
The SD-world:
a bridge between algebra, topology, and set theory

The SD-world:
a bridge between algebra, topology, and set theory

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

The SD-world:
a bridge between algebra, topology, and set theory

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Fourth Mile High Conference, Denver, July-August 2017

The SD-world:
a bridge between algebra, topology, and set theory

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Fourth Mile High Conference, Denver, July-August 2017

• 1. Overview of the SD-world, with a special emphasis on the word probleme of SD.

The SD-world:
a bridge between algebra, topology, and set theory

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Fourth Mile High Conference, Denver, July-August 2017

• 1. Overview of the SD-world, with a special emphasis on the word probleme of SD.
• 2. The connection with set theory and the Laver tables.

Plan:

Plan:

• Minicourse I. The SD-world

Plan:

• Minicourse I. The SD-world

- 1. A general introduction

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

Terminology

• The self-distributivity law SD:

Terminology

• The self-distributivity law SD:

◮ left version: “left self-distributivity”

x(yz) = (xy)(xz) (LD)

Terminology

• The self-distributivity law SD:

◮ left version: “left self-distributivity”

x(yz) = (xy)(xz) (LD)

or x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) (LD)

Terminology

• The self-distributivity law SD:

◮ left version: “left self-distributivity”

x(yz) = (xy)(xz) (LD)

or x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) (LD)

◮ right version: “right self-distributivity”

(xy)z = (xz)(yz) (RD)

Terminology

• The self-distributivity law SD:

◮ left version: “left self-distributivity”

x(yz) = (xy)(xz) (LD)

or x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) (LD)

◮ right version: “right self-distributivity”

(xy)z = (xz)(yz) (RD)

or (x ⊳ y) ⊳ z = (x ⊳ z) ⊳ (y ⊳ z) (RD)

Terminology

• The self-distributivity law SD:

◮ left version: “left self-distributivity”

x(yz) = (xy)(xz) (LD)

or x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) (LD)

◮ right version: “right self-distributivity”

(xy)z = (xz)(yz) (RD)

or (x ⊳ y) ⊳ z = (x ⊳ z) ⊳ (y ⊳ z) (RD)

• Definition: An LD-groupoid, or left shelf, is a structure (S, ⊲) with ⊲ obeying (LD).

Terminology

• The self-distributivity law SD:

◮ left version: “left self-distributivity”

x(yz) = (xy)(xz) (LD)

or x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) (LD)

◮ right version: “right self-distributivity”

(xy)z = (xz)(yz) (RD)

or (x ⊳ y) ⊳ z = (x ⊳ z) ⊳ (y ⊳ z) (RD)

• Definition: An LD-groupoid, or left shelf, is a structure (S, ⊲) with ⊲ obeying (LD).
An RD-groupoid, or shelf, is a structure (S, ⊳) with ⊲ obeying (RD).

Terminology

• The self-distributivity law SD:

◮ left version: “left self-distributivity”

x(yz) = (xy)(xz) (LD)

or x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) (LD)

◮ right version: “right self-distributivity”

(xy)z = (xz)(yz) (RD)

or (x ⊳ y) ⊳ z = (x ⊳ z) ⊳ (y ⊳ z) (RD)

• Definition: An LD-groupoid, or left shelf, is a structure (S, ⊲) with ⊲ obeying (LD).
An RD-groupoid, or shelf, is a structure (S, ⊳) with ⊲ obeying (RD).

• Definition: A rack is a shelf in which all right-translations are bijections.

Terminology

• The self-distributivity law SD:

◮ left version: “left self-distributivity”

x(yz) = (xy)(xz) (LD)

or x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) (LD)

◮ right version: “right self-distributivity”

(xy)z = (xz)(yz) (RD)

or (x ⊳ y) ⊳ z = (x ⊳ z) ⊳ (y ⊳ z) (RD)

• Definition: An LD-groupoid, or left shelf, is a structure (S, ⊲) with ⊲ obeying (LD).
An RD-groupoid, or shelf, is a structure (S, ⊳) with ⊲ obeying (RD).

• Definition: A rack is a shelf in which all right-translations are bijections.

◮ Equivalently: (S, ⊳, ⊳) with ⊳, ⊳ obeying (RD) and, in addition

(x ⊳ y) ⊳ y = x and (x ⊳ y) ⊳ y = x .

Terminology

• The self-distributivity law SD:

◮ left version: “left self-distributivity”

x(yz) = (xy)(xz) (LD)

or x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) (LD)

◮ right version: “right self-distributivity”

(xy)z = (xz)(yz) (RD)

or (x ⊳ y) ⊳ z = (x ⊳ z) ⊳ (y ⊳ z) (RD)

• Definition: An LD-groupoid, or left shelf, is a structure (S, ⊲) with ⊲ obeying (LD).
An RD-groupoid, or shelf, is a structure (S, ⊳) with ⊲ obeying (RD).

• Definition: A rack is a shelf in which all right-translations are bijections.

◮ Equivalently: (S, ⊳, ⊳) with ⊳, ⊳ obeying (RD) and, in addition

(x ⊳ y) ⊳ y = x and (x ⊳ y) ⊳ y = x .

• Definition: A quandle is an idempotent rack (x ⊳ x = x always holds).

Classical shelves

• “Trivial” shelves:

Classical shelves

• “Trivial” shelves: S a set, f a map S → S,

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves:

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice,

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2:

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra,

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves:

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n:

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −x + 2y

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −x + 2y (root systems).

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −x + 2y (root systems).

• Conjugacy quandles:

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −x + 2y (root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −x + 2y (root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −x + 2y (root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.
◮ In particular: the free quandle based on X when G is the free group based on X .

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −x + 2y (root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.
◮ In particular: the free quandle based on X when G is the free group based on X .

↑
when viewed as (Q, ⊳, ⊳):

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −x + 2y (root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.
◮ In particular: the free quandle based on X when G is the free group based on X .

↑
when viewed as (Q, ⊳, ⊳): (FX , ⊳) is not a free idempotent shelf,

it satisfies other laws: x ⊳ (y ⊳ (y ⊳ x)) = (x ⊳ (x ⊳ y)) ⊳ (y ⊳ x), ...
(Drápal-Kepka-Muśılek, Larue)

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −x + 2y (root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.
◮ In particular: the free quandle based on X when G is the free group based on X .

↑
when viewed as (Q, ⊳, ⊳): (FX , ⊳) is not a free idempotent shelf,

it satisfies other laws: x ⊳ (y ⊳ (y ⊳ x)) = (x ⊳ (x ⊳ y)) ⊳ (y ⊳ x), ...
(Drápal-Kepka-Muśılek, Larue)

◮ Variants: x ⊳ y := y−nxyn,

Classical shelves

• “Trivial” shelves: S a set, f a map S → S, and x ⊳ y := f (x).

◮ A rack iff f is a permutation of S.
◮ In particular: the cyclic rack: Z/nZ with p ⊳ q := p + 1.
◮ In particular: the augmentation rack: Z with p ⊳ q := p + 1.

