
Self-distributivity, braids, and set theory



Self-distributivity, braids, and set theory
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen



Self-distributivity, braids, and set theory
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Self-distributive systems and quandle (co)homology theory
in algebra and low-dimensional topology, Pusan, June 2017



Self-distributivity, braids, and set theory
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Self-distributive systems and quandle (co)homology theory
in algebra and low-dimensional topology, Pusan, June 2017



Self-distributivity, braids, and set theory
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Self-distributive systems and quandle (co)homology theory
in algebra and low-dimensional topology, Pusan, June 2017

• Many things are known about shelves (SD-structures that need not be racks).



Self-distributivity, braids, and set theory
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Self-distributive systems and quandle (co)homology theory
in algebra and low-dimensional topology, Pusan, June 2017

• Many things are known about shelves (SD-structures that need not be racks).
• Here special emphasis on the connection with braids and with set theory.



Plan:



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods



Diagrams

• Planar diagrams:



Diagrams

• Planar diagrams:



Diagrams

• Planar diagrams:



Diagrams

• Planar diagrams:



Diagrams

• Planar diagrams:

◮ projections of curves embedded in R3



Diagrams

• Planar diagrams:

◮ projections of curves embedded in R3

• Generic question: recognizing whether two diagrams are
(projections of) isotopic figures



Diagrams

• Planar diagrams:

◮ projections of curves embedded in R3

• Generic question: recognizing whether two diagrams are
(projections of) isotopic figures

◮ find isotopy invariants.



Reidemeister moves

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:



Reidemeister moves

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I :



Reidemeister moves

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼



Reidemeister moves

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼



Reidemeister moves

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼

- type II :



Reidemeister moves

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼

- type II : ∼



Reidemeister moves

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼

- type II : ∼ ∼



Reidemeister moves

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼

- type II : ∼ ∼

- type III :



Reidemeister moves

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼

- type II : ∼ ∼

- type III : ∼



Diagram colorings

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,



Diagram colorings

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b



Diagram colorings

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .



Diagram colorings

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:



Diagram colorings

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

a

b

c



Diagram colorings

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

a

b

c

c

b ⊳ c

a⊳c
c

b ⊳ c

(a ⊳ c) ⊳ (b ⊳ c)



Diagram colorings

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

a

b

c

c

b ⊳ c

a⊳c
c

b ⊳ c

(a ⊳ c) ⊳ (b ⊳ c)

∼

a

b

c



Diagram colorings

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

a

b

c

c

b ⊳ c

a⊳c
c

b ⊳ c

(a ⊳ c) ⊳ (b ⊳ c)

∼

a

b

c

b

a⊳b
c

b ⊳ c

(a ⊳ b) ⊳ c



Diagram colorings

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

a

b

c

c

b ⊳ c

a⊳c
c

b ⊳ c

(a ⊳ c) ⊳ (b ⊳ c)

∼

a

b

c

b

a⊳b
c

b ⊳ c

(a ⊳ b) ⊳ c

◮ Hence: S-colorings invariant under Reidemeister move III ⇔ (S, ⊳) is a shelf



Diagram colorings

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

a

b

c

c

b ⊳ c

a⊳c
c

b ⊳ c

(a ⊳ c) ⊳ (b ⊳ c)

∼

a

b

c

b

a⊳b
c

b ⊳ c

(a ⊳ b) ⊳ c

◮ Hence: S-colorings invariant under Reidemeister move III ⇔ (S, ⊳) is a shelf

• Proposition: Whenever (S, ⊳) is a shelf, diagram coloring provides
a well defined action of the braid monoid B+

n on Sn for every n.



Coloring (cont’d)

• Idem for Reidemeister move II:

a

b

(a⊳b)⊳b

b

b

a ⊳ b

∼
a

b

a

b
∼

a

b (b⊳a)⊳b)

a

a

b ⊳ a



Coloring (cont’d)

• Idem for Reidemeister move II:

a

b

(a⊳b)⊳b

b

b

a ⊳ b

∼
a

b

a

b
∼

a

b (b⊳a)⊳b)

a

a

b ⊳ a

• Lemma: There exists ⊳ satisfying (x ⊳ y) ⊳ y = x and (x ⊳ y) ⊳ y = x
iff the right translations of (S, ⊳) are bijections.



Coloring (cont’d)

• Idem for Reidemeister move II:

a

b

(a⊳b)⊳b

b

b

a ⊳ b

∼
a

b

a

b
∼

a

b (b⊳a)⊳b)

a

a

b ⊳ a

• Lemma: There exists ⊳ satisfying (x ⊳ y) ⊳ y = x and (x ⊳ y) ⊳ y = x
iff the right translations of (S, ⊳) are bijections.

◮ Hence: S-colorings invariant under Reidemeister moves II+III ⇔
(S, ⊳) is a shelf with bijective right translations



Coloring (cont’d)

• Idem for Reidemeister move II:

a

b

(a⊳b)⊳b

b

b

a ⊳ b

∼
a

b

a

b
∼

a

b (b⊳a)⊳b)

a

a

b ⊳ a

• Lemma: There exists ⊳ satisfying (x ⊳ y) ⊳ y = x and (x ⊳ y) ⊳ y = x
iff the right translations of (S, ⊳) are bijections.

◮ Hence: S-colorings invariant under Reidemeister moves II+III ⇔
(S, ⊳) is a shelf with bijective right translations

↑
a rack



Coloring (cont’d)

• Idem for Reidemeister move II:

a

b

(a⊳b)⊳b

b

b

a ⊳ b

∼
a

b

a

b
∼

a

b (b⊳a)⊳b)

a

a

b ⊳ a

• Lemma: There exists ⊳ satisfying (x ⊳ y) ⊳ y = x and (x ⊳ y) ⊳ y = x
iff the right translations of (S, ⊳) are bijections.

◮ Hence: S-colorings invariant under Reidemeister moves II+III ⇔
(S, ⊳) is a shelf with bijective right translations

↑
a rack

• Proposition: Whenever (S, ⊳) is a rack, diagram coloring provides
a well defined action of the braid group Bn on Sn for every n.



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔
(S, ⊳) is an idempotent rack



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔
(S, ⊳) is an idempotent rack

↑
a quandle

• Theorem (Joyce, Matveev): Define the fundamental quandle of the closure of an
n-strand braid β to be

〈a1, ..., an | a1 = a′1, ..., an = a′n〉quandle



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔
(S, ⊳) is an idempotent rack

↑
a quandle

• Theorem (Joyce, Matveev): Define the fundamental quandle of the closure of an
n-strand braid β to be

〈a1, ..., an | a1 = a′1, ..., an = a′n〉quandle
where a′1, ..., a

′
n are the output colors in (a diagram of) β with input colors a1, ..., an.

Then the fundamental quandle is a complete isotopy invariant up to mirror symmetry.



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔
(S, ⊳) is an idempotent rack

↑
a quandle

• Theorem (Joyce, Matveev): Define the fundamental quandle of the closure of an
n-strand braid β to be

〈a1, ..., an | a1 = a′1, ..., an = a′n〉quandle
where a′1, ..., a

′
n are the output colors in (a diagram of) β with input colors a1, ..., an.

Then the fundamental quandle is a complete isotopy invariant up to mirror symmetry.

• Example:
The trefoil knot:



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔
(S, ⊳) is an idempotent rack

↑
a quandle

• Theorem (Joyce, Matveev): Define the fundamental quandle of the closure of an
n-strand braid β to be

〈a1, ..., an | a1 = a′1, ..., an = a′n〉quandle
where a′1, ..., a

′
n are the output colors in (a diagram of) β with input colors a1, ..., an.

Then the fundamental quandle is a complete isotopy invariant up to mirror symmetry.

• Example:
The trefoil knot:



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔
(S, ⊳) is an idempotent rack

↑
a quandle

• Theorem (Joyce, Matveev): Define the fundamental quandle of the closure of an
n-strand braid β to be

〈a1, ..., an | a1 = a′1, ..., an = a′n〉quandle
where a′1, ..., a

′
n are the output colors in (a diagram of) β with input colors a1, ..., an.

Then the fundamental quandle is a complete isotopy invariant up to mirror symmetry.

• Example:
The trefoil knot:

a

b



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔
(S, ⊳) is an idempotent rack

↑
a quandle

• Theorem (Joyce, Matveev): Define the fundamental quandle of the closure of an
n-strand braid β to be

〈a1, ..., an | a1 = a′1, ..., an = a′n〉quandle
where a′1, ..., a

′
n are the output colors in (a diagram of) β with input colors a1, ..., an.

Then the fundamental quandle is a complete isotopy invariant up to mirror symmetry.

• Example:
The trefoil knot:

a

b

b

a⊳b



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔
(S, ⊳) is an idempotent rack

↑
a quandle

• Theorem (Joyce, Matveev): Define the fundamental quandle of the closure of an
n-strand braid β to be

〈a1, ..., an | a1 = a′1, ..., an = a′n〉quandle
where a′1, ..., a

′
n are the output colors in (a diagram of) β with input colors a1, ..., an.

Then the fundamental quandle is a complete isotopy invariant up to mirror symmetry.

• Example:
The trefoil knot:

a

b

b

a⊳b

a⊳b

b⊳(a⊳b)



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔
(S, ⊳) is an idempotent rack

↑
a quandle

• Theorem (Joyce, Matveev): Define the fundamental quandle of the closure of an
n-strand braid β to be

〈a1, ..., an | a1 = a′1, ..., an = a′n〉quandle
where a′1, ..., a

′
n are the output colors in (a diagram of) β with input colors a1, ..., an.

Then the fundamental quandle is a complete isotopy invariant up to mirror symmetry.

• Example:
The trefoil knot:

a

b

b

a⊳b

a⊳b

b⊳(a⊳b)

b⊳(a⊳b)

(a⊳b)⊳(b⊳(a⊳b))



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔
(S, ⊳) is an idempotent rack

↑
a quandle

• Theorem (Joyce, Matveev): Define the fundamental quandle of the closure of an
n-strand braid β to be

〈a1, ..., an | a1 = a′1, ..., an = a′n〉quandle
where a′1, ..., a

′
n are the output colors in (a diagram of) β with input colors a1, ..., an.

Then the fundamental quandle is a complete isotopy invariant up to mirror symmetry.

• Example:
The trefoil knot:

a

b

b

a⊳b

a⊳b

b⊳(a⊳b)

b⊳(a⊳b)

(a⊳b)⊳(b⊳(a⊳b))

Leads to 〈a, b | (b ⊳ (a⊳b) = a, (a ⊳ b) ⊳ (b ⊳ (a ⊳ b)) = b〉quandle,



Coloring (cont’d)

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence: S-colorings invariant under Reidemeister moves I+II+III ⇔
(S, ⊳) is an idempotent rack

↑
a quandle

• Theorem (Joyce, Matveev): Define the fundamental quandle of the closure of an
n-strand braid β to be

〈a1, ..., an | a1 = a′1, ..., an = a′n〉quandle
where a′1, ..., a

′
n are the output colors in (a diagram of) β with input colors a1, ..., an.

Then the fundamental quandle is a complete isotopy invariant up to mirror symmetry.

• Example:
The trefoil knot:

a

b

b

a⊳b

a⊳b

b⊳(a⊳b)

b⊳(a⊳b)

(a⊳b)⊳(b⊳(a⊳b))

Leads to 〈a, b | (b ⊳ (a⊳b) = a, (a ⊳ b) ⊳ (b ⊳ (a ⊳ b)) = b〉quandle,
i.e., 〈a, b, c | a ⊳ b=c, b ⊳ c=a, c ⊳ a=b〉quandle.



The main question

• Quandles and racks have being used successfully in knot theory



The main question

• Quandles and racks have being used successfully in knot theory
in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...



The main question

• Quandles and racks have being used successfully in knot theory
in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

• Main question: Could shelves that are not racks be useful in topology?



The main question

• Quandles and racks have being used successfully in knot theory
in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

• Main question: Could shelves that are not racks be useful in topology?

• Bad news: General shelves are very different from racks.



The main question

• Quandles and racks have being used successfully in knot theory
in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

• Main question: Could shelves that are not racks be useful in topology?

• Bad news: General shelves are very different from racks.
◮ Precise meaning: free racks are very special shelves...



