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Connection with topology (2)

e Two diagrams represent isotopic figures iff one can go from the former to the latter

using finitely many
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» Hence:
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e Idem for Reidemeister move II:

b 2 b b b b~ A~

a=—" N— 3 — a et
b bJla

» Hence:

(S, <)-colorings are invariant under Reidemeister moves II+I111 iff (S,<) is a rack.

e Idem for Reidemeister move I:
ada a
~ ~
9 — O —- & —~—
» Hence:

(S, <)-colorings are invariant under Reidemeister moves 4114111 iff (S, <) is a quandle.
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= a-sh(8) -sh3(y) - op0; - sh(8) 1 - sh(a) ™.
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The braid shelf (cont'd)

» Proof: a> (B>7) = a-sh(B-sh(y) -0, -sh(8)71) o, -sh(a)~?

=a - sh(B) - sh?(7) - o, - sh?(8) 1 (7‘1 sh(a)~!

= a-sh(B) - sh?(y) - oy0; - sh?(B) ™1 - sh(a) L.
(a>B)> (ar>y)
(ash(B) oy sh(a)~1) - sh(a sh( ) oy sh(a) 1. o, - sh(ash(B) o, sh(a)~1)~!
= ash(p) oy sh(a) ™! sh(a) sh?(v) o, sh?(a) 1 orl sh?(a) 0271 sh?(8)~Lsh(a)~!
= ash(B) oy sh?(v) o,0y05 Shz( 3)~Lsh(a)!
= a-sh(B) - sh(y) - oy0,0705 L.sh?(8) ! - sh(a) ! O

e Remark: Shelf (=right shelf) with
a<dB:=sh(B)"1- o0, -sh(a)- B,
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The braid shelf (cont'd)

» Proof: a> (B>v)=a-sh(s- sh(w) oy sh(/i’)* ) oy sh(a)*1
= a-sh(B) - sh’(v) - o, - sh?(8) ! sh(a)~*
= a - sh(B) - sh? ('y) 0201 sh?(8 ) sh(a) Ly
(a>B)> (ar>y)

(ash(B) oy sh(a)~L) - sh(ash( ) oy sh(a)~1) - o - sh(ash(B) oy sh(a)~1)~1
= ash(B) oy sh(a) ™ sh(u) sh?(v) o, sh (u) Lo sh?(a) 0271 sh?(8)~Lsh(a)~!
= ash(B) oy sh?(v) o,0y05 1sh2 ( 3)~Lsh(a)!
= a-sh(B) - sh?(y) - 01020102 - sh? (,6’)_ -sh(a)™?! O

e Remark: Shelf (=right shelf) with
a<dB:=sh(B)"1- o0, -sh(a)- B,
but less convenient here.
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The braid shelf (cont'd)

» Proof: a> (B>7) = a-sh(B-sh(y) -0, -sh(8)71) o, -sh(a)~?
=a-sh(B) -sh?(7) - o, - sh?(8)~! - o, - sh(a)~?

= a-sh(B) - sh?(y) - oy0y - sh?(B) ™! - sh(a)~?
(a>B)> (a>7)

= (ash(B) oy sh(a)~1) - sh(ash(y) oy sh(a)71) - oy sh(ash((f)a1 sh(a)~1)~!
= ash(B) oy sh(a) ™! sh(c )sh ( ) o, sh (@)~to sh?(a) o, Lsh?(8)~1sh(a)~t
= ash(f) oy shz(q)ﬂzrrlﬂz ( ) sh(a)~?

= a-sh(B) - sh?(y) - 0'1020'102 h2(8)~! - sh(a)~! O

e Remark: Shelf (=right shelf) with
a<df:=sh(B)"t- oy - sh(a) - B,
but less convenient here.

e Remark: Works similarly with
x>y :=x-¢(y)-e-p(x)
whenever G is a group G, e belongs to G, and ¢ is an endomorphism ¢ satisfying

ep(e)e=d(e)eg(e) and Vx(ed’(x)=¢?(x)e).
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xrcyifdz(x>z=y).
» Equivalently: x = (- (x> z1) > 2z2) > -+ ) > 2z, is impossible.

e Theorem (D., 1991): Every braid in B generates in (Bso,>) a free left shelf.
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» Proof (Larue, 1992): Use the (faithful) Artin representation p of Bso in Aut(Foo):
p(o:)(Xi) == XiXip1X; 4 p(o:)(xix1) = xi,  p(o:)(xk) := xi for k #i,i+1,

Then o B in By implies that a—13 has an expression with >1 letter o, and no oy
For such a braid v, the word p(7)(x1) in Feo finishes with the letter xfl. |
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e Corollary: (solution of the wp of SD) Given two terms T, T':
» Lvaluate T and T' at x :=1 in Boo;
» Then T =sp T/ iff T(1) = T'(1) in Bo.