• Lattice shelves: (L,∨, 0) a (semi)-lattice, and x ⊳ y := x ∨ y .

◮ Idempotent; never a rack for #L > 2: always 0 ⊳ x = x ⊳ x (= x).
◮ A non-idempotent related example: B a Boolean algebra, and x ⊳ y := x ∨ y c .

(i.e., “x ⇐ y”)

• Alexander shelves: R a ring, t in R, E an R-module, and x ⊳ y := tx + (1 − t)y .

◮ A rack (even a quandle) iff t is invertible in R.
◮ In particular: symmetries in R

n: x ⊳ y := −x + 2y (root systems).

• Conjugacy quandles: G a group, x ⊳ y := y−1xy .

◮ Always a quandle.
◮ In particular: the free quandle based on X when G is the free group based on X .

↑
when viewed as (Q, ⊳, ⊳): (FX , ⊳) is not a free idempotent shelf,

it satisfies other laws: x ⊳ (y ⊳ (y ⊳ x)) = (x ⊳ (x ⊳ y)) ⊳ (y ⊳ x), ...
(Drápal-Kepka-Muśılek, Larue)

◮ Variants: x ⊳ y := y−nxyn, x ⊳ y := f (y−1x)y with f ∈ Aut(G), ...

Some more exotic shelves

• Core (or sandwich) quandles:

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks:

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf:

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :

(sh ⊳ sh) ⊳ sh :

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :

(sh ⊳ sh) ⊳ sh :

sh ⊳ (sh ⊳ sh) :

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :

(sh ⊳ sh) ⊳ sh :

sh ⊳ (sh ⊳ sh) :

[P.D.Algebraic properties of the shift mapping, Proc. Amer.Math. Soc. 106 (1989) 617-623]

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :

(sh ⊳ sh) ⊳ sh :

sh ⊳ (sh ⊳ sh) :

[P.D.Algebraic properties of the shift mapping, Proc. Amer.Math. Soc. 106 (1989) 617-623]

• The braid shelf,

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :

(sh ⊳ sh) ⊳ sh :

sh ⊳ (sh ⊳ sh) :

[P.D.Algebraic properties of the shift mapping, Proc. Amer.Math. Soc. 106 (1989) 617-623]

• The braid shelf, the iteration shelf,

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :

(sh ⊳ sh) ⊳ sh :

sh ⊳ (sh ⊳ sh) :

[P.D.Algebraic properties of the shift mapping, Proc. Amer.Math. Soc. 106 (1989) 617-623]

• The braid shelf, the iteration shelf, Laver tables:

Some more exotic shelves

• Core (or sandwich) quandles: G a group, and x ⊳ y := yx−1y .

• Half-conjugacy racks: G a group, X a subset of G ,
and (x , g) ⊳ (y , h) := (x , h−1y−1gyh) on X × G .

◮ Not idempotent for X 6⊆ Z(G).
◮ the free rack based on X when G is the free group based on X .

• The injection shelf: X an (infinite) set, IX monoid of all injections from X to itself,
and f ⊳ g(x) := g(f (g−1(x))) for x ∈ Im(g), and f ⊳ g(x) := x otherwise.

◮ In particular, X := N (= Z>0) starting with sh : n 7→ n + 1:

sh :

sh ⊳ sh :

(sh ⊳ sh) ⊳ sh :

sh ⊳ (sh ⊳ sh) :

[P.D.Algebraic properties of the shift mapping, Proc. Amer.Math. Soc. 106 (1989) 617-623]

• The braid shelf, the iteration shelf, Laver tables: see below...

Connection with topology (1)

• Planar diagrams:

Connection with topology (1)

• Planar diagrams:

Connection with topology (1)

• Planar diagrams:

Connection with topology (1)

• Planar diagrams:

Connection with topology (1)

• Planar diagrams:

◮ projections of curves embedded in R3

Connection with topology (1)

• Planar diagrams:

◮ projections of curves embedded in R3

• Generic question: recognizing whether two 2D-diagrams are
(projections of) isotopic 3D-figures

Connection with topology (1)

• Planar diagrams:

◮ projections of curves embedded in R3

• Generic question: recognizing whether two 2D-diagrams are
(projections of) isotopic 3D-figures

↑
continuously deform the 3D-figure allowing no curve crossing

Connection with topology (1)

• Planar diagrams:

◮ projections of curves embedded in R3

• Generic question: recognizing whether two 2D-diagrams are
(projections of) isotopic 3D-figures

↑
continuously deform the 3D-figure allowing no curve crossing

◮ find isotopy invariants.

Connection with topology (2)

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

Connection with topology (2)

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I :

Connection with topology (2)

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼

Connection with topology (2)

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼

Connection with topology (2)

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼

- type II :

Connection with topology (2)

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼

- type II : ∼

Connection with topology (2)

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼

- type II : ∼ ∼

Connection with topology (2)

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼

- type II : ∼ ∼

- type III :

Connection with topology (2)

• Two diagrams represent isotopic figures iff one can go from the former to the latter
using finitely many Reidemeister moves:

- type I : ∼ ∼

- type II : ∼ ∼

- type III : ∼

Connection with topology (3)

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,

Connection with topology (3)

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b

Connection with topology (3)

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

Connection with topology (3)

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

Connection with topology (3)

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

a

b

c

Connection with topology (3)

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

a

b

c

c

b ⊳ c

a⊳c
c

b ⊳ c

(a ⊳ c) ⊳ (b ⊳ c)

Connection with topology (3)

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

a

b

c

c

b ⊳ c

a⊳c
c

b ⊳ c

(a ⊳ c) ⊳ (b ⊳ c)

∼

a

b

c

Connection with topology (3)

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

a

b

c

c

b ⊳ c

a⊳c
c

b ⊳ c

(a ⊳ c) ⊳ (b ⊳ c)

∼

a

b

c

b

a⊳b
c

b ⊳ c

(a ⊳ b) ⊳ c

Connection with topology (3)

• Fix a set (of colors) S equipped with two operations ⊳, ⊳,
and color the strands in diagrams obeying the rules:

b

a

a ⊳ b

b
and

b

a

a

b ⊳ a .

• Action of Reidemeister moves on colors:

a

b

c

c

b ⊳ c

a⊳c
c

b ⊳ c

(a ⊳ c) ⊳ (b ⊳ c)

∼

a

b

c

b

a⊳b
c

b ⊳ c

(a ⊳ b) ⊳ c

◮ Hence:

(S, ⊳)-colorings are invariant under Reidemeister move III iff (S, ⊳) is a shelf.

Connection with topology (4)

• Idem for Reidemeister move II:

a

b

(a⊳b)⊳b

b

b

a ⊳ b

∼
a

b

a

b
∼

a

b (b⊳a)⊳b)

a

a

b ⊳ a

Connection with topology (4)

• Idem for Reidemeister move II:

a

b

(a⊳b)⊳b

b

b

a ⊳ b

∼
a

b

a

b
∼

a

b (b⊳a)⊳b)

a

a

b ⊳ a

◮ Hence:

(S, ⊳)-colorings are invariant under Reidemeister moves II+III iff (S, ⊳) is a rack.