The main question

• Quandles and racks have being used successfully in knot theory
in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

• Main question: Could shelves that are not racks be useful in topology?

• Bad news: General shelves are very different from racks.
◮ Precise meaning: free racks are very special shelves...
◮ Presumably much work to adapt the results. (?)



The main question

• Quandles and racks have being used successfully in knot theory
in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

• Main question: Could shelves that are not racks be useful in topology?

• Bad news: General shelves are very different from racks.
◮ Precise meaning: free racks are very special shelves...
◮ Presumably much work to adapt the results. (?)

• Good news: General shelves are very different from racks.



The main question

• Quandles and racks have being used successfully in knot theory
in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

• Main question: Could shelves that are not racks be useful in topology?

• Bad news: General shelves are very different from racks.
◮ Precise meaning: free racks are very special shelves...
◮ Presumably much work to adapt the results. (?)

• Good news: General shelves are very different from racks.
◮ If general shelves can be used, one can expect really new applications.



The main question

• Quandles and racks have being used successfully in knot theory
in particular via homological approximations: Fenn, Rourke, Carter, Kamada ...

• Main question: Could shelves that are not racks be useful in topology?

• Bad news: General shelves are very different from racks.
◮ Precise meaning: free racks are very special shelves...
◮ Presumably much work to adapt the results. (?)

• Good news: General shelves are very different from racks.
◮ If general shelves can be used, one can expect really new applications.

◮ Explore the world of shelves...



Partial coloring

• An example (of using non-rack shelves): the partial action of braids
on a right-cancellative shelf



Partial coloring

• An example (of using non-rack shelves): the partial action of braids
on a right-cancellative shelf

• Assume that (S, ⊳) is a right-cancellative shelf
↑

a ⊳ b = a′ ⊳ b ⇒ a = a′: right translations are injective



Partial coloring

• An example (of using non-rack shelves): the partial action of braids
on a right-cancellative shelf

• Assume that (S, ⊳) is a right-cancellative shelf
↑

a ⊳ b = a′ ⊳ b ⇒ a = a′: right translations are injective

Then one can define

b

a

a ⊳ b

b
and

b

a

a



Partial coloring

• An example (of using non-rack shelves): the partial action of braids
on a right-cancellative shelf

• Assume that (S, ⊳) is a right-cancellative shelf
↑

a ⊳ b = a′ ⊳ b ⇒ a = a′: right translations are injective

Then one can define

b

a

a ⊳ b

b
and

b

a

a

the unique c s.t. c ⊳ a = b, if it exists.



Partial coloring

• An example (of using non-rack shelves): the partial action of braids
on a right-cancellative shelf

• Assume that (S, ⊳) is a right-cancellative shelf
↑

a ⊳ b = a′ ⊳ b ⇒ a = a′: right translations are injective

Then one can define

b

a

a ⊳ b

b
and

b

a

a

the unique c s.t. c ⊳ a = b, if it exists.

• Proposition: One obtains in this way a well-defined partial action of Bn on Sn, s.t.



Partial coloring

• An example (of using non-rack shelves): the partial action of braids
on a right-cancellative shelf

• Assume that (S, ⊳) is a right-cancellative shelf
↑

a ⊳ b = a′ ⊳ b ⇒ a = a′: right translations are injective

Then one can define

b

a

a ⊳ b

b
and

b

a

a

the unique c s.t. c ⊳ a = b, if it exists.

• Proposition: One obtains in this way a well-defined partial action of Bn on Sn, s.t.
◮ For all n-strand braid words w1, ...,wp ,

there exists at least one sequence ~a in Sn s.t. ~a • wi is defined for each i .



Partial coloring

• An example (of using non-rack shelves): the partial action of braids
on a right-cancellative shelf

• Assume that (S, ⊳) is a right-cancellative shelf
↑

a ⊳ b = a′ ⊳ b ⇒ a = a′: right translations are injective

Then one can define

b

a

a ⊳ b

b
and

b

a

a

the unique c s.t. c ⊳ a = b, if it exists.

• Proposition: One obtains in this way a well-defined partial action of Bn on Sn, s.t.
◮ For all n-strand braid words w1, ...,wp ,

there exists at least one sequence ~a in Sn s.t. ~a • wi is defined for each i .
◮ If w ,w ′ are equivalent n-strand braid words and ~a • w and ~a • w ′ are defined,

then ~a • w = ~a • w ′ holds.



Partial coloring

• An example (of using non-rack shelves): the partial action of braids
on a right-cancellative shelf

• Assume that (S, ⊳) is a right-cancellative shelf
↑

a ⊳ b = a′ ⊳ b ⇒ a = a′: right translations are injective

Then one can define

b

a

a ⊳ b

b
and

b

a

a

the unique c s.t. c ⊳ a = b, if it exists.

• Proposition: One obtains in this way a well-defined partial action of Bn on Sn, s.t.
◮ For all n-strand braid words w1, ...,wp ,

there exists at least one sequence ~a in Sn s.t. ~a • wi is defined for each i .
◮ If w ,w ′ are equivalent n-strand braid words and ~a • w and ~a • w ′ are defined,

then ~a • w = ~a • w ′ holds.

◮ Proof: Not trivial, uses the Garside structure of braids. �



Partial coloring

• An example (of using non-rack shelves): the partial action of braids
on a right-cancellative shelf

• Assume that (S, ⊳) is a right-cancellative shelf
↑

a ⊳ b = a′ ⊳ b ⇒ a = a′: right translations are injective

Then one can define

b

a

a ⊳ b

b
and

b

a

a

the unique c s.t. c ⊳ a = b, if it exists.

• Proposition: One obtains in this way a well-defined partial action of Bn on Sn, s.t.
◮ For all n-strand braid words w1, ...,wp ,

there exists at least one sequence ~a in Sn s.t. ~a • wi is defined for each i .
◮ If w ,w ′ are equivalent n-strand braid words and ~a • w and ~a • w ′ are defined,

then ~a • w = ~a • w ′ holds.

◮ Proof: Not trivial, uses the Garside structure of braids. �

 a usable partial action...



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c,



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack.



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a)



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a)



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a).



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a). If (S, ⊳) is orderable, a ⊳ a < a ⊳ (a ⊳ a).



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a). If (S, ⊳) is orderable, a ⊳ a < a ⊳ (a ⊳ a).

◮ An orderable shelf is right-cancellative:



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a). If (S, ⊳) is orderable, a ⊳ a < a ⊳ (a ⊳ a).

◮ An orderable shelf is right-cancellative: a 6= b implies a < b or b < a,



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a). If (S, ⊳) is orderable, a ⊳ a < a ⊳ (a ⊳ a).

◮ An orderable shelf is right-cancellative: a 6= b implies a < b or b < a,
whence a ⊳ c < b ⊳ c or a ⊳ c > b ⊳ c,



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a). If (S, ⊳) is orderable, a ⊳ a < a ⊳ (a ⊳ a).

◮ An orderable shelf is right-cancellative: a 6= b implies a < b or b < a,
whence a ⊳ c < b ⊳ c or a ⊳ c > b ⊳ c, then a ⊳ c 6= b ⊳ c.



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a). If (S, ⊳) is orderable, a ⊳ a < a ⊳ (a ⊳ a).

◮ An orderable shelf is right-cancellative: a 6= b implies a < b or b < a,
whence a ⊳ c < b ⊳ c or a ⊳ c > b ⊳ c, then a ⊳ c 6= b ⊳ c.

• Coloring braids using an orderable shelf directly provides a linear ordering of braids:



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a). If (S, ⊳) is orderable, a ⊳ a < a ⊳ (a ⊳ a).

◮ An orderable shelf is right-cancellative: a 6= b implies a < b or b < a,
whence a ⊳ c < b ⊳ c or a ⊳ c > b ⊳ c, then a ⊳ c 6= b ⊳ c.

• Coloring braids using an orderable shelf directly provides a linear ordering of braids:

β β′



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a). If (S, ⊳) is orderable, a ⊳ a < a ⊳ (a ⊳ a).

◮ An orderable shelf is right-cancellative: a 6= b implies a < b or b < a,
whence a ⊳ c < b ⊳ c or a ⊳ c > b ⊳ c, then a ⊳ c 6= b ⊳ c.

• Coloring braids using an orderable shelf directly provides a linear ordering of braids:

β β′

a1

a2

a3

a4

a1

a2

a3

a4



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a). If (S, ⊳) is orderable, a ⊳ a < a ⊳ (a ⊳ a).

◮ An orderable shelf is right-cancellative: a 6= b implies a < b or b < a,
whence a ⊳ c < b ⊳ c or a ⊳ c > b ⊳ c, then a ⊳ c 6= b ⊳ c.

• Coloring braids using an orderable shelf directly provides a linear ordering of braids:

β β′

a1

a2

a3

a4

a1

a2

a3

a4

b1

b2

b3

b4



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a). If (S, ⊳) is orderable, a ⊳ a < a ⊳ (a ⊳ a).

◮ An orderable shelf is right-cancellative: a 6= b implies a < b or b < a,
whence a ⊳ c < b ⊳ c or a ⊳ c > b ⊳ c, then a ⊳ c 6= b ⊳ c.

• Coloring braids using an orderable shelf directly provides a linear ordering of braids:

β β′

a1

a2

a3

a4

a1

a2

a3

a4

b1

b2

b3

b4

b′1

b′2

b′3

b′4



The braid ordering

• Definition: A shelf is orderable if there exists a linear ordering < on S s.t.
a < b implies a ⊳ c < b ⊳ c, and a < b ⊳ a always holds.

◮ Orderable shelves exist (see later...)
◮ An orderable shelf is never a rack. If (S, ⊳) is a rack:

b ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ (a ⊳ a) = ((b ⊳ a) ⊳ a) ⊳ a = b ⊳ a,
hence in particular a ⊳ a = a ⊳ (a ⊳ a). If (S, ⊳) is orderable, a ⊳ a < a ⊳ (a ⊳ a).

◮ An orderable shelf is right-cancellative: a 6= b implies a < b or b < a,
whence a ⊳ c < b ⊳ c or a ⊳ c > b ⊳ c, then a ⊳ c 6= b ⊳ c.

• Coloring braids using an orderable shelf directly provides a linear ordering of braids:

β β′

a1

a2

a3

a4

a1

a2

a3

a4

b1

b2

b3

b4

b′1

b′2

b′3

b′4

◮ Then define β < β′ iff ~a • β <Lex ~a • β′.
↑

(b1 < b′1) or (b1 = b′1 and b2 < b′2) or etc.



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods



Classical shelves

• “Trivial” shelves:



Classical shelves

• “Trivial” shelves: S a set, f a map S → S,



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves:



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice,



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2:



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra,



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves:



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n:



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −2x + y



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −2x + y ( root systems).



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −2x + y ( root systems).

• Conjugacy quandles:



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −2x + y ( root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −2x + y ( root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −2x + y ( root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.
◮ In particular: the free quandle based on X when G is the free group based on X .



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −2x + y ( root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.
◮ In particular: the free quandle based on X when G is the free group based on X .

↑
when viewed as (Q, ⊳, ⊳):



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −2x + y ( root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.
◮ In particular: the free quandle based on X when G is the free group based on X .

↑
when viewed as (Q, ⊳, ⊳): (FX , ⊳) is not a free idempotent shelf,

it satisfies other laws: x ⊳ (y ⊳ (y ⊳ x)) = (x ⊳ (x ⊳ y)) ⊳ (y ⊳ x), ...
(Drápal-Kepka-Muśılek, Larue)



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −2x + y ( root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.
◮ In particular: the free quandle based on X when G is the free group based on X .

↑
when viewed as (Q, ⊳, ⊳): (FX , ⊳) is not a free idempotent shelf,

it satisfies other laws: x ⊳ (y ⊳ (y ⊳ x)) = (x ⊳ (x ⊳ y)) ⊳ (y ⊳ x), ...
(Drápal-Kepka-Muśılek, Larue)

◮ Variants: x ⊳ y := y−nxyn,



Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t an element of R, E an R-module,
and x ⊳ y := (1− t)x + ty .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −2x + y ( root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.
◮ In particular: the free quandle based on X when G is the free group based on X .

