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• Many things are known about shelves (SD-structures that need not be racks).
• Here special emphasis on the connection with braids and with set theory.
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• Planar diagrams:

◮ projections of curves embedded in R3

• Generic question: recognizing whether two diagrams are
(projections of) isotopic figures

◮ find isotopy invariants.
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• Good news: General shelves are very different from racks.
◮ If general shelves can be used, one can expect really new applications.

◮ Explore the world of shelves...
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◮ Then define β < β′ iff ~a • β <Lex ~a • β′.
↑

(b1 < b′1) or (b1 = b′1 and b2 < b′2) or etc.



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods
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Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods
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• Remark: Works similarly with

x ⊲ y := x · φ(y) · e · φ(x)−1

whenever G is a group G , e belongs to G , and φ is an endomorphism φ satisfying

e φ(e) e = φ(e) e φ(e) and ∀x (e φ2(x) = φ2(x) e).
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∏sh~β.

Conversely, assume β =
∏sh~β. Then (1, 1, 1, ...) • β is defined, and it must

be equal to (β1, β2, ...), whence the uniqueness. �

.../... [P.D. Strange questions about braids, J. KnotTh. Ramif. 8 (1999) 589-620]

• At this point, two main questions:

◮ Can one use the braid shelf and the associated diagram colorings in topology?
 already used to define and investigate the braid ordering
 new applications?

◮ Where does this (strange) operation come from?



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods
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◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far. In particular, is it decidable?

• Terms on X as binary trees with nodes ⊲ and leaves in X : assuming X = {a, b, c},

a

⊲

b a

b ⊲ a

⊲

⊲

a ⊲

c b
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• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S; if T ′

⊏
∗
SD T , then a′ ⊏∗ a in S;

otherwise, T =SD T ′, hence a = a′ in S. �

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �
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The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2, σiσjσi = σjσiσj for |j − i | = 1.

◮ The resulting quotient of MSD is B∞ (!).

◮ If φ maps T to T ′, then sh0(φ) maps T ⊲ x [n] to T ′ ⊲ x [n],
so collapsing all sh0(φ) must give an SD-operation on the quotient, i.e., on B∞.

◮ Its definition is the projection of (∗), i.e.,

a ⊲ b := a · sh(b) · σi · sh(a)
−1.
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The Thompson’s monoid of SD (cont’d)

• The “magic rule” revisited:

=SD

7→
χT1

T1

=SD

7→
sh1(χT2

)

T1

T2

=SD

7→
SD∅

T1 T2 T1

=SD

7→
sh1(χT1

)−1

T1 T2

T

whence χT1⊲T2
= χT1

· sh1(χT2
) · SD∅ · sh1(χ

−1
T1

),

which projects to the braid operation.

.../...

• See more in [P.D., Braids and selfdistributivity, PM192, Birkhaüser (1999)]



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods
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A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880s): There exist
infinitely many non-equivalent infinities,

which organize in a well-ordered sequence

ℵ0 < ℵ1 < ℵ2 < ··· < ℵω < ··· .

• Facts: card(N) = ℵ0, and card(R) (= card(P(N)) = 2ℵ0 ) > card(N).

• Question: For which α (necessarily > 1) does card(R) = ℵα hold?

◮ Conjecture (Continuum Hypothesis, Cantor, 1879): card(R) = ℵ1.
◮ Equivalently: every uncountable set of reals has the cardinality of R.
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◮ A super-infinite set must be so large that it contains undefinable elements
(since all definable elements must be fixed).
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↑

the braid realization (1992)



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods
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◮ A set-theoretic realization of An as a quotient of the (free) left-shelf Iter(j).
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◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

◮ Can one find alternative proofs using no large cardinal?
(as done for the free shelf using the braid realization)

◮ Can one use them in low-dimensional topology?

Richard Laver
(1942-2012)
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Questions

• Question 0: Can shelves that are not racks be (really) useful in low-dimensional
topology?

• Recall: Bsp
∞:= closure of {1} under ⊲ inside the infinite braid group B∞ (realization

of the free left shelf inside braids).

• Question 1: Let (S, ⊲) be a monogenerated (left) shelf. Find a concrete description
of the congruence ≡S s.t. (S, ⊲) is (isomorphic to) (Bsp

∞, ⊲)/≡S . Does ≡S extend to
all of B∞?

◮ Typical example: S := An, the nth Laver table.

• Laver tables are quotients of the (free) set theoretic shelf (Iter(j),−[−]).

• Question 2: Can one find an alternative ”self-iterating structure” (S, ⊲), which the
Laver tables are quotients of?

◮ Typical candidate: Scott’s domains in λ-calculus (?)

• Question 3: Determine the (co)-homology of the free monogenrated shelf.
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Questions (cont’d)

• Question ∞: Compute the function µn defined on B+
n (positive n-strand braids) by

µn(β) := inf{β′ | β′ conjugated to β}.
↑

standard linear braid ordering

◮ Remark: certainly doable, at least for n = 3.

• Question ∞′: Same question with
νn(β) := inf{β′ | β′ Markov-equivalent to β}.