Plan:
e Minicourse |. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

e Minicourse Il. Connection with set theory
- 1. The set-theoretic shelf

- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods
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o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
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The confluence property

e Lemma (confluence): Let be the semi-congruence on Tx gen'd by all pairs
(T1 > (T2 > T3) s (T1 > TQ) > (T1 > T3)).
Then Ty =sp T> holds iff
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The Thompson’s monoid of SD (cont'd)

e The "“magic” braid operation revisited:

XT, shi(xt,) SDy sh1(xT,)
— — — —
=sD =sD =sD =sD
Ti\[T2\/T1 T1\/T>
| S

whence x 7,7, = x1; - shi(x7,) - SDy 'Shl(\nl)r

which projects to the braid operation.

]

Patrick Dehornoy
Braids ai

Self-Distributivity

e See more in [P0, Braids and selfdistributivity, PM192, Birkhaiiser (1999)]

Birkhiuser




Plan:
e Minicourse |. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

e Minicourse Il. Connection with set theory
- 1. The set-theoretic shelf

- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
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e Set theory is the theory of infinities.

e The standard axiomatic system ZF is (very) incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.

» Typical example: axioms of = solutions of
-infinite  __infinite R 1
infinite finite [ ¥

» Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;
» Repeat the process with “super-infinite”.

e Principle: self-similar implies large
» X infinite: 3j : X — X (j injective not bijective)

» X -infinite: 3/ : X — X (j inject. not biject. preserving all €-definable notions)

1
an of X

e Example: N is super-infinite.

» A super-infinite set must be so large that it contains undefinable elements
(since all definable elements must be fixed).
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Plan:
e Minicourse |. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

e Minicourse Il. Connection with set theory
- 1. The set-theoretic shelf

- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods
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Quotients of Iter(j)

e Notation: (“left powers”) ji, := j[j][j]...[j], p times j.

e Definition: For j in E),
crity(j):= the (n 4+ 1)st ordinal (from bottom) in {crit(i) | i € Iter(j)}.
» One can show critg(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = critG[][1[]). etec.

e Proposition (Laver, 1994): Assume that \ is a Laver cardinal. Let j belong to E) .
For i,i" in Iter(j) and v < X, declare i =, i" ("I and i’ agree up to ~") if
Vxe Vs (i(x)NVy = i’ (x)NVy).
Then =, (j) is a congruence on lter(j), it has 2" classes,
which are those of j, jip|, ..., jon], the latter also being the class of id.

» Proof: (Difficult...) Starts from j =) i[j] and similar.
Uses in particular crit(jjm)) = critn(j) with n maximal s.t. 2" divides m. |
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e Recall: The Laver table A, is the unique left-shelf on {1, ...,2"}
satisfying p = 1) for p <27 and 2">1 =1.
(or, equivalently, on {0, ...,2"—1}) satisfying p = 1|,y mod 2" for p < 2" and 0>1 = 1)

e Corollary: The quotient-structure Iter(j)/=c,(j) is (isomorphic to) the table Ap.
» Proof: Write p for the =, (j)-class of ji.

The proposition says that Iter(j) /=g, (j) is a left-shelf whose domain is {1,...,2"};
By construction, p = 1[p] holds for p < 2".

Then jon) =it j) id implies jjan 1) =i, j) J: Whence 27 >1 =1 in the quotient. [

» A (set-theoretic) realization of A, as a quotient of the iteration shelf Iter(j).
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A dictionary
crit(t(j)""0) > crita(j); (+)
is equivalent to  crit(t(j)"0)) = crit, (j). ()
» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction

of crit(t(j)) = critn(j) and crit(t(j)) 2 crita+1(j)
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e Lemma: For every j in Ey, every term t(x), and every n,
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> Proof: For (x): crit(t(j)) > critn(j) means t(j) =i, () id,
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i.e., the class of t(j) in As, which is t(1)”7, is that of id, which is 2"
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).
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e Lemma: For every j in Ey, every term t(x), and every n,
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> Proof: For (x): crit(t(j)) > critn(j) means t(j) =i, () id,
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i.e., the class of t(j) in As, which is t(1)”7, is that of id, which is 2"
For (#x): crit(t(j)) = critn(j) is the conjunction
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critn(j);
).

()

of crit(t(j)) > critn(j) and crit(t(j)) # critn+1(j), hence
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e Lemma: Ifj belongs to Ey, then \ is the supremum of the ordinals critn(j).
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