↑
when viewed as (Q, ⊳, ⊳): (FX , ⊳) is not a free idempotent shelf,

it satisfies other laws: x ⊳ (y ⊳ (y ⊳ x)) = (x ⊳ (x ⊳ y)) ⊳ (y ⊳ x), ...
(Drápal-Kepka-Muśılek, Larue)

◮ Variants: x ⊳ y := y−nxyn, x ⊳ y := f (y−1x)y with f ∈ Aut(G), ...



“Semi-classical” shelves

• Core (or sandwich) quandles:



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks:



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf:



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :

(sh ⊳ sh) ⊳ sh :



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :

(sh ⊳ sh) ⊳ sh :

sh ⊳ (sh ⊳ sh) :



“Semi-classical” shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :

(sh ⊳ sh) ⊳ sh :

sh ⊳ (sh ⊳ sh) :

[P.D.Algebraic properties of the shift mapping, Proc. Amer.Math. Soc. 106 (1989) 617-623]



Exotic shelves

• Braid shelf: B∞ braid group,



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1,



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:

◮ Case of one generator: Part 4 below



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:

◮ Case of one generator: Part 4 below
◮ Case of >2 generators: a lexicographic extension of the case of one generator



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:

◮ Case of one generator: Part 4 below
◮ Case of >2 generators: a lexicographic extension of the case of one generator

[P.D.A canonical ordering for free LD systems, Proc. Amer.Math. Soc. 122 (1994) 31-37]



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:

◮ Case of one generator: Part 4 below
◮ Case of >2 generators: a lexicographic extension of the case of one generator

[P.D.A canonical ordering for free LD systems, Proc. Amer.Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory):



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:

◮ Case of one generator: Part 4 below
◮ Case of >2 generators: a lexicographic extension of the case of one generator

[P.D.A canonical ordering for free LD systems, Proc. Amer.Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, Eλ set of all elementary embeddings
from Vλ to itself,



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:

◮ Case of one generator: Part 4 below
◮ Case of >2 generators: a lexicographic extension of the case of one generator

[P.D.A canonical ordering for free LD systems, Proc. Amer.Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, Eλ set of all elementary embeddings
from Vλ to itself, and i ⊳ j :=

⋃
α<λ j(i∩V 2

α)



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:

◮ Case of one generator: Part 4 below
◮ Case of >2 generators: a lexicographic extension of the case of one generator

[P.D.A canonical ordering for free LD systems, Proc. Amer.Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, Eλ set of all elementary embeddings
from Vλ to itself, and i ⊳ j :=

⋃
α<λ j(i∩V 2

α)

◮ Part 5 below



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:

◮ Case of one generator: Part 4 below
◮ Case of >2 generators: a lexicographic extension of the case of one generator

[P.D.A canonical ordering for free LD systems, Proc. Amer.Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, Eλ set of all elementary embeddings
from Vλ to itself, and i ⊳ j :=

⋃
α<λ j(i∩V 2

α)

◮ Part 5 below

• Laver tables:



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:

◮ Case of one generator: Part 4 below
◮ Case of >2 generators: a lexicographic extension of the case of one generator

[P.D.A canonical ordering for free LD systems, Proc. Amer.Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, Eλ set of all elementary embeddings
from Vλ to itself, and i ⊳ j :=

⋃
α<λ j(i∩V 2

α)

◮ Part 5 below

• Laver tables: a family of finite shelves with 2n elements



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:

◮ Case of one generator: Part 4 below
◮ Case of >2 generators: a lexicographic extension of the case of one generator

[P.D.A canonical ordering for free LD systems, Proc. Amer.Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, Eλ set of all elementary embeddings
from Vλ to itself, and i ⊳ j :=

⋃
α<λ j(i∩V 2

α)

◮ Part 5 below

• Laver tables: a family of finite shelves with 2n elements

◮ A. Drápal’s minicourse



Exotic shelves

• Braid shelf: B∞ braid group, sh : σi 7→ σi+1, and α ⊳ β := sh(β)−1 · σ1 · sh(α) · β.

◮ Part 3 below
◮ A variant: charged braids (realization of free shelves with >2 generators)

[P.D.Construction of left distributive operations and charged braids, Int. J. Alg. Comput 10 (2000) 173-190]

◮ Another variant: transfinite braids (with a second, associative operation)
[P.D.Transfinite braids and left distributive operations,Math. Z. 228 (1998) 405-433]

◮ Another variant: parenthezised braids (aka Brin’s braided Thompson’s group B̂V )
[P.D.The group of parenthesized braids, Adv.Math. 205 (2006) 354-409]

Transfinite braids and left distributive operations;

• Free shelves:

◮ Case of one generator: Part 4 below
◮ Case of >2 generators: a lexicographic extension of the case of one generator

[P.D.A canonical ordering for free LD systems, Proc. Amer.Math. Soc. 122 (1994) 31-37]

• Iteration shelf (set theory): λ a Laver cardinal, Eλ set of all elementary embeddings
from Vλ to itself, and i ⊳ j :=

⋃
α<λ j(i∩V 2

α)

◮ Part 5 below

• Laver tables: a family of finite shelves with 2n elements

◮ A. Drápal’s minicourse
◮ Part 6 below



A map of shelves

shelves

racks

quandles



A map of shelves

shelves

racks

quandles

monogenerated more than one generator



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2)



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5

Iter(j) =



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5

Iter(j) =
B∞



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5

Iter(j) =
B∞

IN



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5

Iter(j) =
B∞

IN

=Bsp
∞



A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5

Iter(j) =
B∞

IN

=Bsp
∞

I
sh
N



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods



Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation



Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.



Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2



Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1



Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:



Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1



Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔



Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔

≃≃≃ mapping class group of Dn (disk with n punctures):



Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔

≃≃≃ mapping class group of Dn (disk with n punctures):

Dn

..

.

..

.

1

i

i+1

n



Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈
σ1, ..., σn−1

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔

≃≃≃ mapping class group of Dn (disk with n punctures):

Dn

..

.

..

.

1

i

i+1

n

σi ↔



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈
σ1, σ2, ...

∣∣∣
〉
.



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈
σ1, σ2, ...

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈
σ1, σ2, ...

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈
σ1, σ2, ...

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈
σ1, σ2, ...

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈
σ1, σ2, ...

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈
σ1, σ2, ...

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.

α
sh(β) sh(α)−1

α ⊲ β



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈
σ1, σ2, ...

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.

α
sh(β) sh(α)−1

α ⊲ β

• Examples: 1 ⊲ 1 = σ1,



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈
σ1, σ2, ...

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.

α
sh(β) sh(α)−1

α ⊲ β

• Examples: 1 ⊲ 1 = σ1, 1 ⊲ σ1 = σ2σ1,



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈
σ1, σ2, ...

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.

α
sh(β) sh(α)−1

α ⊲ β

• Examples: 1 ⊲ 1 = σ1, 1 ⊲ σ1 = σ2σ1, σ1 ⊲ 1 = σ2
1 σ

−1
2 ,



The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈
σ1, σ2, ...

∣∣∣
〉
.

σiσj = σjσi for |i − j | > 2
σiσjσi = σjσiσj for |i − j | = 1

◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.

α
sh(β) sh(α)−1

α ⊲ β

• Examples: 1 ⊲ 1 = σ1, 1 ⊲ σ1 = σ2σ1, σ1 ⊲ 1 = σ2
1 σ

−1
2 , σ1 ⊲ σ1 = σ2σ1, etc.



The braid shelf (cont’d)

◮ Proof:



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) =



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1

= α sh(β) σ1 sh
2(γ) σ2σ1σ

−1
2 sh2(β)−1 sh(α)−1



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1

= α sh(β) σ1 sh
2(γ) σ2σ1σ

−1
2 sh2(β)−1 sh(α)−1

= α · sh(β) · sh2(γ) · σ1σ2σ1σ
−1
2 · sh2(β)−1 · sh(α)−1 �



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1

= α sh(β) σ1 sh
2(γ) σ2σ1σ

−1
2 sh2(β)−1 sh(α)−1

= α · sh(β) · sh2(γ) · σ1σ2σ1σ
−1
2 · sh2(β)−1 · sh(α)−1 �

• Remark: Shelf (=right shelf) with

α ⊳ β := sh(β)−1 · σ1 · sh(α) · β,



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1

= α sh(β) σ1 sh
2(γ) σ2σ1σ

−1
2 sh2(β)−1 sh(α)−1

= α · sh(β) · sh2(γ) · σ1σ2σ1σ
−1
2 · sh2(β)−1 · sh(α)−1 �

• Remark: Shelf (=right shelf) with

α ⊳ β := sh(β)−1 · σ1 · sh(α) · β,
but less convenient here.



The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1

= α sh(β) σ1 sh
2(γ) σ2σ1σ

−1
2 sh2(β)−1 sh(α)−1

= α · sh(β) · sh2(γ) · σ1σ2σ1σ
−1
2 · sh2(β)−1 · sh(α)−1 �

• Remark: Shelf (=right shelf) with

α ⊳ β := sh(β)−1 · σ1 · sh(α) · β,
but less convenient here.

• Remark: Works similarly with

x ⊲ y := x · φ(y) · e · φ(x)−1

whenever G is a group G , e belongs to G , and φ is an endomorphism φ satisfying

e φ(e) e = φ(e) e φ(e) and ∀x (e φ2(x) = φ2(x) e).



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = ( ··· ((x ⊲ z1) ⊲ z2) ⊲ ··· ) ⊲ zn is impossible.



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = ( ··· ((x ⊲ z1) ⊲ z2) ⊲ ··· ) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = ( ··· ((x ⊲ z1) ⊲ z2) ⊲ ··· ) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = ( ··· ((x ⊲ z1) ⊲ z2) ⊲ ··· ) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi )(xi ) := xixi+1x
−1
i ,



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = ( ··· ((x ⊲ z1) ⊲ z2) ⊲ ··· ) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi )(xi ) := xixi+1x
−1
i , ρ(σi )(xi+1) := xi ,



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = ( ··· ((x ⊲ z1) ⊲ z2) ⊲ ··· ) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi )(xi ) := xixi+1x
−1
i , ρ(σi )(xi+1) := xi , ρ(σi )(xk) := xk for k 6= i , i + 1,



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = ( ··· ((x ⊲ z1) ⊲ z2) ⊲ ··· ) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi )(xi ) := xixi+1x
−1
i , ρ(σi )(xi+1) := xi , ρ(σi )(xk) := xk for k 6= i , i + 1,

Want to prove: ρ(α) 6= ρ( ··· ((α ⊲ β1) ⊲ β2) ⊲ ··· ) ⊲ βn).



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = ( ··· ((x ⊲ z1) ⊲ z2) ⊲ ··· ) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi )(xi ) := xixi+1x
−1
i , ρ(σi )(xi+1) := xi , ρ(σi )(xk) := xk for k 6= i , i + 1,

Want to prove: ρ(α) 6= ρ( ··· ((α ⊲ β1) ⊲ β2) ⊲ ··· ) ⊲ βn).

By definition: ρ( ··· ((α ⊲ β1) ⊲ β2) ⊲ ··· ) ⊲ βn) = ρ(α) ◦ ρ(γ),

with γ a braid of the form sh(γ0)σ1 sh(γ1)σ1 sh(γ2) ···σ1 sh(γn), with no σ−1
1 .



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = ( ··· ((x ⊲ z1) ⊲ z2) ⊲ ··· ) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi )(xi ) := xixi+1x
−1
i , ρ(σi )(xi+1) := xi , ρ(σi )(xk) := xk for k 6= i , i + 1,

Want to prove: ρ(α) 6= ρ( ··· ((α ⊲ β1) ⊲ β2) ⊲ ··· ) ⊲ βn).

By definition: ρ( ··· ((α ⊲ β1) ⊲ β2) ⊲ ··· ) ⊲ βn) = ρ(α) ◦ ρ(γ),

with γ a braid of the form sh(γ0)σ1 sh(γ1)σ1 sh(γ2) ···σ1 sh(γn), with no σ−1
1 .

Call such a braid σ1-positive.



A realization of the free shelf

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = ( ··· ((x ⊲ z1) ⊲ z2) ⊲ ··· ) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi )(xi ) := xixi+1x
−1
i , ρ(σi )(xi+1) := xi , ρ(σi )(xk) := xk for k 6= i , i + 1,

Want to prove: ρ(α) 6= ρ( ··· ((α ⊲ β1) ⊲ β2) ⊲ ··· ) ⊲ βn).

