consensus: "We agree that these properties express
 - our current intuition of sets." (but this may change in the future...)
 - ▶ First question: Is CH or ¬CH (negation of CH) provable from ZF?

- Method of proof: Investigate models of ZF = abstract structures satisfying the axioms of ZF (≈ investigate abstract groups or fields).
 For Gödel: every model has a submodel that satisfies AC.
- ▶ For Cohen: every model has an extension that satisfies \neg AC.

• Conclusion:

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

- <u>Conclusion</u>: **ZF** is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - ▶ How to recognize that an axiom is true? (What does this mean?)

- Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good idea...

- Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good idea...
- Which new axioms?

- Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good idea...
- Which new axioms?

- Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good idea...
- Which new axioms?
- From 1930's, axioms of large cardinal:

- Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good idea...
- Which new axioms?
- From 1930's, axioms of large cardinal:

- <u>Conclusion</u>: **ZF** is incomplete (not: CH is indecidable—which means nothing).
 - Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:

- <u>Conclusion</u>: **ZF** is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - various solutions to the equation
 <u>super-infinite</u>
 infinite

- <u>Conclusion</u>: **ZF** is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ► various solutions to the equation

- <u>Conclusion</u>: **ZF** is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ► various solutions to the equation

 set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;

- <u>Conclusion</u>: **ZF** is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ▶ various solutions to the equation

- set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- ▶ repeat the process with "super-infinite".

- <u>Conclusion</u>: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ▶ various solutions to the equation

- set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- ▶ repeat the process with "super-infinite".
- ▶ inaccessible cardinals,

- <u>Conclusion</u>: **ZF** is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ▶ various solutions to the equation

- set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- ▶ repeat the process with "super-infinite".
- ▶ inaccessible cardinals, measurable cardinals,

- <u>Conclusion</u>: **ZF** is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ▶ various solutions to the equation

- set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- ▶ repeat the process with "super-infinite".
- ▶ inaccessible cardinals, measurable cardinals, huge cardinals,

- <u>Conclusion</u>: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ▶ various solutions to the equation

- set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- ▶ repeat the process with "super-infinite".
- ▶ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.

- Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ▶ various solutions to the equation

- set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- ▶ repeat the process with "super-infinite".
- ▶ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.
- <u>Theorem(s)</u> (Martin-Steel, Woodin, ... 1970s-80s): A certain large cardinal axiom, PD

- Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ▶ various solutions to the equation

- set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- ▶ repeat the process with "super-infinite".
- ▶ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.

• <u>Theorem(s)</u> (Martin-Steel, Woodin, ... 1970s-80s): A certain large cardinal axiom, PD ("projective determinacy",

- Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ▶ various solutions to the equation

- set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- ▶ repeat the process with "super-infinite".
- ▶ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.

• <u>Theorem(s)</u> (Martin-Steel, Woodin, ... 1970s-80s): A certain large cardinal axiom, PD ("projective determinacy", aka "there exists infinitely many Woodin cardinals"),

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ▶ various solutions to the equation

- set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- ▶ repeat the process with "super-infinite".
- ▶ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.

• <u>Theorem(s)</u> (Martin-Steel, Woodin, ... 1970s-80s): A certain large cardinal axiom, PD ("projective determinacy", aka "there exists infinitely many Woodin cardinals"), provides a heuristically complete description of finite and countable sets.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).
 - ▶ Discover further properties of sets, and adopt an extended list of axioms!
 - How to recognize that an axiom is true? (What does this mean?) Example: CH may be taken as an additional axiom, but not a good
- Which new axioms?
- From 1930's, axioms of large cardinal:
 - ▶ various solutions to the equation

- set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- ▶ repeat the process with "super-infinite".
- ▶ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.

• <u>Theorem(s)</u> (Martin-Steel, Woodin, ... 1970s-80s): A certain large cardinal axiom, PD ("projective determinacy", aka "there exists infinitely many Woodin cardinals"), provides a heuristically complete description of finite and countable sets.

 \bullet <u>New consensus</u>: ZF+PD is, from now on, the reference system for set theory.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Principle: self-similar implies large
 - ▶ X infinite: $\exists j : X \to X$ (*j* injective not bijective)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- Principle: self-similar implies large
 - ▶ X infinite: $\exists j : X \rightarrow X$ (*j* injective not bijective)
 - ▶ X super-infinite: $\exists j : X \to X$ (j inject. not biject. preserving all \in -definable notions)

- Principle: self-similar implies large
 - ▶ X infinite: $\exists j : X \rightarrow X$ (*j* injective not bijective)
 - ▶ X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions)

an elementary embedding of X
- Principle: self-similar implies large
 - ▶ X infinite: $\exists j : X \to X$ (j injective not bijective)
 - ► X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions) an elementary embedding of X
- Example: \mathbb{N} is not super-infinite.

- Principle: self-similar implies large
 - ▶ X infinite: $\exists j : X \rightarrow X$ (*j* injective not bijective)
 - ► X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions) an elementary embedding of X
- <u>Example</u>: ℕ is not super-infinite.
 - ▶ Proof: Assume $j : \mathbb{N} \to \mathbb{N}$ witnesses for " \mathbb{N} is super-infinite".

• Principle: self-similar implies large

- ▶ X infinite: $\exists j : X \rightarrow X$ (*j* injective not bijective)
- ► X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions) an elementary embedding of X
- <u>Example</u>: ℕ is not super-infinite.
 - ▶ Proof: Assume $j : \mathbb{N} \to \mathbb{N}$ witnesses for " \mathbb{N} is super-infinite". Then 0 is the only element of \mathbb{N} satisfying "I am the smallest element for <",

• Principle: self-similar implies large

- ▶ X infinite: $\exists j : X \to X$ (j injective not bijective)
- ► X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions) an elementary embedding of X

• <u>Example</u>: ℕ is not super-infinite.

▶ Proof: Assume $j : \mathbb{N} \to \mathbb{N}$ witnesses for " \mathbb{N} is super-infinite". Then 0 is the only element of \mathbb{N} satisfying "I am the smallest element for <", and < is definable from \in .

• Principle: self-similar implies large

- ▶ X infinite: $\exists j : X \to X$ (j injective not bijective)
- ► X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions) an elementary embedding of X
- <u>Example</u>: N is not super-infinite.
 - ▶ Proof: Assume $j : \mathbb{N} \to \mathbb{N}$ witnesses for " \mathbb{N} is super-infinite". Then 0 is the only element of \mathbb{N} satisfying "I am the smallest element for <", and < is definable from \in . Hence j(0) also satisfies "I am the smallest for <".

• Principle: self-similar implies large

- ▶ X infinite: $\exists j : X \to X$ (j injective not bijective)
- ► X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions)

an elementary embedding of X

● <u>Example</u>: N is not super-infinite.

▶ Proof: Assume $j : \mathbb{N} \to \mathbb{N}$ witnesses for " \mathbb{N} is super-infinite". Then 0 is the only element of \mathbb{N} satisfying "I am the smallest element for <", and < is definable from \in . Hence j(0) also satisfies "I am the smallest for <". Hence necessarily j(0) = 0.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Principle: self-similar implies large

- ▶ X infinite: $\exists j : X \to X$ (j injective not bijective)
- ► X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions)

an elementary embedding of X

● <u>Example</u>: N is not super-infinite.

▶ Proof: Assume $j : \mathbb{N} \to \mathbb{N}$ witnesses for " \mathbb{N} is super-infinite". Then 0 is the only element of \mathbb{N} satisfying "I am the smallest element for <", and < is definable from \in . Hence j(0) also satisfies "I am the smallest for <". Hence necessarily j(0) = 0. Now 1 says "I am the smallest after 0":

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Principle: self-similar implies large

- ▶ X infinite: $\exists j : X \to X$ (j injective not bijective)
- ► X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions)

an elementary embedding of X

● <u>Example</u>: N is not super-infinite.

▶ Proof: Assume $j : \mathbb{N} \to \mathbb{N}$ witnesses for " \mathbb{N} is super-infinite". Then 0 is the only element of \mathbb{N} satisfying "I am the smallest element for <", and < is definable from \in . Hence j(0) also satisfies "I am the smallest for <". Hence necessarily j(0) = 0. Now 1 says "I am the smallest after 0": By the same argument j(1) = 1,

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Principle: self-similar implies large

- ▶ X infinite: $\exists j : X \to X$ (j injective not bijective)
- ► X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions)

an elementary embedding of X

Example: N is not super-infinite.

▶ Proof: Assume $j : \mathbb{N} \to \mathbb{N}$ witnesses for " \mathbb{N} is super-infinite". Then 0 is the only element of \mathbb{N} satisfying "I am the smallest element for <", and < is definable from \in . Hence j(0) also satisfies "I am the smallest for <". Hence necessarily j(0) = 0. Now 1 says "I am the smallest after 0": By the same argument j(1) = 1, etc. So j is the identity.

