The SD-world: a bridge between algebra, topology, and set theory

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

a bridge between algebra, topology, and set theory

(ロ) (日) (모) (모) (모) 및 990

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

a bridge between algebra, topology, and set theory

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Fourth Mile High Conference, Denver, July-August 2017

(ロ) (日) (모) (모) (모) 및 990

a bridge between algebra, topology, and set theory

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Fourth Mile High Conference, Denver, July-August 2017

 $A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box C \rightarrow A \Box C$

• 1. Overview of the SD-world, with a special emphasis on the word probleme of SD.

a bridge between algebra, topology, and set theory

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

Fourth Mile High Conference, Denver, July-August 2017

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

- 1. Overview of the SD-world, with a special emphasis on the word probleme of SD.
- 2. The connection with set theory and the Laver tables.

 $\mathcal{A} \hspace{0.2cm}\Box \hspace{0.2cm} \mathbb{P} \hspace{0.2cm} \mathcal{A} \hspace{0.2cm} \overline{\boxtimes} \hspace{0.2cm} \mathbb{P} \hspace{0.2cm$

• Minicourse I. The SD-world

- Minicourse I. The SD-world
	- 1. A general introduction

(ロ) (個) (ミ) (ミ) = ミーのQQ

• Minicourse I. The SD-world

-
- 1. A general introduction Classical and exotic examples

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• Minicourse I. The SD-world

-
- 1. A general introduction Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- A chart of the SD-world

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- A chart of the SD-world
- 2. The word problem of SD: a semantic solution

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

イロト イ母 ト イミト イミト ニヨー りんぐ

- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

(ロ) (日) (모) (모) (모) 및 990

- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

(ロ) (日) (모) (모) (모) 및 990

- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD

• Minicourse II. Connection with set theory

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves
	- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
	- Large cardinals and elementary embeddings

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves
	- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
	- Large cardinals and elementary embeddings

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

- The iteration shelf

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves
	- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
	- Large cardinals and elementary embeddings

- The iteration shelf
- 2. Periods in Laver tables

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves
	- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
	- Large cardinals and elementary embeddings

- The iteration shelf
- 2. Periods in Laver tables
	- Quotients of the iteration shelf

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves
	- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
	- Large cardinals and elementary embeddings

- The iteration shelf
- 2. Periods in Laver tables
	- Quotients of the iteration shelf
	- The dictionary

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves
	- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
	- Large cardinals and elementary embeddings

- The iteration shelf
- 2. Periods in Laver tables
	- Quotients of the iteration shelf
	- The dictionary
	- Results about periods

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves
	- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD
- Minicourse II. Connection with set theory
	- 1. The set-theoretic shelf
		- Large cardinals and elementary embeddings

- The iteration shelf
- 2. Periods in Laver tables
	- Quotients of the iteration shelf
	- The dictionary
	- Results about periods

• The self-distributivity law SD:

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- The self-distributivity law SD:
	- ▶ left version: "left self-distributivity"

 $x(yz) = (xy)(xz)$ (LD)

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

- The self-distributivity law SD:
	- ▶ left version: "left self-distributivity"

$$
x(yz) = (xy)(xz)
$$
 (LD)
or
$$
x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)
$$
 (LD)

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- The self-distributivity law SD:
	- ▶ left version: "left self-distributivity"

$$
x(yz) = (xy)(xz) \tag{LD}
$$

or
$$
x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z) \tag{LD}
$$

 \triangleright right version: "right self-distributivity"

$$
(xy)z = (xz)(yz)
$$
 (RD)

(ロ) (日) (모) (모) (모) 및 990

- The self-distributivity law SD:
	- ▶ left version: "left self-distributivity"

$$
x(yz) = (xy)(xz)
$$
 (LD)

or
$$
x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z) \tag{LD}
$$

 \triangleright right version: "right self-distributivity"

$$
(xy)z = (xz)(yz)
$$
 (RD)

or
$$
(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)
$$
 (RD)

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

- The self-distributivity law SD:
	- ▶ left version: "left self-distributivity"

$$
x(yz) = (xy)(xz)
$$
 (LD)

or
$$
x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z) \tag{LD}
$$

right version: "right self-distributivity"

$$
(xy)z = (xz)(yz)
$$
 (RD)

or
$$
(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)
$$
 (RD)

• Definition: An LD-groupoid, or left shelf, is a structure (S, \triangleright) with \triangleright obeying (LD).

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- The self-distributivity law SD:
	- ▶ left version: "left self-distributivity"

$$
x(yz) = (xy)(xz)
$$
 (LD)

or
$$
x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z) \tag{LD}
$$

 \triangleright right version: "right self-distributivity"

$$
(xy)z = (xz)(yz)
$$
 (RD)

or
$$
(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)
$$
 (RD)

• Definition: An LD-groupoid, or left shelf, is a structure (S, \triangleright) with \triangleright obeying (LD). An RD-groupoid, or shelf, is a structure (S, \triangleleft) with \triangleright obeying (RD).

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- The self-distributivity law SD:
	- ▶ left version: "left self-distributivity"

$$
x(yz) = (xy)(xz)
$$
 (LD)

or
$$
x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z) \tag{LD}
$$

right version: "right self-distributivity"

$$
(xy)z = (xz)(yz)
$$
 (RD)

or
$$
(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)
$$
 (RD)

- Definition: An LD-groupoid, or left shelf, is a structure (S, \triangleright) with \triangleright obeying (LD). An RD-groupoid, or shelf, is a structure (S, \triangleleft) with \triangleright obeying (RD).
- Definition: A rack is a shelf in which all right-translations are bijections.
- The self-distributivity law SD:
	- ▶ left version: "left self-distributivity"

$$
x(yz) = (xy)(xz)
$$
 (LD)

or
$$
x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z) \tag{LD}
$$

right version: "right self-distributivity"

$$
(xy)z = (xz)(yz)
$$
 (RD)

or
$$
(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)
$$
 (RD)

- Definition: An LD-groupoid, or left shelf, is a structure (S, \triangleright) with \triangleright obeying (LD). An RD-groupoid, or shelf, is a structure (S, \triangleleft) with \triangleright obeying (RD).
- Definition: A rack is a shelf in which all right-translations are bijections.

► Equivalently: $(S, \triangleleft, \overline{\triangleleft})$ with $\triangleleft, \overline{\triangleleft}$ obeying (RD) and, in addition $(x \triangleleft y) \overline{\triangleleft} y = x$ and $(x \overline{\triangleleft} y) \triangleleft y = x$.

- The self-distributivity law SD:
	- ▶ left version: "left self-distributivity"

$$
x(yz) = (xy)(xz)
$$
 (LD)

or
$$
x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z) \tag{LD}
$$

right version: "right self-distributivity"

$$
(xy)z = (xz)(yz)
$$
 (RD)

or
$$
(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)
$$
 (RD)

- Definition: An LD-groupoid, or left shelf, is a structure (S, \triangleright) with \triangleright obeying (LD). An RD-groupoid, or shelf, is a structure (S, \triangleleft) with \triangleright obeying (RD).
- Definition: A rack is a shelf in which all right-translations are bijections. Equivalently: $(S, \triangleleft, \overline{\triangleleft})$ with $\triangleleft, \overline{\triangleleft}$ obeying (RD) and, in addition $(x \triangleleft y) \overline{\triangleleft} y = x$ and $(x \overline{\triangleleft} y) \triangleleft y = x$.
- Definition: A quandle is an idempotent rack $(x \triangleleft x = x$ always holds).

K ロ > K 레 > K 로 > K 로 > 트로 - 9 Q @

• "Trivial" shelves:

• "Trivial" shelves: S a set, f a map $S \rightarrow S$,

• "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.

(ロ) (個) (ミ) (ミ) = ミーのQQ

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- A rack iff f is a permutation of S .

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- A rack iff f is a permutation of S .
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- A rack iff f is a permutation of S .
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.

(ロ) (日) (모) (모) (모) 및 990

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves:

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: (L, ∨, 0) a (semi)-lattice,

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.

► Idempotent; never a rack for $#L \ge 2$:

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra,

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.
- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

• Alexander shelves:

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

• Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
	- In particular: symmetries in \mathbb{R}^n :
- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
	- ► In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -x + 2y$
- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
	- **►** In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -x + 2y$ (\rightsquigarrow root systems).
- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
	- **►** In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -x + 2y$ (\rightsquigarrow root systems).
- Conjugacy quandles:
- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
	- **►** In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -x + 2y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

 $4\Box P + 4\overline{P} P + 4\overline{P} P + 4\overline{P} P$

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
	- **►** In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -x + 2y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
	- \blacktriangleright Always a quandle.
- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- ► In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

 $4\Box P + 4\overline{P} P + 4\overline{P} P + 4\overline{P} P$

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
	- **►** In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -x + 2y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
	- ▶ Always a quandle.
	- In particular: the free quandle based on X when G is the free group based on X.
- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- ► In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

 $4\Box P + 4\overline{P} P + 4\overline{P} P + 4\overline{P} P$

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
	- **►** In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -x + 2y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
	- ▶ Always a quandle.
	- In particular: the free quandle based on X when G is the free group based on X.

↑ when viewed as $(Q, \triangleleft, \overline{\triangleleft})$:

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- ► In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

 $4\Box P + 4\overline{P} P + 4\overline{P} P + 4\overline{P} P$

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
	- **►** In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -x + 2y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
	- \blacktriangleright Always a quandle.
	- In particular: the free quandle based on X when G is the free group based on X.

↑ when viewed as $(Q, \triangleleft, \triangleleft)$: (F_X, \triangleleft) is not a free idempotent shelf, it satisfies other laws: $x \triangleleft (y \triangleleft (y \triangleleft x) \right) = (x \triangleleft (x \triangleleft y)) \triangleleft (y \triangleleft x)$, ... (Drápal-Kepka-Musílek, Larue)

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- ► In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
	- **►** In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -x + 2y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
	- ▶ Always a quandle.
	- In particular: the free quandle based on X when G is the free group based on X.

↑ when viewed as $(Q, \triangleleft, \triangleleft)$: (F_X, \triangleleft) is not a free idempotent shelf, it satisfies other laws: $x \triangleleft (y \triangleleft (y \triangleleft x) \right) = (x \triangleleft (x \triangleleft y)) \triangleleft (y \triangleleft x)$, ... (Drápal-Kepka-Musílek, Larue)

► Variants: $x \triangleleft y := y^{-n}xy^n$,

- "Trivial" shelves: S a set, f a map $S \to S$, and $x \triangleleft y := f(x)$.
	- \triangleright A rack iff f is a permutation of S.
	- In particular: the cyclic rack: $\mathbb{Z}/n\mathbb{Z}$ with $p \triangleleft q := p + 1$.
	- ► In particular: the augmentation rack: $\mathbb Z$ with $p \triangleleft q := p + 1$.
- Lattice shelves: $(L, \vee, 0)$ a (semi)-lattice, and $x \triangleleft y := x \vee y$.
	- ► Idempotent; never a rack for $#L \ge 2$: always $0 \triangleleft x = x \triangleleft x$ (= x).
	- A non-idempotent related example: B a Boolean algebra, and $x \triangleleft y := x \vee y^c$.

- Alexander shelves: R a ring, t in R, E an R-module, and $x \triangleleft y := tx + (1-t)y$.
	- A rack (even a quandle) iff t is invertible in R .
	- **►** In particular: symmetries in \mathbb{R}^n : $x \triangleleft y := -x + 2y$ (\rightsquigarrow root systems).
- Conjugacy quandles: G a group, $x \triangleleft y := y^{-1}xy$.
	- ▶ Always a quandle.
	- In particular: the free quandle based on X when G is the free group based on X.

↑ when viewed as $(Q, \triangleleft, \triangleleft)$: (F_X, \triangleleft) is not a free idempotent shelf, it satisfies other laws: $x \triangleleft (y \triangleleft (y \triangleleft x) \right) = (x \triangleleft (x \triangleleft y)) \triangleleft (y \triangleleft x)$, ...

(Drápal-Kepka-Musílek, Larue)

► Variants: $x \triangleleft y := y^{-n}xy^n$, $x \triangleleft y := f(y^{-1}x)y$ with $f \in Aut(G)$, ...

• Core (or sandwich) quandles:

• Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.

イロト イ団 トイミト イミト ニヨー りんぐ

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks:

イロト イ団 トイミト イミト ニヨー りんぐ

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G ,

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- \bullet Half-conjugacy racks: G a group, X a subset of G, and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- ► Not idempotent for $X \nsubseteq Z(G)$.
$\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- ► Not idempotent for $X \nsubseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- ► Not idempotent for $X \nsubseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf:

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- ► Not idempotent for $X \nsubseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself,

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- \blacktriangleright Not idempotent for $X \not\subseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself, and $f \triangleleft g(x) := g(f(g^{-1}(x)))$ for $x \in \text{Im}(g)$, and $f \triangleleft g(x) := x$ otherwise.

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- \blacktriangleright Not idempotent for $X \not\subseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself, and $f \triangleleft g(x) := g(f(g^{-1}(x)))$ for $x \in \text{Im}(g)$, and $f \triangleleft g(x) := x$ otherwise.
	- In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- \blacktriangleright Not idempotent for $X \not\subseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself, and $f \triangleleft g(x) := g(f(g^{-1}(x)))$ for $x \in \text{Im}(g)$, and $f \triangleleft g(x) := x$ otherwise.
	- In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

sh : TTTTTTTTT

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- \blacktriangleright Not idempotent for $X \not\subseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself, and $f \triangleleft g(x) := g(f(g^{-1}(x)))$ for $x \in \text{Im}(g)$, and $f \triangleleft g(x) := x$ otherwise.
	- In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- \blacktriangleright Not idempotent for $X \not\subseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself, and $f \triangleleft g(x) := g(f(g^{-1}(x)))$ for $x \in \text{Im}(g)$, and $f \triangleleft g(x) := x$ otherwise.
	- In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- \blacktriangleright Not idempotent for $X \not\subseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself, and $f \triangleleft g(x) := g(f(g^{-1}(x)))$ for $x \in \text{Im}(g)$, and $f \triangleleft g(x) := x$ otherwise.
	- In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- \triangleright Not idempotent for $X \not\subseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself, and $f \triangleleft g(x) := g(f(g^{-1}(x)))$ for $x \in \text{Im}(g)$, and $f \triangleleft g(x) := x$ otherwise.
	- In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- \triangleright Not idempotent for $X \not\subseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself, and $f \triangleleft g(x) := g(f(g^{-1}(x)))$ for $x \in \text{Im}(g)$, and $f \triangleleft g(x) := x$ otherwise.
	- In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

• The braid shelf.

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- \triangleright Not idempotent for $X \not\subseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself, and $f \triangleleft g(x) := g(f(g^{-1}(x)))$ for $x \in \text{Im}(g)$, and $f \triangleleft g(x) := x$ otherwise.
	- In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

• The braid shelf, the iteration shelf.

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G , and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- \triangleright Not idempotent for $X \not\subseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself, and $f \triangleleft g(x) := g(f(g^{-1}(x)))$ for $x \in \text{Im}(g)$, and $f \triangleleft g(x) := x$ otherwise.
	- In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

• The braid shelf, the iteration shelf, Laver tables:

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- Core (or sandwich) quandles: G a group, and $x \triangleleft y := yx^{-1}y$.
- Half-conjugacy racks: G a group, X a subset of G. and $(x,g)\triangleleft (y,h):=(x,h^{-1}y^{-1}gyh)$ on $X\times G$.
	- \blacktriangleright Not idempotent for $X \not\subseteq Z(G)$.
	- \triangleright the free rack based on X when G is the free group based on X.
- The injection shelf: X an (infinite) set, \mathfrak{I}_X monoid of all injections from X to itself, and $f \triangleleft g(x) := g(f(g^{-1}(x)))$ for $x \in \text{Im}(g)$, and $f \triangleleft g(x) := x$ otherwise.
	- In particular, $X := \mathbb{N} (= \mathbb{Z}_{>0})$ starting with sh : $n \mapsto n + 1$:

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

• The braid shelf, the iteration shelf. Laver tables: see below...

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

projections of curves embedded in \mathbb{R}^3

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

projections of curves embedded in \mathbb{R}^3

イロト イ母 ト イミト イミト ニヨー りんぐ

• Generic question: recognizing whether two 2D-diagrams are (projections of) isotopic 3D-figures

projections of curves embedded in \mathbb{R}^3

(ロ) (日) (日) (모) (모) 및 990

• Generic question: recognizing whether two 2D-diagrams are (projections of) isotopic 3D-figures ↑

continuously deform the 3D-figure allowing no curve crossing

projections of curves embedded in \mathbb{R}^3

• Generic question: recognizing whether two 2D-diagrams are (projections of) isotopic 3D-figures ↑

continuously deform the 3D-figure allowing no curve crossing

 \blacktriangleright find isotopy invariants.