By definition: ρ( ··· ((α ⊲ β1) ⊲ β2) ⊲ ··· ) ⊲ βn) = ρ(α) ◦ ρ(γ),

with γ a braid of the form sh(γ0)σ1 sh(γ1)σ1 sh(γ2) ···σ1 sh(γn), with no σ−1
1 .

Call such a braid σ1-positive. It suffices to prove: “β is σ1-positive ⇒ ρ(β) 6= idF∞”.



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof:



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s).



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1.



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1))



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1)



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ?



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ).



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 .



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v ,



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ),



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1,



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1,



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1,



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1, contradicting ”w ′x−1
1 reduced”.



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1, contradicting ”w ′x−1
1 reduced”.

- For w ′ = ux−1
1 v ,



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1, contradicting ”w ′x−1
1 reduced”.

- For w ′ = ux−1
1 v , we find

φ(w) = red(φ(u)x1x
−1
2 x−1

1 φ(v)x1x
−1
2 x−1

1 ),



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1, contradicting ”w ′x−1
1 reduced”.

- For w ′ = ux−1
1 v , we find

φ(w) = red(φ(u)x1x
−1
2 x−1

1 φ(v)x1x
−1
2 x−1

1 ), with red(x−1
2 x−1

1 φ(v)x1x
−1
2 ) = 1.



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1, contradicting ”w ′x−1
1 reduced”.

- For w ′ = ux−1
1 v , we find

φ(w) = red(φ(u)x1x
−1
2 x−1

1 φ(v)x1x
−1
2 x−1

1 ), with red(x−1
2 x−1

1 φ(v)x1x
−1
2 ) = 1.

Hence φ(v) = x1x
2
2x

−1
1 ,



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1, contradicting ”w ′x−1
1 reduced”.

- For w ′ = ux−1
1 v , we find

φ(w) = red(φ(u)x1x
−1
2 x−1

1 φ(v)x1x
−1
2 x−1

1 ), with red(x−1
2 x−1

1 φ(v)x1x
−1
2 ) = 1.

Hence φ(v) = x1x
2
2x

−1
1 , then v = x21 ,



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1, contradicting ”w ′x−1
1 reduced”.

- For w ′ = ux−1
1 v , we find

φ(w) = red(φ(u)x1x
−1
2 x−1

1 φ(v)x1x
−1
2 x−1

1 ), with red(x−1
2 x−1

1 φ(v)x1x
−1
2 ) = 1.

Hence φ(v) = x1x
2
2x

−1
1 , then v = x21 , and w ′ = ux−1

1 x21 , contradicting ”w ′ reduced”.



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1, contradicting ”w ′x−1
1 reduced”.

- For w ′ = ux−1
1 v , we find

φ(w) = red(φ(u)x1x
−1
2 x−1

1 φ(v)x1x
−1
2 x−1

1 ), with red(x−1
2 x−1

1 φ(v)x1x
−1
2 ) = 1.

Hence φ(v) = x1x
2
2x

−1
1 , then v = x21 , and w ′ = ux−1

1 x21 , contradicting ”w ′ reduced”.

- For w ′ = ux2v ,



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1, contradicting ”w ′x−1
1 reduced”.

- For w ′ = ux−1
1 v , we find

φ(w) = red(φ(u)x1x
−1
2 x−1

1 φ(v)x1x
−1
2 x−1

1 ), with red(x−1
2 x−1

1 φ(v)x1x
−1
2 ) = 1.

Hence φ(v) = x1x
2
2x

−1
1 , then v = x21 , and w ′ = ux−1

1 x21 , contradicting ”w ′ reduced”.

- For w ′ = ux2v , we find
φ(w) = red(φ(u)x1φ(v)x1x

−1
2 x−1

1 ) with red(φ(v)x1x
−1
2 ) = 1.



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1, contradicting ”w ′x−1
1 reduced”.

- For w ′ = ux−1
1 v , we find

φ(w) = red(φ(u)x1x
−1
2 x−1

1 φ(v)x1x
−1
2 x−1

1 ), with red(x−1
2 x−1

1 φ(v)x1x
−1
2 ) = 1.

Hence φ(v) = x1x
2
2x

−1
1 , then v = x21 , and w ′ = ux−1

1 x21 , contradicting ”w ′ reduced”.

- For w ′ = ux2v , we find
φ(w) = red(φ(u)x1φ(v)x1x

−1
2 x−1

1 ) with red(φ(v)x1x
−1
2 ) = 1.

Hence φ(v) = x−1
2 x1, then v = x−1

2 x1, and w ′ = ux2x
−1
2 x1, contradicting ”w ′ reduced”.�



Larue’s lemma

• Lemma (Larue, 1992) If β is σ1-positive, then ρ(β)(x1) finishes with x−1
1 .

◮ Proof: Identify F∞ with the set of freely reduced words on {x1, x2, ...}
(no ss−1 or s−1s). Use sh also for F∞: xi 7→ xi+1. Let

W := {w | w reduced word finishing with x−1
1 }.

If β contains no σ±1
1 , then ρ(β)(x1) = x1.

If β = σ1 sh(γ), then ρ(β)(x1) = ρ(σ1)(ρ(sh(γ))(x1)) = ρ(σ1)(x1) = x1x2x
−1
1 ∈ W .

So, it suffices to show: w ∈ W implies ρ(σ1)(w) ∈ W and ρ(σ±1
i )(w) ∈ W for i > 2.

Assume w ∈ W , say w = w ′x−1
1 , and consider ρ(σ1)(w) ∈ W ? Write φ for ρ(σ1).

Then φ(w) = red(φ(w ′) x1x
−1
2 x−1

1 ). If φ(w) does not finish with x−1
1 , an x1 in φ(w ′)

cancels the final x−1
1 . This x1 comes either from an x1, or an x−1

1 , or an x2 in w .

- For w ′ = ux1v , we find
φ(w) = red(φ(u)x1x2x

−1
1 φ(v)x1x

−1
2 x−1

1 ), with red(x2x
−1
1 φ(v)x1x

−1
2 ) = 1.

Hence φ(v) = 1, then v = 1, and w ′ = ux1, contradicting ”w ′x−1
1 reduced”.

- For w ′ = ux−1
1 v , we find

φ(w) = red(φ(u)x1x
−1
2 x−1

1 φ(v)x1x
−1
2 x−1

1 ), with red(x−1
2 x−1

1 φ(v)x1x
−1
2 ) = 1.

Hence φ(v) = x1x
2
2x

−1
1 , then v = x21 , and w ′ = ux−1

1 x21 , contradicting ”w ′ reduced”.

- For w ′ = ux2v , we find
φ(w) = red(φ(u)x1φ(v)x1x

−1
2 x−1

1 ) with red(φ(v)x1x
−1
2 ) = 1.

Hence φ(v) = x−1
2 x1, then v = x−1

2 x1, and w ′ = ux2x
−1
2 x1, contradicting ”w ′ reduced”.�



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special;



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special;



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent
iff the braids T (1) and T ′(1) evaluated in B∞ are equal.



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent
iff the braids T (1) and T ′(1) evaluated in B∞ are equal.

• Lemma: If β is a special braid, we have

(1, 1, ...) • β = (β, 1, 1, ...).



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent
iff the braids T (1) and T ′(1) evaluated in B∞ are equal.

• Lemma: If β is a special braid, we have

(1, 1, ...) • β = (β, 1, 1, ...).

◮ Proof: Induction on β special.



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent
iff the braids T (1) and T ′(1) evaluated in B∞ are equal.

• Lemma: If β is a special braid, we have

(1, 1, ...) • β = (β, 1, 1, ...).

◮ Proof: Induction on β special. True for 1.



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent
iff the braids T (1) and T ′(1) evaluated in B∞ are equal.

• Lemma: If β is a special braid, we have

(1, 1, ...) • β = (β, 1, 1, ...).

◮ Proof: Induction on β special. True for 1. Then
(1, 1, ...) • (α ⊲ β) =



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent
iff the braids T (1) and T ′(1) evaluated in B∞ are equal.

• Lemma: If β is a special braid, we have

(1, 1, ...) • β = (β, 1, 1, ...).

◮ Proof: Induction on β special. True for 1. Then
(1, 1, ...) • (α ⊲ β) = (((1, 1, ...) • α) • sh(α)) • σ1) • sh(β)−1



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent
iff the braids T (1) and T ′(1) evaluated in B∞ are equal.

• Lemma: If β is a special braid, we have

(1, 1, ...) • β = (β, 1, 1, ...).

◮ Proof: Induction on β special. True for 1. Then
(1, 1, ...) • (α ⊲ β) = (((1, 1, ...) • α) • sh(α)) • σ1) • sh(β)−1

= ((α, 1, 1, ...) • sh(β)) • σ1) • sh(α)−1



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent
iff the braids T (1) and T ′(1) evaluated in B∞ are equal.

• Lemma: If β is a special braid, we have

(1, 1, ...) • β = (β, 1, 1, ...).

◮ Proof: Induction on β special. True for 1. Then
(1, 1, ...) • (α ⊲ β) = (((1, 1, ...) • α) • sh(α)) • σ1) • sh(β)−1

= ((α, 1, 1, ...) • sh(β)) • σ1) • sh(α)−1

= (α, β, 1, ...) • σ1) • sh(α)−1



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent
iff the braids T (1) and T ′(1) evaluated in B∞ are equal.

• Lemma: If β is a special braid, we have

(1, 1, ...) • β = (β, 1, 1, ...).

◮ Proof: Induction on β special. True for 1. Then
(1, 1, ...) • (α ⊲ β) = (((1, 1, ...) • α) • sh(α)) • σ1) • sh(β)−1

= ((α, 1, 1, ...) • sh(β)) • σ1) • sh(α)−1

= (α, β, 1, ...) • σ1) • sh(α)−1

= (α ⊲ β, α, 1, ...) • sh(α)−1



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent
iff the braids T (1) and T ′(1) evaluated in B∞ are equal.

• Lemma: If β is a special braid, we have

(1, 1, ...) • β = (β, 1, 1, ...).

◮ Proof: Induction on β special. True for 1. Then
(1, 1, ...) • (α ⊲ β) = (((1, 1, ...) • α) • sh(α)) • σ1) • sh(β)−1

= ((α, 1, 1, ...) • sh(β)) • σ1) • sh(α)−1

= (α, β, 1, ...) • σ1) • sh(α)−1

= (α ⊲ β, α, 1, ...) • sh(α)−1

= (α ⊲ β, 1, 1, ...) �



Special braids

• Definition: A braid β is special if it belongs to the closure of {1} under ⊲.

◮ Examples: 1 is special; 1 ⊲ 1 = σ1 is special; 1 ⊲ (1 ⊲ 1) = 1 ⊲σ1 = σ1σ2 is special;

(1 ⊲ 1) ⊲ 1 = σ1 ⊲ 1 = σ2
1 σ

−1
2 is special, etc.

• Proposition: Let Bsp
∞ be the family of all special braids.
Then (Bsp

∞, ⊲) is a realization of the free monogenerated left shelf.

• Corollary (”word problem of SD”): Two terms T ,T ′ (in x and ⊲) are SD-equivalent
iff the braids T (1) and T ′(1) evaluated in B∞ are equal.

• Lemma: If β is a special braid, we have

(1, 1, ...) • β = (β, 1, 1, ...).

◮ Proof: Induction on β special. True for 1. Then
(1, 1, ...) • (α ⊲ β) = (((1, 1, ...) • α) • sh(α)) • σ1) • sh(β)−1

= ((α, 1, 1, ...) • sh(β)) • σ1) • sh(α)−1

= (α, β, 1, ...) • σ1) • sh(α)−1

= (α ⊲ β, α, 1, ...) • sh(α)−1

= (α ⊲ β, 1, 1, ...) �



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· .



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i .



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· ,



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· ,



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...).



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.

Conversely, assume β =
∏sh~β.



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.

Conversely, assume β =
∏sh~β. Then (1, 1, 1, ...) • β is defined,



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.

Conversely, assume β =
∏sh~β. Then (1, 1, 1, ...) • β is defined, and it must

be equal to (β1, β2, ...),



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.

Conversely, assume β =
∏sh~β. Then (1, 1, 1, ...) • β is defined, and it must

be equal to (β1, β2, ...), whence the uniqueness. �



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.