Principle: self-similar implies large

- ▶ X infinite: $\exists j : X \to X$ (j injective not bijective)
- ► X super-infinite: $\exists j : X \to X$ (*j* inject. not biject. preserving all \in -definable notions)

an elementary embedding of X

Example: N is not super-infinite.

▶ Proof: Assume $j : \mathbb{N} \to \mathbb{N}$ witnesses for " \mathbb{N} is super-infinite". Then 0 is the only element of \mathbb{N} satisfying "I am the smallest element for <", and < is definable from \in . Hence j(0) also satisfies "I am the smallest for <". Hence necessarily j(0) = 0. Now 1 says "I am the smallest after 0": By the same argument j(1) = 1, etc. So j is the identity.

► A super-infinite set must be so large that it contains <u>un</u>definable elements (since all definable elements must be fixed).

• Fact: There is a canonical filtration of sets by the sets V_{α} , α an ordinal,

• Fact: There is a canonical filtration of sets by the sets V_{α} , α an ordinal, def'd by $V_0 := \emptyset$,

• <u>Fact</u>: There is a canonical filtration of sets by the sets V_{α} , α an ordinal, def'd by $V_0 := \emptyset$, $V_{\alpha+1} := \mathfrak{P}(V_{\alpha})$,

• <u>Fact</u>: There is a canonical filtration of sets by the sets V_{α} , α an ordinal, def'd by $V_0 := \emptyset$, $V_{\alpha+1} := \mathfrak{P}(V_{\alpha})$, $V_{\lambda} := \bigcup_{\alpha < \lambda} V_{\alpha}$ for λ limit.

• <u>Fact</u>: If λ is a limit ordinal and $f: V_{\lambda} \rightarrow V_{\lambda}$,

• <u>Fact</u>: There is a canonical filtration of sets by the sets V_{α} , α an ordinal, def'd by $V_0 := \emptyset$, $V_{\alpha+1} := \mathfrak{P}(V_{\alpha})$, $V_{\lambda} := \bigcup_{\alpha < \lambda} V_{\alpha}$ for λ limit.

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \to V_{\lambda}$, then $f = \bigcup_{\alpha < \lambda} f \cap V_{\alpha}^2$

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \to V_{\lambda}$, then $f = \bigcup_{\alpha < \lambda} f \cap V_{\alpha}^2$ and $f \cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha < \lambda$.

• <u>Fact</u>: If λ is a limit ordinal and $f : V_{\lambda} \to V_{\lambda}$, then $f = \bigcup_{\alpha < \lambda} f \cap V_{\alpha}^2$ and $f \cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha < \lambda$.

▶ Proof: Every element of V_{λ} belongs to some V_{α} with $\alpha < \lambda$;

• <u>Fact</u>: If λ is a limit ordinal and $f : V_{\lambda} \to V_{\lambda}$, then $f = \bigcup_{\alpha < \lambda} f \cap V_{\alpha}^2$ and $f \cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha < \lambda$.

▶ Proof: Every element of V_{λ} belongs to some V_{α} with $\alpha < \lambda$; The set $f \cap V_{\alpha}^2$ is included in V_{α}^2 ,

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \rightarrow V_{\lambda}$, then $f = \bigcup_{\alpha < \lambda} f \cap V_{\alpha}^2$ and $f \cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha < \lambda$.

▶ Proof: Every element of V_{λ} belongs to some V_{α} with $\alpha < \lambda$; The set $f \cap V_{\alpha}^2$ is included in V_{α}^2 , hence in $V_{\alpha+2}$,

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \to V_{\lambda}$, then $f = \bigcup_{\alpha < \lambda} f \cap V_{\alpha}^2$ and $f \cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha < \lambda$.

▶ Proof: Every element of V_{λ} belongs to some V_{α} with $\alpha < \lambda$; The set $f \cap V_{\alpha}^2$ is included in V_{α}^2 , hence in $V_{\alpha+2}$, hence it belongs to $V_{\alpha+3}$,

• <u>Fact</u>: If λ is a limit ordinal and $f : V_{\lambda} \to V_{\lambda}$, then $f = \bigcup_{\alpha < \lambda} f \cap V_{\alpha}^2$ and $f \cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha < \lambda$.

▶ Proof: Every element of V_{λ} belongs to some V_{α} with $\alpha < \lambda$; The set $f \cap V_{\alpha}^2$ is included in V_{α}^2 , hence in $V_{\alpha+2}$, hence it belongs to $V_{\alpha+3}$, hence to V_{λ} .

• Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite",

• <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_λ

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$:

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - ▶ There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - ▶ There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - ▶ There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - ▶ There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - ▶ There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

- <u>Definition</u>: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
 - The map j sends every ordinal α to an ordinal $\geq \alpha$.
 - There exists an ordinal α satisfying $j(\alpha) > \alpha$.
 - ▶ There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
 - One necessarily has $\lambda = \sup_n j^n(\operatorname{crit}(j))$.

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

- If λ is a Laver cardinal, let $\frac{E_{\lambda}}{\lambda}$ be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} ,

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i,j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps,

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself.

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding.

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable,

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$,

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]:

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is not composition:

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

 $\operatorname{crit}(j \circ j) = \operatorname{crit}(j),$

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

 $\operatorname{crit}(j \circ j) = \operatorname{crit}(j), \quad \mathsf{but} \quad \operatorname{crit}(j[j]) > \operatorname{crit}(j).$

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

 $\mathsf{crit}(j \circ j) = \mathsf{crit}(j), \quad \mathsf{but} \quad \mathsf{crit}(j[j]) > \mathsf{crit}(j).$

▶ Proof: Let $\kappa := \operatorname{crit}(j)$.

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is not composition:

crit(j \circ j) = crit(j), but crit(j[j]) > crit(j). Proof: Let $\kappa := \operatorname{crit}(j)$. For $\alpha < \kappa$, $j(\alpha) = \alpha$,

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

crit(j \circ j) = crit(j), but crit(j[j]) > crit(j). Proof: Let $\kappa := \operatorname{crit}(j)$. For $\alpha < \kappa$, $j(\alpha) = \alpha$, hence $j(j(\alpha)) = \alpha$,

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

crit(j \circ j) = crit(j), but crit(j[j]) > crit(j). Proof: Let $\kappa := \operatorname{crit}(j)$. For $\alpha < \kappa$, $j(\alpha) = \alpha$, hence $j(j(\alpha)) = \alpha$, whereas

<ロト < @ ト < E ト < E ト E の < @</p>

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is not composition:

 $\operatorname{crit}(\mathbf{j} \circ \mathbf{j}) = \operatorname{crit}(\mathbf{j}), \quad \operatorname{but} \quad \operatorname{crit}(\mathbf{j}[\mathbf{j}]) > \operatorname{crit}(\mathbf{j}).$ \blacktriangleright Proof: Let $\kappa := \operatorname{crit}(\mathbf{j}).$ For $\alpha < \kappa, \ j(\alpha) = \alpha$, hence $j(j(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$,

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

crit(j \circ j) = crit(j), but crit(j[j]) > crit(j). Proof: Let $\kappa := \operatorname{crit}(j)$. For $\alpha < \kappa$, $j(\alpha) = \alpha$, hence $j(j(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa)$

<ロト < 団 > < 三 > < 三 > < 三 > < ○<</p>

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

crit(j \circ j) = crit(j), but crit(j[j]) > crit(j). Proof: Let $\kappa := \operatorname{crit}(j)$. For $\alpha < \kappa$, $j(\alpha) = \alpha$, hence $j(j(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa) > \kappa$.

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

crit(j \circ j) = crit(j), but crit(j[j]) > crit(j). Proof: Let $\kappa := \operatorname{crit}(j)$. For $\alpha < \kappa$, $j(\alpha) = \alpha$, hence $j(j(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa) > \kappa$. We deduce crit(j \circ j) = κ .