(ロ) (日) (日) (모) (모) 및 990

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type I :

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

 $-$ type I : \bigvee ∼

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ | 코 | 2000

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type I : ∼ ∼

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type II :

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type III :

K ロ > K 레 > K 코 > K 코 > 「코 → り Q Q →

• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

• Fix a set (of colors) S equipped with two operations \triangleleft , \triangleleft ,

• Fix a set (of colors) S equipped with two operations \triangleleft , \triangleleft , and color the strands in diagrams obeying the rules:

• Fix a set (of colors) S equipped with two operations \triangleleft , $\overline{\triangleleft}$, and color the strands in diagrams obeying the rules:

(ロ) (日) (모) (모) (모) 및 990

• Fix a set (of colors) S equipped with two operations \triangleleft , $\overline{\triangleleft}$, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

(ロ) (日) (모) (모) (모) 및 990

• Fix a set (of colors) S equipped with two operations \triangleleft , $\overline{\triangleleft}$, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

• Fix a set (of colors) S equipped with two operations \triangleleft , $\overline{\triangleleft}$, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

• Fix a set (of colors) S equipped with two operations \triangleleft , $\overline{\triangleleft}$, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

• Fix a set (of colors) S equipped with two operations \triangleleft , $\overline{\triangleleft}$, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

• Fix a set (of colors) S equipped with two operations \triangleleft , $\overline{\triangleleft}$, and color the strands in diagrams obeying the rules:

• Action of Reidemeister moves on colors:

► Hence:

 (S, \triangleleft) -colorings are invariant under Reidemeister move III iff (S, \triangleleft) is a shelf.

• Idem for Reidemeister move II:

(ロ) (日) (모) (모) (모) 및 990

• Idem for Reidemeister move II:

► Hence:

 (S, \triangleleft) -colorings are invariant under Reidemeister moves II+III iff (S, \triangleleft) is a rack.

KEL KAR KELKER E VAN

• Idem for Reidemeister move II:

► Hence:

 (S, \triangleleft) -colorings are invariant under Reidemeister moves II+III iff (S, \triangleleft) is a rack.

• Idem for Reidemeister move I:

• Idem for Reidemeister move II:

◮ Hence:

 (S, \triangleleft) -colorings are invariant under Reidemeister moves II+III iff (S, \triangleleft) is a rack.

• Idem for Reidemeister move I:

 (S, \triangleleft) -colorings are invariant under Reidemeister moves I+II+III iff (S, \triangleleft) is a quandle.

(ロ) (日) (ミ) (ミ) (ミ) = 990

K ロ → K @ → K ミ → K ミ → 三 三 → 9 Q Q →

K ロ → K @ → K ミ → K ミ → 三 三 → 9 Q Q →

(ロ) (日) (ミ) (ミ) (ミ) = 990

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves
	- A chart of the SD-world

- 2. The word problem of SD: a semantic solution

- Braid groups
- The braid shelf
- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD
- Minicourse II. Connection with set theory
	- 1. The set-theoretic shelf
		- Large cardinals and elementary embeddings

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

- The iteration shelf
- 2. Periods in Laver tables
	- Quotients of the iteration shelf
	- The dictionary
	- Results about periods

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation $\left\langle \sigma_{1},...,\sigma_{n-1}\right|$ \setminus .

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation

$$
\langle \sigma_1, ..., \sigma_{n-1} | \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i - j| \geq 2 \rangle.
$$

(ロ) (日) (모) (모) (모) 및 990

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation $\left\langle \sigma_{1},...,\sigma_{n-1}\right|$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$ $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation $\left\langle \sigma_{1},...,\sigma_{n-1}\right|$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$ $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$

≃ { braid diagrams } / isotopy:

(ロ) (日) (모) (모) (모) 및 990

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation $\left\langle \sigma_{1},...,\sigma_{n-1}\right|$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$ $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$

≃ { braid diagrams } / isotopy:

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation $\left\langle \sigma_{1},...,\sigma_{n-1}\right|$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$ $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$

• Definition (Artin 1925/1948): The braid group B_n is the group with presentation $\left\langle \sigma_{1},...,\sigma_{n-1}\right|$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$ $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$

=

 σ_3 σ_1

 σ_1 σ_{2} • Definition (Artin 1925/1948): The braid group B_n is the group with presentation $\left\langle \sigma_{1},...,\sigma_{n-1}\right|$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$ $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$

 $\mathcal{A} \hspace{0.2cm}\Box \hspace{0.2cm} \mathbb{P} \hspace{0.2cm} \mathcal{A} \hspace{0.2cm} \overline{\boxtimes} \hspace{0.2cm} \mathbb{P} \hspace{0.2cm$

- Adding a strand on the right provides $i_{n,n+1}: B_n \subseteq B_{n+1}$
	- ► Direct limit B_{∞}

 $\big\rangle$.

- Adding a strand on the right provides $i_{n,n+1}: B_n \subseteq B_{n+1}$
	- ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, \dots \rangle$

(ロ) (日) (모) (모) (모) 및 990

- Adding a strand on the right provides $i_{n,n+1}: B_n \subseteq B_{n+1}$
	- ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, \dots \rangle$ $\sigma_j \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geqslant 2$

(ロ) (日) (모) (모) (모) 및 990

- Adding a strand on the right provides $i_{n,n+1}: B_n \subseteq B_{n+1}$
	- ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, \dots \rangle$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$
 $\sigma_i \sigma_j = \sigma_i \sigma_j \sigma_j$ for $|i - j| \geq 2$. $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$

- Adding a strand on the right provides $i_{n,n+1}: B_n \subseteq B_{n+1}$
	- ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, \dots \rangle$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$
 $\sigma_i \sigma_j = \sigma_i \sigma_j \sigma_j$ for $|i - j| \geq 2$. $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$
	- ► Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- Adding a strand on the right provides $i_{n,n+1}: B_n \subseteq B_{n+1}$
	- ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, \dots \rangle$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$
 $\sigma_i \sigma_j = \sigma_i \sigma_j \sigma_j$ for $|i - j| \geq 2$. $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$
	- ► Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.
- Proposition: For α , β in B_{∞} , define $\alpha \triangleright \beta := \alpha \cdot \mathsf{sh}(\beta) \cdot \sigma_1 \cdot \mathsf{sh}(\alpha)^{-1}.$

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- Adding a strand on the right provides $i_{n,n+1}: B_n \subseteq B_{n+1}$
	- ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, \dots \rangle$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$
 $\sigma_i \sigma_j = \sigma_i \sigma_j \sigma_j$ for $|i - j| \geq 2$. $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$
	- ► Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

.
K □ ▶ K □ ▶ K □ ▶ K □ ▶ X □ ▶ → □ ● → ⊙ Q ⊙

- Adding a strand on the right provides $i_{n,n+1}: B_n \subseteq B_{n+1}$
	- ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, \dots \rangle$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$
 $\sigma_i \sigma_j = \sigma_i \sigma_j \sigma_j$ for $|i - j| \geq 2$. $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$
	- ► Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

- Adding a strand on the right provides $i_{n,n+1}: B_n \subseteq B_{n+1}$
	- ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, \dots \rangle$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$
 $\sigma_i \sigma_j = \sigma_i \sigma_j \sigma_j$ for $|i - j| \geq 2$. $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$
	- ► Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

• Examples: $1 \triangleright 1 = \sigma_1$,

- Adding a strand on the right provides $i_{n,n+1} : B_n \subset \rightarrow B_{n+1}$
	- ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, \dots \rangle$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$
 $\sigma_i \sigma_j = \sigma_i \sigma_j \sigma_j$ for $|i - j| \geq 2$. $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$
	- ► Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

• <u>Examples</u>: $1 \triangleright 1 = \sigma_1$, $1 \triangleright \sigma_1 = \sigma_2 \sigma_1$,

- Adding a strand on the right provides $i_{n,n+1} : B_n \subset \rightarrow B_{n+1}$
	- ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, \dots \rangle$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$
 $\sigma_i \sigma_j = \sigma_i \sigma_j \sigma_j$ for $|i - j| \geq 2$. $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$
	- ► Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

• Examples: $1 \triangleright 1 = \sigma_1$, $1 \triangleright \sigma_1 = \sigma_2 \sigma_1$, $\sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$,

- Adding a strand on the right provides $i_{n,n+1} : B_n \subset \rightarrow B_{n+1}$
	- ► Direct limit $B_{\infty} = \langle \sigma_1, \sigma_2, \dots \rangle$ $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$
 $\sigma_i \sigma_j = \sigma_i \sigma_j \sigma_j$ for $|i - j| \geq 2$. $\sigma_j \sigma_j = \sigma_j \sigma_j \sigma_j$ for $|i - j| = 1$
	- ► Shift endomorphism of B_{∞} : sh : $\sigma_i \mapsto \sigma_{i+1}$.

• Examples: $1 \triangleright 1 = \sigma_1$, $1 \triangleright \sigma_1 = \sigma_2 \sigma_1$, $\sigma_1 \triangleright 1 = \sigma_1^2 \sigma_2^{-1}$, $\sigma_1 \triangleright \sigma_1 = \sigma_2 \sigma_1$, etc.

▶ Proof:

K ロ > K 레 > K 로 > K 로 > 트로 - 9 Q @

Proof: $\alpha \triangleright (\beta \triangleright \gamma) =$

K ロ > K 御 > K 差 > K 差 > → 差 → の Q Q <

► Proof: $\alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \mathsf{sh}(\beta \cdot \mathsf{sh}(\gamma) \cdot \sigma_1 \cdot \mathsf{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \mathsf{sh}(\alpha)^{-1}$

 $\mathcal{A} \Box \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \Box \overline{\partial} \rightarrow \mathcal{O} \, \mathcal{A} \, \mathcal{O}$

$$
\mathsf{Proof:} \ \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \mathsf{sh}(\beta \cdot \mathsf{sh}(\gamma) \cdot \sigma_1 \cdot \mathsf{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \mathsf{sh}(\alpha)^{-1}
$$
\n
$$
= \alpha \cdot \mathsf{sh}(\beta) \cdot \mathsf{sh}^2(\gamma) \cdot \sigma_2 \cdot \mathsf{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \mathsf{sh}(\alpha)^{-1}
$$

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

$$
\begin{aligned} \text{Proof:} \ \alpha \triangleright (\beta \triangleright \gamma) &= \alpha \cdot \text{sh}(\beta \cdot \text{sh}(\gamma) \cdot \sigma_1 \cdot \text{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ &= \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \cdot \text{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ &= \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1}. \end{aligned}
$$

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

$$
\triangleright \text{ Proof: } \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \text{sh}(\beta \cdot \text{sh}(\gamma) \cdot \sigma_1 \cdot \text{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \cdot \text{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma)
$$

$$
\begin{aligned} \text{Proof:} \ \alpha \triangleright (\beta \triangleright \gamma) & = \alpha \cdot \text{sh}(\beta \cdot \text{sh}(\gamma) \cdot \sigma_1 \cdot \text{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \cdot \text{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \\ & = (\alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}(\alpha)^{-1}) \cdot \text{sh}(\alpha \cdot \text{sh}(\gamma) \sigma_1 \cdot \text{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}(\alpha)^{-1})^{-1} \end{aligned}
$$

$$
\begin{aligned} \blacktriangleright \hspace{0.3cm} &\text{Proof:} \hspace{0.2cm} \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \text{sh}(\beta \cdot \text{sh}(\gamma) \cdot \sigma_1 \cdot \text{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ &\hspace{0.3cm} = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \cdot \text{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ &\hspace{0.3cm} = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1}. \\ &\hspace{0.3cm} (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma) \\ &\hspace{0.3cm} = (\alpha \, \text{sh}(\beta) \, \sigma_1 \, \text{sh}(\alpha)^{-1}) \cdot \text{sh}(\alpha \, \text{sh}(\gamma) \, \sigma_1 \, \text{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha \, \text{sh}(\beta) \, \sigma_1 \, \text{sh}(\alpha)^{-1})^{-1} \\ &\hspace{0.3cm} = \alpha \, \text{sh}(\beta) \, \sigma_1 \, \text{sh}(\alpha)^{-1} \, \text{sh}(\alpha) \, \text{sh}^2(\gamma) \, \sigma_2 \, \text{sh}^2(\alpha)^{-1} \, \sigma_1 \, \text{sh}^2(\alpha) \, \sigma_2^{-1} \, \text{sh}^2(\beta)^{-1} \, \text{sh}(\alpha)^{-1} \end{aligned}
$$

$$
\begin{aligned} \blacktriangleright \hspace{0.3cm} &\text{Proof:} \hspace{0.2cm} \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \text{sh}(\beta \cdot \text{sh}(\gamma) \cdot \sigma_1 \cdot \text{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ &\hspace{0.3cm} = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \cdot \text{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ &\hspace{0.3cm} = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1}. \\ &\hspace{0.3cm} (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma) \\ &\hspace{0.3cm} = (\alpha \, \text{sh}(\beta) \, \sigma_1 \, \text{sh}(\alpha)^{-1}) \cdot \text{sh}(\alpha \, \text{sh}(\gamma) \, \sigma_1 \, \text{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha \, \text{sh}(\beta) \, \sigma_1 \, \text{sh}(\alpha)^{-1})^{-1} \\ &\hspace{0.3cm} = \alpha \, \text{sh}(\beta) \, \sigma_1 \, \text{sh}(\alpha)^{-1} \, \text{sh}(\alpha) \, \text{sh}^2(\gamma) \, \sigma_2 \, \text{sh}^2(\alpha)^{-1} \, \sigma_1 \, \text{sh}^2(\alpha) \, \sigma_2^{-1} \, \text{sh}^2(\beta)^{-1} \, \text{sh}(\alpha)^{-1} \\ &\hspace{0.3cm} = \alpha \, \text{sh}(\beta) \, \sigma_1 \, \text{sh}^2(\gamma) \, \sigma_2 \sigma_1 \sigma_2^{-1} \, \text{sh}^2(\beta)^{-1} \, \text{sh}(\alpha)^{-1} \end{aligned}
$$

$$
\begin{aligned} \blacktriangleright \; &\text{Proof: } \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \text{sh}(\beta \cdot \text{sh}(\gamma) \cdot \sigma_1 \cdot \text{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \cdot \text{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \\ & = (\alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}(\alpha)^{-1}) \cdot \text{sh}(\alpha \cdot \text{sh}(\gamma) \sigma_1 \cdot \text{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}(\alpha)^{-1})^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}(\alpha)^{-1} \cdot \text{sh}(\alpha) \cdot \text{sh}^2(\gamma) \sigma_2 \cdot \text{sh}^2(\alpha)^{-1} \sigma_1 \cdot \text{sh}^2(\alpha) \sigma_2^{-1} \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}^2(\gamma) \sigma_2 \sigma_1 \sigma_2^{-1} \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1} \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \end{aligned} \eqno{\Box}
$$

$$
\begin{array}{lll} \blacktriangleright \text{ Proof: } & \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \text{sh}(\beta \cdot \text{sh}(\gamma) \cdot \sigma_1 \cdot \text{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ & = & \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \cdot \text{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ & = & \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \\ & = & \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \\ & = & (\alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}(\alpha)^{-1}) \cdot \text{sh}(\alpha \cdot \text{sh}(\gamma) \sigma_1 \cdot \text{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}(\alpha)^{-1})^{-1} \\ & = & \alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}(\alpha)^{-1} \cdot \text{sh}(\alpha) \cdot \text{sh}^2(\gamma) \sigma_2 \cdot \text{sh}^2(\alpha)^{-1} \sigma_1 \cdot \text{sh}^2(\alpha) \sigma_2^{-1} \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \\ & = & \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1} \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \end{array} \qquad \qquad \square
$$

• Remark: Shelf (=right shelf) with

 $\alpha \triangleleft \beta := \mathsf{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \mathsf{sh}(\alpha) \cdot \beta,$

$$
\begin{aligned} \blacktriangleright \; &\text{Proof:} \;\; \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \text{sh}(\beta \cdot \text{sh}(\gamma) \cdot \sigma_1 \cdot \text{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \cdot \text{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \\ & (\alpha \triangleright \beta) \triangleright (\alpha \triangleright \gamma) \\ & = (\alpha \, \text{sh}(\beta) \, \sigma_1 \, \text{sh}(\alpha)^{-1}) \cdot \text{sh}(\alpha \, \text{sh}(\gamma) \, \sigma_1 \, \text{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha \, \text{sh}(\beta) \, \sigma_1 \, \text{sh}(\alpha)^{-1})^{-1} \\ & = \alpha \, \text{sh}(\beta) \, \sigma_1 \, \text{sh}(\alpha)^{-1} \, \text{sh}(\alpha) \, \text{sh}^2(\gamma) \, \sigma_2 \, \text{sh}^2(\alpha)^{-1} \, \sigma_1 \, \text{sh}^2(\alpha) \, \sigma_2^{-1} \, \text{sh}^2(\beta)^{-1} \, \text{sh}(\alpha)^{-1} \\ & = \alpha \, \text{sh}(\beta) \, \sigma_1 \, \text{sh}^2(\gamma) \, \sigma_2 \sigma_1 \sigma_2^{-1} \, \text{sh}^2(\beta)^{-1} \, \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1} \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \end{aligned} \hspace{.5cm} \Box
$$

• Remark: Shelf (=right shelf) with

 $\alpha \triangleleft \beta := \mathsf{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \mathsf{sh}(\alpha) \cdot \beta,$

but less convenient here.