Conversely, assume β =
∏sh~β. Then (1, 1, 1, ...) • β is defined, and it must

be equal to (β1, β2, ...), whence the uniqueness. �

.../...



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.

Conversely, assume β =
∏sh~β. Then (1, 1, 1, ...) • β is defined, and it must

be equal to (β1, β2, ...), whence the uniqueness. �

.../... [P.D. Strange questions about braids, J. KnotTh. Ramif. 8 (1999) 589-620]



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.

Conversely, assume β =
∏sh~β. Then (1, 1, 1, ...) • β is defined, and it must

be equal to (β1, β2, ...), whence the uniqueness. �

.../... [P.D. Strange questions about braids, J. KnotTh. Ramif. 8 (1999) 589-620]

• At this point, two main questions:



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.

Conversely, assume β =
∏sh~β. Then (1, 1, 1, ...) • β is defined, and it must

be equal to (β1, β2, ...), whence the uniqueness. �

.../... [P.D. Strange questions about braids, J. KnotTh. Ramif. 8 (1999) 589-620]

• At this point, two main questions:

◮ Can one use the braid shelf and the associated diagram colorings in topology?



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.

Conversely, assume β =
∏sh~β. Then (1, 1, 1, ...) • β is defined, and it must

be equal to (β1, β2, ...), whence the uniqueness. �

.../... [P.D. Strange questions about braids, J. KnotTh. Ramif. 8 (1999) 589-620]

• At this point, two main questions:

◮ Can one use the braid shelf and the associated diagram colorings in topology?
 already used to define and investigate the braid ordering



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.

Conversely, assume β =
∏sh~β. Then (1, 1, 1, ...) • β is defined, and it must

be equal to (β1, β2, ...), whence the uniqueness. �

.../... [P.D. Strange questions about braids, J. KnotTh. Ramif. 8 (1999) 589-620]

• At this point, two main questions:

◮ Can one use the braid shelf and the associated diagram colorings in topology?
 already used to define and investigate the braid ordering
 new applications?



Special braids (cont’d)

• Lemma: For ~α = (α1, α2, ...) in B
(N)
∞ , write

∏sh~α for α1 · sh(α2) · sh
2(α3) · ··· . Then

~α • β = ~γ implies
∏sh~α · β =

∏sh~γ.

◮ Proof: Suffices to consider β = σ±1
i . Assume e.g.β = σ1.

Then ~α contributes α1 · sh(α2) · ··· , whereas ~γ contributes
α1 · sh(α2) · σ1 · sh(α1)−1 · sh(α1) · ··· , i.e., α1 · sh(α2) · σ1 · ··· .

As σ1 commutes with every entry sh2(αi ), that’s OK. �

• Proposition: Every braid β s.t. (1, 1, 1, ...) • β is defined admits a unique
decomposition as β1 · sh(β2) · sh

2(β3) · ··· with β1, β2, ... special.

◮ Applies in particular to every positive braid.

◮ Proof: Assume (1, 1, 1, ...) • β = (β1, β2, β3, ...). Then β1, β2, ... are special.

As
∏sh(1, 1, 1...) = 1, the lemma implies β =

∏sh~β.

Conversely, assume β =
∏sh~β. Then (1, 1, 1, ...) • β is defined, and it must

be equal to (β1, β2, ...), whence the uniqueness. �

.../... [P.D. Strange questions about braids, J. KnotTh. Ramif. 8 (1999) 589-620]

• At this point, two main questions:

◮ Can one use the braid shelf and the associated diagram colorings in topology?
 already used to define and investigate the braid ordering
 new applications?

◮ Where does this (strange) operation come from?



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods



Free shelves

• Describe the free (left) shelf based on a set X



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )
(= the shelf generated by X , every shelf generated by X is a quotient of)



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲,



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far.



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far. In particular, is it decidable?



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far. In particular, is it decidable?

• Terms on X as binary trees with nodes ⊲ and leaves in X :



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far. In particular, is it decidable?

• Terms on X as binary trees with nodes ⊲ and leaves in X : assuming X = {a, b, c},

a



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far. In particular, is it decidable?

• Terms on X as binary trees with nodes ⊲ and leaves in X : assuming X = {a, b, c},

a

⊲

b a

b ⊲ a



Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X )
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far. In particular, is it decidable?

• Terms on X as binary trees with nodes ⊲ and leaves in X : assuming X = {a, b, c},

a

⊲

b a

b ⊲ a

⊲

⊲

a ⊲

c b

b

(a ⊲ (b ⊲ c)) ⊲ b



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.

Suffices to show: if T →SD T1 and T →SD T2, then ∃T ′ (T1 →SD T ′ and T2 →SD T ′).



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.

Suffices to show: if T →SD T1 and T →SD T2, then ∃T ′ (T1 →SD T ′ and T2 →SD T ′).

Define T ⊲∗ x := T ⊲ x and T ⊲∗ (T1 ⊲ T2) := (T ⊲∗ T1) ⊲ (T ⊲∗ T2),



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.

Suffices to show: if T →SD T1 and T →SD T2, then ∃T ′ (T1 →SD T ′ and T2 →SD T ′).

Define T ⊲∗ x := T ⊲ x and T ⊲∗ (T1 ⊲ T2) := (T ⊲∗ T1) ⊲ (T ⊲∗ T2),
and then ∂x := x and ∂(T1 ⊲ T2) := ∂T1 ⊲∗ ∂T2.



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.

Suffices to show: if T →SD T1 and T →SD T2, then ∃T ′ (T1 →SD T ′ and T2 →SD T ′).

Define T ⊲∗ x := T ⊲ x and T ⊲∗ (T1 ⊲ T2) := (T ⊲∗ T1) ⊲ (T ⊲∗ T2),
and then ∂x := x and ∂(T1 ⊲ T2) := ∂T1 ⊲∗ ∂T2. Then

• T →SD ∂T (easy induction),



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.

Suffices to show: if T →SD T1 and T →SD T2, then ∃T ′ (T1 →SD T ′ and T2 →SD T ′).

Define T ⊲∗ x := T ⊲ x and T ⊲∗ (T1 ⊲ T2) := (T ⊲∗ T1) ⊲ (T ⊲∗ T2),
and then ∂x := x and ∂(T1 ⊲ T2) := ∂T1 ⊲∗ ∂T2. Then

• T →SD ∂T (easy induction),
• T →1

SD T ′ implies T ′ →SD ∂T (semi-easy induction),



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.

Suffices to show: if T →SD T1 and T →SD T2, then ∃T ′ (T1 →SD T ′ and T2 →SD T ′).

Define T ⊲∗ x := T ⊲ x and T ⊲∗ (T1 ⊲ T2) := (T ⊲∗ T1) ⊲ (T ⊲∗ T2),
and then ∂x := x and ∂(T1 ⊲ T2) := ∂T1 ⊲∗ ∂T2. Then

• T →SD ∂T (easy induction),
• T →1

SD T ′ implies T ′ →SD ∂T (semi-easy induction),
• T →SD T ′ implies ∂T →SD ∂T ′ (more delicate induction).



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.

Suffices to show: if T →SD T1 and T →SD T2, then ∃T ′ (T1 →SD T ′ and T2 →SD T ′).

Define T ⊲∗ x := T ⊲ x and T ⊲∗ (T1 ⊲ T2) := (T ⊲∗ T1) ⊲ (T ⊲∗ T2),
and then ∂x := x and ∂(T1 ⊲ T2) := ∂T1 ⊲∗ ∂T2. Then

• T →SD ∂T (easy induction),
• T →1

SD T ′ implies T ′ →SD ∂T (semi-easy induction),
• T →SD T ′ implies ∂T →SD ∂T ′ (more delicate induction).

From there, T →p
SD T ′ implies T ′ →SD ∂pT (easy),



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.

Suffices to show: if T →SD T1 and T →SD T2, then ∃T ′ (T1 →SD T ′ and T2 →SD T ′).

Define T ⊲∗ x := T ⊲ x and T ⊲∗ (T1 ⊲ T2) := (T ⊲∗ T1) ⊲ (T ⊲∗ T2),
and then ∂x := x and ∂(T1 ⊲ T2) := ∂T1 ⊲∗ ∂T2. Then

• T →SD ∂T (easy induction),
• T →1

SD T ′ implies T ′ →SD ∂T (semi-easy induction),
• T →SD T ′ implies ∂T →SD ∂T ′ (more delicate induction).

From there, T →p
SD T ′ implies T ′ →SD ∂pT (easy), whence



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.

Suffices to show: if T →SD T1 and T →SD T2, then ∃T ′ (T1 →SD T ′ and T2 →SD T ′).

Define T ⊲∗ x := T ⊲ x and T ⊲∗ (T1 ⊲ T2) := (T ⊲∗ T1) ⊲ (T ⊲∗ T2),
and then ∂x := x and ∂(T1 ⊲ T2) := ∂T1 ⊲∗ ∂T2. Then

• T →SD ∂T (easy induction),
• T →1

SD T ′ implies T ′ →SD ∂T (semi-easy induction),
• T →SD T ′ implies ∂T →SD ∂T ′ (more delicate induction).

From there, T →p
SD T ′ implies T ′ →SD ∂pT (easy), whence

T →p
SD T1 and T →q

SD T2 implies T1 →SD ∂rT and T2 →SD ∂rT for r > max(p, q). �

T2

T1



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.

Suffices to show: if T →SD T1 and T →SD T2, then ∃T ′ (T1 →SD T ′ and T2 →SD T ′).

Define T ⊲∗ x := T ⊲ x and T ⊲∗ (T1 ⊲ T2) := (T ⊲∗ T1) ⊲ (T ⊲∗ T2),
and then ∂x := x and ∂(T1 ⊲ T2) := ∂T1 ⊲∗ ∂T2. Then

• T →SD ∂T (easy induction),
• T →1

SD T ′ implies T ′ →SD ∂T (semi-easy induction),
• T →SD T ′ implies ∂T →SD ∂T ′ (more delicate induction).

From there, T →p
SD T ′ implies T ′ →SD ∂pT (easy), whence

T →p
SD T1 and T →q

SD T2 implies T1 →SD ∂rT and T2 →SD ∂rT for r > max(p, q). �

T2

T1

=SD



The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

◮ Proof: =SD is the symmetric closure of →SD (clear):
T1 =SD T2 holds iff there is a →SD-zigzag from T1 to T2.

Suffices to show: if T →SD T1 and T →SD T2, then ∃T ′ (T1 →SD T ′ and T2 →SD T ′).

Define T ⊲∗ x := T ⊲ x and T ⊲∗ (T1 ⊲ T2) := (T ⊲∗ T1) ⊲ (T ⊲∗ T2),
and then ∂x := x and ∂(T1 ⊲ T2) := ∂T1 ⊲∗ ∂T2. Then

• T →SD ∂T (easy induction),
• T →1

SD T ′ implies T ′ →SD ∂T (semi-easy induction),
• T →SD T ′ implies ∂T →SD ∂T ′ (more delicate induction).

From there, T →p
SD T ′ implies T ′ →SD ∂pT (easy), whence

T →p
SD T1 and T →q

SD T2 implies T1 →SD ∂rT and T2 →SD ∂rT for r > max(p, q). �

T2

T1

=SD

∃T



The absorption property

• Lemma (absorption):



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2.



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ),



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T .



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ).



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ). Then n − 1 > ht(T1) and n − 1 > ht(T2).



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �

=SD

T1



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �

=SD

T1

=SD

T1

T2



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �

=SD

T1

=SD

T1

T2

=SD

T1 T2 T1



The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T ), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T ). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �

=SD

T1

=SD

T1

T2

=SD

T1 T2 T1

=SD

T1 T2

T



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′),



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD.



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′,



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′,



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r

left r ′
(T

′′)
0r

′



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r

left r ′
(T

′′)
0r

′

Then
• r = r ′ ⇒ T =SD T ′



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r

left r ′
(T

′′)
0r

′

Then
• r = r ′ ⇒ T =SD T ′

• r > r ′ ⇒ T ⊏
∗
SD T ′



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r

left r ′
(T

′′)
0r

′

Then
• r = r ′ ⇒ T =SD T ′

• r > r ′ ⇒ T ⊏
∗
SD T ′

• r < r ′ ⇒ T ′
⊏
∗
SD T



The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r

left r ′
(T

′′)
0r

′

Then
• r = r ′ ⇒ T =SD T ′

• r > r ′ ⇒ T ⊏
∗
SD T ′

• r < r ′ ⇒ T ′
⊏
∗
SD T
�



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S.