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

 $\begin{array}{l} \operatorname{crit}(\mathbf{j} \circ \mathbf{j}) = \operatorname{crit}(\mathbf{j}), \quad \operatorname{but} \quad \operatorname{crit}(\mathbf{j}[\mathbf{j}]) > \operatorname{crit}(\mathbf{j}). \\ \blacktriangleright \operatorname{Proof:} \operatorname{Let} \kappa := \operatorname{crit}(\mathbf{j}). \quad \operatorname{For} \ \alpha < \kappa, \ j(\alpha) = \alpha, \ \operatorname{hence} \ j(j(\alpha)) = \alpha, \ \operatorname{whereas} \\ \ j(\kappa) > \kappa, \ \operatorname{hence} \ j(j(\kappa)) > j(\kappa) > \kappa. \ \operatorname{We} \ \operatorname{deduce} \ \operatorname{crit}(\mathbf{j} \circ \mathbf{j}) = \kappa. \\ \operatorname{On} \ \operatorname{the} \ \operatorname{other} \ \operatorname{hand}, \ \forall \alpha < \kappa \ (j(\alpha) = \alpha) \end{array}$

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

 $\begin{array}{c} \mathsf{crit}(\mathbf{j} \circ \mathbf{j}) = \mathsf{crit}(\mathbf{j}), \quad \mathsf{but} \quad \mathsf{crit}(\mathbf{j}[\mathbf{j}]) > \mathsf{crit}(\mathbf{j}). \\ \blacktriangleright \mathsf{Proof:} \ \mathsf{Let} \ \kappa := \mathsf{crit}(\mathbf{j}). \ \mathsf{For} \ \alpha < \kappa, \ j(\alpha) = \alpha, \ \mathsf{hence} \ j(j(\alpha)) = \alpha, \ \mathsf{whereas} \\ \ j(\kappa) > \kappa, \ \mathsf{hence} \ j(j(\kappa)) > j(\kappa) > \kappa. \ \mathsf{We} \ \mathsf{deduce} \ \mathsf{crit}(\mathbf{j} \circ \mathbf{j}) = \kappa. \\ \mathsf{On} \ \mathsf{the} \ \mathsf{other} \ \mathsf{hand}, \ \forall \alpha < \kappa \ (j(\alpha) = \alpha) \ \mathsf{implies} \ \forall \alpha < j(\kappa) \ (j[j](\alpha) = \alpha), \end{array}$

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

 $\operatorname{crit}(\mathbf{j} \circ \mathbf{j}) = \operatorname{crit}(\mathbf{j}), \quad \operatorname{but} \quad \operatorname{crit}(\mathbf{j}[\mathbf{j}]) > \operatorname{crit}(\mathbf{j}).$ $\blacktriangleright \operatorname{Proof:} \operatorname{Let} \kappa := \operatorname{crit}(\mathbf{j}). \quad \operatorname{For} \alpha < \kappa, \ j(\alpha) = \alpha, \ \operatorname{hence} \ j(j(\alpha)) = \alpha, \ \operatorname{whereas} \\ j(\kappa) > \kappa, \ \operatorname{hence} \ j(j(\kappa)) > j(\kappa) > \kappa. \quad \operatorname{We} \ \operatorname{deduce} \ \operatorname{crit}(\mathbf{j} \circ \mathbf{j}) = \kappa.$ On the other hand, $\forall \alpha < \kappa \ (j(\alpha) = \alpha) \ \operatorname{implies} \ \forall \alpha < j(\kappa) \ (j[j](\alpha) = \alpha), \ \operatorname{whereas} \\ j(\kappa) > \kappa$

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

 $\operatorname{crit}(j \circ j) = \operatorname{crit}(j), \quad \operatorname{but} \quad \operatorname{crit}(j[j]) > \operatorname{crit}(j).$ $\blacktriangleright \operatorname{Proof:} \operatorname{Let} \kappa := \operatorname{crit}(j). \quad \operatorname{For} \alpha < \kappa, \ j(\alpha) = \alpha, \ \operatorname{hence} \ j(j(\alpha)) = \alpha, \ \operatorname{whereas} \ j(\kappa) > \kappa, \ \operatorname{hence} \ j(j(\kappa)) > j(\kappa) > \kappa. \ \operatorname{We} \ \operatorname{deduce} \ \operatorname{crit}(j \circ j) = \kappa.$ On the other hand, $\forall \alpha < \kappa (j(\alpha) = \alpha) \ \operatorname{implies} \ \forall \alpha < j(\kappa) (j[j](\alpha) = \alpha), \ \operatorname{whereas} \ j(\kappa) > \kappa \ \operatorname{implies} \ j(j(\kappa)) > j(\kappa).$

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

 $\operatorname{crit}(\mathbf{j} \circ \mathbf{j}) = \operatorname{crit}(\mathbf{j}), \quad \operatorname{but} \quad \operatorname{crit}(\mathbf{j}[\mathbf{j}]) > \operatorname{crit}(\mathbf{j}).$ $\blacktriangleright \operatorname{Proof:} \operatorname{Let} \kappa := \operatorname{crit}(\mathbf{j}). \quad \operatorname{For} \alpha < \kappa, \ j(\alpha) = \alpha, \ \operatorname{hence} \ j(j(\alpha)) = \alpha, \ \operatorname{whereas} \\ \ j(\kappa) > \kappa, \ \operatorname{hence} \ j(j(\kappa)) > j(\kappa) > \kappa. \quad \operatorname{We} \ \operatorname{deduce} \ \operatorname{crit}(\mathbf{j} \circ \mathbf{j}) = \kappa.$ On the other hand, $\forall \alpha < \kappa (\mathbf{j}(\alpha) = \alpha) \ \operatorname{implies} \ \forall \alpha < j(\kappa) (\mathbf{j}[\mathbf{j}](\alpha) = \alpha), \ \operatorname{whereas} \\ \ j(\kappa) > \kappa \ \operatorname{implies} \ j[\mathbf{j}](\mathbf{j}(\kappa)) > j(\kappa). \quad \operatorname{We} \ \operatorname{deduce} \ \operatorname{crit}(\mathbf{j}[\mathbf{j}]) = \mathbf{j}(\kappa)$

- If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).
- <u>Definition</u>: For *i*, *j* in E_{λ} , the result of applying *i* to *j* is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^{2}).$

▶ Proof: The sets $j \cap V_{\alpha}^2$ belong to V_{λ} , and are pairwise compatible partial maps, hence so are the sets $i(j \cap V_{\alpha}^2)$: so i[j] is a map from V_{λ} to itself. "Being an elementary embedding" is definable, hence i[j] is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., i[j[k]] = i[j][i[k]]: the left SD law. □

• Attention! Application is <u>not</u> composition:

 $\operatorname{crit}(\mathbf{j} \circ \mathbf{j}) = \operatorname{crit}(\mathbf{j}), \quad \operatorname{but} \quad \operatorname{crit}(\mathbf{j}[\mathbf{j}]) > \operatorname{crit}(\mathbf{j}).$ $\blacktriangleright \operatorname{Proof:} \operatorname{Let} \kappa := \operatorname{crit}(\mathbf{j}). \quad \operatorname{For} \ \alpha < \kappa, \ j(\alpha) = \alpha, \ \operatorname{hence} \ j(j(\alpha)) = \alpha, \ \operatorname{whereas} \ j(\kappa) > \kappa, \ \operatorname{hence} \ j(j(\kappa)) > j(\kappa) > \kappa. \quad \operatorname{We} \ \operatorname{deduce} \ \operatorname{crit}(\mathbf{j} \circ \mathbf{j}) = \kappa.$ On the other hand, $\forall \alpha < \kappa (\mathbf{j}(\alpha) = \alpha) \ \operatorname{implies} \ \forall \alpha < j(\kappa) (\mathbf{j}[\mathbf{j}](\alpha) = \alpha), \ \operatorname{whereas} \ j(\kappa) > \kappa \ \operatorname{implies} \ j(j(\kappa)) > j(\kappa). \quad \operatorname{We} \ \operatorname{deduce} \ \operatorname{crit}(\mathbf{j}[\mathbf{j}]) = \mathbf{j}(\kappa) > \kappa. \quad \Box$

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).
closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

<ロト 4月ト 4日ト 4日ト 日 900</p>

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• <u>Theorem</u> (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − つへつ

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − つへつ

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• <u>Theorem</u> (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▶ Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$. Consider here n = 1.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• <u>Theorem</u> (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▶ Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$. Consider here n = 1. Then crit($i[i_1]$) = $i(crit(i_1)) \in Im(i)$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − つへつ

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▶ Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$. Consider here n = 1. Then $\operatorname{crit}(i[i_1]) = i(\operatorname{crit}(i_1)) \in \operatorname{Im}(i)$, whereas $\operatorname{crit}(i) \notin \operatorname{Im}(i)$.

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▶ Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$. Consider here n = 1. Then $\operatorname{crit}(i[i_1]) = i(\operatorname{crit}(i_1)) \in \operatorname{Im}(i)$, whereas $\operatorname{crit}(i) \notin \operatorname{Im}(i)$. Hence $\operatorname{crit}(i[i_1]) \neq \operatorname{crit}(i)$, whence $i \neq i[i_1]$. \Box

▶ Another realization (the "set-theoretic realization") of the free (left)-shelf,

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▶ Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$. Consider here n = 1. Then $\operatorname{crit}(i[i_1]) = i(\operatorname{crit}(i_1)) \in \operatorname{Im}(i)$, whereas $\operatorname{crit}(i) \notin \operatorname{Im}(i)$. Hence $\operatorname{crit}(i[i_1]) \neq \operatorname{crit}(i)$, whence $i \neq i[i_1]$. \Box

- ▶ Another realization (the "set-theoretic realization") of the free (left)-shelf,
- ► ...plus a proof of that a left-shelf with acyclic
 exists,

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▶ Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$. Consider here n = 1. Then $\operatorname{crit}(i[i_1]) = i(\operatorname{crit}(i_1)) \in \operatorname{Im}(i)$, whereas $\operatorname{crit}(i) \notin \operatorname{Im}(i)$. Hence $\operatorname{crit}(i[i_1]) \neq \operatorname{crit}(i)$, whence $i \neq i[i_1]$. \Box