 $\mathcal{A} \Box \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \Box \overline{\partial} \rightarrow \mathcal{O} \, \mathcal{A} \, \mathcal{O}$

$$
\begin{aligned} \blacktriangleright \; &\text{Proof: } \alpha \triangleright (\beta \triangleright \gamma) = \alpha \cdot \text{sh}(\beta \cdot \text{sh}(\gamma) \cdot \sigma_1 \cdot \text{sh}(\beta)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \cdot \text{sh}^2(\beta)^{-1} \cdot \sigma_1 \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_2 \sigma_1 \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \\ & = (\alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}(\alpha)^{-1}) \cdot \text{sh}(\alpha \cdot \text{sh}(\gamma) \sigma_1 \cdot \text{sh}(\alpha)^{-1}) \cdot \sigma_1 \cdot \text{sh}(\alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}(\alpha)^{-1})^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}(\alpha)^{-1} \cdot \text{sh}(\alpha) \cdot \text{sh}^2(\gamma) \sigma_2 \cdot \text{sh}^2(\alpha)^{-1} \sigma_1 \cdot \text{sh}^2(\alpha) \sigma_2^{-1} \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \sigma_1 \cdot \text{sh}^2(\gamma) \sigma_2 \sigma_1 \sigma_2^{-1} \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \\ & = \alpha \cdot \text{sh}(\beta) \cdot \text{sh}^2(\gamma) \cdot \sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1} \cdot \text{sh}^2(\beta)^{-1} \cdot \text{sh}(\alpha)^{-1} \end{aligned} \eqno{\Box}
$$

• Remark: Shelf (=right shelf) with

 $\alpha \triangleleft \beta := \mathsf{sh}(\beta)^{-1} \cdot \sigma_1 \cdot \mathsf{sh}(\alpha) \cdot \beta,$

but less convenient here.

• Remark: Works similarly with

$$
x \triangleright y := x \cdot \phi(y) \cdot e \cdot \phi(x)^{-1}
$$

whenever G is a group G, e belongs to G, and ϕ is an endomorphism ϕ satisfying $e \phi(e) e = \phi(e) e \phi(e)$ and $\forall x (e \phi^2(x) = \phi^2(x) e)$.

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle.

A semantic solution of the word problem

(ロ) (日) (日) (모) (모) 및 990

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

- ► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

- ► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.
	- ► Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

- ► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.
	- ► Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}):

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

- ► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.
	- ► Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1},$
• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

- ► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.
	- ► Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}, \quad \rho(\sigma_i)(x_{i+1}) := x_i,$

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

- ► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.
	- ► Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}, \quad \rho(\sigma_i)(x_{i+1}) := x_i, \quad \rho(\sigma_i)(x_k) := x_k \text{ for } k \neq i, i+1,$

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

- ► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.
	- ► Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}, \quad \rho(\sigma_i)(x_{i+1}) := x_i, \quad \rho(\sigma_i)(x_k) := x_k \text{ for } k \neq i, i+1,$ Then $\alpha \in \beta$ in B_{∞} implies that $\alpha^{-1}\beta$ has an expression with $\geqslant 1$ letter σ_{1} and no $\sigma_{1}^{-1}.$

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

- ► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.
	- ► Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}, \quad \rho(\sigma_i)(x_{i+1}) := x_i, \quad \rho(\sigma_i)(x_k) := x_k \text{ for } k \neq i, i+1,$ Then $\alpha \in \beta$ in B_{∞} implies that $\alpha^{-1}\beta$ has an expression with $\geqslant 1$ letter σ_1 and no σ_1^{-1} . For such a braid γ , the word $\rho(\gamma)(x_1)$ in F_{∞} finishes with the letter x_1^{-1} .

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

- ► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.
	- ► Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}, \quad \rho(\sigma_i)(x_{i+1}) := x_i, \quad \rho(\sigma_i)(x_k) := x_k \text{ for } k \neq i, i+1,$ Then $\alpha \in \beta$ in B_{∞} implies that $\alpha^{-1}\beta$ has an expression with $\geqslant 1$ letter σ_1 and no σ_1^{-1} . For such a braid γ , the word $\rho(\gamma)(x_1)$ in F_{∞} finishes with the letter x_1^{-1} .

• Corollary: (solution of the wp of SD) Given two terms T, T' :

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

- ► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.
	- ► Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}, \quad \rho(\sigma_i)(x_{i+1}) := x_i, \quad \rho(\sigma_i)(x_k) := x_k \text{ for } k \neq i, i+1,$ Then $\alpha \in \beta$ in B_{∞} implies that $\alpha^{-1}\beta$ has an expression with $\geqslant 1$ letter σ_1 and no σ_1^{-1} . For such a braid γ , the word $\rho(\gamma)(x_1)$ in F_{∞} finishes with the letter x_1^{-1} .

• Corollary: (solution of the wp of SD) Given two terms T, T' : ► Evaluate T and T' at $x := 1$ in B_{∞} ;

• Proposition (D., 1989, Laver, 1989) If (S, \triangleright) is a monogenerated left shelf, a sufficient condition for (S, \triangleright) to be free is that the relation \sqsubset on S has no cycle. ↑ $x \sqsubset y$ if $\exists z (x \triangleright z = y)$.

- ► Equivalently: $x = ($ ··· $((x \triangleright z_1) \triangleright z_2) \triangleright \cdots) \triangleright z_n$ is impossible.
- Theorem (D., 1991): Every braid in B_{∞} generates in $(B_{\infty}, \triangleright)$ a free left shelf.
	- ► Typically: The subshelf of $(B_{\infty}, \triangleright)$ generated by 1 is a free left shelf.

Proof (Larue, 1992): Use the (faithful) Artin representation ρ of B_{∞} in Aut(F_{∞}): $\rho(\sigma_i)(x_i) := x_i x_{i+1} x_i^{-1}, \quad \rho(\sigma_i)(x_{i+1}) := x_i, \quad \rho(\sigma_i)(x_k) := x_k \text{ for } k \neq i, i+1,$ Then $\alpha \in \beta$ in B_{∞} implies that $\alpha^{-1}\beta$ has an expression with $\geqslant 1$ letter σ_1 and no σ_1^{-1} . For such a braid γ , the word $\rho(\gamma)(x_1)$ in F_{∞} finishes with the letter x_1^{-1} .

- Corollary: (solution of the wp of SD) Given two terms T, T' :
	- ► Evaluate T and T' at $x := 1$ in B_{∞} ;
	- ▶ Then $T =_{SD} T'$ iff $T(1) = T'(1)$ in B_{∞} .

Plan:

• Minicourse I. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves
	- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD
- Minicourse II. Connection with set theory
	- 1. The set-theoretic shelf
		- Large cardinals and elementary embeddings

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

- The iteration shelf
- 2. Periods in Laver tables
	- Quotients of the iteration shelf
	- The dictionary
	- Results about periods

 \bullet Describe the free (left) shelf based on a set X

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X , every shelf generated by X is a quotient of)

• Lemma: Let \mathcal{T}_X be the family of all terms built from X and \triangleright ,

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

• Lemma: Let \mathcal{T}_X be the family of all terms built from X and \triangleright , and \preceq_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs $(T_1 \triangleright (T_2 \triangleright T_3)$, $(T_1 \triangleright T_2) \triangleright (T_1 \triangleright T_3)$.

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

• Lemma: Let \mathcal{T}_X be the family of all terms built from X and \triangleright , and \preceq_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs $(T_1 \triangleright (T_2 \triangleright T_3)$, $(T_1 \triangleright T_2) \triangleright (T_1 \triangleright T_3)$. Then $T_X / =_{SD}$ is the free left-shelf based on X.

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

• Lemma: Let \mathcal{T}_X be the family of all terms built from X and \triangleright , and \preceq_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs $(T_1 \triangleright (T_2 \triangleright T_3)$, $(T_1 \triangleright T_2) \triangleright (T_1 \triangleright T_3)$. Then $T_X / =_{SD}$ is the free left-shelf based on X.

 \triangleright Proof: trivial.

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

• Lemma: Let \mathcal{T}_X be the family of all terms built from X and \triangleright , and \preceq_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs $(T_1 \triangleright (T_2 \triangleright T_3)$, $(T_1 \triangleright T_2) \triangleright (T_1 \triangleright T_3)$. Then $T_X / =_{SD}$ is the free left-shelf based on X.

- \triangleright Proof: trivial.
- \triangleright ...but says nothing: $=_{SD}$ not under control so far.

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

• Lemma: Let \mathcal{T}_X be the family of all terms built from X and \triangleright , and \preceq_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs $(T_1 \triangleright (T_2 \triangleright T_3)$, $(T_1 \triangleright T_2) \triangleright (T_1 \triangleright T_3)$. Then $T_X / =_{SD}$ is the free left-shelf based on X.

 \triangleright Proof: trivial.

 \triangleright ...but says nothing: $=_{SD}$ not under control so far. In particular, is it decidable?

- Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)
- Lemma: Let \mathcal{T}_X be the family of all terms built from X and \triangleright , and \preceq_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs $(T_1 \triangleright (T_2 \triangleright T_3)$, $(T_1 \triangleright T_2) \triangleright (T_1 \triangleright T_3)$. Then $T_X / =_{SD}$ is the free left-shelf based on X.
	- \triangleright Proof: trivial.
	- \triangleright ...but says nothing: $=_{SD}$ not under control so far. In particular, is it decidable?
- Terms on X as binary trees with nodes \triangleright and leaves in X:

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

• Lemma: Let \mathcal{T}_X be the family of all terms built from X and \triangleright , and \preceq_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs $(T_1 \triangleright (T_2 \triangleright T_3)$, $(T_1 \triangleright T_2) \triangleright (T_1 \triangleright T_3)$. Then $T_X / =_{SD}$ is the free left-shelf based on X.

 \triangleright ...but says nothing: $=_{SD}$ not under control so far. In particular, is it decidable?

• Terms on X as binary trees with nodes ⊳ and leaves in X: assuming $X = \{a, b, c\}$,

a

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

• Lemma: Let \mathcal{T}_X be the family of all terms built from X and \triangleright , and \preceq_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs $(T_1 \triangleright (T_2 \triangleright T_3)$, $(T_1 \triangleright T_2) \triangleright (T_1 \triangleright T_3)$. Then $T_X / =_{SD}$ is the free left-shelf based on X.

- \triangleright Proof: trivial.
	- \triangleright ...but says nothing: $=_{SD}$ not under control so far. In particular, is it decidable?
- Terms on X as binary trees with nodes ⊳ and leaves in X: assuming $X = \{a, b, c\}$,

KEL KAR KELKEL E VAN

• Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X) (= the shelf generated by X, every shelf generated by X is a quotient of)

• Lemma: Let \mathcal{T}_X be the family of all terms built from X and \triangleright , and \preceq_{SD} be the congruence (i.e., compatible equiv. rel.) on T_X generated by all pairs $(T_1 \triangleright (T_2 \triangleright T_3)$, $(T_1 \triangleright T_2) \triangleright (T_1 \triangleright T_3)$. Then $T_X / =_{SD}$ is the free left-shelf based on X.

- \triangleright Proof: trivial.
	- \triangleright ...but says nothing: $=_{SD}$ not under control so far. In particular, is it decidable?
- Terms on X as binary trees with nodes ⊳ and leaves in X: assuming $X = \{a, b, c\}$,

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• Lemma (confluence): Let \rightarrow _{SD} be the <u>semi</u>-congruence on \mathcal{T}_X gen'd by all pairs $(T_1 \triangleright (T_2 \triangleright T_3), (T_1 \triangleright T_2) \triangleright (T_1 \triangleright T_3)).$ Then $T_1 =_{SD} T_2$ holds iff

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

• Lemma (absorption):

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \geq 2$.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ | 코 | 2000

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

holds for $n > ht(T)$,

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ | 코 | 2000

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$ holds for $n > ht(T)$, where $ht(x) := 0$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

holds for $n > ht(T)$, where $ht(x) := 0$ and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

holds for $n > ht(T)$, where $ht(x) := 0$ and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

 \blacktriangleright Proof: Induction on T.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

holds for $n > ht(T)$, where $ht(x) := 0$ and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

 \triangleright Proof: Induction on T. For $T = x$, direct from the definitions.

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

holds for $n > ht(T)$, where $ht(x) := 0$ and $ht(T_1 \triangleright T_2) := max(ht(T_1), ht(T_2)) + 1$.

 \triangleright Proof: Induction on T. For $T = x$, direct from the definitions. Assume $T = T_1 \triangleright T_2$ and $n > \text{ht}(T)$.

A DIA K A B A B A B A DIA K B A VION

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

holds for $n > \text{ht}(T)$, where $\text{ht}(x) := 0$ and $\text{ht}(T_1 \triangleright T_2) := \max(\text{ht}(T_1), \text{ht}(T_2)) + 1$.

 \triangleright Proof: Induction on T. For $T = x$, direct from the definitions. Assume $T = T_1 \triangleright T_2$ and $n > \text{ht}(T)$. Then $n - 1 > \text{ht}(T_1)$ and $n - 1 > \text{ht}(T_2)$.
A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

holds for $n > \text{ht}(T)$, where $\text{ht}(x) := 0$ and $\text{ht}(T_1 \triangleright T_2) := \max(\text{ht}(T_1), \text{ht}(T_2)) + 1$.

 \triangleright Proof: Induction on T. For $T = x$, direct from the definitions. Assume $T = T_1 \triangleright T_2$ and $n > \text{ht}(T)$. Then $n - 1 > \text{ht}(T_1)$ and $n - 1 > \text{ht}(T_2)$. Then $x^{[n+1]} =$ so $T_1 \triangleright x$ by induction hypothesis for T_1

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

holds for $n > \text{ht}(T)$, where $\text{ht}(x) := 0$ and $\text{ht}(T_1 \triangleright T_2) := \max(\text{ht}(T_1), \text{ht}(T_2)) + 1$.

 \triangleright Proof: Induction on T. For $T = x$, direct from the definitions. Assume $T = T_1 \triangleright T_2$ and $n > \text{ht}(T)$. Then $n - 1 > \text{ht}(T_1)$ and $n - 1 > \text{ht}(T_2)$. Then $x^{[n+1]} =$ so $T_1 \triangleright x$ by induction hypothesis for T_1 $=$ _{SD} $T_1 \triangleright (T_2 \triangleright x^{[n-1]})$ by induction hypothesis for T_2

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

holds for $n > \text{ht}(T)$, where $\text{ht}(x) := 0$ and $\text{ht}(T_1 \triangleright T_2) := \max(\text{ht}(T_1), \text{ht}(T_2)) + 1$.

 \triangleright Proof: Induction on T. For $T = x$, direct from the definitions. Assume $T = T_1 \triangleright T_2$ and $n > ht(T)$. Then $n - 1 > ht(T_1)$ and $n - 1 > ht(T_2)$. Then $x^{[n+1]} =$ so $T_1 \triangleright x$ by induction hypothesis for T_1 $=_{SD}$ $T_1 \triangleright (T_2 \triangleright x^{[n-1]})$ by induction hypothesis for T_2 $=_{SD}$ $(T_1 \triangleright T_2) \triangleright (T_1 \triangleright x^{[n-1]})$ by applying SD

KEL KAR KELKER E VAN

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

holds for $n > \text{ht}(T)$, where $\text{ht}(x) := 0$ and $\text{ht}(T_1 \triangleright T_2) := \max(\text{ht}(T_1), \text{ht}(T_2)) + 1$.