Connection with topology (4)

• Idem for Reidemeister move II:

a

b

(a⊳b)⊳b

b

b

a ⊳ b

∼
a

b

a

b
∼

a

b (b⊳a)⊳b)

a

a

b ⊳ a

◮ Hence:

(S, ⊳)-colorings are invariant under Reidemeister moves II+III iff (S, ⊳) is a rack.

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

Connection with topology (4)

• Idem for Reidemeister move II:

a

b

(a⊳b)⊳b

b

b

a ⊳ b

∼
a

b

a

b
∼

a

b (b⊳a)⊳b)

a

a

b ⊳ a

◮ Hence:

(S, ⊳)-colorings are invariant under Reidemeister moves II+III iff (S, ⊳) is a rack.

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence:

(S, ⊳)-colorings are invariant under Reidemeister moves I+II+III iff (S, ⊳) is a quandle.

A map of shelves

shelves

racks

quandles

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2)

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5

Iter(j) =

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5

Iter(j) =
B∞

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5

Iter(j) =
B∞

IN

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5

Iter(j) =
B∞

IN

=Bsp
∞

A map of shelves

shelves

racks

quandles

monogenerated more than one generator

co
m
p
le
xi
ty

A0

Conj(F2) Conj(F3)

Cycl(Z)

Cycl(p)

HalfConj(F2) HalfConj(F3)

Free1 Free2 Free3

A1

A2

A3

A4

A5

Iter(j) =
B∞

IN

=Bsp
∞

I
sh
N

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈

σ1, ..., σn−1

∣

∣

∣

〉

.

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈

σ1, ..., σn−1

∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈

σ1, ..., σn−1

∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈

σ1, ..., σn−1

∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈

σ1, ..., σn−1

∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈

σ1, ..., σn−1

∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈

σ1, ..., σn−1

∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔

• Example:

σ1 σ3

=

σ3 σ1

Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈

σ1, ..., σn−1

∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔

• Example:

σ1 σ3

=

σ3 σ1

σ1 σ2 σ1

=

σ2 σ1 σ2

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈

σ1, σ2, ...
∣

∣

∣

〉

.

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈

σ1, σ2, ...
∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈

σ1, σ2, ...
∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈

σ1, σ2, ...
∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1
◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈

σ1, σ2, ...
∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1
◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈

σ1, σ2, ...
∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1
◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈

σ1, σ2, ...
∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1
◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.

α
sh(β) sh(α)−1

α ⊲ β

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈

σ1, σ2, ...
∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1
◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.

α
sh(β) sh(α)−1

α ⊲ β

• Examples: 1 ⊲ 1 = σ1,

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈

σ1, σ2, ...
∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1
◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.

α
sh(β) sh(α)−1

α ⊲ β

• Examples: 1 ⊲ 1 = σ1, 1 ⊲ σ1 = σ2σ1,

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈

σ1, σ2, ...
∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1
◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.

α
sh(β) sh(α)−1

α ⊲ β

• Examples: 1 ⊲ 1 = σ1, 1 ⊲ σ1 = σ2σ1, σ1 ⊲ 1 = σ2
1 σ

−1
2 ,

The braid shelf

• Adding a strand on the right provides in,n+1 : Bn ⊂→ Bn+1

◮ Direct limit B∞ =
〈

σ1, σ2, ...
∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1
◮ Shift endomorphism of B∞: sh : σi 7→ σi+1.

• Proposition: For α, β in B∞, define
α ⊲ β := α · sh(β) · σ1 · sh(α)

−1.
Then (B∞, ⊲) is a left shelf.

α
sh(β) sh(α)−1

α ⊲ β

• Examples: 1 ⊲ 1 = σ1, 1 ⊲ σ1 = σ2σ1, σ1 ⊲ 1 = σ2
1 σ

−1
2 , σ1 ⊲ σ1 = σ2σ1, etc.

The braid shelf (cont’d)

◮ Proof:

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) =

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1

= α sh(β) σ1 sh
2(γ) σ2σ1σ

−1
2 sh2(β)−1 sh(α)−1

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1

= α sh(β) σ1 sh
2(γ) σ2σ1σ

−1
2 sh2(β)−1 sh(α)−1

= α · sh(β) · sh2(γ) · σ1σ2σ1σ
−1
2 · sh2(β)−1 · sh(α)−1 �

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1

= α sh(β) σ1 sh
2(γ) σ2σ1σ

−1
2 sh2(β)−1 sh(α)−1

= α · sh(β) · sh2(γ) · σ1σ2σ1σ
−1
2 · sh2(β)−1 · sh(α)−1 �

• Remark: Shelf (=right shelf) with

α ⊳ β := sh(β)−1 · σ1 · sh(α) · β,

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1

= α sh(β) σ1 sh
2(γ) σ2σ1σ

−1
2 sh2(β)−1 sh(α)−1

= α · sh(β) · sh2(γ) · σ1σ2σ1σ
−1
2 · sh2(β)−1 · sh(α)−1 �

• Remark: Shelf (=right shelf) with

α ⊳ β := sh(β)−1 · σ1 · sh(α) · β,
but less convenient here.

The braid shelf (cont’d)

◮ Proof: α ⊲ (β ⊲ γ) = α · sh(β · sh(γ) · σ1 · sh(β)
−1) · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2 · sh
2(β)−1 · σ1 · sh(α)

−1

= α · sh(β) · sh2(γ) · σ2σ1 · sh
2(β)−1 · sh(α)−1.

(α ⊲ β) ⊲ (α ⊲ γ)
= (α sh(β)σ1 sh(α)

−1) · sh(α sh(γ) σ1 sh(α)
−1) · σ1 · sh(α sh(β)σ1 sh(α)

−1)−1

= α sh(β) σ1 sh(α)
−1 sh(α) sh2(γ) σ2 sh

2(α)−1 σ1 sh
2(α) σ−1

2 sh2(β)−1 sh(α)−1

= α sh(β) σ1 sh
2(γ) σ2σ1σ

−1
2 sh2(β)−1 sh(α)−1

= α · sh(β) · sh2(γ) · σ1σ2σ1σ
−1
2 · sh2(β)−1 · sh(α)−1 �

• Remark: Shelf (=right shelf) with

α ⊳ β := sh(β)−1 · σ1 · sh(α) · β,
but less convenient here.

• Remark: Works similarly with

x ⊲ y := x · φ(y) · e · φ(x)−1

whenever G is a group G , e belongs to G , and φ is an endomorphism φ satisfying

e φ(e) e = φ(e) e φ(e) and ∀x (e φ2(x) = φ2(x) e).