- ▶ Another realization (the "set-theoretic realization") of the free (left)-shelf,
- ► ...plus a proof of that a left-shelf with acyclic
 exists,
- ...whence a proof that \Box_{SD} is acyclic on \mathcal{T}_x ,

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▶ Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$. Consider here n = 1. Then $\operatorname{crit}(i[i_1]) = i(\operatorname{crit}(i_1)) \in \operatorname{Im}(i)$, whereas $\operatorname{crit}(i) \notin \operatorname{Im}(i)$. Hence $\operatorname{crit}(i[i_1]) \neq \operatorname{crit}(i)$, whence $i \neq i[i_1]$. \Box

- ▶ Another realization (the "set-theoretic realization") of the free (left)-shelf,
- ► ...plus a proof of that a left-shelf with acyclic
 exists,
- ...whence a proof that \Box_{SD} is acyclic on \mathcal{T}_x ,
- ...whence a solution for the word problem of SD

• <u>Proposition</u>: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf Iter(j).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▶ Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$. Consider here n = 1. Then $\operatorname{crit}(i[i_1]) = i(\operatorname{crit}(i_1)) \in \operatorname{Im}(i)$, whereas $\operatorname{crit}(i) \notin \operatorname{Im}(i)$. Hence $\operatorname{crit}(i[i_1]) \neq \operatorname{crit}(i)$, whence $i \neq i[i_1]$. \Box

- ▶ Another realization (the "set-theoretic realization") of the free (left)-shelf,
- ► ...plus a proof of that a left-shelf with acyclic c exists,
- ...whence a proof that \Box_{SD} is acyclic on \mathcal{T}_x ,
- ...whence a solution for the word problem of SD

(because both $=_{SD}$ and $__{SD}^*$ are semi-decidable).

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▶ Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$. Consider here n = 1. Then $\operatorname{crit}(i[i_1]) = i(\operatorname{crit}(i_1)) \in \operatorname{Im}(i)$, whereas $\operatorname{crit}(i) \notin \operatorname{Im}(i)$. Hence $\operatorname{crit}(i[i_1]) \neq \operatorname{crit}(i)$, whence $i \neq i[i_1]$. \Box

- ▶ Another realization (the "set-theoretic realization") of the free (left)-shelf,
- ► ...plus a proof of that a left-shelf with acyclic
 exists,
- ...whence a proof that \Box_{SD} is acyclic on \mathcal{T}_x ,
- ...whence a solution for the word problem of SD

(because both $=_{SD}$ and $__{SD}^*$ are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists.

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▶ Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$. Consider here n = 1. Then $\operatorname{crit}(i[i_1]) = i(\operatorname{crit}(i_1)) \in \operatorname{Im}(i)$, whereas $\operatorname{crit}(i) \notin \operatorname{Im}(i)$. Hence $\operatorname{crit}(i[i_1]) \neq \operatorname{crit}(i)$, whence $i \neq i[i_1]$. \Box

- ▶ Another realization (the "set-theoretic realization") of the free (left)-shelf,
- ▶ ...plus a proof of that a left-shelf with acyclic $_$ exists,
- ...whence a proof that \Box_{SD} is acyclic on \mathcal{T}_x ,
- ...whence a solution for the word problem of SD

(because both $=_{SD}$ and $__{SD}^*$ are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists.

→ <u>motivation</u> for finding another proof/another realization...

closure of $\{j\}$ under the "application" operation: j[j], j[j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then lter(j) is a free left-shelf.

▶ Sketch of proof: Want to show that $i = i[i_1] \cdots [i_n]$ is impossible for $n \ge 1$. Consider here n = 1. Then $\operatorname{crit}(i[i_1]) = i(\operatorname{crit}(i_1)) \in \operatorname{Im}(i)$, whereas $\operatorname{crit}(i) \notin \operatorname{Im}(i)$. Hence $\operatorname{crit}(i[i_1]) \neq \operatorname{crit}(i)$, whence $i \neq i[i_1]$. \Box

- ▶ Another realization (the "set-theoretic realization") of the free (left)-shelf,
- ▶ ...plus a proof of that a left-shelf with acyclic $_$ exists,
- ...whence a proof that \Box_{SD} is acyclic on \mathcal{T}_x ,
- ...whence a solution for the word problem of SD

(because both $=_{SD}$ and \sqsubset_{SD}^* are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists.

→ <u>motivation</u> for finding another proof/another realization...

the braid realization (1992)

Plan:

- 1. Braid colorings
 - Diagrams and Reidemeister moves
 - Diagram colorings
 - Quandles, racks, and shelves
- 2. The SD-world
 - Classical and exotic examples
 - The world of shelves
- 3. The braid shelf
 - The braid operation
 - Larue's lemma and free subshelves
 - Special braids
- 4. The free monogenerated shelf
 - Terms and trees
 - The comparison property
 - The Thompson's monoid of SD
- 5. The set-theoretic shelf
 - Set theory and large cardinals
 - Elementary embeddings
 - The iteration shelf
- 6. Using set theory to investigate Laver tables

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

- Quotients of the iteration shelf
- A dictionary
- Results about periods

• <u>Notation</u>: ("left powers") $j_{[p]} := j[j][j]...[j]$, p times j.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- <u>Notation</u>: ("left powers") $j_{[p]} := j[j][j]...[j], p$ times j.
- <u>Definition</u>: For j in E_{λ} , $\operatorname{crit}_{n}(j)$:= the (n + 1)st ordinal (from bottom) in { $\operatorname{crit}(i) \mid i \in \operatorname{Iter}(j)$ }.

- <u>Notation</u>: ("left powers") $j_{[p]} := j[j][j]...[j], p$ times j.
- <u>Definition</u>: For j in E_{λ} ,

 $\operatorname{crit}_{n}(j) := \operatorname{the} (n+1)\operatorname{st} \operatorname{ordinal} (\operatorname{from bottom}) \operatorname{in} {\operatorname{crit}(i) | i \in \operatorname{Iter}(j)}.$

► One can show crit₀(j) = crit(j), crit₁(j) = crit(j[j]), crit₂(j) = crit(j[j][j][j]), etc.

<ロト 4月ト 4日ト 4日ト 日 900</p>

- <u>Notation</u>: ("left powers") $j_{[p]} := j[j][j]...[j], p$ times j.
- <u>Definition</u>: For j in E_{λ} , crit_n(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i \in lter(j)}.
 - One can show $\operatorname{crit}_0(j) = \operatorname{crit}(j)$, $\operatorname{crit}_1(j) = \operatorname{crit}(j[j])$, $\operatorname{crit}_2(j) = \operatorname{crit}(j[j][j][j])$, etc.
- <u>Proposition</u> (Laver): Assume that j is an elementary embedding from V_{λ} to itself.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- <u>Notation</u>: ("left powers") $j_{[p]} := j[j][j]...[j], p$ times j.
- <u>Definition</u>: For j in E_{λ} , crit_n(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i \in Iter(j)}.
 - One can show $\operatorname{crit}_0(j) = \operatorname{crit}(j)$, $\operatorname{crit}_1(j) = \operatorname{crit}(j[j])$, $\operatorname{crit}_2(j) = \operatorname{crit}(j[j][j][j])$, etc.

• <u>Proposition</u> (Laver): Assume that *j* is an elementary embedding from V_{λ} to itself. For *i*, *i'* in Iter(j) and $\gamma < \lambda$, declare $i \equiv_{\gamma} i'$ ("*i* and *i'* agree up to γ ") if $\forall x \in V_{\gamma} (i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma}).$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- <u>Notation</u>: ("left powers") $j_{[p]} := j[j][j]...[j], p$ times j.
- <u>Definition</u>: For *j* in E_{λ} , crit_n(j):= the (*n* + 1)st ordinal (from bottom) in {crit(i) | i \in Iter(j)}.
 - One can show $\operatorname{crit}_0(j) = \operatorname{crit}(j)$, $\operatorname{crit}_1(j) = \operatorname{crit}(j[j])$, $\operatorname{crit}_2(j) = \operatorname{crit}(j[j][j][j])$, etc.

• <u>Proposition</u> (Laver): Assume that *j* is an elementary embedding from V_{λ} to itself. For *i*, *i'* in lter(j) and $\gamma < \lambda$, declare $i \equiv_{\gamma} i'$ ("*i* and *i'* agree up to γ ") if $\forall x \in V_{\gamma} (i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma}).$ Then $\equiv_{crit_n(j)}$ is a congruence on lter(j),

- <u>Notation</u>: ("left powers") $j_{[p]} := j[j][j]...[j], p$ times j.
- <u>Definition</u>: For *j* in E_{λ} , crit_n(j):= the (*n* + 1)st ordinal (from bottom) in {crit(i) | i \in Iter(j)}.
 - One can show $\operatorname{crit}_0(j) = \operatorname{crit}(j)$, $\operatorname{crit}_1(j) = \operatorname{crit}(j[j])$, $\operatorname{crit}_2(j) = \operatorname{crit}(j[j][j][j])$, etc.