 \triangleright Proof: Induction on T. For $T = x$, direct from the definitions. Assume $T = T_1 \triangleright T_2$ and $n > \text{ht}(T)$. Then $n - 1 > \text{ht}(T_1)$ and $n - 1 > \text{ht}(T_2)$. Then $x^{[n+1]} =$ so $T_1 \triangleright x$ by induction hypothesis for T_1 $=_{SD} T_1 \triangleright (T_2 \triangleright x^{[n-1]})$ by induction hypothesis for T_2 $=_{SD}$ $(T_1 \triangleright T_2) \triangleright (T_1 \triangleright x^{[n-1]})$ by applying SD $=\text{sn}(T_1 \triangleright T_2) \triangleright x^{[n]}$ by induction hypothesis for T_1

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

► Proof: Induction on *T*. For *T* = *x*, direct from the definitions.
\nAssume
$$
T = T_1 \triangleright T_2
$$
 and $n > ht(T)$. Then $n - 1 > ht(T_1)$ and $n - 1 > ht(T_2)$.
\nThen $x^{[n+1]} =_{S_D} T_1 \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $=_{S_D} T_1 \triangleright (T_2 \triangleright x^{[n-1]})$ by induction hypothesis for T_2
\n $=_{S_D} (T_1 \triangleright T_2) \triangleright (T_1 \triangleright x^{[n-1]})$ by induction hypothesis for T_2
\n $=_{S_D} (T_1 \triangleright T_2) \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $= T \triangleright x^{[n]}$.

K ロ > K 레 > K 코 > K 코 > 「코」 ◆ 9.4.0*

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

► Proof: Induction on *T*. For *T* = *x*, direct from the definitions.
\nAssume
$$
T = T_1 \triangleright T_2
$$
 and $n > ht(T)$. Then $n - 1 > ht(T_1)$ and $n - 1 > ht(T_2)$.
\nThen $x^{[n+1]} =_{S_D} T_1 \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $=_{S_D} T_1 \triangleright (T_2 \triangleright x^{[n-1]})$ by induction hypothesis for T_2
\n $=_{S_D} (T_1 \triangleright T_2) \triangleright (T_1 \triangleright x^{[n-1]})$ by induction hypothesis for T_1
\n $=_{S_D} (T_1 \triangleright T_2) \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $= T \triangleright x^{[n]}$.

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

► Proof: Induction on *T*. For *T* = *x*, direct from the definitions.
\nAssume
$$
T = T_1 \triangleright T_2
$$
 and $n > ht(T)$. Then $n - 1 > ht(T_1)$ and $n - 1 > ht(T_2)$.
\nThen $x^{[n+1]} =_{S_D} T_1 \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $=_{S_D} T_1 \triangleright (T_2 \triangleright x^{[n-1]})$ by induction hypothesis for T_2
\n $=_{S_D} (T_1 \triangleright T_2) \triangleright (T_1 \triangleright x^{[n-1]})$ by induction hypothesis for T_2
\n $=_{S_D} (T_1 \triangleright T_2) \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $= T \triangleright x^{[n]}$.

イロト イ押ト イヨト イヨト

 OQ

 \equiv

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

► Proof: Induction on *T*. For *T* = *x*, direct from the definitions.
\nAssume
$$
T = T_1 \triangleright T_2
$$
 and $n > ht(T)$. Then $n - 1 > ht(T_1)$ and $n - 1 > ht(T_2)$.
\nThen $x^{[n+1]} =_{S_D} T_1 \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $=_{S_D} T_1 \triangleright (T_2 \triangleright x^{[n-1]})$ by induction hypothesis for T_2
\n $=_{S_D} (T_1 \triangleright T_2) \triangleright (T_1 \triangleright x^{[n-1]})$ by induction hypothesis for T_2
\n $=_{S_D} (T_1 \triangleright T_2) \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $= T \triangleright x^{[n]}$.

 $\mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \oplus \mathcal{F} \rightarrow \mathcal{A} \oplus \mathcal{F} \rightarrow \mathcal{A} \oplus \mathcal{F}$

 OQ

 \equiv

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

► Proof: Induction on *T*. For *T* = *x*, direct from the definitions.
\nAssume
$$
T = T_1 \triangleright T_2
$$
 and $n > ht(T)$. Then $n - 1 > ht(T_1)$ and $n - 1 > ht(T_2)$.
\nThen $x^{[n+1]} =_{S_D} T_1 \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $=_{S_D} T_1 \triangleright (T_2 \triangleright x^{[n-1]})$ by induction hypothesis for T_2
\n $=_{S_D} (T_1 \triangleright T_2) \triangleright (T_1 \triangleright x^{[n-1]})$ by induction hypothesis for T_1
\n $=_{S_D} (T_1 \triangleright T_2) \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $= T \triangleright x^{[n]}$.

 \bullet <u>Lemma</u> (absorption): *Define* $x^{[1]} := x$ *and* $x^{[n]} := x \triangleright x^{[n-1]}$ for $n \ge 2$. For T in \mathcal{T}_x , $x^{[n+1]} =$ sp $T \triangleright x^{[n]}$

► Proof: Induction on *T*. For *T* = *x*, direct from the definitions.
\nAssume
$$
T = T_1 \triangleright T_2
$$
 and $n > ht(T)$. Then $n - 1 > ht(T_1)$ and $n - 1 > ht(T_2)$.
\nThen $x^{[n+1]} =_{SD} T_1 \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $=_{SD} T_1 \triangleright (T_2 \triangleright x^{[n-1]})$ by induction hypothesis for T_2
\n $=_{SD} (T_1 \triangleright T_2) \triangleright (T_1 \triangleright x^{[n-1]})$ by induction hypothesis for T_1
\n $=_{SD} (T_1 \triangleright T_2) \triangleright x^{[n]}$ by induction hypothesis for T_1
\n $= T \triangleright x^{[n]}$.

• <u>Lemma</u> (comparison I): *Write T* ϵ_{SD} *T'* for $\exists T''$ (*T'* ϵ_{SD} *T* \triangleright *T''*),

K ロ → K 伊 → K ミ → K ミ → ニ Ξ → K Q Q →

• <u>Lemma</u> (comparison 1): Write $T \subset_{SD} T'$ for $\exists T'' (T' =_{SD} T \triangleright T'')$, and \subset_{SD}^* for the transitive closure of E_{SD} .

• <u>Lemma</u> (comparison 1): Write $T \rvert_{S_D} T'$ for $\exists T''$ ($T' =_{SD} T \rvert_{S_D} T''$), and \rvert_{S_D} for the transitive closure of ϵ_{SD} . Then, for all T, T' in \mathcal{T}_x , one has at least one of

• <u>Lemma</u> (comparison 1): Write $T \rvert_{S_D} T'$ for $\exists T''$ ($T' =_{SD} T \rvert_{S_D} T''$), and \rvert_{S_D} for the transitive closure of ϵ_{SD} . Then, for all T, T' in \mathcal{T}_x , one has at least one of $T \subset_{SD}^* T'$,

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• <u>Lemma</u> (comparison 1): Write $T \rvert_{S_D} T'$ for $\exists T''$ ($T' =_{SD} T \rvert_{S_D} T''$), and \rvert_{S_D} for the transitive closure of ϵ_{SD} . Then, for all T, T' in \mathcal{T}_x , one has at least one of $T \subset_{SD}^* T'$, $T =_{SD} T'$,

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• <u>Lemma</u> (comparison 1): Write $T \rvert_{S_D} T'$ for $\exists T''$ ($T' =_{SD} T \rvert_{S_D} T''$), and \rvert_{S_D} for the transitive closure of ϵ_{SD} . Then, for all T, T' in \mathcal{T}_x , one has at least one of $\mathcal{T}\sqsubset_{\mathsf{SD}}^* \mathcal{T}', \quad \ \mathcal{T}=_{\mathsf{SD}} \mathcal{T}', \quad \ \mathcal{T}'\sqsubset_{\mathsf{SD}}^* \mathcal{T}.$

T

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

• <u>Lemma</u> (comparison 1): Write $T \rvert_{S_D} T'$ for $\exists T''$ ($T' =_{SD} T \rvert_{S_D} T''$), and \rvert_{S_D} for the transitive closure of ϵ_{SD} . Then, for all T, T' in \mathcal{T}_x , one has at least one of $\mathcal{T}\sqsubset_{\mathsf{SD}}^* \mathcal{T}', \quad \ \mathcal{T}=_{\mathsf{SD}} \mathcal{T}', \quad \ \mathcal{T}'\sqsubset_{\mathsf{SD}}^* \mathcal{T}.$

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

• <u>Lemma</u> (comparison 1): Write $T \rvert_{S_D} T'$ for $\exists T''$ ($T' =_{SD} T \rvert_{S_D} T''$), and \rvert_{S_D} for the transitive closure of ϵ_{SD} . Then, for all T, T' in \mathcal{T}_x , one has at least one of $\mathcal{T}\sqsubset_{\mathsf{SD}}^* \mathcal{T}', \quad \ \mathcal{T}=_{\mathsf{SD}} \mathcal{T}', \quad \ \mathcal{T}'\sqsubset_{\mathsf{SD}}^* \mathcal{T}.$

▶ Proof:

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

• <u>Lemma</u> (comparison 1): Write $T \rvert_{S_D} T'$ for $\exists T''$ ($T' =_{SD} T \rvert_{S_D} T''$), and \rvert_{S_D} for the transitive closure of ϵ_{SD} . Then, for all T, T' in \mathcal{T}_x , one has at least one of $\mathcal{T}\sqsubset_{\mathsf{SD}}^* \mathcal{T}', \quad \ \mathcal{T}=_{\mathsf{SD}} \mathcal{T}', \quad \ \mathcal{T}'\sqsubset_{\mathsf{SD}}^* \mathcal{T}.$

K ロ > K 레 > K 코 > K 코 > 「코」 ◆ 9.4.0*

• <u>Lemma</u> (comparison 1): Write $T \rvert_{S_D} T'$ for $\exists T''$ ($T' =_{SD} T \rvert_{S_D} T''$), and \rvert_{S_D} for the transitive closure of ϵ_{SD} . Then, for all T, T' in \mathcal{T}_x , one has at least one of $\mathcal{T}\sqsubset_{\mathsf{SD}}^* \mathcal{T}', \quad \ \mathcal{T}=_{\mathsf{SD}} \mathcal{T}', \quad \ \mathcal{T}'\sqsubset_{\mathsf{SD}}^* \mathcal{T}.$

▶ Proof:

▶ Proof:

▶ Proof:

▶ Proof:

• Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

• Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).

• Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

• Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).

• Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

 \blacktriangleright Proof: Assume S gen'd by g.

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.
	- ▶ Proof: Assume S gen'd by g. "S is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ".

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.
	- ▶ Proof: Assume S gen'd by g. "S is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.
	- ▶ Proof: Assume S gen'd by g. "S is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$ implies $T \rvert_{SD}^* T'$ or $T' \rvert_{SD}^* T$,

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.
	- ▶ Proof: Assume S gen'd by g. "S is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$ implies $T \rvert_{SD}^* T'$ or $T' \rvert_{SD}^* T$, whence $T(g) \rvert^* T'(g)$
- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.
	- ▶ Proof: Assume S gen'd by g. "S is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$ implies $T \rvert_{SD}^* T'$ or $T' \rvert_{SD}^* T$, whence $T(g) \rvert x^*$ $T'(g)$ or $T'(g) \rvert x^*$ $T(g)$.

KEL KAR KELKER E VAN

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.
	- ▶ Proof: Assume S gen'd by g. "S is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$ implies $T \rvert_{SD}^* T'$ or $T' \rvert_{SD}^* T$, whence $T(g) \rvert x^*$ $T'(g)$ or $T'(g) \rvert x^*$ $T(g)$. As \sqsubset has no cycle in S, both imply $T(g) \neq T'(g)$.

KEL KAR KELKER E VAN

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

▶ Proof: Assume S gen'd by g. "S is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$ implies $T \rvert_{SD}^* T'$ or $T' \rvert_{SD}^* T$, whence $T(g) \rvert x^*$ $T'(g)$ or $T'(g) \rvert x^*$ $T(g)$. As \sqsubset has no cycle in S, both imply $T(g) \neq T'(g)$.

• <u>Proposition</u>: If there exists at least one shelf with \subset acyclic, then \subset_{SD}^* has no cycle.

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

- <u>Proposition</u>: If there exists at least one shelf with \subset acyclic, then \subset_{SD}^* has no cycle.
	- And such examples do exist: 1. Iteration shelf (Laver, 1989);

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

- <u>Proposition</u>: If there exists at least one shelf with \subset acyclic, then \subset_{SD}^* has no cycle.
	- And such examples do exist: 1. Iteration shelf (Laver, 1989);
		- 2. Free shelf (Dehornoy, 1991);

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

- <u>Proposition</u>: If there exists at least one shelf with \subset acyclic, then \subset_{SD}^* has no cycle.
	- And such examples do exist: 1. Iteration shelf (Laver, 1989);
		- 2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).
- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

▶ Proof: Assume S gen'd by g. "S is free" means " $T \neq_{SD} T' \Rightarrow T(g) \neq T'(g)$ ". Now $T \neq_{SD} T'$ implies $T \rvert_{SD}^* T'$ or $T' \rvert_{SD}^* T$, whence $T(g) \rvert x^*$ $T'(g)$ or $T'(g) \rvert x^*$ $T(g)$. As \subseteq has no cycle in S, both imply $T(g) \neq T'(g)$. (g) .

- <u>Proposition</u>: If there exists at least one shelf with \subset acyclic, then \subset_{SD}^* has no cycle.
	- And such examples do exist: 1. Iteration shelf (Laver, 1989);
		- 2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

• Corollary: (solution of the wp of SD) Given two terms T, T' :

KEL KAR KELKER E VAN

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

- <u>Proposition</u>: If there exists at least one shelf with \subset acyclic, then \subset_{SD}^* has no cycle.
	- And such examples do exist: 1. Iteration shelf (Laver, 1989);
		- 2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).
- Corollary: (solution of the wp of SD) Given two terms T, T' :
	- ► Find a common LD-expansion T'' of $T \triangleright x^{[n]}$ and $T' \triangleright x^{[n]}$;
- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

- <u>Proposition</u>: If there exists at least one shelf with \subset acyclic, then \subset_{SD}^* has no cycle.
	- And such examples do exist: 1. Iteration shelf (Laver, 1989);
		- 2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).
- Corollary: (solution of the wp of SD) Given two terms T, T' :
	- ► Find a common LD-expansion T'' of $T \triangleright x^{[n]}$ and $T' \triangleright x^{[n]}$;
	- ► Find r and r' satisfying $T \rightarrow_{SD} \text{left}'(T'')$

KEL KAR KELKER E VAN

- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

- <u>Proposition</u>: If there exists at least one shelf with \subset acyclic, then \subset_{SD}^* has no cycle.
	- And such examples do exist: 1. Iteration shelf (Laver, 1989);
		- 2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).
- Corollary: (solution of the wp of SD) Given two terms T, T' :
	- ► Find a common LD-expansion T'' of $T \triangleright x^{[n]}$ and $T' \triangleright x^{[n]}$;
	- Find r and r' satisfying $T \rightarrow_{SD} \text{left}'(T'')$ and $T' \rightarrow_{SD} \text{left}'(T'')$.
- Application: If (S, \triangleright) is a monogenerated left-shelf, any two distinct elements of S are c^* -comparable (with c^* = transitive closure of c = iterated left divisibility).
- Proposition (freeness criterion): If (S, \triangleright) is a monogenerated left-shelf and \sqsubset has no cycle, then (S, \triangleright) is free.

- <u>Proposition</u>: If there exists at least one shelf with \subset acyclic, then \subset_{SD}^* has no cycle.
	- And such examples do exist: 1. Iteration shelf (Laver, 1989);
		- 2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).
- Corollary: (solution of the wp of SD) Given two terms T, T' :
	- ► Find a common LD-expansion T'' of $T \triangleright x^{[n]}$ and $T' \triangleright x^{[n]}$;
	- Find r and r' satisfying $T \rightarrow_{SD} \text{left}'(T'')$ and $T' \rightarrow_{SD} \text{left}'(T'')$.
	- Then $T =_{SD} T'$ iff $r = r'$.

K ロ > K 레 > K 로 > K 로 > 트로 - 9 Q @

• Definition: For α a binary address (= finite sequence of 0s and 1s),

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ".

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

• <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$ ► Follow the inductive proof of the absorption property:

 $\chi_{\mathsf{x}} := \mathsf{1}, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_\emptyset \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1}$. (∗)

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$ ► Follow the inductive proof of the absorption property:

 $\chi_{\mathsf{x}} := \mathsf{1}, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_\emptyset \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1}$. (∗)

• Next, identify relations in M_{SD} :

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$ ► Follow the inductive proof of the absorption property:

 $\chi_{\mathsf{x}} := \mathsf{1}, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_\emptyset \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1}$. (∗)

• Next, identify relations in M_{SD} : $SD_{11a}SD_{\alpha} = SD_{\alpha}SD_{11a}$

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$ \blacktriangleright Follow the inductive proof of the absorption property:

$$
\chi_x := 1, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1} \tag{*}
$$

• Next, identify relations in M_{SD} : $SD_{11\alpha}SD_{\alpha} = SD_{\alpha}SD_{11\alpha}$, $SD_{1\alpha}SD_{\alpha}SD_{1\alpha}SD_{0\alpha} = SD_{\alpha}SD_{1\alpha}SD_{\alpha}$, etc. $(**)$

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$ \blacktriangleright Follow the inductive proof of the absorption property:

$$
\chi_x := 1, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1} \tag{*}
$$

• Next, identify relations in M_{SD} :

 $SD_{11\alpha}SD_{\alpha} = SD_{\alpha}SD_{11\alpha}$, $SD_{1\alpha}SD_{\alpha}SD_{1\alpha}SD_{0\alpha} = SD_{\alpha}SD_{1\alpha}SD_{\alpha}$, etc. $(**)$

• When every SD_{α} s.t. α contains 0 is collapsed, only the SD_{11} . 1s remain.

