The SD-world:

a bridge between algebra, topology, and set theory

«0O>» «F»r «

!
a
i

DA™

The SD-world:

a bridge between algebra, topology, and set theory
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

The SD-world:
a bridge between algebra, topology, and set theory
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Fourth Mile High Conference, Denver, July-August 2017

The SD-world:
a bridge between algebra, topology, and set theory
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Fourth Mile High Conference, Denver, July-August 2017

e 1. Overview of the SD-world, with a special emphasis on the word probleme of SD.

The SD-world:
a bridge between algebra, topology, and set theory
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

Fourth Mile High Conference, Denver, July-August 2017

e 1. Overview of the SD-world, with a special emphasis on the word probleme of SD.
e 2. The connection with set theory and the Laver tables.

)
o
£

wa >

Plan:
e Minicourse |. The SD-world

«0O>» «F»r «

!
a
i

DA

Plan:
e Minicourse |. The SD-world
- 1. A general introduction

«0O>» «F»r «

DA™

Plan:
e Minicourse |. The SD-world
- 1. A general introduction

- Classical and exotic examples

<« 0

«F

a
!
a
i

DA™

Plan:
e Minicourse |. The SD-world

- 1. A general introduction

- Classical and exotic examples

- Connection with topology: quandles, racks, and shelves

DA™

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

- 1. The set-theoretic shelf

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary

T

=]

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world

- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

- 1. The set-theoretic shelf
- Large cardinals and elementary embeddings
- The iteration shelf

- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

Plan:
e Minicourse |. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

e Minicourse Il. Connection with set theory
- 1. The set-theoretic shelf

- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

«4O0>» «F>» «E)>» «

e The self-distributivity law SD:

«0O>» «F»r «

!
a
i

DA™

Terminology

e The SD:

> version: “left self-distributivity”
x(yz) = (xy)(xz) (LD)

Terminology

e The SD:
> version: “left self-distributivity”
x(y2) = (xv)(2) (LD)
or (LD)

Terminology

e The
>
or
>

SD:

version: “left self-distributivity”

x(yz) = (xy)(x2)

version: “right self-distributivity”
(xy)z = (x2)(y2)

(LD)
(LD)

(RD)

Terminology

e The

or

or

SD:
version: “left self-distributivity”

x(yz) = (xy)(x2)

version: “right self-distributivity”
(xy)z = (x2)(y2)

(LD)
(LD)

(RD)
(RD)

Terminology

e The

or

or

e Definition: An LD-groupoid, or

SD:
version: “left self-distributivity”

x(yz) = (xy)(x2)

version: “right self-distributivity”

(xy)z = (x2)(yz)

(LD)
(LD)

(RD)
(RD)

, is a structure (S,>) with > obeying (LD).

Terminology

e The

or

or

e Definition: An LD-groupoid, or

SD:
version: “left self-distributivity”

x(yz) = (xy)(x2)

version: “right self-distributivity”

(xy)z = (x2)(yz)

(LD)
(LD)

(RD)
(RD)

, is a structure (S,>) with > obeying (LD).

An RD-groupoid, or , is a structure (S, <) with > obeying (RD).

Terminology

e The

or

or

e Definition: An LD-groupoid, or

SD:

version: “left self-distributivity”

x(yz) = (xy)(x2)

version: “right self-distributivity”

(xy)z = (x2)(yz)

o Definition: A

(LD)
(LD)

(RD)
(RD)

, is a structure (S,>) with > obeying (LD).

An RD-groupoid, or , is a structure (S, <) with > obeying (RD).

is a shelf in which all right-translations are bijections.

Terminology

e The

or

or

e Definition: An LD-groupoid, or

SD:

version: “left self-distributivity”

x(yz) = (xy)(x2)

version: “right self-distributivity”

(xy)z = (x2)(yz)

o Definition: A

(LD)
(LD)

(RD)
(RD)

, is a structure (S,>) with > obeying (LD).

An RD-groupoid, or , is a structure (S, <) with > obeying (RD).

is a shelf in which all right-translations are bijections.

Terminology

e The

or

or

e Definition: An LD-groupoid, or

SD:

version: “left self-distributivity”

x(yz) = (xy)(x2)

version: “right self-distributivity”

(xy)z = (x2)(yz)

o Definition: A

(LD)
(LD)

(RD)
(RD)

, is a structure (S,>) with > obeying (LD).