• <u>Proposition</u> (Laver): Assume that *j* is an elementary embedding from V_{λ} to itself. For *i*, *i'* in lter(j) and $\gamma < \lambda$, declare $i \equiv_{\gamma} i'$ ("*i* and *i'* agree up to γ ") if $\forall x \in V_{\gamma} (i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma}).$ Then $\equiv_{crit_n(j)}$ is a congruence on lter(j), it has 2^n classes,

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- <u>Notation</u>: ("left powers") $j_{[p]} := j[j][j]...[j], p$ times j.
- <u>Definition</u>: For *j* in E_{λ} , crit_n(j):= the (*n* + 1)st ordinal (from bottom) in {crit(i) | i \in Iter(j)}.
 - One can show $\operatorname{crit}_0(j) = \operatorname{crit}(j)$, $\operatorname{crit}_1(j) = \operatorname{crit}(j[j])$, $\operatorname{crit}_2(j) = \operatorname{crit}(j[j][j][j])$, etc.

• <u>Proposition</u> (Laver): Assume that j is an elementary embedding from V_{λ} to itself. For i, i' in lter(j) and $\gamma < \lambda$, declare $i \equiv_{\gamma} i'$ ("i and i' agree up to γ ") if $\forall x \in V_{\gamma} (i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma}).$ Then $\equiv_{crit_n(j)}$ is a congruence on lter(j), it has 2^n classes, which are those of j, j_[2],...,j_[2ⁿ],

- <u>Notation</u>: ("left powers") $j_{[p]} := j[j][j]...[j], p$ times j.
- <u>Definition</u>: For j in E_{λ} , crit_n(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i \in lter(j)}.
 - One can show $crit_0(j) = crit(j)$, $crit_1(j) = crit(j[j])$, $crit_2(j) = crit(j[j][j][j])$, etc.

• <u>Proposition</u> (Laver): Assume that j is an elementary embedding from V_{λ} to itself. For i, i' in Iter(j) and $\gamma < \lambda$, declare $i \equiv_{\gamma} i'$ ("i and i' agree up to γ ") if $\forall x \in V_{\gamma} (i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma})$. Then $\equiv_{crit_n(j)}$ is a congruence on Iter(j), it has 2^n classes, which are those of j, $j_{[2]}, ..., j_{[2^n]}$, the latter also being the class of id.

- <u>Notation</u>: ("left powers") $j_{[p]} := j[j][j]...[j], p$ times j.
- <u>Definition</u>: For j in E_{λ} , crit_n(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i \in lter(j)}.
 - One can show $crit_0(j) = crit(j)$, $crit_1(j) = crit(j[j])$, $crit_2(j) = crit(j[j][j][j])$, etc.

• <u>Proposition</u> (Laver): Assume that j is an elementary embedding from V_{λ} to itself. For i, i' in Iter(j) and $\gamma < \lambda$, declare $i \equiv_{\gamma} i'$ ("i and i' agree up to γ ") if $\forall x \in V_{\gamma} (i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma}).$ Then $\equiv_{crit_n(j)}$ is a congruence on Iter(j), it has 2^n classes, which are those of j, $j_{[2]}, ..., j_{[2^n]}$, the latter also being the class of id.

▶ Proof: (Difficult...) Starts from $j \equiv_{crit(j)} i[j]$ and similar. Uses in particular $crit(j_{[m]}) = crit_n(j)$ with *n* maximal s.t. 2^{*n*} divides *m*. • Recall: A_n is the unique left-shelf on $\{1, ..., 2^n\}$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 4 で</p>

• Recall: A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leqslant 2^n$

• Recall: A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leq 2^n$ and $2^n \triangleright 1 = 1$. • Recall: A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leq 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0, ..., 2^n - 1\}$) satisfying $p = 1_{[p]} \mod 2^n$ for $p \leq 2^n$ and $0 \triangleright 1 = 1$)

<ロト 4月ト 4日ト 4日ト 日 900</p>

• Recall: A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leq 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0, ..., 2^n - 1\}$) satisfying $p = 1_{[p]} \mod 2^n$ for $p \leq 2^n$ and $0 \triangleright 1 = 1$)

• Corollary: The quotient-structure $lter(j)/\equiv_{crit_n(j)}$ is (isomorphic to) the table A_n .

ショック エー・エー・ エー・ ショー

• Recall: A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leq 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0, ..., 2^n - 1\}$) satisfying $p = 1_{[p]} \mod 2^n$ for $p \leq 2^n$ and $0 \triangleright 1 = 1$)

<u>Corollary</u>: The quotient-structure lter(j)/≡_{crit_n(j)} is (isomorphic to) the table A_n.
 ▶ Proof: Write p for the ≡_{crit_n(j)}-class of j_[p].

(日) (日) (日) (日) (日) (日) (日) (日)

• Recall: A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leq 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0, ..., 2^n - 1\}$) satisfying $p = 1_{[p]} \mod 2^n$ for $p \leq 2^n$ and $0 \triangleright 1 = 1$)

- <u>Corollary</u>: The quotient-structure $lter(j)/\equiv_{crit_n(j)}$ is (isomorphic to) the table A_n .
 - ▶ Proof: Write *p* for the $\equiv_{crit_n(j)}$ -class of $j_{[p]}$. The proposition says that $|ter(j)/\equiv_{crit_n(j)}$ is a left-shelf whose domain is $\{1, ..., 2^n\}$;

(日) (日) (日) (日) (日) (日) (日) (日)

• Recall: A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leq 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0, ..., 2^n - 1\}$) satisfying $p = 1_{[p]} \mod 2^n$ for $p \leq 2^n$ and $0 \triangleright 1 = 1$)

• <u>Corollary</u>: The quotient-structure $lter(j) / \equiv_{crit_n(j)}$ is (isomorphic to) the table A_n .

▶ Proof: Write *p* for the $\equiv_{crit_n(j)}$ -class of $j_{[p]}$. The proposition says that $|ter(j)/\equiv_{crit_n(j)}$ is a left-shelf whose domain is $\{1, ..., 2^n\}$; By construction, $p = 1_{[p]}$ holds for $p \leq 2^n$.

• Recall: A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leq 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0, ..., 2^n - 1\}$) satisfying $p = 1_{[p]} \mod 2^n$ for $p \leq 2^n$ and $0 \triangleright 1 = 1$)

• <u>Corollary</u>: The quotient-structure $lter(j) / \equiv_{crit_n(j)}$ is (isomorphic to) the table A_n .

▶ Proof: Write *p* for the $\equiv_{\operatorname{crit}_n(j)}$ -class of $j_{[p]}$. The proposition says that $\operatorname{Iter}(j)/\equiv_{\operatorname{crit}_n(j)}$ is a left-shelf whose domain is $\{1, ..., 2^n\}$; By construction, $p = 1_{[p]}$ holds for $p \leq 2^n$. Then $j_{[2^n]} \equiv_{\operatorname{crit}_n(j)}$ id implies $j_{[2^n+1]} \equiv_{\operatorname{crit}_n(j)} j$,

• Recall: A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leq 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0, ..., 2^n - 1\}$) satisfying $p = 1_{[p]} \mod 2^n$ for $p \leq 2^n$ and $0 \triangleright 1 = 1$)

• <u>Corollary</u>: The quotient-structure $lter(j) / \equiv_{crit_n(j)}$ is (isomorphic to) the table A_n .

▶ Proof: Write *p* for the $\equiv_{\operatorname{crit}_n(j)}$ -class of $j_{[p]}$. The proposition says that $\operatorname{lter}(j)/\equiv_{\operatorname{crit}_n(j)}$ is a left-shelf whose domain is $\{1, ..., 2^n\}$; By construction, $p = 1_{[p]}$ holds for $p \leq 2^n$. Then $j_{[2^n]} \equiv_{\operatorname{crit}_n(j)}$ id implies $j_{[2^n+1]} \equiv_{\operatorname{crit}_n(j)} j$, whence $2^n \triangleright 1 = 1$ in the quotient. \Box

(日) (日) (日) (日) (日) (日) (日) (日)

• Recall: A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leq 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0, ..., 2^n - 1\}$) satisfying $p = 1_{[p]} \mod 2^n$ for $p \leq 2^n$ and $0 \triangleright 1 = 1$)

• <u>Corollary</u>: The quotient-structure $lter(j) / \equiv_{crit_n(j)}$ is (isomorphic to) the table A_n .