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$ \blacktriangleright Follow the inductive proof of the absorption property:

$$
\chi_x := 1, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1} \tag{*}
$$

• Next, identify relations in M_{SD} : $\mathsf{SD}_{11\alpha}\mathsf{SD}_{\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{11\alpha}, \quad \mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{0\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}, \text{ etc.}$ (**) \blacktriangleright When every SD $_{\alpha}$ s.t. α contains 0 is collapsed, only the SD $_{11...1}$ s remain. ► Write σ_{i+1} for the image of SD $_{11...1}$, i times 1 . Then $(**)$ becomes $\sigma_j \sigma_j = \sigma_j \sigma_i$ for $|j - i| \geqslant 2$,

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$ \blacktriangleright Follow the inductive proof of the absorption property:

$$
\chi_x := 1, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1} \tag{*}
$$

• Next, identify relations in M_{SD} :

 $\mathsf{SD}_{11\alpha}\mathsf{SD}_{\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{11\alpha}, \quad \mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{0\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}, \text{ etc.}$ (**) \blacktriangleright When every SD $_{\alpha}$ s.t. α contains 0 is collapsed, only the SD $_{11...1}$ s remain. ► Write σ_{i+1} for the image of SD $_{11...1}$, i times 1 . Then $(**)$ becomes $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|j - i| \geqslant 2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for $|j - i| = 1$.

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$ \blacktriangleright Follow the inductive proof of the absorption property:

$$
\chi_x := 1, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1} \tag{*}
$$

• Next, identify relations in M_{SD} :

 $\mathsf{SD}_{11\alpha}\mathsf{SD}_{\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{11\alpha}, \quad \mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{0\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}, \text{ etc.}$ (**)

- \blacktriangleright When every SD $_{\alpha}$ s.t. α contains 0 is collapsed, only the SD $_{11...1}$ s remain.
- ► Write σ_{i+1} for the image of SD $_{11...1}$, i times 1 . Then $(**)$ becomes
	- $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|j i| \geqslant 2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for $|j i| = 1$.
	- ► The resulting quotient of M_{SD} is B_{∞} (!).

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$ \blacktriangleright Follow the inductive proof of the absorption property:

$$
\chi_x := 1, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1} \tag{*}
$$

• Next, identify relations in M_{SD} :

 $\mathsf{SD}_{11\alpha}\mathsf{SD}_{\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{11\alpha}, \quad \mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{0\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}, \text{ etc.}$ (**)

- \blacktriangleright When every SD $_{\alpha}$ s.t. α contains 0 is collapsed, only the SD $_{11...1}$ s remain.
- ► Write σ_{i+1} for the image of SD $_{11...1}$, i times 1 . Then $(**)$ becomes
	- $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|j i| \geqslant 2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for $|j i| = 1$.
- ► The resulting quotient of M_{SD} is B_{∞} (!).
- ► If ϕ maps $\mathcal T$ to $\mathcal T'$, then $\operatorname{\mathsf{sh}}_0(\phi)$ maps $\mathcal T \triangleright \mathsf{x}^{[n]}$ to $\mathcal T' \triangleright \mathsf{x}^{[n]},$

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$ \blacktriangleright Follow the inductive proof of the absorption property:

$$
\chi_x := 1, \quad \chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} := \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1} \tag{*}
$$

• Next, identify relations in M_{SD} :

 $\mathsf{SD}_{11\alpha}\mathsf{SD}_{\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{11\alpha}, \quad \mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{0\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}, \text{ etc.}$ (**)

- \blacktriangleright When every SD $_{\alpha}$ s.t. α contains 0 is collapsed, only the SD $_{11...1}$ s remain.
- ► Write σ_{i+1} for the image of SD $_{11...1}$, i times 1 . Then $(**)$ becomes
	- $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|j i| \geqslant 2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for $|j i| = 1$.
- ► The resulting quotient of M_{SD} is B_{∞} (!).
- ► If ϕ maps $\mathcal T$ to $\mathcal T'$, then $\operatorname{\mathsf{sh}}_0(\phi)$ maps $\mathcal T \triangleright \mathsf{x}^{[n]}$ to $\mathcal T' \triangleright \mathsf{x}^{[n]},$ so collapsing all sh₀(ϕ) must give an SD-operation on the quotient, i.e., on B_∞.

• Definition: For α a binary address (= finite sequence of 0s and 1s), let SD_{α} be the partial operator "apply SD in the expanding direction at address α ". The Thompson's monoid of SD is the monoid M_{SD} gen'd by all SD_{α} and their inverses.

- <u>Fact</u>: Two terms T, T' are SD-equivalent iff some element of M_{SD} maps T to T'.
- \bullet Now, for every term T , select an element χ_T of $\mathcal{M}_{\mathsf{SD}}$ that maps $x^{[n+1]}$ to $T\triangleright x^{[n]}.$ ► Follow the inductive proof of the absorption property:

$$
\chi_x := 1, \quad \chi_{T_1 \triangleright T_2} := \chi_{T_1} \cdot \text{sh}_1(\chi_{T_2}) \cdot \text{SD}_{\emptyset} \cdot \text{sh}_1(\chi_{T_1})^{-1} \tag{*}
$$

• Next, identify relations in M_{SD} :

 $\mathsf{SD}_{11\alpha}\mathsf{SD}_{\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{11\alpha}, \quad \mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{0\alpha} = \mathsf{SD}_{\alpha}\mathsf{SD}_{1\alpha}\mathsf{SD}_{\alpha}, \text{ etc.}$ (**)

- \blacktriangleright When every SD $_{\alpha}$ s.t. α contains 0 is collapsed, only the SD $_{11...1}$ s remain.
- ► Write σ_{i+1} for the image of SD $_{11...1}$, i times 1 . Then $(**)$ becomes
	- $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|j i| \geqslant 2$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for $|j i| = 1$.
- ► The resulting quotient of M_{SD} is B_{∞} (!).
- ► If ϕ maps $\mathcal T$ to $\mathcal T'$, then $\operatorname{\mathsf{sh}}_0(\phi)$ maps $\mathcal T \triangleright \mathsf{x}^{[n]}$ to $\mathcal T' \triangleright \mathsf{x}^{[n]},$ so collapsing all sh $_0(\phi)$ must give an SD-operation on the quotient, i.e., on B_∞ .
- $▶$ Its definition is the projection of $(*),$ i.e.,

 $a \triangleright b := a \cdot \operatorname{sh}(b) \cdot \sigma_i \cdot \operatorname{sh}(a)^{-1}$

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ │ 重 │ 約 Q Q ④

=SD 7→ χT¹ T1

 $=$ sd $\chi_{\mathcal{T}_1}$
 \mapsto T_1 $=$ sp $\mathsf{sh}_1(\chi_{\mathcal{T}_2} \to$ $\mathsf{sh}_1(\chi_{\mathcal{T}_2})$ τ_1 T_2

 $\mathcal{A} \Box \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \mathcal{A} \Box \overline{\partial} \rightarrow \Box \overline{\partial} \rightarrow \mathcal{O} \, \mathcal{A} \, \mathcal{O}$

=SD 7→ χT¹ T¹ =SD 7→ sh1(χT²) T¹ T² =SD 7→ SD∅ T¹ T² T¹

 $\mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \oplus \mathcal{F} \rightarrow \mathcal{A} \oplus \mathcal{F} \rightarrow \mathcal{A} \oplus \mathcal{F}$

 OQ

 \equiv

• The "magic" braid operation revisited:

whence $\chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} = \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1}^{-1}),$

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• The "magic" braid operation revisited:

$$
\left\langle \left\langle \gamma \right\rangle_{\substack{t \to 0 \\ t \to 0}}^{\chi_{\mathcal{T}_1}} \left\langle \gamma \right\rangle_{\substack{t \to 0 \\ t \to t \\ t}}^{\frac{\mathsf{sh}_1(\chi_{\mathcal{T}_2})}{t \to 0}} \left\langle \gamma \right\rangle_{\substack{t \to 0 \\ \mathcal{T}_1 \\ \eta_2}}^{\frac{\mathsf{SD}_0}{t \to 0}} \left\langle \gamma \right\rangle_{\substack{t \to 0 \\ \eta_1 \\ \eta_2}}^{\frac{\mathsf{Sh}_1(\chi_{\mathcal{T}_1})^{-1}}{t \to 0}} \left\langle \gamma \right\rangle_{\substack{t \to 0 \\ \eta_1 \\ \eta_2}}^{\frac{\mathsf{sh}_1(\chi_{\mathcal{T}_1})^{-1}}{t \to 0}} \left\langle \gamma \right\rangle_{\chi_{\mathcal{T}_1}}^{\eta_2} \left\langle \gamma \right\rangle_{\chi_{\mathcal{T}_2}}^{\eta_3} \left\langle \gamma \right\rangle_{\chi_{\mathcal{T}_2}}^{\eta_4} \left\langle \gamma \right\rangle_{\chi_{\mathcal{T}_2}}^{\eta_5} \left\langle \gamma \right\rangle_{\chi_{\mathcal{T}_2}}^{\eta_6} \left\langle \gamma \right\rangle_{\chi_{\mathcal{T}_2}}^{\eta_7} \left\langle \gamma \right\rangle_{\chi_{\mathcal{T}_2}}^{\eta_8} \left\langle \gamma \right\rangle_{\chi_{\mathcal{T}_2}}^{\eta_9} \left\langle \
$$

whence $\chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} = \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1}^{-1}),$

which projects to the braid operation.

• The "magic" braid operation revisited:

=SD 7→ χT¹ T¹ =SD 7→ sh1(χT²) T¹ T² =SD 7→ SD∅ T¹ T² T¹ =SD 7→ sh1(χT¹) −1 T¹ T² T

whence $\chi_{\mathcal{T}_1 \triangleright \mathcal{T}_2} = \chi_{\mathcal{T}_1} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_2}) \cdot \mathsf{SD}_{\emptyset} \cdot \mathsf{sh}_1(\chi_{\mathcal{T}_1}^{-1}),$

which projects to the braid operation.

.../...

• See more in [P.D., Braids and selfdistributivity, PM192, Birkhaüser (1999)]

Plan:

- Minicourse L. The SD-world
	- 1. A general introduction
		- Classical and exotic examples
		- Connection with topology: quandles, racks, and shelves
		- A chart of the SD-world
	- 2. The word problem of SD: a semantic solution
		- Braid groups
		- The braid shelf
		- A freeness criterion
	- 3. The word problem of SD: a syntactic solution
		- The free monogenerated shelf
		- The comparison property
		- The Thompson's monoid of SD
- Minicourse II. Connection with set theory
	- 1. The set-theoretic shelf
		- Large cardinals and elementary embeddings

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

- The iteration shelf
- 2. Periods in Laver tables
	- Quotients of the iteration shelf
	- The dictionary
	- Results about periods

K ロ > K 御 > K 差 > K 差 > → 差 → の Q Q <

• Set theory is the theory of infinities.

イロト 4 母 ト 4 ミト 4 ミト - ミー り 9 Q Q*

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.
	- \blacktriangleright Typical example: axioms of large cardinal $=$ solutions of

super-infinite infinite

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.
	- \blacktriangleright Typical example: axioms of large cardinal $=$ solutions of

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.
	- \blacktriangleright Typical example: axioms of large cardinal $=$ solutions of

infinite

 $\frac{\text{super-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{infinite}}$ finite

 $A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box C \rightarrow A \Box C$

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.
	- \blacktriangleright Typical example: axioms of large cardinal $=$ solutions of

infinite

 $\frac{\text{super-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{infinite}}$ **finite**

 $A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box C \rightarrow A \Box C$

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.
	- \blacktriangleright Typical example: axioms of large cardinal $=$ solutions of

 \triangleright Set theory (as opposed to number theory) begins

when "there exists an infinite set" is in the base axioms:

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.
	- \blacktriangleright Typical example: axioms of large cardinal $=$ solutions of

super-infinite _— _infinite $\frac{1}{\text{infinite}}$ = $\frac{\text{minimize}}{\text{finite}}$

- \triangleright Set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms:
- ▶ Repeat the process with "super-infinite".

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.
	- \triangleright Typical example: axioms of large cardinal $=$ solutions of

- \triangleright Set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms:
- \blacktriangleright Repeat the process with "super-infinite".
- Principle: self-similar implies large
	- ► X infinite: $\exists j : X \rightarrow X$ (*j* injective not bijective)

KEL KAR KELKER E VAN

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.
	- \triangleright Typical example: axioms of large cardinal $=$ solutions of

- \triangleright Set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms:
- \blacktriangleright Repeat the process with "super-infinite".
- Principle: self-similar implies large
	- ► X infinite: $\exists j : X \rightarrow X$ (*j* injective not bijective)
	- ► X super-infinite: $\exists j : X \rightarrow X$ (*j* inject. not biject. preserving all \in -definable notions)

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.
	- \triangleright Typical example: axioms of large cardinal $=$ solutions of

- \triangleright Set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms:
- \blacktriangleright Repeat the process with "super-infinite".
- Principle: self-similar implies large
	- ► X infinite: $\exists j : X \rightarrow X$ (*j* injective not bijective)
	- ▶ X super-infinite: $\exists j : X \rightarrow X$ (*j* inject. not biject. preserving all \in -definable notions) ↑

an elementary embedding of λ

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.
	- \triangleright Typical example: axioms of large cardinal $=$ solutions of

- \triangleright Set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms;
- \blacktriangleright Repeat the process with "super-infinite".
- Principle: self-similar implies large
	- ► X infinite: $\exists j : X \rightarrow X$ (*j* injective not bijective)
	- ▶ X super-infinite: $\exists j : X \rightarrow X$ (*j* inject. not biject. preserving all \in -definable notions) ↑ an elementary embedding of λ
- Example: N is not super-infinite.

- Set theory is the theory of infinities.
- The standard axiomatic system ZF is (very) incomplete (Gödel, Cohen).
	- \blacktriangleright Identify further properties of infinite sets $=$ explore further axioms.
	- \triangleright Typical example: axioms of large cardinal $=$ solutions of

- \triangleright Set theory (as opposed to number theory) begins when "there exists an infinite set" is in the base axioms:
- \blacktriangleright Repeat the process with "super-infinite".
- Principle: self-similar implies large
	- ► X infinite: $\exists j : X \rightarrow X$ (*j* injective not bijective)
	- ▶ X super-infinite: $\exists j : X \rightarrow X$ (*j* inject. not biject. preserving all \in -definable notions) ↑ an elementary embedding of λ
- Example: N is not super-infinite.
	- \triangleright A super-infinite set must be so large that it contains undefinable elements (since all definable elements must be fixed).

K ロ > K 御 > K 差 > K 差 > → 差 → の Q Q <

• Fact: There is a canonical filtration of sets by the sets V_{α} , α an ordinal,

• Fact: There is a canonical filtration of sets by the sets V_{α} , α an ordinal, def'd by $V_0 := \emptyset$,

• Fact: There is a canonical filtration of sets by the sets V_{α} , α an ordinal, def'd by $V_0 := \emptyset$, $V_{\alpha+1} := \mathfrak{P}(V_{\alpha})$,

(ロ) (日) (모) (모) (모) 및 990

(ロ) (日) (모) (모) (모) 및 990

• Fact: There is a canonical filtration of sets by the sets V_{α} , α an ordinal, def'd by $V_0 := \emptyset$, $V_{\alpha+1} := \mathfrak{P}(V_{\alpha})$, $V_{\lambda} := \bigcup_{\alpha < \lambda} V_{\alpha}$ for λ limit.

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \to V_{\lambda}$,

K ロ > K 레 > K 코 > K 코 > 「코」 ◆ 9.4.0*

• <u>Fact</u>: There is a canonical filtration of sets by the sets V_α , α an ordinal, def'd by $V_0 := \emptyset$, $V_{\alpha+1} := \mathfrak{P}(V_{\alpha})$, $V_{\lambda} := \bigcup_{\alpha < \lambda} V_{\alpha}$ for λ limit.