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi)(xi) := xixi+1x
−1
i ,

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi)(xi) := xixi+1x
−1
i , ρ(σi)(xi+1) := xi ,

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi)(xi) := xixi+1x
−1
i , ρ(σi)(xi+1) := xi , ρ(σi)(xk) := xk for k 6= i , i + 1,

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi)(xi) := xixi+1x
−1
i , ρ(σi)(xi+1) := xi , ρ(σi)(xk) := xk for k 6= i , i + 1,

Then α ⊏ β in B∞ implies that α−1β has an expression with > 1 letter σ1 and no σ−1
1 .

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi)(xi) := xixi+1x
−1
i , ρ(σi)(xi+1) := xi , ρ(σi)(xk) := xk for k 6= i , i + 1,

Then α ⊏ β in B∞ implies that α−1β has an expression with > 1 letter σ1 and no σ−1
1 .

For such a braid γ, the word ρ(γ)(x1) in F∞ finishes with the letter x−1
1 . �

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi)(xi) := xixi+1x
−1
i , ρ(σi)(xi+1) := xi , ρ(σi)(xk) := xk for k 6= i , i + 1,

Then α ⊏ β in B∞ implies that α−1β has an expression with > 1 letter σ1 and no σ−1
1 .

For such a braid γ, the word ρ(γ)(x1) in F∞ finishes with the letter x−1
1 . �

• Corollary: (solution of the wp of SD) Given two terms T ,T ′:

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi)(xi) := xixi+1x
−1
i , ρ(σi)(xi+1) := xi , ρ(σi)(xk) := xk for k 6= i , i + 1,

Then α ⊏ β in B∞ implies that α−1β has an expression with > 1 letter σ1 and no σ−1
1 .

For such a braid γ, the word ρ(γ)(x1) in F∞ finishes with the letter x−1
1 . �

• Corollary: (solution of the wp of SD) Given two terms T ,T ′:
◮ Evaluate T and T ′ at x := 1 in B∞;

A semantic solution of the word problem

• Proposition (D., 1989, Laver, 1989) If (S, ⊲) is a monogenerated left shelf, a
sufficient condition for (S, ⊲) to be free is that the relation ⊏ on S has no cycle.

↑
x ⊏ y if ∃z (x ⊲ z = y).

◮ Equivalently: x = (··· ((x ⊲ z1) ⊲ z2) ⊲ ···) ⊲ zn is impossible.

• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):

ρ(σi)(xi) := xixi+1x
−1
i , ρ(σi)(xi+1) := xi , ρ(σi)(xk) := xk for k 6= i , i + 1,

Then α ⊏ β in B∞ implies that α−1β has an expression with > 1 letter σ1 and no σ−1
1 .

For such a braid γ, the word ρ(γ)(x1) in F∞ finishes with the letter x−1
1 . �

• Corollary: (solution of the wp of SD) Given two terms T ,T ′:
◮ Evaluate T and T ′ at x := 1 in B∞;
◮ Then T =SD T ′ iff T (1) = T ′(1) in B∞.

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

Free shelves

• Describe the free (left) shelf based on a set X

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)
(= the shelf generated by X , every shelf generated by X is a quotient of)

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲,

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far.

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far. In particular, is it decidable?

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far. In particular, is it decidable?

• Terms on X as binary trees with nodes ⊲ and leaves in X :

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far. In particular, is it decidable?

• Terms on X as binary trees with nodes ⊲ and leaves in X : assuming X = {a, b, c},

a

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far. In particular, is it decidable?

• Terms on X as binary trees with nodes ⊲ and leaves in X : assuming X = {a, b, c},

a

⊲

b a

b ⊲ a

Free shelves

• Describe the free (left) shelf based on a set X (= the most general shelf gen’d by X)
(= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let TX be the family of all terms built from X and ⊲, and =SD be the
congruence (i.e., compatible equiv. rel.) on TX generated by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then TX /=SD is the free left-shelf based on X.

◮ Proof: trivial. �

◮ ...but says nothing: =SD not under control so far. In particular, is it decidable?

• Terms on X as binary trees with nodes ⊲ and leaves in X : assuming X = {a, b, c},

a

⊲

b a

b ⊲ a

⊲

⊲

a ⊲

c b

b

(a ⊲ (b ⊲ c)) ⊲ b

The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff

The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.

The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

T2

T1

The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

T2

T1

=SD

The confluence property

• Lemma (confluence): Let →SD be the semi-congruence on TX gen’d by all pairs

(T1 ⊲ (T2 ⊲ T3) , (T1 ⊲ T2) ⊲ (T1 ⊲ T3)).

Then T1 =SD T2 holds iff one has T1 →SD T and T2 →SD T for some T.
“SD-equivalent iff admit a common SD-expansion”

T2

T1

=SD

∃T

The absorption property

• Lemma (absorption):

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2.

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T),

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T .

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T).

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T). Then n − 1 > ht(T1) and n − 1 > ht(T2).

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �

=SD

T1

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �

=SD

T1

=SD

T1

T2

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �

=SD

T1

=SD

T1

T2

=SD

T1 T2 T1

The absorption property

• Lemma (absorption): Define x [1] := x and x [n] := x ⊲ x [n−1] for n > 2. For T in Tx ,

x [n+1] =SD T ⊲ x [n]

holds for n > ht(T), where ht(x) := 0 and ht(T1 ⊲ T2) := max(ht(T1), ht(T2)) + 1.

◮ Proof: Induction on T . For T = x , direct from the definitions.
Assume T = T1 ⊲ T2 and n > ht(T). Then n − 1 > ht(T1) and n − 1 > ht(T2).

Then x [n+1] =SD T1 ⊲ x [n] by induction hypothesis for T1

=SD T1 ⊲ (T2 ⊲ x [n−1]) by induction hypothesis for T2

=SD (T1 ⊲ T2) ⊲ (T1 ⊲ x [n−1]) by applying SD

=SD (T1 ⊲ T2) ⊲ x [n] by induction hypothesis for T1

= T ⊲ x [n]. �

=SD

T1

=SD

T1

T2

=SD

T1 T2 T1

=SD

T1 T2

T

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′),

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD.

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′,

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′,

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r

left r ′
(T

′′)
0r

′

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r

left r ′
(T

′′)
0r

′

Then
• r = r ′ ⇒ T =SD T ′

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r

left r ′
(T

′′)
0r

′

Then
• r = r ′ ⇒ T =SD T ′

• r > r ′ ⇒ T ⊏
∗
SD T ′

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r

left r ′
(T

′′)
0r

′

Then
• r = r ′ ⇒ T =SD T ′

• r > r ′ ⇒ T ⊏
∗
SD T ′

• r < r ′ ⇒ T ′
⊏
∗
SD T

The comparison property

• Lemma (comparison I): Write T ⊏SD T ′ for ∃T ′′ (T ′ =SD T ⊲ T ′′), and ⊏
∗
SD for the

transitive closure of ⊏SD. Then, for all T ,T ′ in Tx , one has at least one of

T ⊏
∗
SD T ′, T =SD T ′, T ′

⊏
∗
SD T.