▶ Proof: Write *p* for the $\equiv_{\operatorname{crit}_n(j)}$ -class of $j_{[p]}$. The proposition says that $\operatorname{Iter}(j)/\equiv_{\operatorname{crit}_n(j)}$ is a left-shelf whose domain is $\{1, ..., 2^n\}$; By construction, $p = 1_{[p]}$ holds for $p \leq 2^n$. Then $j_{[2^n]} \equiv_{\operatorname{crit}_n(j)}$ id implies $j_{[2^n+1]} \equiv_{\operatorname{crit}_n(j)} j$, whence $2^n \triangleright 1 = 1$ in the quotient. \Box

A set-theoretic realization of A_n as a quotient of the (free) left-shelf lter(j).
• Lemma: For every j in E_{λ} , every term t(x), and every n,

(*)

• Lemma: For every j in E_{λ} , every term t(x), and every n, $t(1)^{A_n} = 2^n$ is equivalent to $\operatorname{crit}(t(j)^{\operatorname{ter}(j)}) \ge \operatorname{crit}_n(j);$

(*)

(**)

• Lemma: For every *j* in E_{λ} , every term t(x), and every *n*,

 $\begin{array}{ll} t(1)^{A_n} = 2^n & \text{is equivalent to} & \operatorname{crit}(t(j)^{\operatorname{ler}(j)}) \geqslant \operatorname{crit}_n(j); \\ t(1)^{A_{n+1}} = 2^n & \text{is equivalent to} & \operatorname{crit}(t(j)^{\operatorname{ler}(j)}) = \operatorname{crit}_n(j). \end{array}$

• Lemma: For every j in E_{λ} , every term t(x), and every n, $t(1)^{A_n} = 2^n$ is equivalent to $\operatorname{crit}(t(j)^{\operatorname{lter}(j)}) \ge \operatorname{crit}_n(j);$ (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to $\operatorname{crit}(t(j)^{\operatorname{lter}(j)}) = \operatorname{crit}_n(j).$ (**) > Proof: For (*): $\operatorname{crit}(t(j)) \ge \operatorname{crit}_n(j)$ • Lemma: For every *j* in E_{λ} , every term t(x), and every *n*,

$$\begin{split} t(1)^{A_n} &= 2^n \quad \text{is equivalent to} \quad \mathsf{crit}(t(j)^{\mathsf{lter}(j)}) \geqslant \mathsf{crit}_n(j); \\ t(1)^{A_{n+1}} &= 2^n \quad \text{is equivalent to} \quad \mathsf{crit}(t(j)^{\mathsf{lter}(j)}) = \mathsf{crit}_n(j). \end{split}$$

(*) (**)

▶ Proof: For (*): $crit(t(j)) \ge crit_n(j)$ means $t(j) \equiv_{crit_n(j)} id$,

(*)

(**)

 Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j).
 Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Lemma: For every j in E_{λ} , every term t(x), and every n, $t(1)^{A_n} = 2^n$ is equivalent to $\operatorname{crit}(t(j)^{\operatorname{ter}(j)}) \ge \operatorname{crit}_n(j);$

 $t(1)^{A_{n+1}} = 2^n$ is equivalent to $\operatorname{crit}(t(j)^{\operatorname{lter}(j)}) = \operatorname{crit}_n(j)$.

(*) (**)

▶ Proof: For (*): crit(t(j)) ≥ crit_n(j) means $t(j) \equiv_{crit_n(j)} id$, i.e., the class of t(j) in A_n , which is $t(1)^{A_n}$,

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Lemma: For every *j* in E_{λ} , every term t(x), and every *n*,

 $\begin{array}{l} t(1)^{A_n} = 2^n \quad \text{is equivalent to} \quad \operatorname{crit}(t(j)^{\operatorname{lter}(j)}) \geqslant \operatorname{crit}_n(j); \\ t(1)^{A_{n+1}} = 2^n \quad \text{is equivalent to} \quad \operatorname{crit}(t(j)^{\operatorname{lter}(j)}) = \operatorname{crit}_n(j). \end{array}$

▶ Proof: For (*): crit(t(j)) ≥ crit_n(j) means $t(j) \equiv_{crit_n(j)}$ id, i.e., the class of t(j) in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n .

Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**) Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j),

Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**) Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)^{A_{n+1} ≠ 2ⁿ⁺¹:}

Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**)
Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)<sup>A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)<sup>A_{n+1} = 2ⁿ.
</sup></sup>

 Proposition ("dictionary"): For m ≤ n and p ≤ 2ⁿ, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**)
Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)<sup>A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)<sup>A_{n+1} = 2ⁿ.
</sup></sup>

• <u>Proposition</u> ("dictionary"): For $m \le n$ and $p \le 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps $\operatorname{crit}_n(j)$ to $\operatorname{crit}_n(j)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**) Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)^{A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)^{A_{n+1}} = 2ⁿ.}

 <u>Proposition</u> ("dictionary"): For m ≤ n and p ≤ 2ⁿ, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff j_[p] maps crit_m(j) to crit_n(j).

▶ Proof: Apply the lemma to the term $x_{[p]}$.

Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**) Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)^{A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)^{A_{n+1}} = 2ⁿ.}

• <u>Proposition</u> ("dictionary"): For $m \le n$ and $p \le 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps $\operatorname{crit}_n(j)$ to $\operatorname{crit}_n(j)$.

▶ Proof: Apply the lemma to the term x_[p]. As crit_m(j) = crit(j_[2^m]),

Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**) Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)^{A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)^{A_{n+1} = 2ⁿ.}}}

 Proposition ("dictionary"): For m ≤ n and p ≤ 2ⁿ, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff j_[p] maps crit_m(j) to crit_n(j).

▶ Proof: Apply the lemma to the term $x_{[p]}$. As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_[2^m]]),

Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**)
Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)<sup>A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)<sup>A_{n+1} = 2ⁿ.
</sup></sup>

• <u>Proposition</u> ("dictionary"): For $m \le n$ and $p \le 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps $\operatorname{crit}_m(j)$ to $\operatorname{crit}_n(j)$.

▶ Proof: Apply the lemma to the term $x_{[p]}$. As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_[2^m]]), so the RHT is crit(j_[p][j_[2^m]]) = crit_n(j),

 Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)<sup>A_{n+1} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**)
 Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)<sup>A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)<sup>A_{n+1} = 2ⁿ.
</sup></sup></sup>

 Proposition ("dictionary"): For m ≤ n and p ≤ 2ⁿ, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff j_[p] maps crit_m(j) to crit_n(j).

▶ Proof: Apply the lemma to the term $x_{[p]}$. As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_[2^m]]), so the RHT is crit(j_[p][j_[2^m]]) = crit_n(j), whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by (**), which is also $(p \triangleright 2^m)^{A_{n+1}} = 2^n$ (***).

 Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)<sup>A_{n+1} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**)
 Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)<sup>A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)^{A_{n+1}} = 2ⁿ.
</sup></sup>

• <u>Proposition</u> ("dictionary"): For $m \le n$ and $p \le 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps $\operatorname{crit}_m(j)$ to $\operatorname{crit}_n(j)$.

▶ Proof: Apply the lemma to the term $x_{[p]}$. As $\operatorname{crit}_m(j) = \operatorname{crit}(j_{[2^m]})$, the embedding $j_{[p]}$ maps $\operatorname{crit}_m(j)$ to $\operatorname{crit}(j_{[p]}[j_{[2^m]}])$, so the RHT is $\operatorname{crit}(j_{[p]}[j_{[2^m]}]) = \operatorname{crit}_n(j)$, whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by (**), which is also $(p \triangleright 2^m)^{A_{n+1}} = 2^n$ (***). First, (***) implies $\pi_{n+1}(p) > 2^m$. Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**)
 Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)<sup>A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)^{A_{n+1}} = 2ⁿ.
</sup>

 Proposition ("dictionary"): For m ≤ n and p ≤ 2ⁿ, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff j_[p] maps crit_m(j) to crit_n(j).

▶ Proof: Apply the lemma to the term $x_{[p]}$. As $\operatorname{crit}_m(j) = \operatorname{crit}(j_{[2^m]})$, the embedding $j_{[p]}$ maps $\operatorname{crit}_m(j)$ to $\operatorname{crit}(j_{[p]}[j_{[2^m]}])$, so the RHT is $\operatorname{crit}(j_{[p]}[j_{[2^m]}]) = \operatorname{crit}_n(j)$, whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by (**), which is also $(p \triangleright 2^m)^{A_{n+1}} = 2^n$ (***). First, (***) implies $\pi_{n+1}(p) > 2^m$. On the other hand, (***) projects to $(p \triangleright 2^m)^{A_n} = 2^n$, Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**)
 Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)<sup>A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)^{A_{n+1}} = 2ⁿ.
</sup>

 Proposition ("dictionary"): For m ≤ n and p ≤ 2ⁿ, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff j_[p] maps crit_m(j) to crit_n(j).

▶ Proof: Apply the lemma to the term $x_{[p]}$. As $\operatorname{crit}_m(j) = \operatorname{crit}(j_{[2^m]})$, the embedding $j_{[p]}$ maps $\operatorname{crit}_m(j)$ to $\operatorname{crit}(j_{[p]}[j_{[2^m]}])$, so the RHT is $\operatorname{crit}(j_{[p]}[j_{[2^m]}]) = \operatorname{crit}_n(j)$, whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by (**), which is also $(p \triangleright 2^m)^{A_{n+1}} = 2^n$ (***). First, (***) implies $\pi_{n+1}(p) > 2^m$. On the other hand, (***) projects to $(p \triangleright 2^m)^{A_n} = 2^n$, whence $\pi_n(p) \leq 2^m$. Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**)
 Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)<sup>A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)^{A_{n+1}} = 2ⁿ.
</sup>

• <u>Proposition</u> ("dictionary"): For $m \le n$ and $p \le 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps $\operatorname{crit}_m(j)$ to $\operatorname{crit}_n(j)$.

