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Connection with topology (1)

• Planar diagrams:

◮ projections of curves embedded in R3

• Generic question: recognizing whether two 2D-diagrams are
(projections of) isotopic 3D-figures

↑
continuously deform the 3D-figure allowing no curve crossing

◮ find isotopy invariants.
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◮ Hence:

(S, ⊳)-colorings are invariant under Reidemeister move III iff (S, ⊳) is a shelf.
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• Idem for Reidemeister move II:
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∼
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a

b
∼
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◮ Hence:

(S, ⊳)-colorings are invariant under Reidemeister moves II+III iff (S, ⊳) is a rack.

• Idem for Reidemeister move I:

a

a⊳a

a ⊳ a
∼

a a
∼

a

a

a ⊳ a

◮ Hence:

(S, ⊳)-colorings are invariant under Reidemeister moves I+II+III iff (S, ⊳) is a quandle.
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Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods
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Braid groups

• Definition (Artin 1925/1948): The braid group Bn is the group with presentation
〈

σ1, ..., σn−1

∣

∣

∣

〉

.
σiσj = σjσi for |i − j | > 2

σiσjσi = σjσiσj for |i − j | = 1

≃≃≃ { braid diagrams } / isotopy:

1
..
.

..

.
n

i

i+1
σi ↔

• Example:

σ1 σ3

=

σ3 σ1

σ1 σ2 σ1

=

σ2 σ1 σ2
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• Examples: 1 ⊲ 1 = σ1, 1 ⊲ σ1 = σ2σ1, σ1 ⊲ 1 = σ2
1 σ
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2 , σ1 ⊲ σ1 = σ2σ1, etc.
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• Theorem (D., 1991): Every braid in B∞ generates in (B∞, ⊲) a free left shelf.

◮ Typically: The subshelf of (B∞, ⊲) generated by 1 is a free left shelf.

◮ Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B∞ in Aut(F∞):
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−1
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Then α ⊏ β in B∞ implies that α−1β has an expression with > 1 letter σ1 and no σ−1
1 .

For such a braid γ, the word ρ(γ)(x1) in F∞ finishes with the letter x−1
1 . �

• Corollary: (solution of the wp of SD) Given two terms T ,T ′:
◮ Evaluate T and T ′ at x := 1 in B∞;
◮ Then T =SD T ′ iff T (1) = T ′(1) in B∞.



Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods
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.../...

• See more in [P.D., Braids and selfdistributivity, PM192, Birkhaüser (1999)]



Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods
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◮ Identify further properties of infinite sets = explore further axioms.
◮ Typical example: axioms of large cardinal = solutions of

super-infinite
infinite

= infinite
finite



Elementary embeddings

• Set theory is the theory of infinities.

• The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
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Plan:

• Minicourse I. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods
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• Notation: (“left powers”) j[p] := j [j ][j ]...[j ], p times j .

• Definition: For j in Eλ,

critn(j):= the (n + 1)st ordinal (from bottom) in {crit(i) | i ∈ Iter(j)}.

◮ One can show crit0(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = crit(j[j][j][j]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let j belong to Eλ.
For i , i ′ in Iter(j) and γ < λ, declare i ≡γ i ′ (“ i and i ′ agree up to γ”) if

∀x∈Vγ (i(x)∩Vγ = i ′(x)∩Vγ).

Then ≡critn(j) is a congruence on Iter(j), it has 2n classes,
which are those of j , j[2], ..., j[2n ], the latter also being the class of id.

◮ Proof: (Difficult...) Starts from j ≡crit(i) i [j ] and similar.
Uses in particular crit(j[m]) = critn(j) with n maximal s.t. 2n divides m. �
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◮ A (set-theoretic) realization of An as a quotient of the iteration shelf Iter(j).
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• Open questions: Find alternative proofs using no Laver cardinal.
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