◮ Proof:

T T ′T T ′

=SD =SD

T ′′

left r(T
′′)

0r

left r ′
(T

′′)
0r

′

Then
• r = r ′ ⇒ T =SD T ′

• r > r ′ ⇒ T ⊏
∗
SD T ′

• r < r ′ ⇒ T ′
⊏
∗
SD T
�

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g .

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g)

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �

• Proposition: If there exists at least one shelf with ⊏ acyclic, then ⊏
∗
SD has no cycle.

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �

• Proposition: If there exists at least one shelf with ⊏ acyclic, then ⊏
∗
SD has no cycle.

◮ And such examples do exist: 1. Iteration shelf (Laver, 1989);

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �

• Proposition: If there exists at least one shelf with ⊏ acyclic, then ⊏
∗
SD has no cycle.

◮ And such examples do exist: 1. Iteration shelf (Laver, 1989);
2. Free shelf (Dehornoy, 1991);

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �

• Proposition: If there exists at least one shelf with ⊏ acyclic, then ⊏
∗
SD has no cycle.

◮ And such examples do exist: 1. Iteration shelf (Laver, 1989);
2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �

• Proposition: If there exists at least one shelf with ⊏ acyclic, then ⊏
∗
SD has no cycle.

◮ And such examples do exist: 1. Iteration shelf (Laver, 1989);
2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

• Corollary: (solution of the wp of SD) Given two terms T ,T ′:

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �

• Proposition: If there exists at least one shelf with ⊏ acyclic, then ⊏
∗
SD has no cycle.

◮ And such examples do exist: 1. Iteration shelf (Laver, 1989);
2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

• Corollary: (solution of the wp of SD) Given two terms T ,T ′:
◮ Find a common LD-expansion T ′′ of T ⊲ x [n] and T ′ ⊲ x [n];

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �

• Proposition: If there exists at least one shelf with ⊏ acyclic, then ⊏
∗
SD has no cycle.

◮ And such examples do exist: 1. Iteration shelf (Laver, 1989);
2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

• Corollary: (solution of the wp of SD) Given two terms T ,T ′:
◮ Find a common LD-expansion T ′′ of T ⊲ x [n] and T ′ ⊲ x [n];

◮ Find r and r ′ satisfying T →SD leftr (T ′′)

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �

• Proposition: If there exists at least one shelf with ⊏ acyclic, then ⊏
∗
SD has no cycle.

◮ And such examples do exist: 1. Iteration shelf (Laver, 1989);
2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

• Corollary: (solution of the wp of SD) Given two terms T ,T ′:
◮ Find a common LD-expansion T ′′ of T ⊲ x [n] and T ′ ⊲ x [n];

◮ Find r and r ′ satisfying T →SD leftr (T ′′) and T ′ →SD leftr
′

(T ′′).

A syntactic solution to the word problem

• Application: If (S, ⊲) is a monogenerated left-shelf, any two distinct elements of S
are ⊏

∗-comparable (with ⊏
∗= transitive closure of ⊏ = iterated left divisibility).

• Proposition (freeness criterion): If (S, ⊲) is a monogenerated left-shelf and ⊏ has no
cycle, then (S, ⊲) is free.

◮ Proof: Assume S gen’d by g . “S is free” means “T 6=SD T ′ ⇒ T (g) 6= T ′(g)”.
Now T 6=SD T ′ implies T ⊏

∗
SD T ′ or T ′

⊏
∗
SD T ,
whence T (g) ⊏

∗ T ′(g) or T ′(g) ⊏
∗ T (g).

As ⊏ has no cycle in S, both imply T (g) 6= T ′(g). �

• Proposition: If there exists at least one shelf with ⊏ acyclic, then ⊏
∗
SD has no cycle.

◮ And such examples do exist: 1. Iteration shelf (Laver, 1989);
2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

• Corollary: (solution of the wp of SD) Given two terms T ,T ′:
◮ Find a common LD-expansion T ′′ of T ⊲ x [n] and T ′ ⊲ x [n];

◮ Find r and r ′ satisfying T →SD leftr (T ′′) and T ′ →SD leftr
′

(T ′′).
◮ Then T =SD T ′ iff r = r ′.

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s),

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”.

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α,

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2,

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2, σiσjσi = σjσiσj for |j − i | = 1.

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2, σiσjσi = σjσiσj for |j − i | = 1.

◮ The resulting quotient of MSD is B∞ (!).

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2, σiσjσi = σjσiσj for |j − i | = 1.

◮ The resulting quotient of MSD is B∞ (!).

◮ If φ maps T to T ′, then sh0(φ) maps T ⊲ x [n] to T ′ ⊲ x [n],

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2, σiσjσi = σjσiσj for |j − i | = 1.

◮ The resulting quotient of MSD is B∞ (!).

◮ If φ maps T to T ′, then sh0(φ) maps T ⊲ x [n] to T ′ ⊲ x [n],
so collapsing all sh0(φ) must give an SD-operation on the quotient, i.e., on B∞.

The Thompson’s monoid of SD

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SDα be the
partial operator “apply SD in the expanding direction at address α”. The Thompson’s
monoid of SD is the monoid MSD gen’d by all SDα and their inverses.

• Fact: Two terms T ,T ′ are SD-equivalent iff some element of MSD maps T to T ′.

• Now, for every term T , select an element χT of MSD that maps x [n+1] to T ⊲ x [n].
◮ Follow the inductive proof of the absorption property:

χx := 1, χT1⊲T2
:= χT1

· sh1(χT2
) · SD∅ · sh1(χT1

)−1. (∗)

• Next, identify relations in MSD:

SD11αSDα = SDαSD11α, SD1αSDαSD1αSD0α = SDαSD1αSDα, etc. (∗∗)

◮ When every SDα s.t. α contains 0 is collapsed, only the SD11...1s remain.
◮ Write σi+1 for the image of SD11...1, i times 1. Then (∗∗) becomes

σiσj = σjσi for |j − i | > 2, σiσjσi = σjσiσj for |j − i | = 1.

◮ The resulting quotient of MSD is B∞ (!).

◮ If φ maps T to T ′, then sh0(φ) maps T ⊲ x [n] to T ′ ⊲ x [n],
so collapsing all sh0(φ) must give an SD-operation on the quotient, i.e., on B∞.

◮ Its definition is the projection of (∗), i.e.,

a ⊲ b := a · sh(b) · σi · sh(a)
−1.