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′.



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S;



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S; if T ′

⊏
∗
SD T , then a′ ⊏∗ a in S;



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S; if T ′

⊏
∗
SD T , then a′ ⊏∗ a in S;

otherwise, T =SD T ′, hence a = a′ in S. �



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S; if T ′

⊏
∗
SD T , then a′ ⊏∗ a in S;

otherwise, T =SD T ′, hence a = a′ in S. �

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S; if T ′

⊏
∗
SD T , then a′ ⊏∗ a in S;

otherwise, T =SD T ′, hence a = a′ in S. �

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g .



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S; if T ′

⊏
∗
SD T , then a′ ⊏∗ a in S;

otherwise, T =SD T ′, hence a = a′ in S. �

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S; if T ′

⊏
∗
SD T , then a′ ⊏∗ a in S;

otherwise, T =SD T ′, hence a = a′ in S. �

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S; if T ′

⊏
∗
SD T , then a′ ⊏∗ a in S;

otherwise, T =SD T ′, hence a = a′ in S. �

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S; if T ′

⊏
∗
SD T , then a′ ⊏∗ a in S;

otherwise, T =SD T ′, hence a = a′ in S. �

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g)



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S; if T ′

⊏
∗
SD T , then a′ ⊏∗ a in S;

otherwise, T =SD T ′, hence a = a′ in S. �

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).



The comparison property (cont’d)

• Lemma (comparison II): If (S, ⊲) is a monogenerated left-shelf, any two distinct
elements of S are ⊏

∗-comparable.
↑

transitive closure of ⊏ = iterated left divisibility relation

◮ Proof: Assume S gen’d by g and a 6= a′ in S. By def, a = T (g) and a′ = T ′(g)
for some terms T ,T ′. If T ⊏

∗
SD T

′, then a⊏
∗ a′ in S; if T ′

⊏
∗
SD T , then a′ ⊏∗ a in S;

otherwise, T =SD T ′, hence a = a′ in S. �

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s),



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”.



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α,



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2,



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2, σiσjσi = σjσiσj for |j − i | = 1.



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2, σiσjσi = σjσiσj for |j − i | = 1.

◮ The resulting quotient of MSD is B∞ (!).



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2, σiσjσi = σjσiσj for |j − i | = 1.

◮ The resulting quotient of MSD is B∞ (!).

◮ If φ maps T to T ′, then sh0(φ) maps T ⊲ x [n] to T ′ ⊲ x [n],



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2, σiσjσi = σjσiσj for |j − i | = 1.

◮ The resulting quotient of MSD is B∞ (!).

◮ If φ maps T to T ′, then sh0(φ) maps T ⊲ x [n] to T ′ ⊲ x [n],
so collapsing all sh0(φ) must give an SD-operation on the quotient, i.e., on B∞.



The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2, σiσjσi = σjσiσj for |j − i | = 1.

◮ The resulting quotient of MSD is B∞ (!).

◮ If φ maps T to T ′, then sh0(φ) maps T ⊲ x [n] to T ′ ⊲ x [n],
so collapsing all sh0(φ) must give an SD-operation on the quotient, i.e., on B∞.

◮ Its definition is the projection of (∗), i.e.,

a ⊲ b := a · sh(b) · σi · sh(a)
−1.



The Thompson’s monoid of SD (cont’d)

• The “magic rule” revisited:



The Thompson’s monoid of SD (cont’d)

• The “magic rule” revisited:

=SD

7→
χT1

T1



The Thompson’s monoid of SD (cont’d)

• The “magic rule” revisited:

=SD

7→
χT1

T1

=SD

7→
sh1(χT2

)

T1

T2



The Thompson’s monoid of SD (cont’d)

• The “magic rule” revisited:

=SD

7→
χT1

T1

=SD

7→
sh1(χT2

)

T1

T2

=SD

7→
SD∅

T1 T2 T1



The Thompson’s monoid of SD (cont’d)

• The “magic rule” revisited:

=SD

7→
χT1

T1

=SD

7→
sh1(χT2

)

T1

T2

=SD

7→
SD∅

T1 T2 T1

=SD

7→
sh1(χT1

)−1

T1 T2

T

whence χT1⊲T2
= χT1

· sh1(χT2
) · SD∅ · sh1(χ

−1
T1

),

which projects to the braid operation.



The Thompson’s monoid of SD (cont’d)

• The “magic rule” revisited:

=SD

7→
χT1

T1

=SD

7→
sh1(χT2

)

T1

T2

=SD

7→
SD∅

T1 T2 T1

=SD

7→
sh1(χT1

)−1

T1 T2

T

whence χT1⊲T2
= χT1

· sh1(χT2
) · SD∅ · sh1(χ

−1
T1

),

which projects to the braid operation.

.../...

• See more in [P.D., Braids and selfdistributivity, PM192, Birkhaüser (1999)]



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880s): There exist
infinitely many non-equivalent infinities,



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880s): There exist
infinitely many non-equivalent infinities,

which organize in a well-ordered sequence

ℵ0 < ℵ1 < ℵ2 < ··· < ℵω < ··· .



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880s): There exist
infinitely many non-equivalent infinities,

which organize in a well-ordered sequence

ℵ0 < ℵ1 < ℵ2 < ··· < ℵω < ··· .

• Facts: card(N) = ℵ0,



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880s): There exist
infinitely many non-equivalent infinities,

which organize in a well-ordered sequence

ℵ0 < ℵ1 < ℵ2 < ··· < ℵω < ··· .

• Facts: card(N) = ℵ0, and card(R)



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880s): There exist
infinitely many non-equivalent infinities,

which organize in a well-ordered sequence

ℵ0 < ℵ1 < ℵ2 < ··· < ℵω < ··· .

• Facts: card(N) = ℵ0, and card(R) (= card(P(N)) = 2ℵ0 )



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880s): There exist
infinitely many non-equivalent infinities,

which organize in a well-ordered sequence

ℵ0 < ℵ1 < ℵ2 < ··· < ℵω < ··· .

• Facts: card(N) = ℵ0, and card(R) (= card(P(N)) = 2ℵ0 ) > card(N).



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880s): There exist
infinitely many non-equivalent infinities,

which organize in a well-ordered sequence

ℵ0 < ℵ1 < ℵ2 < ··· < ℵω < ··· .

• Facts: card(N) = ℵ0, and card(R) (= card(P(N)) = 2ℵ0 ) > card(N).

• Question: For which α (necessarily > 1) does card(R) = ℵα hold?



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880s): There exist
infinitely many non-equivalent infinities,

which organize in a well-ordered sequence

ℵ0 < ℵ1 < ℵ2 < ··· < ℵω < ··· .

• Facts: card(N) = ℵ0, and card(R) (= card(P(N)) = 2ℵ0 ) > card(N).

• Question: For which α (necessarily > 1) does card(R) = ℵα hold?

◮ Conjecture (Continuum Hypothesis, Cantor, 1879):



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880s): There exist
infinitely many non-equivalent infinities,

which organize in a well-ordered sequence

ℵ0 < ℵ1 < ℵ2 < ··· < ℵω < ··· .

• Facts: card(N) = ℵ0, and card(R) (= card(P(N)) = 2ℵ0 ) > card(N).

• Question: For which α (necessarily > 1) does card(R) = ℵα hold?

◮ Conjecture (Continuum Hypothesis, Cantor, 1879): card(R) = ℵ1.



A vision of infinity

• From the very beginning, Set Theory is a theory of infinity.

• Theorem (Cantor, 1873): There exist
at least two non-equivalent infinities.

• Theorem (Cantor, 1880s): There exist
infinitely many non-equivalent infinities,

which organize in a well-ordered sequence

ℵ0 < ℵ1 < ℵ2 < ··· < ℵω < ··· .

• Facts: card(N) = ℵ0, and card(R) (= card(P(N)) = 2ℵ0 ) > card(N).

• Question: For which α (necessarily > 1) does card(R) = ℵα hold?

◮ Conjecture (Continuum Hypothesis, Cantor, 1879): card(R) = ℵ1.
◮ Equivalently: every uncountable set of reals has the cardinality of R.



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.”



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

◮ First question:



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

◮ First question: Is CH or ¬CH (negation of CH) provable from ZF?



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

◮ First question: Is CH or ¬CH (negation of CH) provable from ZF?



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

◮ First question: Is CH or ¬CH (negation of CH) provable from ZF?

• Theorem (Gödel, 1938): Unless ZF is contradictory,



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

◮ First question: Is CH or ¬CH (negation of CH) provable from ZF?

• Theorem (Gödel, 1938): Unless ZF is contradictory,
¬CH cannot be proved from ZF.

↑
negation of



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

◮ First question: Is CH or ¬CH (negation of CH) provable from ZF?

• Theorem (Gödel, 1938): Unless ZF is contradictory,
¬CH cannot be proved from ZF.

↑
negation of



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

◮ First question: Is CH or ¬CH (negation of CH) provable from ZF?

• Theorem (Gödel, 1938): Unless ZF is contradictory,
¬CH cannot be proved from ZF.

↑
negation of

• Theorem (Cohen, 1963): Unless ZF is contradictory,
CH cannot be proved from ZF.



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

◮ First question: Is CH or ¬CH (negation of CH) provable from ZF?

• Theorem (Gödel, 1938): Unless ZF is contradictory,
¬CH cannot be proved from ZF.

↑
negation of

• Theorem (Cohen, 1963): Unless ZF is contradictory,
CH cannot be proved from ZF.

◮ Method of proof: Investigate models of ZF = abstract structures
satisfying the axioms of ZF



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

◮ First question: Is CH or ¬CH (negation of CH) provable from ZF?

• Theorem (Gödel, 1938): Unless ZF is contradictory,
¬CH cannot be proved from ZF.

↑
negation of

• Theorem (Cohen, 1963): Unless ZF is contradictory,
CH cannot be proved from ZF.

◮ Method of proof: Investigate models of ZF = abstract structures
satisfying the axioms of ZF (≈ investigate abstract groups or fields).



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

◮ First question: Is CH or ¬CH (negation of CH) provable from ZF?

• Theorem (Gödel, 1938): Unless ZF is contradictory,
¬CH cannot be proved from ZF.

↑
negation of

• Theorem (Cohen, 1963): Unless ZF is contradictory,
CH cannot be proved from ZF.

◮ Method of proof: Investigate models of ZF = abstract structures
satisfying the axioms of ZF (≈ investigate abstract groups or fields).

◮ For Gödel: every model has a submodel that satisfies AC.



Two major results

• Beginning of XXth century: formalization of First Order logic (Frege, Russell, ...)
and axiomatization of Set Theory (Zermelo, then Fraenkel, ZF):

◮ Consensus: “We agree that these properties express
our current intuition of sets.” (but this may change in the future...)

◮ First question: Is CH or ¬CH (negation of CH) provable from ZF?

• Theorem (Gödel, 1938): Unless ZF is contradictory,
¬CH cannot be proved from ZF.

↑
negation of

• Theorem (Cohen, 1963): Unless ZF is contradictory,
CH cannot be proved from ZF.

◮ Method of proof: Investigate models of ZF = abstract structures
satisfying the axioms of ZF (≈ investigate abstract groups or fields).

◮ For Gödel: every model has a submodel that satisfies AC.
◮ For Cohen: every model has an extension that satisfies ¬AC.



Large cardinals

• Conclusion:



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ repeat the process with “super-infinite”.



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ repeat the process with “super-infinite”.

◮ inaccessible cardinals,



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ repeat the process with “super-infinite”.

◮ inaccessible cardinals, measurable cardinals,



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ repeat the process with “super-infinite”.

◮ inaccessible cardinals, measurable cardinals, huge cardinals,



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ repeat the process with “super-infinite”.

◮ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ repeat the process with “super-infinite”.

◮ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.

• Theorem(s) (Martin-Steel, Woodin, ... 1970s-80s): A certain large cardinal axiom,
PD



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ repeat the process with “super-infinite”.

◮ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.

• Theorem(s) (Martin-Steel, Woodin, ... 1970s-80s): A certain large cardinal axiom,
PD (“projective determinacy”,



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ repeat the process with “super-infinite”.

◮ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.