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \to V_{\lambda}$, then $f = \bigcup_{\alpha < \lambda} f \cap V_{\alpha}^2$

• <u>Fact</u>: There is a canonical filtration of sets by the sets V_α , α an ordinal, def'd by $V_0 := \emptyset$, $V_{\alpha+1} := \mathfrak{P}(V_{\alpha})$, $V_{\lambda} := \bigcup_{\alpha < \lambda} V_{\alpha}$ for λ limit.

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \to V_{\lambda}$, then $f=\bigcup_{\alpha<\lambda}f\cap V_{\alpha}^2$ and $f\cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha<\lambda.$

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \to V_{\lambda}$, then $f=\bigcup_{\alpha<\lambda}f\cap V_{\alpha}^2$ and $f\cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha<\lambda.$

► Proof: Every element of V_{λ} belongs to some V_{α} with $\alpha < \lambda$;

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \to V_{\lambda}$, then $f=\bigcup_{\alpha<\lambda}f\cap V_{\alpha}^2$ and $f\cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha<\lambda.$

► Proof: Every element of V_λ belongs to some V_α with $\alpha < \lambda$; The set $f \cap V_\alpha^2$ is included in V_α^2 ,

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \to V_{\lambda}$, then $f=\bigcup_{\alpha<\lambda}f\cap V_{\alpha}^2$ and $f\cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha<\lambda.$

► Proof: Every element of V_λ belongs to some V_α with $\alpha < \lambda$; The set $f \cap V_\alpha^2$ is included in V_α^2 , hence in $V_{\alpha+2}$,

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \to V_{\lambda}$, then $f=\bigcup_{\alpha<\lambda}f\cap V_{\alpha}^2$ and $f\cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha<\lambda.$

► Proof: Every element of V_λ belongs to some V_α with $\alpha < \lambda$; The set $f \cap V_\alpha^2$ is included in V^2_{α} , hence in $V_{\alpha+2}$, hence it belongs to $V_{\alpha+3}$,

• Fact: If λ is a limit ordinal and $f: V_{\lambda} \to V_{\lambda}$, then $f=\bigcup_{\alpha<\lambda}f\cap V_{\alpha}^2$ and $f\cap V_{\alpha}^2$ belongs to V_{λ} for every $\alpha<\lambda.$

► Proof: Every element of V_λ belongs to some V_α with $\alpha < \lambda$; The set $f \cap V_\alpha^2$ is included in V^2_{α} , hence in $V_{\alpha+2}$, hence it belongs to $V_{\alpha+3}$, hence to V_{λ} . • Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite",

• Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.

(ロ) (日) (모) (모) (모) 및 990

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}
- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

(hence a Laver cardinal).

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

(hence a Laver cardinal).

KEL KAR KELKER E VAN

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $j(\alpha) > \alpha$.

KEL KAR KELKER E VAN

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geq \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$:
- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ}

(hence a Laver cardinal).

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イ) Q (^

- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geq \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
KEL KAR KELKER E VAN

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite", i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$
- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$

- Definition: A Laver cardinal is a cardinal λ s.t. the set V_{λ} is "super-infinite". i.e., there exists a non-surjective elementary embedding from V_{λ} to itself.
- Fact: If there exists a super-infinite set, there exists a super-infinite set V_{λ} (hence a Laver cardinal).
- Fact: Assume $j: V_{\lambda} \to V_{\lambda}$ witnesses that λ is a Laver cardinal.
	- \blacktriangleright The map j sends every ordinal α to an ordinal $\geqslant \alpha$.
	- \blacktriangleright There exists an ordinal α satisfying $i(\alpha) > \alpha$.
	- \blacktriangleright There exists a smallest ordinal κ satisfying $j(\kappa) > \kappa$: the "critical ordinal" of j.
	- One necessarily has $\lambda = \sup_n j^n(\text{crit}(j)).$

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ ,

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps,

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself.

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[i]$ is an elementary embedding.

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[i]$ is an elementary embedding. "Being the image of" is definable,

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[i]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$,

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[i]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$:

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[j[k]] = i[j][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $crit(i \circ i) = crit(i),$

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(i)$.

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(i)$. For $\alpha < \kappa$, $i(\alpha) = \alpha$,

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(i)$. For $\alpha < \kappa$, $i(\alpha) = \alpha$, hence $i(i(\alpha)) = \alpha$,

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(i)$. For $\alpha < \kappa$, $i(\alpha) = \alpha$, hence $i(i(\alpha)) = \alpha$, whereas

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(j)$. For $\alpha < \kappa$, $j(\alpha) = \alpha$, hence $j(j(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$,

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[i]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(j)$. For $\alpha < \kappa$, $j(\alpha) = \alpha$, hence $j(j(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa)$

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[i]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(j)$. For $\alpha < \kappa$, $i(\alpha) = \alpha$, hence $i(i(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa) > \kappa$.

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(i)$. For $\alpha < \kappa$, $i(\alpha) = \alpha$, hence $i(i(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa) > \kappa$. We deduce crit $(j \circ j) = \kappa$. • If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(j)$. For $\alpha < \kappa$, $i(\alpha) = \alpha$, hence $i(i(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa) > \kappa$. We deduce crit $(j \circ j) = \kappa$. On the other hand, $\forall \alpha \lt \kappa$ ($j(\alpha) = \alpha$)

• If λ is a Laver cardinal, let E_{λ} be the family of all non-trivial (= non-surjective) elementary embeddings from V_{λ} to itself (which is nonempty).

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_{λ} , and $(E_{\lambda}, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[i]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(j)$. For $\alpha < \kappa$, $i(\alpha) = \alpha$, hence $i(i(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa) > \kappa$. We deduce crit $(j \circ j) = \kappa$. On the other hand, $\forall \alpha \lt \kappa$ $(j(\alpha) = \alpha)$ implies $\forall \alpha \lt j(\kappa)$ $(j[j](\alpha) = \alpha)$,
• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_λ , and $(E_\lambda, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[j]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(j)$. For $\alpha < \kappa$, $i(\alpha) = \alpha$, hence $i(i(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa) > \kappa$. We deduce crit(j \circ j) = κ . On the other hand, $\forall \alpha < \kappa$ ($j(\alpha) = \alpha$) implies $\forall \alpha < j(\kappa)$ ($j[j](\alpha) = \alpha$), whereas $j(\kappa) > \kappa$

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_λ , and $(E_\lambda, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[i]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(j)$. For $\alpha < \kappa$, $i(\alpha) = \alpha$, hence $i(i(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa) > \kappa$. We deduce crit(j \circ j) = κ . On the other hand, $\forall \alpha < \kappa$ ($j(\alpha) = \alpha$) implies $\forall \alpha < j(\kappa)$ ($j[j](\alpha) = \alpha$), whereas $j(\kappa) > \kappa$ implies $j[j](j(\kappa)) > j(\kappa)$.

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_λ , and $(E_\lambda, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[i]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(j)$. For $\alpha < \kappa$, $i(\alpha) = \alpha$, hence $i(i(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa) > \kappa$. We deduce crit(j \circ j) = κ . On the other hand, $\forall \alpha < \kappa$ ($j(\alpha) = \alpha$) implies $\forall \alpha < j(\kappa)$ ($j[j](\alpha) = \alpha$), whereas $j(\kappa) > \kappa$ implies $j[j](j(\kappa)) > j(\kappa)$. We deduce crit(j[j]) = j(κ)

• Definition: For i, j in E_{λ} , the result of applying i to j is $i[j] := \bigcup_{\alpha < \lambda} i(j \cap V_{\alpha}^2).$

• Lemma: The map $(i, j) \mapsto i[j]$ is a binary operation on E_λ , and $(E_\lambda, -[-])$ is a left-shelf.

► Proof: The sets $j \cap V_\alpha^2$ belong to V_λ , and are pairwise compatible partial maps, hence so are the sets $i(j\cap V_\alpha^2)$: so $i[j]$ is a map from V_λ to itself. "Being an elementary embedding" is definable, hence $i[i]$ is an elementary embedding. "Being the image of" is definable, hence $\ell = j[k]$ implies $i[\ell] = i[j][i[k]]$, i.e., $i[i[k]] = i[i][i[k]]$: the left SD law. \square

• Attention! Application is not composition:

 $\text{crit}(i \circ i) = \text{crit}(i), \quad \text{but} \quad \text{crit}(i|i) > \text{crit}(i).$ Proof: Let $\kappa := \text{crit}(j)$. For $\alpha < \kappa$, $i(\alpha) = \alpha$, hence $i(i(\alpha)) = \alpha$, whereas $j(\kappa) > \kappa$, hence $j(j(\kappa)) > j(\kappa) > \kappa$. We deduce crit $(j \circ j) = \kappa$. On the other hand, $\forall \alpha < \kappa$ ($j(\alpha) = \alpha$) implies $\forall \alpha < j(\kappa)$ ($j[j](\alpha) = \alpha$), whereas $j(\kappa) > \kappa$ implies $j[j](j(\kappa)) > j(\kappa)$. We deduce crit(j[j]) = $j(\kappa) > \kappa$.

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• Proposition: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf $\text{Iter}(j)$.

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

• Proposition: If j is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf $\text{Iter}(j)$.

> ↑ closure of $\{j\}$ under the "application" operation: $j[j],\,j[j][j]$...

• Proposition: If *j* is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf lter(j).

> ↑ closure of $\{j\}$ under the "application" operation: $j[j],\,j[j][j]$...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then \sqsubset has no cycle in Iter(i);

• Proposition: If *j* is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf lter(j).

> ↑ closure of $\{j\}$ under the "application" operation: $j[j],\,j[j][j]$...

• Proposition: If *j* is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf $\text{Iter}(j)$.

> ↑ closure of $\{j\}$ under the "application" operation: $j[j],\,j[j][j]$...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then \sqsubset has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

 \blacktriangleright A realization (the "set-theoretic realization") of the free (left)-shelf,

• Proposition: If *j* is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf $\text{Iter}(j)$.

> ↑ closure of $\{j\}$ under the "application" operation: $j[j],\,j[j][j]$...

- \blacktriangleright A realization (the "set-theoretic realization") of the free (left)-shelf,
- ► ...plus a proof of that a shelf with acyclic Γ exists,

KEL KAR KELKER E VAN

• Proposition: If *j* is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf $\text{Iter}(j)$.

> ↑ closure of $\{j\}$ under the "application" operation: $j[j],\,j[j][j]$...

- \blacktriangleright A realization (the "set-theoretic realization") of the free (left)-shelf,
- ► ...plus a proof of that a shelf with acyclic Γ exists,
- \triangleright ...whence a proof that \sqsubset_{SD} is acyclic on \mathcal{T}_x ,

KEL KAR KELKER E VAN

• Proposition: If *j* is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf $\text{Iter}(j)$.

> ↑ closure of $\{j\}$ under the "application" operation: $j[j],\,j[j][j]$...

- \blacktriangleright A realization (the "set-theoretic realization") of the free (left)-shelf,
- ► ...plus a proof of that a shelf with acyclic Γ exists,
- \triangleright ...whence a proof that \sqsubset_{SD} is acyclic on \mathcal{T}_x ,
- ► ...whence a solution for the word problem of SD

• Proposition: If *j* is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of j make a left-shelf $\text{Iter}(j)$.

> ↑ closure of $\{j\}$ under the "application" operation: $j[j],\,j[j][j]$...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then \sqsubset has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

- \blacktriangleright A realization (the "set-theoretic realization") of the free (left)-shelf,
- ► ...plus a proof of that a shelf with acyclic Γ exists,
- \triangleright ...whence a proof that \sqsubset_{SD} is acyclic on \mathcal{T}_x ,
- ► ...whence a solution for the word problem of SD

(because both $=_\text{SD}$ and \sqsubset^*_SD are semi-decidable).

• Proposition: If *j* is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of i make a left-shelf $\text{Iter}(i)$.

> ↑ closure of $\{j\}$ under the "application" operation: $j[j],\,j[j][j]$...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then \sqsubset has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

- \blacktriangleright A realization (the "set-theoretic realization") of the free (left)-shelf,
- ◮ ...plus a proof of that a shelf with acyclic ⊏ exists,
- \triangleright ...whence a proof that \sqsubset_{SD} is acyclic on \mathcal{T}_x ,
- ► ...whence a solution for the word problem of SD

(because both $=_\text{SD}$ and \sqsubset^*_SD are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists.

• Proposition: If *j* is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of i make a left-shelf $\text{Iter}(i)$.

> ↑ closure of $\{j\}$ under the "application" operation: $j[j],\,j[j][j]$...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then \sqsubset has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

- \blacktriangleright A realization (the "set-theoretic realization") of the free (left)-shelf,
- ► ...plus a proof of that a shelf with acyclic Γ exists,
- \triangleright ...whence a proof that \sqsubset_{SD} is acyclic on \mathcal{T}_x ,
- ► ...whence a solution for the word problem of SD

(because both $=_\text{SD}$ and \sqsubset^*_SD are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists. \rightarrow motivation for finding another proof/another realization... • Proposition: If *j* is a nontrivial elementary embedding from V_{λ} to itself, then the iterates of i make a left-shelf $\text{Iter}(i)$.

> ↑ closure of $\{j\}$ under the "application" operation: $j[j],\,j[j][j]$...

• Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V_{λ} to itself, then \sqsubset has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

- \blacktriangleright A realization (the "set-theoretic realization") of the free (left)-shelf,
- ► ...plus a proof of that a shelf with acyclic Γ exists,
- \triangleright ...whence a proof that \sqsubset_{SD} is acyclic on \mathcal{T}_x ,
- ► ...whence a solution for the word problem of SD

(because both $=_\text{SD}$ and \sqsubset^*_SD are semi-decidable).

but all this under the (unprovable) assumption that a Laver cardinal exists. \rightarrow motivation for finding another proof/another realization...

Plan:

• Minicourse L. The SD-world

- 1. A general introduction
	- Classical and exotic examples
	- Connection with topology: quandles, racks, and shelves
	- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
	- Braid groups
	- The braid shelf
	- A freeness criterion
- 3. The word problem of SD: a syntactic solution
	- The free monogenerated shelf
	- The comparison property
	- The Thompson's monoid of SD

• Minicourse II. Connection with set theory

- 1. The set-theoretic shelf
	- Large cardinals and elementary embeddings

A ロナ イ何 メ ミ ト マ ヨ メ ニ ヨ ー イタベ

- The iteration shelf
- 2. Periods in Laver tables
	- Quotients of the iteration shelf
	- The dictionary
	- Results about periods

 \bullet <u>Notation</u>: ("left powers") $j_{[p]}:=j[j][j]...[j]$, p times j .

K ロ ▶ K (日) → K 글 → K 글 → N 글 → 9 Q (V

- \bullet <u>Notation</u>: ("left powers") $j_{[p]}:=j[j][j]...[j]$, p times j .
- Definition: For *j* in E_{λ} , $\text{crit}_n(j)$: = the $(n + 1)$ st ordinal (from bottom) in $\{\text{crit}(i) \mid i \in \text{Iter}(j)\}.$

- \bullet <u>Notation</u>: ("left powers") $j_{[p]}:=j[j][j]...[j]$, p times j .
- Definition: For j in E_{λ} , $\text{crit}_n(j)$: = the $(n + 1)$ st ordinal (from bottom) in $\{\text{crit}(i) \mid i \in \text{Iter}(j)\}.$
	- \triangleright One can show crit₀(j) = crit(j), crit₁(j) = crit(j[j]), crit₂(j) = crit(j[j][j][j]), etc.

 $A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow \Box B \rightarrow A \Box C \$

- \bullet <u>Notation</u>: ("left powers") $j_{[p]}:=j[j][j]...[j]$, p times j .
- Definition: For j in E_{λ} , $\operatorname{crit}_n(j)$: = the $(n + 1)$ st ordinal (from bottom) in $\{\operatorname{crit}(i) \mid i \in \operatorname{Iter}(j)\}.$ \triangleright One can show crit₀(j) = crit(j), crit₁(j) = crit(j[j]), crit₂(j) = crit(j[j][j][j]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let j belong to E_{λ} .

- \bullet <u>Notation</u>: ("left powers") $j_{[p]}:=j[j][j]...[j]$, p times j .
- Definition: For j in E_{λ} , $\text{crit}_n(i) = \text{the } (n + 1)\text{st ordinal (from bottom) in } \{\text{crit}(i) | i \in \text{Iter}(i)\}.$ \triangleright One can show crit₀(j) = crit(j), crit₁(j) = crit(j[j]), crit₂(j) = crit(j[j][j][j]]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let *i* belong to E_{λ} . For i, i' in Iter(j) and $\gamma < \lambda$, declare i \equiv_γ i' ("i and i' agree up to γ ") in $\forall x \in V_{\gamma}$ $(i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma})$.