The Thompson’s monoid of SD (cont’d)

• The “magic” braid operation revisited:

The Thompson’s monoid of SD (cont’d)

• The “magic” braid operation revisited:

The Thompson’s monoid of SD (cont’d)

• The “magic” braid operation revisited:

=SD

7→
χT1

T1

The Thompson’s monoid of SD (cont’d)

• The “magic” braid operation revisited:

=SD

7→
χT1

T1

=SD

7→
sh1(χT2

)

T1

T2

The Thompson’s monoid of SD (cont’d)

• The “magic” braid operation revisited:

=SD

7→
χT1

T1

=SD

7→
sh1(χT2

)

T1

T2

=SD

7→
SD∅

T1 T2 T1

The Thompson’s monoid of SD (cont’d)

• The “magic” braid operation revisited:

=SD

7→
χT1

T1

=SD

7→
sh1(χT2

)

T1

T2

=SD

7→
SD∅

T1 T2 T1

=SD

7→
sh1(χT1

)−1

T1 T2

T

The Thompson’s monoid of SD (cont’d)

• The “magic” braid operation revisited:

=SD

7→
χT1

T1

=SD

7→
sh1(χT2

)

T1

T2

=SD

7→
SD∅

T1 T2 T1

=SD

7→
sh1(χT1

)−1

T1 T2

T

whence χT1⊲T2
= χT1

· sh1(χT2
) · SD∅ · sh1(χ

−1
T1

),

The Thompson’s monoid of SD (cont’d)

• The “magic” braid operation revisited:

=SD

7→
χT1

T1

=SD

7→
sh1(χT2

)

T1

T2

=SD

7→
SD∅

T1 T2 T1

=SD

7→
sh1(χT1

)−1

T1 T2

T

whence χT1⊲T2
= χT1

· sh1(χT2
) · SD∅ · sh1(χ

−1
T1

),

which projects to the braid operation.

The Thompson’s monoid of SD (cont’d)

• The “magic” braid operation revisited:

=SD

7→
χT1

T1

=SD

7→
sh1(χT2

)

T1

T2

=SD

7→
SD∅

T1 T2 T1

=SD

7→
sh1(χT1

)−1

T1 T2

T

whence χT1⊲T2
= χT1

· sh1(χT2
) · SD∅ · sh1(χ

−1
T1

),

which projects to the braid operation.

.../...

• See more in [P.D., Braids and selfdistributivity, PM192, Birkhaüser (1999)]

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

Elementary embeddings

• Set theory is the theory of infinities.

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

= infinite
finite

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

= infinite
finite

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

= infinite
finite

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

= infinite
finite

◮ Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

= infinite
finite

◮ Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ Repeat the process with “super-infinite”.

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

= infinite
finite

◮ Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ Repeat the process with “super-infinite”.

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

= infinite
finite

◮ Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ Repeat the process with “super-infinite”.

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

= infinite
finite

◮ Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ Repeat the process with “super-infinite”.

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

= infinite
finite

◮ Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ Repeat the process with “super-infinite”.

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.

Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

= infinite
finite

◮ Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

◮ Repeat the process with “super-infinite”.

• Principle: self-similar implies large

◮ X infinite: ∃j :X→X (j injective not bijective)

◮ X super-infinite: ∃j :X →X (j inject. not biject. preserving all ∈-definable notions)
↑

an elementary embedding of X

• Example: N is not super-infinite.

◮ A super-infinite set must be so large that it contains undefinable elements
(since all definable elements must be fixed).

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal,

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅,

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα),

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃

α<λ f ∩V 2
α

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃

α<λ f ∩V 2
α and f ∩V 2

α belongs to Vλ for every α < λ.

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃

α<λ f ∩V 2
α and f ∩V 2

α belongs to Vλ for every α < λ.

◮ Proof: Every element of Vλ belongs to some Vα with α < λ;

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃

α<λ f ∩V 2
α and f ∩V 2

α belongs to Vλ for every α < λ.

◮ Proof: Every element of Vλ belongs to some Vα with α < λ; The set f ∩V 2
α

is included in V 2
α,

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃

α<λ f ∩V 2
α and f ∩V 2

α belongs to Vλ for every α < λ.

◮ Proof: Every element of Vλ belongs to some Vα with α < λ; The set f ∩V 2
α

is included in V 2
α, hence in Vα+2,

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃

α<λ f ∩V 2
α and f ∩V 2

α belongs to Vλ for every α < λ.

◮ Proof: Every element of Vλ belongs to some Vα with α < λ; The set f ∩V 2
α

is included in V 2
α, hence in Vα+2, hence it belongs to Vα+3,

Ranks

• Fact: There is a canonical filtration of sets by the sets Vα, α an ordinal, def’d by

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃

α<λ Vα for λ limit.

α

α+ 1

← ordinaux

0→ V1

1→
V2

2→

V3

3

V4...

4 Vα
Vα+1

• Fact: If λ is a limit ordinal and f : Vλ → Vλ,
then f =

⋃

α<λ f ∩V 2
α and f ∩V 2

α belongs to Vλ for every α < λ.

◮ Proof: Every element of Vλ belongs to some Vα with α < λ; The set f ∩V 2
α

is included in V 2
α, hence in Vα+2, hence it belongs to Vα+3, hence to Vλ. �

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ:

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)

Laver cardinals

• Definition: A Laver cardinal is a cardinal λ s.t. the set Vλ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from Vλ to itself.

• Fact: If there exists a super-infinite set, there exists a super-infinite set Vλ

(hence a Laver cardinal).

• Fact: Assume j : Vλ → Vλ witnesses that λ is a Laver cardinal.
◮ The map j sends every ordinal α to an ordinal >α.
◮ There exists an ordinal α satisfying j(α) > α.
◮ There exists a smallest ordinal κ satisfying j(κ) > κ: the “critical ordinal” of j.
◮ One necessarily has λ = supn j

n(crit(j)).

Vλ

0
1

ω

λ

κ

j(κ)

j2(κ)

crit(j)

below, nothing is moved

above, everybody is moved

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ,

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable,

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]:

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j),

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j).

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α,

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α,

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ,

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ)

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ.

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α)

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α) implies ∀α<j(κ) (j [j](α) = α),

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α) implies ∀α<j(κ) (j [j](α) = α), whereas
j(κ) > κ

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α) implies ∀α<j(κ) (j [j](α) = α), whereas
j(κ) > κ implies j [j](j(κ)) > j(κ).

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α) implies ∀α<j(κ) (j [j](α) = α), whereas
j(κ) > κ implies j [j](j(κ)) > j(κ). We deduce crit(j[j]) = j(κ)

The application operation

• If λ is a Laver cardinal, let Eλ be the family of all non-trivial (= non-surjective)
elementary embeddings from Vλ to itself (which is nonempty).

• Definition: For i , j in Eλ, the result of applying i to j is

i [j] :=
⋃

α<λ i(j∩V 2
α).

• Lemma: The map (i , j) 7→ i [j] is a binary operation on Eλ, and (Eλ,−[−]) is a
left-shelf.

◮ Proof: The sets j∩V 2
α belong to Vλ, and are pairwise compatible partial maps,

hence so are the sets i(j∩V 2
α): so i [j] is a map from Vλ to itself.

“Being an elementary embedding” is definable, hence i [j] is an elementary embedding.
“Being the image of” is definable, hence ℓ = j [k] implies i [ℓ] = i [j][i [k]],

i.e., i [j [k]] = i [j][i [k]]: the left SD law. �

• Attention! Application is not composition:

crit(j ◦ j) = crit(j), but crit(j[j]) > crit(j).