• Theorem(s) (Martin-Steel, Woodin, ... 1970s-80s): A certain large cardinal axiom,
PD (“projective determinacy”, aka “there exists infinitely many Woodin cardinals”),



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ repeat the process with “super-infinite”.

◮ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.

• Theorem(s) (Martin-Steel, Woodin, ... 1970s-80s): A certain large cardinal axiom,
PD (“projective determinacy”, aka “there exists infinitely many Woodin cardinals”),
provides a heuristically complete description of finite and countable sets.



Large cardinals

• Conclusion: ZF is incomplete (not: CH is indecidable—which means nothing).

◮ Discover further properties of sets, and adopt an extended list of axioms!
◮ How to recognize that an axiom is true? (What does this mean?)

Example: CH may be taken as an additional axiom, but not a good idea...

• Which new axioms?

• From 1930’s, axioms of large cardinal:

◮ various solutions to the equation

super-infinite
infinite

= infinite
finite

◮ set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ repeat the process with “super-infinite”.

◮ inaccessible cardinals, measurable cardinals, huge cardinals, ineffable cardinals, etc.

• Theorem(s) (Martin-Steel, Woodin, ... 1970s-80s): A certain large cardinal axiom,
PD (“projective determinacy”, aka “there exists infinitely many Woodin cardinals”),
provides a heuristically complete description of finite and countable sets.

• New consensus: ZF+PD is, from now on, the reference system for set theory.



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.

◮ Proof: Assume j : N → N witnesses for “N is super-infinite”.



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.

◮ Proof: Assume j : N → N witnesses for “N is super-infinite”.
Then 0 is the only element of N satisfying “I am the smallest element for <”,



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.

◮ Proof: Assume j : N → N witnesses for “N is super-infinite”.
Then 0 is the only element of N satisfying “I am the smallest element for <”,
and < is definable from ∈.



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.

◮ Proof: Assume j : N → N witnesses for “N is super-infinite”.
Then 0 is the only element of N satisfying “I am the smallest element for <”,
and < is definable from ∈. Hence j(0) also satisfies “I am the smallest for <”.



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.

◮ Proof: Assume j : N → N witnesses for “N is super-infinite”.
Then 0 is the only element of N satisfying “I am the smallest element for <”,
and < is definable from ∈. Hence j(0) also satisfies “I am the smallest for <”.
Hence necessarily j(0) = 0.



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.

◮ Proof: Assume j : N → N witnesses for “N is super-infinite”.
Then 0 is the only element of N satisfying “I am the smallest element for <”,
and < is definable from ∈. Hence j(0) also satisfies “I am the smallest for <”.
Hence necessarily j(0) = 0. Now 1 says “I am the smallest after 0”:



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.

◮ Proof: Assume j : N → N witnesses for “N is super-infinite”.
Then 0 is the only element of N satisfying “I am the smallest element for <”,
and < is definable from ∈. Hence j(0) also satisfies “I am the smallest for <”.
Hence necessarily j(0) = 0. Now 1 says “I am the smallest after 0”:
By the same argument j(1) = 1,



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.

◮ Proof: Assume j : N → N witnesses for “N is super-infinite”.
Then 0 is the only element of N satisfying “I am the smallest element for <”,
and < is definable from ∈. Hence j(0) also satisfies “I am the smallest for <”.
Hence necessarily j(0) = 0. Now 1 says “I am the smallest after 0”:
By the same argument j(1) = 1, etc. So j is the identity. �



Elementary embeddings

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.

◮ Proof: Assume j : N → N witnesses for “N is super-infinite”.
Then 0 is the only element of N satisfying “I am the smallest element for <”,
and < is definable from ∈. Hence j(0) also satisfies “I am the smallest for <”.
Hence necessarily j(0) = 0. Now 1 says “I am the smallest after 0”:
By the same argument j(1) = 1, etc. So j is the identity. �

◮ A super-infinite set must be so large that it contains undefinable elements
(since all definable elements must be fixed).



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal,



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅,



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα),



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃
α<λ f ∩V 2

α



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃
α<λ f ∩V 2

α and f ∩V 2
α belongs to Vλ for every α < λ.



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃
α<λ f ∩V 2

α and f ∩V 2
α belongs to Vλ for every α < λ.

◮ Proof: Every element of Vλ belongs to some Vα with α < λ;



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃
α<λ f ∩V 2

α and f ∩V 2
α belongs to Vλ for every α < λ.

◮ Proof: Every element of Vλ belongs to some Vα with α < λ; The set f ∩V 2
α

is included in V 2
α,



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃
α<λ f ∩V 2

α and f ∩V 2
α belongs to Vλ for every α < λ.

◮ Proof: Every element of Vλ belongs to some Vα with α < λ; The set f ∩V 2
α

is included in V 2
α, hence in Vα+2,



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃
α<λ f ∩V 2

α and f ∩V 2
α belongs to Vλ for every α < λ.

◮ Proof: Every element of Vλ belongs to some Vα with α < λ; The set f ∩V 2
α

is included in V 2
α, hence in Vα+2, hence it belongs to Vα+3,



Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃
α<λ f ∩V 2

α and f ∩V 2
α belongs to Vλ for every α < λ.

◮ Proof: Every element of Vλ belongs to some Vα with α < λ; The set f ∩V 2
α

is included in V 2
α, hence in Vα+2, hence it belongs to Vα+3, hence to Vλ. �



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ:



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)



Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)

crit(j)

below, nothing is moved

above, everybody is moved



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ,



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable,



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]:



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j),



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j).



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α,



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α,



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ,



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ)



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ.



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α)



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α) implies ∀α<j(κ) (j [j ](α) = α),



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α) implies ∀α<j(κ) (j [j ](α) = α), whereas
j(κ) > κ



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α) implies ∀α<j(κ) (j [j ](α) = α), whereas
j(κ) > κ implies j [j ](j(κ)) > j(κ).



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α) implies ∀α<j(κ) (j [j ](α) = α), whereas
j(κ) > κ implies j [j ](j(κ)) > j(κ). We deduce crit(j[j]) = j(κ)



The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j ] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j ] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j ] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j ] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j ][i [k]],

i.e., i [j [k]] = i [j ][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α) implies ∀α<j(κ) (j [j ](α) = α), whereas
j(κ) > κ implies j [j ](j(κ)) > j(κ). We deduce crit(j[j]) = j(κ) > κ. �



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.
Consider here n = 1.



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.
Consider here n = 1. Then crit(i[i1]) = i(crit(i1)) ∈ Im(i),



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.
Consider here n = 1. Then crit(i[i1]) = i(crit(i1)) ∈ Im(i), whereas crit(i) /∈ Im(i).



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.
Consider here n = 1. Then crit(i[i1]) = i(crit(i1)) ∈ Im(i), whereas crit(i) /∈ Im(i).

Hence crit(i[i1]) 6= crit(i), whence i 6= i [i1]. �

◮ Another realization (the “set-theoretic realization”) of the free (left)-shelf,



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.
Consider here n = 1. Then crit(i[i1]) = i(crit(i1)) ∈ Im(i), whereas crit(i) /∈ Im(i).

Hence crit(i[i1]) 6= crit(i), whence i 6= i [i1]. �

◮ Another realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a left-shelf with acyclic ⊏ exists,



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.
Consider here n = 1. Then crit(i[i1]) = i(crit(i1)) ∈ Im(i), whereas crit(i) /∈ Im(i).

Hence crit(i[i1]) 6= crit(i), whence i 6= i [i1]. �

◮ Another realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a left-shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.
Consider here n = 1. Then crit(i[i1]) = i(crit(i1)) ∈ Im(i), whereas crit(i) /∈ Im(i).

Hence crit(i[i1]) 6= crit(i), whence i 6= i [i1]. �

◮ Another realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a left-shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,
◮ ...whence a solution for the word problem of SD



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.
Consider here n = 1. Then crit(i[i1]) = i(crit(i1)) ∈ Im(i), whereas crit(i) /∈ Im(i).

Hence crit(i[i1]) 6= crit(i), whence i 6= i [i1]. �

◮ Another realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a left-shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,
◮ ...whence a solution for the word problem of SD

(because both =SD and ⊏
∗
SD are semi-decidable).



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.
Consider here n = 1. Then crit(i[i1]) = i(crit(i1)) ∈ Im(i), whereas crit(i) /∈ Im(i).

Hence crit(i[i1]) 6= crit(i), whence i 6= i [i1]. �

◮ Another realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a left-shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,
◮ ...whence a solution for the word problem of SD

(because both =SD and ⊏
∗
SD are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists.



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.
Consider here n = 1. Then crit(i[i1]) = i(crit(i1)) ∈ Im(i), whereas crit(i) /∈ Im(i).

Hence crit(i[i1]) 6= crit(i), whence i 6= i [i1]. �

◮ Another realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a left-shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,
◮ ...whence a solution for the word problem of SD

(because both =SD and ⊏
∗
SD are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists.

 motivation for finding another proof/another realization...



The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j ], j [j ][j ]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then Iter(j) is a free left-shelf.

◮ Sketch of proof: Want to show that i = i [i1] ··· [in] is impossible for n > 1.
Consider here n = 1. Then crit(i[i1]) = i(crit(i1)) ∈ Im(i), whereas crit(i) /∈ Im(i).

Hence crit(i[i1]) 6= crit(i), whence i 6= i [i1]. �

◮ Another realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a left-shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,
◮ ...whence a solution for the word problem of SD

(because both =SD and ⊏
∗
SD are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists.

 motivation for finding another proof/another realization...
↑

the braid realization (1992)



Plan:

• 1. Braid colorings
- Diagrams and Reidemeister moves
- Diagram colorings
- Quandles, racks, and shelves

• 2. The SD-world
- Classical and exotic examples
- The world of shelves

• 3. The braid shelf
- The braid operation
- Larue’s lemma and free subshelves
- Special braids

• 4. The free monogenerated shelf
- Terms and trees
- The comparison property
- The Thompson’s monoid of SD

• 5. The set-theoretic shelf
- Set theory and large cardinals
- Elementary embeddings
- The iteration shelf

• 6. Using set theory to investigate Laver tables
- Quotients of the iteration shelf
- A dictionary
- Results about periods



Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j ][j ]...[j ], p times j .



Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j ][j ]...[j ], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.



Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j ][j ]...[j ], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.



Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j ][j ]...[j ], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver): Assume that j is an elementary embedding from Vλ to itself.



Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j ][j ]...[j ], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver): Assume that j is an elementary embedding from Vλ to itself.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).



Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j ][j ]...[j ], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver): Assume that j is an elementary embedding from Vλ to itself.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Then ≡critn(j) is a congruence on Iter(j),



Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j ][j ]...[j ], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver): Assume that j is an elementary embedding from Vλ to itself.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Then ≡critn(j) is a congruence on Iter(j), it has 2n classes,



Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j ][j ]...[j ], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver): Assume that j is an elementary embedding from Vλ to itself.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Then ≡critn(j) is a congruence on Iter(j), it has 2n classes,
which are those of j , j[2], ..., j[2n ],



Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j ][j ]...[j ], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver): Assume that j is an elementary embedding from Vλ to itself.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Then ≡critn(j) is a congruence on Iter(j), it has 2n classes,
which are those of j , j[2], ..., j[2n ], the latter also being the class of id.



Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j ][j ]...[j ], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver): Assume that j is an elementary embedding from Vλ to itself.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Then ≡critn(j) is a congruence on Iter(j), it has 2n classes,
which are those of j , j[2], ..., j[2n ], the latter also being the class of id.

◮ Proof: (Difficult...) Starts from j ≡crit(i) i [j ] and similar.
Uses in particular crit(j[m]) = critn(j) with n maximal s.t. 2n divides m. �



Quotients of Iter(j) (cont’d)

• Recall: An is the unique left-shelf on {1, ...,2n}



Quotients of Iter(j) (cont’d)

• Recall: An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n



Quotients of Iter(j) (cont’d)

• Recall: An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.



Quotients of Iter(j) (cont’d)

• Recall: An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)



Quotients of Iter(j) (cont’d)

• Recall: An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.



Quotients of Iter(j) (cont’d)

• Recall: An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].



Quotients of Iter(j) (cont’d)

• Recall: An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].
The proposition says that Iter(j)/≡critn(j) is a left-shelf whose domain is {1, ...,2n};



Quotients of Iter(j) (cont’d)

• Recall: An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].
The proposition says that Iter(j)/≡critn(j) is a left-shelf whose domain is {1, ...,2n};
By construction, p = 1[p] holds for p 6 2n.