▶ Proof: Apply the lemma to the term $x_{[p]}$. As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_[2^m]]), so the RHT is crit(j_[p][j_[2^m]]) = crit_n(j), whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by (**), which is also $(p \triangleright 2^m)^{A_{n+1}} = 2^n$ (***). First, (***) implies $\pi_{n+1}(p) > 2^m$. On the other hand, (***) projects to $(p \triangleright 2^m)^{A_n} = 2^n$, whence $\pi_n(p) \leq 2^m$. As $\pi_{n+1}(p)$ is $\pi_n(p)$ or $2\pi_n(p)$, Lemma: For every j in E_λ, every term t(x), and every n, t(1)^{A_n} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) ≥ crit_n(j); (*) t(1)^{A_{n+1}} = 2ⁿ is equivalent to crit(t(j)^{lter(j)}) = crit_n(j). (**)
Proof: For (*): crit(t(j)) ≥ crit_n(j) means t(j) ≡_{crit_n(j)} id, i.e., the class of t(j) in A_n, which is t(1)^{A_n}, is that of id, which is 2ⁿ. For (**): crit(t(j)) = crit_n(j) is the conjunction of crit(t(j)) ≥ crit_n(j) and crit(t(j)) ≥ crit_{n+1}(j), hence of t(1)^{A_n} = 2ⁿ and t(1)<sup>A_{n+1} ≠ 2ⁿ⁺¹: the only possibility is t(1)<sup>A_{n+1} = 2ⁿ.
</sup></sup>

• <u>Proposition</u> ("dictionary"): For $m \le n$ and $p \le 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps $\operatorname{crit}_m(j)$ to $\operatorname{crit}_n(j)$.

▶ Proof: Apply the lemma to the term $x_{[p]}$. As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_[2^m]]), so the RHT is crit(j_[p][j_[2^m]]) = crit_n(j), whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by (**), which is also $(p \triangleright 2^m)^{A_{n+1}} = 2^n$ (***). First, (***) implies $\pi_{n+1}(p) > 2^m$. On the other hand, (***) projects to $(p \triangleright 2^m)^{A_n} = 2^n$, whence $\pi_n(p) \leq 2^m$. As $\pi_{n+1}(p)$ is $\pi_n(p)$ or $2\pi_n(p)$, (***) is equivalent to $\pi_n(p)=2^m$ and $\pi_{n+1}(p)=2^{m+1}$. \Box • Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β ,

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\forall \gamma < j(\beta) \ (j(j)(\gamma) \leqslant j(\alpha)).$$
 (**)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\forall \gamma < j(\beta) \ (j(j)(\gamma) \leq j(\alpha)). \tag{**}$$

Taking $\gamma := \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\forall \gamma < j(\beta) \ (j(j)(\gamma) \leq j(\alpha)). \tag{**}$$

Taking $\gamma := \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(2) \ge \pi_n(1)$ holds for all n.

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\forall \gamma < j(\beta) \ (j(j)(\gamma) \leq j(\alpha)). \tag{**}$$

Taking $\gamma := \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(2) \ge \pi_n(1)$ holds for all n.

▶ Proof: Write $\pi_n(1) = 2^{m+1}$,

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\forall \gamma < j(\beta) \ (j(j)(\gamma) \leq j(\alpha)). \tag{**}$$

Taking $\gamma := \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(2) \ge \pi_n(1)$ holds for all n.

▶ Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal < n satisfying $\pi_{\overline{n}}(1) \leq 2^m$.

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\forall \gamma < j(\beta) \ (j(j)(\gamma) \leq j(\alpha)). \tag{**}$$

Taking $\gamma := \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(2) \ge \pi_n(1)$ holds for all n.

▶ Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal < n satisfying $\pi_{\overline{n}}(1) \leq 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n+1}}$.

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\forall \gamma < j(\beta) \ (j(j)(\gamma) \leqslant j(\alpha)). \tag{**}$$

Taking $\gamma := \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(2) \ge \pi_n(1)$ holds for all n.

▶ Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal $\langle n$ satisfying $\pi_{\overline{n}}(1) \leq 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$. By the dictionary, j maps crit_m(j) to crit_{\overline{n}}(j).

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\forall \gamma < j(\beta) \ (j(j)(\gamma) \leq j(\alpha)). \tag{**}$$

Taking $\gamma := \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(2) \ge \pi_n(1)$ holds for all n.

▶ Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal < n satisfying $\pi_{\overline{n}}(1) \leq 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$. By the dictionary, j maps crit_m(j) to crit_{\overline{n}}(j). Hence, by the lemma, j[j] maps crit_m(j) to \leq crit_{\overline{n}}(j).

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\forall \gamma < j(\beta) \ (j(j)(\gamma) \leqslant j(\alpha)). \tag{**}$$

Taking $\gamma := \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(2) \ge \pi_n(1)$ holds for all n.

▶ Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal < n satisfying $\pi_{\overline{n}}(1) \leq 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$. By the dictionary, j maps crit_m(j) to crit_{\overline{n}}(j). Hence, by the lemma, j[j] maps crit_m(j) to \leq crit_{\overline{n}}(j). Therefore, there exists $n' \leq \overline{n} \leq n$ s.t. j[j] maps crit_m(j) to crit_{n'}(j).</sub>

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\forall \gamma < j(\beta) \ (j(j)(\gamma) \leqslant j(\alpha)).$$
 (**)

Taking $\gamma := \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(2) \ge \pi_n(1)$ holds for all n.

▶ Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal < n satisfying $\pi_{\overline{n}}(1) \leq 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$. By the dictionary, j maps crit_m(j) to crit_{\overline{n}}(j). Hence, by the lemma, j[j] maps crit_m(j) to $\leq \operatorname{crit}_{\overline{n}}(j)$. Therefore, there exists $n' \leq \overline{n} \leq n \leq n \leq 1$. j[j] maps crit_m(j) to crit_{n'}(j). By the dictionary, the period of 2 jumps from 2^m to 2^{m+1} between $A_{n'}$ and $A_{n'+1}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶
• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$,one has $j(j)(\alpha) \leq j(\alpha)$.

▶ Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$\forall \gamma < \beta \ (j(\gamma) \leqslant \alpha). \tag{*}$$

Applying j to (*) gives

$$\forall \gamma < j(\beta) \ (j(j)(\gamma) \leqslant j(\alpha)).$$
 (**)

Taking $\gamma := \alpha$ in (**) yields $j(j)(\alpha) \leq j(\alpha)$.

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(2) \ge \pi_n(1)$ holds for all n.

▶ Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal < n satisfying $\pi_{\overline{n}}(1) \leq 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$. By the dictionary, j maps crit_m(j) to crit_{\overline{n}}(j). Hence, by the lemma, j[j] maps crit_m(j) to $\leq \operatorname{crit}_{\overline{n}}(j)$. Therefore, there exists $n' \leq \overline{n} \leq n \text{ s.t. } j[j]$ maps crit_m(j) to $\operatorname{crit}_{n'}(j)$. By the dictionary, the period of 2 jumps from 2^m to 2^{m+1} between $A_{n'}$ and $A_{n'+1}$. Hence, the period of 2 in A_n is at least 2^{m+1} . • Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
 - ▶ <u>Not</u> obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
 - ▶ <u>Not</u> obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.
 - ▶ Proof: (difficult...)

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
 - ▶ <u>Not</u> obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.
 - ▶ Proof: (difficult...)

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

(日) (日) (日) (日) (日) (日) (日) (日)

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
 - ▶ <u>Not</u> obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.
 - ▶ Proof: (difficult...)

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

▶ Proof: Assume $\pi_n(1) = 2^m$.

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
 - ▶ <u>Not</u> obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.
 - ▶ Proof: (difficult...)

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

▶ Proof: Assume $\pi_n(1) = 2^m$. We wish to show that there exists $\overline{n} \ge n$ s.t. $\pi_{\overline{n}}(1) = 2^m$ and $\pi_{\overline{n}+1}(1) = 2^{m+1}$.

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
 - ▶ <u>Not</u> obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.
 - ▶ Proof: (difficult...)

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

▶ Proof: Assume $\pi_n(1) = 2^m$. We wish to show that there exists $\overline{n} \ge n$ s.t. $\pi_{\overline{n}}(1) = 2^m$ and $\pi_{\overline{n}+1}(1) = 2^{m+1}$. By the dictionary, this is equivalent to j mapping $\operatorname{crit}_{\overline{n}}(j)$ to $\operatorname{crit}_{\overline{n}}(j)$.