◮ Proof: Let κ := crit(j). For α < κ, j(α) = α, hence j(j(α)) = α, whereas
j(κ) > κ, hence j(j(κ)) > j(κ) > κ. We deduce crit(j ◦ j) = κ.

On the other hand, ∀α<κ (j(α) = α) implies ∀α<j(κ) (j [j](α) = α), whereas
j(κ) > κ implies j [j](j(κ)) > j(κ). We deduce crit(j[j]) = j(κ) > κ. �

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j], j [j][j]...

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j], j [j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then ⊏ has no cycle in Iter(j);

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j], j [j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then ⊏ has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j], j [j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then ⊏ has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

◮ A realization (the “set-theoretic realization”) of the free (left)-shelf,

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j], j [j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then ⊏ has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

◮ A realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a shelf with acyclic ⊏ exists,

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j], j [j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then ⊏ has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

◮ A realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j], j [j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then ⊏ has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

◮ A realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,
◮ ...whence a solution for the word problem of SD

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j], j [j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then ⊏ has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

◮ A realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,
◮ ...whence a solution for the word problem of SD

(because both =SD and ⊏
∗
SD are semi-decidable).

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j], j [j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then ⊏ has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

◮ A realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,
◮ ...whence a solution for the word problem of SD

(because both =SD and ⊏
∗
SD are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists.

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j], j [j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then ⊏ has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

◮ A realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,
◮ ...whence a solution for the word problem of SD

(because both =SD and ⊏
∗
SD are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists.

 motivation for finding another proof/another realization...

The iteration shelf

• Proposition: If j is a nontrivial elementary embedding from Vλ to itself,
then the iterates of j make a left-shelf Iter(j).

↑
closure of {j} under the “application” operation: j [j], j [j][j]...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from Vλ to itself,
then ⊏ has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

◮ A realization (the “set-theoretic realization”) of the free (left)-shelf,

◮ ...plus a proof of that a shelf with acyclic ⊏ exists,
◮ ...whence a proof that ⊏SD is acyclic on Tx ,
◮ ...whence a solution for the word problem of SD

(because both =SD and ⊏
∗
SD are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists.

 motivation for finding another proof/another realization...

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j][j]...[j], p times j .

Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j][j]...[j], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j][j]...[j], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j][j]...[j], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let j belong to Eλ.

Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j][j]...[j], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let j belong to Eλ.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j][j]...[j], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let j belong to Eλ.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Then ≡critn(j) is a congruence on Iter(j),

Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j][j]...[j], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let j belong to Eλ.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Then ≡critn(j) is a congruence on Iter(j), it has 2n classes,

Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j][j]...[j], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let j belong to Eλ.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Then ≡critn(j) is a congruence on Iter(j), it has 2n classes,
which are those of j , j[2], ..., j[2n],

Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j][j]...[j], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let j belong to Eλ.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Then ≡critn(j) is a congruence on Iter(j), it has 2n classes,
which are those of j , j[2], ..., j[2n], the latter also being the class of id.

Quotients of Iter(j)

• Notation: (“left powers”) j[p] := j [j][j]...[j], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let j belong to Eλ.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Then ≡critn(j) is a congruence on Iter(j), it has 2n classes,
which are those of j , j[2], ..., j[2n], the latter also being the class of id.

◮ Proof: (Difficult...) Starts from j ≡crit(i) i [j] and similar.
Uses in particular crit(j[m]) = critn(j) with n maximal s.t. 2n divides m. �

Quotients of Iter(j) (cont’d)

• Recall: The Laver table An is the unique left-shelf on {1, ...,2n}

Quotients of Iter(j) (cont’d)

• Recall: The Laver table An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n

Quotients of Iter(j) (cont’d)

• Recall: The Laver table An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

Quotients of Iter(j) (cont’d)

• Recall: The Laver table An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

Quotients of Iter(j) (cont’d)

• Recall: The Laver table An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

Quotients of Iter(j) (cont’d)

• Recall: The Laver table An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].

Quotients of Iter(j) (cont’d)

• Recall: The Laver table An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].
The proposition says that Iter(j)/≡critn(j) is a left-shelf whose domain is {1, ...,2n};

Quotients of Iter(j) (cont’d)

• Recall: The Laver table An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].
The proposition says that Iter(j)/≡critn(j) is a left-shelf whose domain is {1, ...,2n};
By construction, p = 1[p] holds for p 6 2n.

Quotients of Iter(j) (cont’d)

• Recall: The Laver table An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].
The proposition says that Iter(j)/≡critn(j) is a left-shelf whose domain is {1, ...,2n};
By construction, p = 1[p] holds for p 6 2n.
Then j[2n] ≡critn(j) id implies j[2n+1] ≡critn(j) j ,

Quotients of Iter(j) (cont’d)

• Recall: The Laver table An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].
The proposition says that Iter(j)/≡critn(j) is a left-shelf whose domain is {1, ...,2n};
By construction, p = 1[p] holds for p 6 2n.
Then j[2n] ≡critn(j) id implies j[2n+1] ≡critn(j) j , whence 2n ⊲ 1 = 1 in the quotient. �

Quotients of Iter(j) (cont’d)

• Recall: The Laver table An is the unique left-shelf on {1, ...,2n}
satisfying p = 1[p] for p 6 2n and 2n ⊲ 1 = 1.

(or, equivalently, on {0, ...,2n−1}) satisfying p = 1[p] mod 2n for p 6 2n and 0 ⊲ 1 = 1)

• Corollary: The quotient-structure Iter(j)/≡critn(j) is (isomorphic to) the table An.

◮ Proof: Write p for the ≡critn(j)-class of j[p].
The proposition says that Iter(j)/≡critn(j) is a left-shelf whose domain is {1, ...,2n};
By construction, p = 1[p] holds for p 6 2n.
Then j[2n] ≡critn(j) id implies j[2n+1] ≡critn(j) j , whence 2n ⊲ 1 = 1 in the quotient. �

◮ A (set-theoretic) realization of An as a quotient of the iteration shelf Iter(j).

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j)

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An,

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An ,

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j),

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1:

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m]),

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j),

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m])
An+1 = 2n by (∗∗),

which is also
(p ⊲ 2m)An+1 = 2n. (∗∗∗).

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m])
An+1 = 2n by (∗∗),

which is also
(p ⊲ 2m)An+1 = 2n. (∗∗∗).

First, (∗∗∗) implies πn+1(p) > 2m.

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m])
An+1 = 2n by (∗∗),

which is also
(p ⊲ 2m)An+1 = 2n. (∗∗∗).

First, (∗∗∗) implies πn+1(p) > 2m. Conversely, (∗∗∗) projects to (p ⊲ 2m)An = 2n,

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m])
An+1 = 2n by (∗∗),

which is also
(p ⊲ 2m)An+1 = 2n. (∗∗∗).

First, (∗∗∗) implies πn+1(p) > 2m. Conversely, (∗∗∗) projects to (p ⊲ 2m)An = 2n,
implying πn(p) 6 2m.