Quotients of Iter(j) (cont’d)

• Recall: An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].
The proposition says that Iter(j)/≡critn(j) is a left-shelf whose domain is {1, ...,2n};
By construction, p = 1[p] holds for p 6 2n.
Then j[2n ] ≡critn(j) id implies j[2n+1] ≡critn(j) j ,



Quotients of Iter(j) (cont’d)

• Recall: An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].
The proposition says that Iter(j)/≡critn(j) is a left-shelf whose domain is {1, ...,2n};
By construction, p = 1[p] holds for p 6 2n.
Then j[2n ] ≡critn(j) id implies j[2n+1] ≡critn(j) j , whence 2n ⊲ 1 = 1 in the quotient. �



Quotients of Iter(j) (cont’d)

• Recall: An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].
The proposition says that Iter(j)/≡critn(j) is a left-shelf whose domain is {1, ...,2n};
By construction, p = 1[p] holds for p 6 2n.
Then j[2n ] ≡critn(j) id implies j[2n+1] ≡critn(j) j , whence 2n ⊲ 1 = 1 in the quotient. �

◮ A set-theoretic realization of An as a quotient of the (free) left-shelf Iter(j).



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j)



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An,



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An ,



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j),



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1:



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m ]),



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m ]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m ]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j),



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m ]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m ])
An+1 = 2n by (∗∗),

which is also (p ⊲ 2m)An+1 = 2n (∗∗∗).



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m ]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m ])
An+1 = 2n by (∗∗),

which is also (p ⊲ 2m)An+1 = 2n (∗∗∗). First, (∗∗∗) implies πn+1(p) > 2m.



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m ]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m ])
An+1 = 2n by (∗∗),

which is also (p ⊲ 2m)An+1 = 2n (∗∗∗). First, (∗∗∗) implies πn+1(p) > 2m.
On the other hand, (∗∗∗) projects to (p ⊲ 2m)An = 2n,



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m ]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m ])
An+1 = 2n by (∗∗),

which is also (p ⊲ 2m)An+1 = 2n (∗∗∗). First, (∗∗∗) implies πn+1(p) > 2m.
On the other hand, (∗∗∗) projects to (p ⊲ 2m)An = 2n, whence πn(p) 6 2m.



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m ]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m ])
An+1 = 2n by (∗∗),

which is also (p ⊲ 2m)An+1 = 2n (∗∗∗). First, (∗∗∗) implies πn+1(p) > 2m.
On the other hand, (∗∗∗) projects to (p ⊲ 2m)An = 2n, whence πn(p) 6 2m.
As πn+1(p) is πn(p) or 2πn(p),



A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m ]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m ])
An+1 = 2n by (∗∗),

which is also (p ⊲ 2m)An+1 = 2n (∗∗∗). First, (∗∗∗) implies πn+1(p) > 2m.
On the other hand, (∗∗∗) projects to (p ⊲ 2m)An = 2n, whence πn(p) 6 2m.
As πn+1(p) is πn(p) or 2πn(p), (∗∗∗) is equivalent to πn(p)=2m and πn+1(p)=2m+1. �



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α,



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j(j)(α) 6 j(α). �



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j(j)(α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j(j)(α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1,



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j(j)(α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j(j)(α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j(j)(α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.
By the dictionary, j maps critm(j) to critn(j).



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j(j)(α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.
By the dictionary, j maps critm(j) to critn(j).
Hence, by the lemma, j [j ] maps critm(j) to 6critn(j).



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j(j)(α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.
By the dictionary, j maps critm(j) to critn(j).
Hence, by the lemma, j [j ] maps critm(j) to 6critn(j).
Therefore, there exists n′ 6 n 6 n s.t. j [j ] maps critm(j) to critn′(j).



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j(j)(α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.
By the dictionary, j maps critm(j) to critn(j).
Hence, by the lemma, j [j ] maps critm(j) to 6critn(j).
Therefore, there exists n′ 6 n 6 n s.t. j [j ] maps critm(j) to critn′(j).
By the dictionary, the period of 2 jumps from 2m to 2m+1 between An′ and An′+1.



Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j(j)(α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j(j)(γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j(j)(α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.
By the dictionary, j maps critm(j) to critn(j).
Hence, by the lemma, j [j ] maps critm(j) to 6critn(j).
Therefore, there exists n′ 6 n 6 n s.t. j [j ] maps critm(j) to critn′(j).
By the dictionary, the period of 2 jumps from 2m to 2m+1 between An′ and An′+1.
Hence, the period of 2 in An is at least 2m+1. �



Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).



Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.



Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �



Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.



Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.

◮ Proof: Assume πn(1) = 2m .



Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.

◮ Proof: Assume πn(1) = 2m . We wish to show that
there exists n > n s.t. πn(1) = 2m and πn+1(1) = 2m+1.



Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.

◮ Proof: Assume πn(1) = 2m . We wish to show that
there exists n > n s.t. πn(1) = 2m and πn+1(1) = 2m+1.

By the dictionary, this is equivalent to j mapping critm(j) to critn(j).



Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.

◮ Proof: Assume πn(1) = 2m . We wish to show that
there exists n > n s.t. πn(1) = 2m and πn+1(1) = 2m+1.

By the dictionary, this is equivalent to j mapping critm(j) to critn(j).

Now j maps critm(j), which is crit(j[2m ]), to crit(j[j[2m]].

As j [j[2m ]] belongs to Iter(j), the lemma implies crit(j[j[2m]] = critn(j) for some n. �



Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.

◮ Proof: Assume πn(1) = 2m . We wish to show that
there exists n > n s.t. πn(1) = 2m and πn+1(1) = 2m+1.

By the dictionary, this is equivalent to j mapping critm(j) to critn(j).

Now j maps critm(j), which is crit(j[2m ]), to crit(j[j[2m]].

As j [j[2m ]] belongs to Iter(j), the lemma implies crit(j[j[2m]] = critn(j) for some n. �

• Open questions: Find alternative proofs using no Laver cardinal.



The role of set theory

• Are the properties of Laver tables an application of set theory?



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition,



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

◮ Can one find alternative proofs using no large cardinal?



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

◮ Can one find alternative proofs using no large cardinal?
(as done for the free shelf using the braid realization)



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

◮ Can one find alternative proofs using no large cardinal?
(as done for the free shelf using the braid realization)

◮ Can one use them in low-dimensional topology?



The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

◮ Can one find alternative proofs using no large cardinal?
(as done for the free shelf using the braid realization)

◮ Can one use them in low-dimensional topology?

Richard Laver
(1942-2012)



Questions

• Question 0: Can shelves that are not racks be (really) useful in low-dimensional
topology?



Questions

• Question 0: Can shelves that are not racks be (really) useful in low-dimensional
topology?

• Recall: Bsp
∞:= closure of {1} under ⊲ inside the infinite braid group B∞ (realization

of the free left shelf inside braids).



Questions

• Question 0: Can shelves that are not racks be (really) useful in low-dimensional
topology?

• Recall: Bsp
∞:= closure of {1} under ⊲ inside the infinite braid group B∞ (realization

of the free left shelf inside braids).

• Question 1: Let (S, ⊲) be a monogenerated (left) shelf. Find a concrete description
of the congruence ≡S s.t. (S, ⊲) is (isomorphic to) (Bsp

∞, ⊲)/≡S .



Questions

• Question 0: Can shelves that are not racks be (really) useful in low-dimensional
topology?

• Recall: Bsp
∞:= closure of {1} under ⊲ inside the infinite braid group B∞ (realization

of the free left shelf inside braids).

• Question 1: Let (S, ⊲) be a monogenerated (left) shelf. Find a concrete description
of the congruence ≡S s.t. (S, ⊲) is (isomorphic to) (Bsp

∞, ⊲)/≡S . Does ≡S extend to
all of B∞?



Questions

• Question 0: Can shelves that are not racks be (really) useful in low-dimensional
topology?

• Recall: Bsp
∞:= closure of {1} under ⊲ inside the infinite braid group B∞ (realization

of the free left shelf inside braids).

• Question 1: Let (S, ⊲) be a monogenerated (left) shelf. Find a concrete description
of the congruence ≡S s.t. (S, ⊲) is (isomorphic to) (Bsp

∞, ⊲)/≡S . Does ≡S extend to
all of B∞?

◮ Typical example: S := An, the nth Laver table.



Questions

• Question 0: Can shelves that are not racks be (really) useful in low-dimensional
topology?

• Recall: Bsp
∞:= closure of {1} under ⊲ inside the infinite braid group B∞ (realization

of the free left shelf inside braids).

• Question 1: Let (S, ⊲) be a monogenerated (left) shelf. Find a concrete description
of the congruence ≡S s.t. (S, ⊲) is (isomorphic to) (Bsp

∞, ⊲)/≡S . Does ≡S extend to
all of B∞?

◮ Typical example: S := An, the nth Laver table.

• Laver tables are quotients of the (free) set theoretic shelf (Iter(j),−[−]).



Questions

• Question 0: Can shelves that are not racks be (really) useful in low-dimensional
topology?

• Recall: Bsp
∞:= closure of {1} under ⊲ inside the infinite braid group B∞ (realization

of the free left shelf inside braids).

• Question 1: Let (S, ⊲) be a monogenerated (left) shelf. Find a concrete description
of the congruence ≡S s.t. (S, ⊲) is (isomorphic to) (Bsp

∞, ⊲)/≡S . Does ≡S extend to
all of B∞?

◮ Typical example: S := An, the nth Laver table.

• Laver tables are quotients of the (free) set theoretic shelf (Iter(j),−[−]).

• Question 2: Can one find an alternative ”self-iterating structure” (S, ⊲), which the
Laver tables are quotients of?



Questions

• Question 0: Can shelves that are not racks be (really) useful in low-dimensional
topology?

• Recall: Bsp
∞:= closure of {1} under ⊲ inside the infinite braid group B∞ (realization

of the free left shelf inside braids).

• Question 1: Let (S, ⊲) be a monogenerated (left) shelf. Find a concrete description
of the congruence ≡S s.t. (S, ⊲) is (isomorphic to) (Bsp

∞, ⊲)/≡S . Does ≡S extend to
all of B∞?

◮ Typical example: S := An, the nth Laver table.

• Laver tables are quotients of the (free) set theoretic shelf (Iter(j),−[−]).

• Question 2: Can one find an alternative ”self-iterating structure” (S, ⊲), which the
Laver tables are quotients of?

◮ Typical candidate: Scott’s domains in λ-calculus (?)



Questions

• Question 0: Can shelves that are not racks be (really) useful in low-dimensional
topology?

• Recall: Bsp
∞:= closure of {1} under ⊲ inside the infinite braid group B∞ (realization

of the free left shelf inside braids).

• Question 1: Let (S, ⊲) be a monogenerated (left) shelf. Find a concrete description
of the congruence ≡S s.t. (S, ⊲) is (isomorphic to) (Bsp

∞, ⊲)/≡S . Does ≡S extend to
all of B∞?

◮ Typical example: S := An, the nth Laver table.

• Laver tables are quotients of the (free) set theoretic shelf (Iter(j),−[−]).

• Question 2: Can one find an alternative ”self-iterating structure” (S, ⊲), which the
Laver tables are quotients of?

◮ Typical candidate: Scott’s domains in λ-calculus (?)

• Question 3: Determine the (co)-homology of the free monogenrated shelf.



Questions (cont’d)

• Question ∞: Compute the function µn defined on B+
n (positive n-strand braids) by

µn(β) := inf{β′ | β′ conjugated to β}.
↑

standard linear braid ordering



Questions (cont’d)

• Question ∞: Compute the function µn defined on B+
n (positive n-strand braids) by

µn(β) := inf{β′ | β′ conjugated to β}.
↑

standard linear braid ordering

◮ Remark: certainly doable, at least for n = 3.



Questions (cont’d)

• Question ∞: Compute the function µn defined on B+
n (positive n-strand braids) by

µn(β) := inf{β′ | β′ conjugated to β}.
↑

standard linear braid ordering

◮ Remark: certainly doable, at least for n = 3.

• Question ∞′: Same question with
νn(β) := inf{β′ | β′ Markov-equivalent to β}.