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
 - ▶ <u>Not</u> obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.

▶ Proof: (difficult...)

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

 Proof: Assume π_n(1) = 2^m. We wish to show that there exists n
≥ n s.t. π_n(1) = 2^m and π_{n+1}(1) = 2^{m+1}.
 By the dictionary, this is equivalent to j mapping crit_m(j) to crit_n(j).
 Now j maps crit_m(j), which is crit(j_[2m]), to crit(j[j_[2m]].
 As j[j_[2m]] belongs to lter(j), the lemma implies crit(j[j_[2m]] = crit_n(j) for some n. □

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
 - ▶ <u>Not</u> obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.
 - ▶ Proof: (difficult...)

• <u>Proposition</u> (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

 Proof: Assume π_n(1) = 2^m. We wish to show that there exists n
≥ n s.t. π_n(1) = 2^m and π_{n+1}(1) = 2^{m+1}.
 By the dictionary, this is equivalent to j mapping crit_m(j) to crit_n(j).
 Now j maps crit_m(j), which is crit(j_[2m]), to crit(j_[j2m]].
 As j[j_{12m}] belongs to lter(j), the lemma implies crit(j_[j2m]] = crit_n(j) for some n. □

Open questions: Find alternative proofs using no Laver cardinal.

• Are the properties of Laver tables an application of set theory?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Are the properties of Laver tables an application of set theory?
 - ▶ So far, yes;

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.

- Are the properties of Laver tables an application of set theory?
 - ▶ So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

• An analogy:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition,

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

▶ Here: using a <u>logical</u> intuition

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ► In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

▶ Here: using a logical intuition (existence of a Laver cardinal),

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

► Here: using a <u>logical</u> intuition (existence of a Laver cardinal),

guess statements

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

► Here: using a <u>logical</u> intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

▶ Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

▶ Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

▶ Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

▶ Can one find alternative proofs using no large cardinal?

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

▶ Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

 Can one find alternative proofs using no large cardinal? (as done for the free shelf using the braid realization)

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

▶ Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

- Can one find alternative proofs using no large cardinal? (as done for the free shelf using the braid realization)
- ▶ Can one use them in low-dimensional topology?

- Are the properties of Laver tables an application of set theory?
 - ► So far, yes;
 - ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
 - ▶ But, in any case, it is set theory that made the properties first accessible.
- Even if one does not <u>believe</u> that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.
- An analogy:
 - ▶ In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

▶ Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

- The two main <u>open questions</u> about Laver tables:
 - Can one find alternative proofs using no large cardinal? (as done for the free shelf using the braid realization)
 - ▶ Can one use them in low-dimensional topology?

Richard Laver (1942-2012) \bullet Question 0: Can shelves that are not racks be (really) useful in low-dimensional topology?

- \bullet Question 0: Can shelves that are not racks be (really) useful in low-dimensional topology?
- Recall: $B_{2}^{sp} :=$ closure of {1} under \triangleright inside the infinite braid group B_{∞} (realization of the free left shelf inside braids).

- \bullet Question 0: Can shelves that are not racks be (really) useful in low-dimensional topology?
- Recall: B_{∞}^{sp} := closure of {1} under \triangleright inside the infinite braid group B_{∞} (realization of the free left shelf inside braids).
- Question 1: Let (S, \triangleright) be a monogenerated (left) shelf. Find a concrete description of the congruence \equiv_S s.t. (S, \triangleright) is (isomorphic to) $(B_{\infty}^{sp}, \triangleright)/\equiv_S$.

- \bullet Question 0: Can shelves that are not racks be (really) useful in low-dimensional topology?
- Recall: B_{∞}^{sp} := closure of {1} under \triangleright inside the infinite braid group B_{∞} (realization of the free left shelf inside braids).
- Question 1: Let (S, \triangleright) be a monogenerated (left) shelf. Find a concrete description of the congruence \equiv_S s.t. (S, \triangleright) is (isomorphic to) $(B^{sp}_{\infty}, \triangleright)/\equiv_S$. Does \equiv_S extend to all of B_{∞} ?

- \bullet Question 0: Can shelves that are not racks be (really) useful in low-dimensional topology?
- Recall: B_{∞}^{sp} := closure of {1} under \triangleright inside the infinite braid group B_{∞} (realization of the free left shelf inside braids).

• Question 1: Let (S, \triangleright) be a monogenerated (left) shelf. Find a concrete description of the congruence \equiv_S s.t. (S, \triangleright) is (isomorphic to) $(B^{sp}_{\infty}, \triangleright)/\equiv_S$. Does \equiv_S extend to all of B_{∞} ?

▶ Typical example: $S := A_n$, the *n*th Laver table.

- \bullet Question 0: Can shelves that are not racks be (really) useful in low-dimensional topology?
- Recall: B_{∞}^{sp} := closure of {1} under \triangleright inside the infinite braid group B_{∞} (realization of the free left shelf inside braids).

• Question 1: Let (S, \triangleright) be a monogenerated (left) shelf. Find a concrete description of the congruence \equiv_S s.t. (S, \triangleright) is (isomorphic to) $(B^{sp}_{\infty}, \triangleright)/\equiv_S$. Does \equiv_S extend to all of B_{∞} ?

- ▶ Typical example: $S := A_n$, the *n*th Laver table.
- Laver tables are quotients of the (free) set theoretic shelf (lter(j), -[-]).

- \bullet Question 0: Can shelves that are not racks be (really) useful in low-dimensional topology?
- Recall: B_{∞}^{sp} := closure of {1} under \triangleright inside the infinite braid group B_{∞} (realization of the free left shelf inside braids).

• Question 1: Let (S, \triangleright) be a monogenerated (left) shelf. Find a concrete description of the congruence \equiv_S s.t. (S, \triangleright) is (isomorphic to) $(B^{sp}_{\infty}, \triangleright)/\equiv_S$. Does \equiv_S extend to all of B_{∞} ?

- ▶ Typical example: $S := A_n$, the *n*th Laver table.
- Laver tables are quotients of the (free) set theoretic shelf (lter(j), -[-]).
- Question 2: Can one find an alternative "self-iterating structure" (S, \triangleright) , which the Laver tables are quotients of?
- \bullet Question 0: Can shelves that are not racks be (really) useful in low-dimensional topology?
- Recall: B_{∞}^{sp} := closure of {1} under \triangleright inside the infinite braid group B_{∞} (realization of the free left shelf inside braids).

• Question 1: Let (S, \triangleright) be a monogenerated (left) shelf. Find a concrete description of the congruence \equiv_S s.t. (S, \triangleright) is (isomorphic to) $(B_{\infty}^{sp}, \triangleright)/\equiv_S$. Does \equiv_S extend to all of B_{∞} ?

- ▶ Typical example: $S := A_n$, the *n*th Laver table.
- Laver tables are quotients of the (free) set theoretic shelf (lter(j), -[-]).
- Question 2: Can one find an alternative "self-iterating structure" (S, \triangleright) , which the Laver tables are quotients of?
 - Typical candidate: Scott's domains in λ -calculus (?)

- \bullet Question 0: Can shelves that are not racks be (really) useful in low-dimensional topology?
- Recall: B_{∞}^{sp} := closure of {1} under \triangleright inside the infinite braid group B_{∞} (realization of the free left shelf inside braids).

• Question 1: Let (S, \triangleright) be a monogenerated (left) shelf. Find a concrete description of the congruence \equiv_S s.t. (S, \triangleright) is (isomorphic to) $(B_{\infty}^{sp}, \triangleright)/\equiv_S$. Does \equiv_S extend to all of B_{∞} ?

- ▶ Typical example: $S := A_n$, the *n*th Laver table.
- Laver tables are quotients of the (free) set theoretic shelf (lter(j), -[-]).
- Question 2: Can one find an alternative "self-iterating structure" (S, \triangleright) , which the Laver tables are quotients of?
 - Typical candidate: Scott's domains in λ -calculus (?)
- Question 3: Determine the (co)-homology of the free monogenrated shelf.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Q<u>uestion ∞ </u>: Compute the function μ_n defined on B_n^+ (positive *n*-strand braids) by $\mu_n(\beta) := \inf_{\uparrow} \{\beta' \mid \beta' \text{ conjugated to } \beta\}.$ standard linear braid ordering

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

• Question ∞ : Compute the function μ_n defined on B_n^+ (positive *n*-strand braids) by $\mu_n(\beta) := \inf_{\alpha} \{\beta' \mid \beta' \text{ conjugated to } \beta\}.$

standard linear braid ordering

▶ Remark: certainly doable, at least for n = 3.

• Question ∞ : Compute the function μ_n defined on B_n^+ (positive *n*-strand braids) by $\mu_n(\beta) := \inf_{\alpha} \{\beta' \mid \beta' \text{ conjugated to } \beta\}.$

standard linear braid ordering

▶ Remark: certainly doable, at least for n = 3.

• Question ∞' : Same question with $\nu_n(\beta) := \inf\{\beta' \mid \beta' \text{ Markov-equivalent to } \beta\}.$