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m])
An+1 = 2n by (∗∗),

which is also
(p ⊲ 2m)An+1 = 2n. (∗∗∗).

First, (∗∗∗) implies πn+1(p) > 2m. Conversely, (∗∗∗) projects to (p ⊲ 2m)An = 2n,
implying πn(p) 6 2m. As πn+1(p) is πn(p) or 2πn(p),

A dictionary

• Lemma: For every j in Eλ, every term t(x), and every n,

t(1)An = 2n is equivalent to crit(t(j)Iter(j)) > critn(j); (∗)

t(1)An+1 = 2n is equivalent to crit(t(j)Iter(j)) = critn(j). (∗∗)

◮ Proof: For (∗): crit(t(j)) > critn(j) means t(j) ≡critn(j) id,

i.e., the class of t(j) in An, which is t(1)An , is that of id, which is 2n.

For (∗∗): crit(t(j)) = critn(j) is the conjunction
of crit(t(j)) > critn(j) and crit(t(j)) 6> critn+1(j), hence

of t(1)An = 2n and t(1)An+1 6= 2n+1: the only possibility is t(1)An+1 = 2n. �

• Proposition (”dictionary”): For m 6 n and p 6 2n,
the period of p jumps from 2m to 2m+1 between An and An+1

iff j[p] maps critm(j) to critn(j).

◮ Proof: Apply the lemma to the term x[p].
As critm(j) = crit(j[2m]), the embedding j[p] maps critm(j) to crit(j[p][j[2m]]),

so the RHT is crit(j[p][j[2m]]) = critn(j), whence (1[p] ⊲ 1[2m])
An+1 = 2n by (∗∗),

which is also
(p ⊲ 2m)An+1 = 2n. (∗∗∗).

First, (∗∗∗) implies πn+1(p) > 2m. Conversely, (∗∗∗) projects to (p ⊲ 2m)An = 2n,
implying πn(p) 6 2m. As πn+1(p) is πn(p) or 2πn(p), (∗∗∗) is equivalent to

the conjunction πn(p)=2m and πn+1(p)=2m+1. �

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α,

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j [j](γ) 6 j(α)). (∗∗)

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j [j](γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j [j](α) 6 j(α). �

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j [j](γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j [j](α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j [j](γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j [j](α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1,

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j [j](γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j [j](α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j [j](γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j [j](α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j [j](γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j [j](α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.
By the dictionary, j maps critm(j) to critn(j).

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j [j](γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j [j](α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.
By the dictionary, j maps critm(j) to critn(j).
Hence, by the lemma, j [j] maps critm(j) to 6critn(j).

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j [j](γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j [j](α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.
By the dictionary, j maps critm(j) to critn(j).
Hence, by the lemma, j [j] maps critm(j) to 6critn(j).
Therefore, there exists n′ 6 n 6 n s.t. j [j] maps critm(j) to critn′(j).

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j [j](γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j [j](α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.
By the dictionary, j maps critm(j) to critn(j).
Hence, by the lemma, j [j] maps critm(j) to 6critn(j).
Therefore, there exists n′ 6 n 6 n s.t. j [j] maps critm(j) to critn′(j).
By the dictionary, the period of 2 jumps from 2m to 2m+1 between An′ and An′+1.

Comparing the periods of 1 and 2

• Lemma: If j belongs to Eλ, for every α < λ,one has

j [j](α) 6 j(α).

◮ Proof: There exists β satisfying j(β) > α, hence there is a smallest such β,
which therefore satisfies j(β) > α and

∀γ < β (j(γ) 6 α). (∗)

Applying j to (∗) gives

∀γ < j(β) (j [j](γ) 6 j(α)). (∗∗)

Taking γ := α in (∗∗) yields j [j](α) 6 j(α). �

• Proposition (Laver): If there exists a Laver cardinal, πn(2) > πn(1) holds for all n.

◮ Proof: Write πn(1) = 2m+1, and let n be maximal <n satisfying πn(1) 6 2m.
By construction, the period of 1 jumps from 2m to 2m+1 between An and An+1.
By the dictionary, j maps critm(j) to critn(j).
Hence, by the lemma, j [j] maps critm(j) to 6critn(j).
Therefore, there exists n′ 6 n 6 n s.t. j [j] maps critm(j) to critn′(j).
By the dictionary, the period of 2 jumps from 2m to 2m+1 between An′ and An′+1.
Hence, the period of 2 in An is at least 2m+1. �

Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.

Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.

◮ Proof: Assume πn(1) = 2m .

Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.

◮ Proof: Assume πn(1) = 2m . We wish to show that
there exists n > n s.t. πn(1) = 2m and πn+1(1) = 2m+1.

Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.

◮ Proof: Assume πn(1) = 2m . We wish to show that
there exists n > n s.t. πn(1) = 2m and πn+1(1) = 2m+1.

By the dictionary, this is equivalent to j mapping critm(j) to critn(j).

Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.

◮ Proof: Assume πn(1) = 2m . We wish to show that
there exists n > n s.t. πn(1) = 2m and πn+1(1) = 2m+1.

By the dictionary, this is equivalent to j mapping critm(j) to critn(j).

Now j maps critm(j), which is crit(j[2m]), to crit(j[j[2m]].

As j [j[2m]] belongs to Iter(j), the lemma implies crit(j[j[2m]] = critn(j) for some n. �

Asymptotic behavior of the period of 1

• Lemma: If j belongs to Eλ, then λ is the supremum of the ordinals critn(j).

◮ Not obvious:{crit(i) | i ∈ Iter(j)} is countable, but its order type might be >ω.

◮ Proof: (difficult...) �

• Proposition (Laver): If there exists a Laver cardinal, πn(1) tends to ∞ with n.

◮ Proof: Assume πn(1) = 2m . We wish to show that
there exists n > n s.t. πn(1) = 2m and πn+1(1) = 2m+1.

By the dictionary, this is equivalent to j mapping critm(j) to critn(j).

Now j maps critm(j), which is crit(j[2m]), to crit(j[j[2m]].

As j [j[2m]] belongs to Iter(j), the lemma implies crit(j[j[2m]] = critn(j) for some n. �

• Open questions: Find alternative proofs using no Laver cardinal.

The role of set theory

• Are the properties of Laver tables an application of set theory?

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition,

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

◮ Can one find alternative proofs using no large cardinal?

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

◮ Can one find alternative proofs using no large cardinal?
(as done for the free shelf using the braid realization)

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

◮ Can one find alternative proofs using no large cardinal?
(as done for the free shelf using the braid realization)

◮ Can one use them in low-dimensional topology?

The role of set theory

• Are the properties of Laver tables an application of set theory?
◮ So far, yes;
◮ In the future, formally no if one finds alternative proofs using no large cardinal.
◮ But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

• An analogy:

◮ In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.

◮ Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

◮ Can one find alternative proofs using no large cardinal?
(as done for the free shelf using the braid realization)

◮ Can one use them in low-dimensional topology?

Richard Laver
(1942-2012)