 \bullet <u>Notation</u>: ("left powers") $j_{[p]}:=j[j][j]...[j]$, p times j .

```
• Definition: For j in E_\lambda,
 \text{crit}_n(i) = \text{the } (n + 1)\text{st ordinal (from bottom) in } \{\text{crit}(i) | i \in \text{Iter}(i)\}.\triangleright One can show crit<sub>0</sub>(j) = crit(j), crit<sub>1</sub>(j) = crit(j[j]), crit<sub>2</sub>(j) = crit(j[j][j][j]]), etc.
```
• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let *i* belong to E_{λ} . For i, i' in Iter(j) and $\gamma < \lambda$, declare i \equiv_γ i' ("i and i' agree up to γ ") in $\forall x \in V_{\gamma}$ $(i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma})$. Then $\equiv_{\text{crit}_n(i)}$ is a congruence on Iter(j),

 \bullet <u>Notation</u>: ("left powers") $j_{[p]}:=j[j][j]...[j]$, p times j .

```
• Definition: For j in E_\lambda,
 \text{crit}_n(i) = \text{the } (n + 1)\text{st ordinal (from bottom) in } \{\text{crit}(i) | i \in \text{Iter}(i)\}.\triangleright One can show crit<sub>0</sub>(j) = crit(j), crit<sub>1</sub>(j) = crit(j[j]), crit<sub>2</sub>(j) = crit(j[j][j][j]]), etc.
```
• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let *i* belong to E_{λ} . For i, i' in Iter(j) and $\gamma < \lambda$, declare i \equiv_γ i' ("i and i' agree up to γ ") in $\forall x \in V_{\gamma}$ $(i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma})$. Then $\equiv_{\operatorname{crit}_n(j)}$ is a congruence on $\operatorname{Iter}(j)$, it has 2^n classes,

 \bullet <u>Notation</u>: ("left powers") $j_{[p]}:=j[j][j]...[j]$, p times j .

```
• Definition: For j in E_\lambda,
 \text{crit}_n(i) = \text{the } (n + 1)\text{st ordinal (from bottom) in } \{\text{crit}(i) | i \in \text{Iter}(i)\}.\triangleright One can show crit<sub>0</sub>(j) = crit(j), crit<sub>1</sub>(j) = crit(j[j]), crit<sub>2</sub>(j) = crit(j[j][j][j]]), etc.
```
• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let *i* belong to E_{λ} . For i, i' in Iter(j) and $\gamma < \lambda$, declare i \equiv_γ i' ("i and i' agree up to γ ") in $\forall x \in V_{\gamma}$ $(i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma})$. Then $\equiv_{\operatorname{crit}_n(j)}$ is a congruence on $\operatorname{Iter}(j)$, it has 2^n classes, which are those of $j, j_{[2]},...,j_{[2^n]},$

- \bullet <u>Notation</u>: ("left powers") $j_{[p]}:=j[j][j]...[j]$, p times j .
- Definition: For *j* in E_{λ} , $\text{crit}_n(i) = \text{the } (n + 1)\text{st ordinal (from bottom) in } \{\text{crit}(i) | i \in \text{Iter}(i)\}.$ \triangleright One can show crit₀(j) = crit(j), crit₁(j) = crit(j[j]), crit₂(j) = crit(j[j][j][j]]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let *i* belong to E_{λ} . For i, i' in Iter(j) and $\gamma < \lambda$, declare i \equiv_γ i' ("i and i' agree up to γ ") in $\forall x \in V_{\gamma}$ $(i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma})$. Then $\equiv_{\operatorname{crit}_n(j)}$ is a congruence on $\operatorname{Iter}(j)$, it has 2^n classes, which are those of $j, j_{[2]},...,j_{[2^n]}$, the latter also being the class of id.

- \bullet <u>Notation</u>: ("left powers") $j_{[p]}:=j[j][j]...[j]$, p times j .
- Definition: For *j* in E_{λ} , $\text{crit}_n(i) = \text{the } (n + 1)\text{st ordinal (from bottom) in } \{\text{crit}(i) | i \in \text{Iter}(i)\}.$ \triangleright One can show crit₀(j) = crit(j), crit₁(j) = crit(j[j]), crit₂(j) = crit(j[j][j][j]), etc.

• Proposition (Laver, 1994): Assume that λ is a Laver cardinal. Let *i* belong to E_{λ} . For i, i' in Iter(j) and $\gamma < \lambda$, declare i \equiv_γ i' ("i and i' agree up to γ ") in $\forall x \in V_{\gamma}$ $(i(x) \cap V_{\gamma} = i'(x) \cap V_{\gamma})$. Then $\equiv_{\operatorname{crit}_n(j)}$ is a congruence on $\operatorname{Iter}(j)$, it has 2^n classes, which are those of $j, j_{[2]},...,j_{[2^n]}$, the latter also being the class of id.

▶ Proof: (Difficult...) Starts from $j \equiv_{\text{crit}(i)} i[j]$ and similar. Uses in particular crit(j_[m]) = crit_n(j) with *n* maximal s.t. 2^n divides *m*.

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$

 $A \cup B \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup B \cup B$

• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p=1_{[p]}$ for $p\leqslant 2^n$

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leqslant 2^n$ and $2^n \triangleright 1 = 1$.

 $\mathcal{A} \square \vdash \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{A} \boxplus \mathcal{P} \rightarrow \mathcal{P} \boxplus \mathcal{P} \rightarrow \mathcal{Q} \boxtimes \mathcal{Q}$

• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leqslant 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0,...,2^{n}\!-\!1\}$) satisfying $p=1_{[p]}$ mod 2^{n} for $p\leqslant 2^{n}$ and $0\triangleright 1=1)$

• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leqslant 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0,...,2^{n}\!-\!1\}$) satisfying $p=1_{[p]}$ mod 2^{n} for $p\leqslant 2^{n}$ and $0\triangleright 1=1)$

• Corollary: The quotient-structure $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is (isomorphic to) the table A_n .

• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leqslant 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0,...,2^{n}\!-\!1\}$) satisfying $p=1_{[p]}$ mod 2^{n} for $p\leqslant 2^{n}$ and $0\triangleright 1=1)$

• Corollary: The quotient-structure $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is (isomorphic to) the table A_n . ▶ Proof: Write p for the $\equiv_{\operatorname{crit}_n(j)}$ -class of $j_{[p]}.$

• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leqslant 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0,...,2^{n}\!-\!1\}$) satisfying $p=1_{[p]}$ mod 2^{n} for $p\leqslant 2^{n}$ and $0\triangleright 1=1)$

• Corollary: The quotient-structure $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is (isomorphic to) the table A_n . ▶ Proof: Write p for the $\equiv_{\operatorname{crit}_p(j)}$ -class of $j_{[p]}.$ The proposition says that $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is a left-shelf whose domain is $\{1,...,2^n\};$

• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leqslant 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0,...,2^{n}\!-\!1\}$) satisfying $p=1_{[p]}$ mod 2^{n} for $p\leqslant 2^{n}$ and $0\triangleright 1=1)$

• Corollary: The quotient-structure $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is (isomorphic to) the table A_n .

▶ Proof: Write p for the $\equiv_{\operatorname{crit}_p(j)}$ -class of $j_{[p]}.$ The proposition says that $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is a left-shelf whose domain is $\{1,...,2^n\};$ By construction, $p = 1_{[p]}$ holds for $p \leqslant 2^n$.

KEL KAR KELKER E VAN

• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leqslant 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0,...,2^{n}\!-\!1\}$) satisfying $p=1_{[p]}$ mod 2^{n} for $p\leqslant 2^{n}$ and $0\triangleright 1=1)$

• Corollary: The quotient-structure $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is (isomorphic to) the table A_n .

▶ Proof: Write p for the $\equiv_{\operatorname{crit}_p(j)}$ -class of $j_{[p]}.$ The proposition says that $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is a left-shelf whose domain is $\{1,...,2^n\};$ By construction, $p = 1_{[p]}$ holds for $p \leqslant 2^n$. Then $j_{[2^n]} \equiv_{\text{crit}_n(i)}$ id implies $j_{[2^n+1]} \equiv_{\text{crit}_n(i)} j$,
• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leqslant 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0,...,2^{n}\!-\!1\}$) satisfying $p=1_{[p]}$ mod 2^{n} for $p\leqslant 2^{n}$ and $0\triangleright 1=1)$

• Corollary: The quotient-structure $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is (isomorphic to) the table A_n .

▶ Proof: Write p for the $\equiv_{\operatorname{crit}_p(j)}$ -class of $j_{[p]}.$ The proposition says that $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is a left-shelf whose domain is $\{1,...,2^n\};$ By construction, $p = 1_{[p]}$ holds for $p \leqslant 2^n$. Then $j_{[2^n]} \equiv_{\text{crit}_n(i)}$ id implies $j_{[2^n+1]} \equiv_{\text{crit}_n(i)} j$, whence $2^n \triangleright 1 = 1$ in the quotient. \Box

• Recall: The Laver table A_n is the unique left-shelf on $\{1, ..., 2^n\}$ satisfying $p = 1_{[p]}$ for $p \leqslant 2^n$ and $2^n \triangleright 1 = 1$. (or, equivalently, on $\{0,...,2^{n}\!-\!1\}$) satisfying $p=1_{[p]}$ mod 2^{n} for $p\leqslant 2^{n}$ and $0\triangleright 1=1)$

• Corollary: The quotient-structure $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is (isomorphic to) the table A_n .

▶ Proof: Write p for the $\equiv_{\operatorname{crit}_p(j)}$ -class of $j_{[p]}.$ The proposition says that $\text{Iter}(j)/\equiv_{\text{crit}_n(j)}$ is a left-shelf whose domain is $\{1,...,2^n\};$ By construction, $p = 1_{[p]}$ holds for $p \leqslant 2^n$. Then $j_{[2^n]} \equiv_{\text{crit}_n(j)}$ id implies $j_{[2^n+1]} \equiv_{\text{crit}_n(j)} j$, whence $2^n \triangleright 1 = 1$ in the quotient. \Box

A (set-theoretic) realization of A_n as a quotient of the iteration shelf Iter(j).

• Lemma: For every j in E_{λ} , every term $t(x)$, and every n,

• Lemma: For every j in E_{λ} , every term $t(x)$, and every n, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) • Lemma: For every j in E_{λ} , every term $t(x)$, and every n, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$

(ロ) (日) (모) (모) (모) 및 990

• Lemma: For every j in E_{λ} , every term $t(x)$, and every n, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geq c$ rit_n (j)

(ロ) (日) (모) (모) (모) 및 990

• Lemma: For every j in E_{λ} , every term $t(x)$, and every n, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(i)} \text{id}$,

A DIA K RIA K B A DIA K B A VIO A

• Lemma: For every j in E_{λ} , every term $t(x)$, and every n, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(i)$ in A_n ,

A DIA K RIA K B A DIA K B A VIO A

• Lemma: For every j in E_{λ} , every term $t(x)$, and every n, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$,

A DIA K RIA K B A DIA K B A VIO A

• Lemma: For every j in E_{λ} , every term $t(x)$, and every n, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n .

• Lemma: For every j in E_{λ} , every term $t(x)$, and every n, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(j)) = crit_n(j)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j),

• Lemma: For every j in E_{λ} , every term $t(x)$, and every n, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(j)) = crit_n(j)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$:

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(j)) = crit_n(j)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(i)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(i)) = crit_n(i)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1}

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(i)) = crit_n(i)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps crit_m(j) to crit_n(j).

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(i)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(i)) = crit_n(i)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps crit_m(j) to crit_n(j).

 \blacktriangleright Proof: Apply the lemma to the term $x_{[p]}.$

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(i)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(i)) = crit_n(i)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps crit_m(j) to crit_n(j).

 \blacktriangleright Proof: Apply the lemma to the term $x_{[p]}.$ As crit $_{\mathsf{m}}(\mathsf{j})=\mathsf{crit}(\mathsf{j}_{[2^{\mathsf{m}}]}),$

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(i)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(i)) = crit_n(i)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps crit_m(j) to crit_n(j).

 \blacktriangleright Proof: Apply the lemma to the term $x_{[p]}.$ As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_{[2}m]]),

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(i)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(i)) = crit_n(i)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps crit_m(j) to crit_n(j).

 \blacktriangleright Proof: Apply the lemma to the term $x_{[p]}.$ As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_{[2}m]]), so the RHT is crit $(\boldsymbol{\mathsf{j}}_{[p]}[\boldsymbol{\mathsf{j}}_{[2^{\mathsf{m}}]}]) = \operatorname{crit}_{\mathsf{n}}(\boldsymbol{\mathsf{j}}),$

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(j)) = crit_n(j)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps crit_m(j) to crit_n(j).

 \blacktriangleright Proof: Apply the lemma to the term $x_{[p]}.$ As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_{[2}m]]), so the RHT is crit $(\mathrm{j}_{[p]}[\mathrm{j}_{[2^m]}]) =$ crit $_{\mathsf{n}}(\mathrm{j})$, whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by $(**)$, which is also

$$
(p \triangleright 2^m)^{A_{n+1}} = 2^n. \tag{***}.
$$

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(j)) = crit_n(j)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps crit_m(j) to crit_n(j).

 \blacktriangleright Proof: Apply the lemma to the term $x_{[p]}.$ As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_{[2}m]]), so the RHT is crit $(\mathrm{j}_{[p]}[\mathrm{j}_{[2^m]}]) =$ crit $_{\mathsf{n}}(\mathrm{j})$, whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by $(**)$, which is also

$$
(p \triangleright 2^m)^{A_{n+1}} = 2^n. \tag{***}.
$$

First, $(***)$ implies $\pi_{n+1}(p) > 2^m$.

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit(t(j)^{Iter(j)}) \geqslant crit_n(j); (*) $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(j)) = crit_n(j)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps crit_m(j) to crit_n(j).

 \blacktriangleright Proof: Apply the lemma to the term $x_{[p]}.$ As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_{[2}m]]), so the RHT is crit $(\mathrm{j}_{[p]}[\mathrm{j}_{[2^m]}]) =$ crit $_{\mathsf{n}}(\mathrm{j})$, whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by $(**)$, which is also $(p \triangleright 2^m)^{A_{n+1}} = 2^n$. (∗∗∗).

First, $(***)$ implies $\pi_{n+1}(p) > 2^m$. Conversely, $(***)$ projects to $(p \triangleright 2^m)^{A_n} = 2^n$,

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) \geqslant \text{crit}_n(j)$; $(*)$ $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(j)) = crit_n(j)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps crit_m(j) to crit_n(j).

 \blacktriangleright Proof: Apply the lemma to the term $x_{[p]}.$ As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_{[2}m]]), so the RHT is crit $(\mathrm{j}_{[p]}[\mathrm{j}_{[2^m]}]) =$ crit $_{\mathsf{n}}(\mathrm{j})$, whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by $(**)$, which is also $(p \triangleright 2^m)^{A_{n+1}} = 2^n$. (∗∗∗).

First, $(***)$ implies $\pi_{n+1}(p) > 2^m$. Conversely, $(***)$ projects to $(p \triangleright 2^m)^{A_n} = 2^n$, implying $\pi_n(p) \leq 2^m$.

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) \geqslant \text{crit}_n(j)$; $(*)$ $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(j)) = crit_n(j)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps crit_m(j) to crit_n(j).

 \blacktriangleright Proof: Apply the lemma to the term $x_{[p]}.$ As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_{[2}m]]), so the RHT is crit $(\mathrm{j}_{[p]}[\mathrm{j}_{[2^m]}]) =$ crit $_{\mathsf{n}}(\mathrm{j})$, whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by $(**)$, which is also $(p \triangleright 2^m)^{A_{n+1}} = 2^n$. (∗∗∗).

First, $(***)$ implies $\pi_{n+1}(p) > 2^m$. Conversely, $(***)$ projects to $(p \triangleright 2^m)^{A_n} = 2^n$, implying $\pi_n(p) \leqslant 2^m$. As $\pi_{n+1}(p)$ is $\pi_n(p)$ or $2\pi_n(p)$,

• Lemma: For every *i* in E_{λ} , every term $t(x)$, and every *n*, $t(1)^{A_n} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) \geqslant \text{crit}_n(j)$; $(*)$ $t(1)^{A_{n+1}} = 2^n$ is equivalent to crit $(t(j)^{\text{Iter}(j)}) = \text{crit}_n(j)$. $(**)$ ▶ Proof: For $(*)$: crit $(t(j)) \geqslant$ crit_n(j) means $t(j) \equiv_{\text{crit}_n(j)} id$, i.e., the class of $t(j)$ in A_n , which is $t(1)^{A_n}$, is that of id, which is 2^n . For $(**)$: crit $(t(j)) = crit_n(j)$ is the conjunction of crit(t(j)) \ge crit_n(j) and crit(t(j)) \ge crit_{n+1}(j), hence of $t(1)^{A_n} = 2^n$ and $t(1)^{A_{n+1}} \neq 2^{n+1}$: the only possibility is $t(1)^{A_{n+1}} = 2^n$. .

• Proposition ("dictionary"): For $m \leqslant n$ and $p \leqslant 2^n$, the period of p jumps from 2^m to 2^{m+1} between A_n and A_{n+1} iff $j_{[p]}$ maps crit_m(j) to crit_n(j).

 \blacktriangleright Proof: Apply the lemma to the term $x_{[p]}.$ As crit_m(j) = crit(j_[2^m]), the embedding $j_{[p]}$ maps crit_m(j) to crit(j_[p][j_{[2}m]]), so the RHT is crit $(\mathrm{j}_{[p]}[\mathrm{j}_{[2^m]}]) =$ crit $_{\mathsf{n}}(\mathrm{j})$, whence $(1_{[p]} \triangleright 1_{[2^m]})^{A_{n+1}} = 2^n$ by $(**)$, which is also $(p \triangleright 2^m)^{A_{n+1}} = 2^n$. (∗∗∗).

First, $(***)$ implies $\pi_{n+1}(p) > 2^m$. Conversely, $(***)$ projects to $(p \triangleright 2^m)^{A_n} = 2^n$, implying $\pi_n(p) \leqslant 2^m$. As $\pi_{n+1}(p)$ is $\pi_n(p)$ or $2\pi_n(p)$, $(***)$ is equivalent to the conjunction $\pi_n(p)$ =2^m and $\pi_{n+1}(p)$ =2^{m+1}. \Box • Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leqslant j(\alpha)$.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leqslant j(\alpha)$.

Proof: There exists β satisfying $j(\beta) > \alpha$,

イロト (母) (ミ) (ミ) (ミ) ミーのQQ

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leqslant j(\alpha)$.

► Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β ,

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leqslant j(\alpha)$.

Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$
\forall \gamma < \beta \, \left(j(\gamma) \leq \alpha \right). \tag{*}
$$

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leqslant j(\alpha)$.

► Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$
\forall \gamma < \beta \, \left(j(\gamma) \leq \alpha \right). \tag{*}
$$

Applying j to $(*)$ gives

 $\forall \gamma < j(\beta)$ (j[j](γ) \leq j(α)). (**)

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leqslant j(\alpha)$.

► Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $j(\beta) > \alpha$ and

$$
\forall \gamma < \beta \ (j(\gamma) \leq \alpha). \tag{*}
$$

Applying j to $(*)$ gives

$$
\forall \gamma < j(\beta) \; (j[j](\gamma) \leqslant j(\alpha)). \tag{**}
$$

Taking $\gamma := \alpha$ in (**) yields $j[j](\alpha) \leq j(\alpha)$.

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leq j(\alpha)$.

Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $i(\beta) > \alpha$ and

$$
\forall \gamma < \beta \ (j(\gamma) \leq \alpha). \tag{*}
$$

Applying j to $(*)$ gives

$$
\forall \gamma < j(\beta) \; (j[j](\gamma) \leqslant j(\alpha)). \tag{**}
$$

Taking $\gamma := \alpha$ in (**) yields $j[j](\alpha) \leq j(\alpha)$.

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(2) \geq \pi_n(1)$ holds for all n.

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leq j(\alpha)$.

► Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $i(\beta) > \alpha$ and

$$
\forall \gamma < \beta \ (j(\gamma) \leq \alpha). \tag{*}
$$

Applying j to $(*)$ gives

$$
\forall \gamma < j(\beta) \; (j[j](\gamma) \leqslant j(\alpha)). \tag{**}
$$

Taking $\gamma := \alpha$ in (**) yields $j[j](\alpha) \leq j(\alpha)$.

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(2) \geq \pi_n(1)$ holds for all n.

Proof: Write $\pi_n(1) = 2^{m+1}$,

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leq j(\alpha)$.

► Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $i(\beta) > \alpha$ and

$$
\forall \gamma < \beta \, \left(j(\gamma) \leq \alpha \right). \tag{*}
$$

Applying j to $(*)$ gives

$$
\forall \gamma < j(\beta) \; (j[j](\gamma) \leqslant j(\alpha)). \tag{**}
$$

Taking $\gamma := \alpha$ in (**) yields $j[j](\alpha) \leq j(\alpha)$.

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(2) \geq \pi_n(1)$ holds for all n.

► Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal $\langle n \rangle$ satisfying $\pi_{\overline{n}}(1) \leqslant 2^m$.

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leq j(\alpha)$.

► Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $i(\beta) > \alpha$ and

$$
\forall \gamma < \beta \, \left(j(\gamma) \leq \alpha \right). \tag{*}
$$

Applying j to $(*)$ gives

$$
\forall \gamma < j(\beta) \; (j[j](\gamma) \leqslant j(\alpha)). \tag{**}
$$

Taking $\gamma := \alpha$ in (**) yields $j[j](\alpha) \leq j(\alpha)$.

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(2) \geq \pi_n(1)$ holds for all n.

► Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal $\langle n \rangle$ satisfying $\pi_{\overline{n}}(1) \leqslant 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$.

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leq j(\alpha)$.

► Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $i(\beta) > \alpha$ and

$$
\forall \gamma < \beta \, \left(j(\gamma) \leq \alpha \right). \tag{*}
$$

Applying j to $(*)$ gives

$$
\forall \gamma < j(\beta) \; (j[j](\gamma) \leqslant j(\alpha)). \tag{**}
$$

Taking $\gamma := \alpha$ in (**) yields $j[j](\alpha) \leq j(\alpha)$.

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(2) \geq \pi_n(1)$ holds for all n.

► Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal $\langle n \rangle$ satisfying $\pi_{\overline{n}}(1) \leqslant 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$. By the dictionary, *j* maps crit_m(j) to crit_n(j).
• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leq j(\alpha)$.

► Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $i(\beta) > \alpha$ and

$$
\forall \gamma < \beta \, \left(j(\gamma) \leq \alpha \right). \tag{*}
$$

Applying j to $(*)$ gives

$$
\forall \gamma < j(\beta) \; (j[j](\gamma) \leqslant j(\alpha)). \tag{**}
$$

Taking $\gamma := \alpha$ in (**) yields $j[j](\alpha) \leq j(\alpha)$.

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(2) \geq \pi_n(1)$ holds for all n.

► Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal $\langle n \rangle$ satisfying $\pi_{\overline{n}}(1) \leqslant 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$. By the dictionary, *j* maps crit_m(j) to crit_n(j). Hence, by the lemma, $j[j]$ maps crit_m(i) to \leq crit_n(i).

KEL KAR KELKEL E VAN

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leq j(\alpha)$.

► Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $i(\beta) > \alpha$ and

$$
\forall \gamma < \beta \, \left(j(\gamma) \leq \alpha \right). \tag{*}
$$

Applying j to $(*)$ gives

$$
\forall \gamma < j(\beta) \; (j[j](\gamma) \leqslant j(\alpha)). \tag{**}
$$

Taking $\gamma := \alpha$ in (**) yields $j[j](\alpha) \leq j(\alpha)$.

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(2) \geq \pi_n(1)$ holds for all n.

► Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal $\langle n \rangle$ satisfying $\pi_{\overline{n}}(1) \leqslant 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$. By the dictionary, *j* maps crit_m(j) to crit_n(j). Hence, by the lemma, $j[j]$ maps crit_m(i) to \leq crit_n(i). Therefore, there exists $n' \leqslant \overline{n} \leqslant n \text{ s.t. } j[j]$ maps $\text{crit}_{m}(j)$ to $\text{crit}_{n'}(j)$.

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leq j(\alpha)$.

► Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $i(\beta) > \alpha$ and

$$
\forall \gamma < \beta \, \left(j(\gamma) \leq \alpha \right). \tag{*}
$$

Applying j to $(*)$ gives

$$
\forall \gamma < j(\beta) \; (j[j](\gamma) \leqslant j(\alpha)). \tag{**}
$$

Taking $\gamma := \alpha$ in (**) yields $j[j](\alpha) \leq j(\alpha)$.

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(2) \geq \pi_n(1)$ holds for all n.

► Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal $\langle n \rangle$ satisfying $\pi_{\overline{n}}(1) \leqslant 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$. By the dictionary, *j* maps crit_m(j) to crit_n(j). Hence, by the lemma, $j[j]$ maps crit_m(i) to \leq crit_n(i). Therefore, there exists $n' \leqslant \overline{n} \leqslant n \text{ s.t. } j[j]$ maps $\text{crit}_{m}(j)$ to $\text{crit}_{n'}(j)$. By the dictionary, the period of 2 jumps from 2^m to 2^{m+1} between $A_{n'}$ and $A_{n'+1}$.

 $4\Box P + 4\overline{P}P + 4\overline{P}P + 4\overline{P}P - \overline{P}P$

• Lemma: If j belongs to E_{λ} , for every $\alpha < \lambda$, one has $j[j](\alpha) \leq j(\alpha)$.

► Proof: There exists β satisfying $j(\beta) > \alpha$, hence there is a smallest such β , which therefore satisfies $i(\beta) > \alpha$ and

$$
\forall \gamma < \beta \, \left(j(\gamma) \leq \alpha \right). \tag{*}
$$

Applying j to $(*)$ gives

$$
\forall \gamma < j(\beta) \; (j[j](\gamma) \leqslant j(\alpha)). \tag{**}
$$

Taking $\gamma := \alpha$ in (**) yields $j[j](\alpha) \leq j(\alpha)$.

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(2) \geq \pi_n(1)$ holds for all n.

► Proof: Write $\pi_n(1) = 2^{m+1}$, and let \overline{n} be maximal $\langle n \rangle$ satisfying $\pi_{\overline{n}}(1) \leqslant 2^m$. By construction, the period of 1 jumps from 2^m to 2^{m+1} between $A_{\overline{n}}$ and $A_{\overline{n}+1}$. By the dictionary, *j* maps crit_m(j) to crit_n(j). Hence, by the lemma, $j[j]$ maps crit_m(i) to \leq crit_n(i). Therefore, there exists $n' \leqslant \overline{n} \leqslant n \text{ s.t. } j[j]$ maps $\text{crit}_{m}(j)$ to $\text{crit}_{n'}(j)$. By the dictionary, the period of 2 jumps from 2^m to 2^{m+1} between $A_{n'}$ and $A_{n'+1}$. Hence, the period of 2 in A_n is at least 2^{m+1} . . • Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
	- ► Not obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.

(ロ) (日) (모) (모) (모) 및 990

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
	- ► Not obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.
	- ▶ Proof: (difficult...)

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
	- \triangleright Not obvious: {crit(i) | i \in Iter(j)} is countable, but its order type might be $>\omega$.
	- ▶ Proof: (difficult...)

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
	- \triangleright Not obvious: {crit(i) | i \in Iter(j)} is countable, but its order type might be $>\omega$.
	- ▶ Proof: (difficult...)

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

Proof: Assume $\pi_n(1) = 2^m$.

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
	- ► Not obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.
	- ▶ Proof: (difficult...)

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

Proof: Assume $\pi_n(1) = 2^m$. We wish to show that there exists $\overline{n} \geqslant n$ s.t. $\pi_{\overline{n}}(1) = 2^m$ and $\pi_{\overline{n}+1}(1) = 2^{m+1}$.

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
	- ► Not obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.
	- ▶ Proof: (difficult...)

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

Proof: Assume $\pi_n(1) = 2^m$. We wish to show that there exists $\overline{n} \geqslant n$ s.t. $\pi_{\overline{n}}(1) = 2^m$ and $\pi_{\overline{n}+1}(1) = 2^{m+1}$. By the dictionary, this is equivalent to *j* mapping crit_m(j) to crit_m(j).

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
	- ► Not obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.

▶ Proof: (difficult...)

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

Proof: Assume $\pi_n(1) = 2^m$. We wish to show that there exists $\overline{n} \geqslant n$ s.t. $\pi_{\overline{n}}(1) = 2^m$ and $\pi_{\overline{n}+1}(1) = 2^{m+1}$. By the dictionary, this is equivalent to j mapping crit_m(j) to crit_m(j). Now j maps crit $_{\mathsf{m}}(\mathsf{j})$, which is crit $(\mathsf{j}_{[2^{\mathsf{m}}]})$, to crit $(\mathsf{j}[\mathsf{j}_{[2^{\mathsf{m}}]}].$ As $j[j_{[2^m]}]$ belongs to Iter(j), the lemma implies crit(j[j $_{[2^m]}]=$ crit $_\pi$ (j) for some \overline{n} . \Box

- Lemma: If j belongs to E_{λ} , then λ is the supremum of the ordinals crit_n(j).
	- ► Not obvious: {crit(i) | i ∈ Iter(j)} is countable, but its order type might be $>\omega$.
	- ▶ Proof: (difficult...)

• Proposition (Laver): If there exists a Laver cardinal, $\pi_n(1)$ tends to ∞ with n.

 \blacktriangleright Proof: Assume $\pi_n(1) = 2^m$. We wish to show that there exists $\overline{n} \geqslant n$ s.t. $\pi_{\overline{n}}(1) = 2^m$ and $\pi_{\overline{n}+1}(1) = 2^{m+1}$. By the dictionary, this is equivalent to *j* mapping crit_m(j) to crit_m(j). Now j maps crit $_{\mathsf{m}}(\mathsf{j})$, which is crit $(\mathsf{j}_{[2^{\mathsf{m}}]})$, to crit $(\mathsf{j}[\mathsf{j}_{[2^{\mathsf{m}}]}].$ As $j[j_{[2^m]}]$ belongs to Iter(j), the lemma implies crit(j[j $_{[2^m]}]=$ crit $_\pi$ (j) for some \overline{n} . \Box

• Open questions: Find alternative proofs using no Laver cardinal.

• Are the properties of Laver tables an application of set theory?

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ | 코 | 2000

- Are the properties of Laver tables an application of set theory?
	- ▶ So far, yes;
- Are the properties of Laver tables an application of set theory?
	- ▶ So far, yes;
	- ▶ In the future, formally no if one finds alternative proofs using no large cardinal.

 $A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box C \rightarrow A \Box C$

- Are the properties of Laver tables an application of set theory?
	- ▶ So far, yes;
	- ▶ In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

- Are the properties of Laver tables an application of set theory?
	- ▶ So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- Are the properties of Laver tables an application of set theory?
	- ▶ So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

• An analogy:

- Are the properties of Laver tables an application of set theory?
	- ▶ So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- In physics: using a physical intuition,

- Are the properties of Laver tables an application of set theory?
	- ▶ So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

- Are the properties of Laver tables an application of set theory?
	- ► So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

- Are the properties of Laver tables an application of set theory?
	- ► So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

► Here: using a logical intuition

- Are the properties of Laver tables an application of set theory?
	- ► So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

 \blacktriangleright Here: using a logical intuition (existence of a Laver cardinal),

- Are the properties of Laver tables an application of set theory?
	- ► So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

▶ Here: using a logical intuition (existence of a Laver cardinal).

guess statements

- Are the properties of Laver tables an application of set theory?
	- ► So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

 \blacktriangleright Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

- Are the properties of Laver tables an application of set theory?
	- ► So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

 \blacktriangleright Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

- Are the properties of Laver tables an application of set theory?
	- ► So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

 \blacktriangleright Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

- Are the properties of Laver tables an application of set theory?
	- ► So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

 \blacktriangleright Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

► Can one find alternative proofs using no large cardinal?

A DIA K RIA K B A DIA K B A VIO A

- Are the properties of Laver tables an application of set theory?
	- ► So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

 \blacktriangleright Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

► Can one find alternative proofs using no large cardinal? (as done for the free shelf using the braid realization)

- Are the properties of Laver tables an application of set theory?
	- ► So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

 \blacktriangleright Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

- ► Can one find alternative proofs using no large cardinal? (as done for the free shelf using the braid realization)
- \blacktriangleright Can one use them in low-dimensional topology?
- Are the properties of Laver tables an application of set theory?
	- ► So far, yes;
	- ► In the future, formally no if one finds alternative proofs using no large cardinal.
	- \triangleright But, in any case, it is set theory that made the properties first accessible.

• Even if one does not believe that large cardinals exist (or are interesting), one should agree that they can provide useful intuitions.

- An analogy:
	- \blacktriangleright In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.

 \blacktriangleright Here: using a logical intuition (existence of a Laver cardinal),

guess statements (periods tend to ∞ in Laver tables),

then pass them to the mathematician for a formal proof.

• The two main open questions about Laver tables:

- ► Can one find alternative proofs using no large cardinal? (as done for the free shelf using the braid realization)
- ► Can one use them in low-dimensional topology?

Richard Laver (1942-2012)

 OQ

 $\mathbf{E} = \mathbf{A} \in \mathbf{E} \times \mathbf{A} \in \mathbf{E} \times \mathbf{A} \times \mathbf{E} \times \mathbf{A$