An RD-groupoid, or , is a structure (S, <) with > obeying (RD).

e Definition: A is an idempotent rack

is a shelf in which all right-translations are bijections.

e “Trivial” shelves:

Hac

e “Trivial” shelves: S aset, f amap § — S,

<

«F

!
a
i

DA™

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.
» In particular: the rack: Z/nZ with p<q :=

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.
» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.
» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=

shelves:

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.
» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=

shelves: (L,V,0) a -lattice,

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.
» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=

shelves: (L,V,0) a -lattice, and x <y :=

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2:

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra,

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves:

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R aring, tin R, E an R-module, and x<y :=

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R aring, tin R, E an R-module, and x<y :=

» A rack (even a quandle) iff t is invertible in R.

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R aring, tin R, E an R-module, and x<y :=

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R":

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R aring, tin R, E an R-module, and x<y :=

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R": x<y :=

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R aring, tin R, E an R-module, and x<y :=

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R": x<y := (~ root systems).

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R aring, tin R, E an R-module, and x<y :=

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R": x<y := (~ root systems).

quandles:

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R aring, tin R, E an R-module, and x<y :=

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R": x<y := (~ root systems).

quandles: G a group, x4y :=

Classical shelves

shelves: S aset, f amap$S — S, and x<ay =

» A rack iff f is a permutation of S.

» In particular: the rack: Z/nZ with p<q :=
» In particular: the rack: Z with p<q:=
shelves: (L,V,0) a -lattice, and x <y :=

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R aring, tin R, E an R-module, and x<y :=

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R": x<y := (~ root systems).

quandles: G a group, x4y :=

» Always a quandle.

Classical shelves

shelves: S a set,

famapS — S, and x<y :=

» A rack iff f is a permutation of S.

» In particular: the
» In particular: the

shelves: (L,V,0) a

rack: Z/nZ with p<q :=
rack: Z with p<q:=

-lattice, and x <y =

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R a rin

g, tin R, E an R-module, and x<y =

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R": x<y := (~ root systems).

quandles: G a group, x4y :=

» Always a quandle.
» In particular: the

quandle based on X when G is the free group based on X.

Classical shelves

shelves: S a set,

famapS — S, and x<y :=

» A rack iff f is a permutation of S.

» In particular: the
» In particular: the

shelves: (L,V,0) a

rack: Z/nZ with p<q :=
rack: Z with p<q:=

-lattice, and x <y =

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R a rin

g, tin R, E an R-module, and x<y =

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R": x<y := (~ root systems).

quandles: G a group, x4y :=

» Always a quandle.
» In particular: the

quandle based on X when G is the free group based on X.

Classical shelves

shelves: S a set,

famapS — S, and x<y :=

» A rack iff f is a permutation of S.

» In particular: the
» In particular: the

shelves: (L,V,0) a

rack: Z/nZ with p<q :=
rack: Z with p<q:=

-lattice, and x <y =

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R a rin

g, tin R, E an R-module, and x<y =

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R": x<y := (~ root systems).

quandles: G a group, x4y :=

» Always a quandle.
» In particular: the

quandle based on X when G is the free group based on X.

Drapal-Kepka-Musilek, Larue

Classical shelves

shelves: S a set,

famapS — S, and x<y :=

» A rack iff f is a permutation of S.

» In particular: the
» In particular: the

shelves: (L,V,0) a

rack: Z/nZ with p<q :=
rack: Z with p<q:=

-lattice, and x <y =

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R a rin

g, tin R, E an R-module, and x<y =

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R": x<y := (~ root systems).

quandles: G a group, x4y :=

» Always a quandle.
» In particular: the

» Variants: x<y =

quandle based on X when G is the free group based on X.

Drapal-Kepka-Musilek, Larue

Classical shelves

shelves: S a set,

famapS — S, and x<y :=

» A rack iff f is a permutation of S.

» In particular: the
» In particular: the

shelves: (L,V,0) a

rack: Z/nZ with p<q :=
rack: Z with p<q:=

-lattice, and x <y =

» Idempotent; never a rack for #L > 2: always 04 x = x 4 x (= x).
» A non-idempotent related example: B a Boolean algebra, and x<y =

shelves: R a rin

g, tin R, E an R-module, and x<y =

» A rack (even a quandle) iff t is invertible in R.
» In particular: symmetries in R": x<y := (~ root systems).

quandles: G a group, x4y :=

» Always a quandle.
» In particular: the

» Variants: x<y =

quandle based on X when G is the free group based on X.

Drapal-Kepka-Musilek, Larue
, Xy = with f € Aut(G), ...

e Core (or sandwich) quandles:

<

«F

!
a
i

DA™

Some more exotic shelves

quandles: G a group, and x4y :=

Some more exotic shelves

quandles: G a group, and x4y :=

racks:

Some more exotic shelves

quandles: G a group, and x4y :=

racks: G a group, X a subset of G,

Some more exotic shelves

quandles: G a group, and x4y :=

racks: G a group, X a subset of G,
and (x,g) < (y, h) :== on X x G.

Some more exotic shelves

quandles: G a group, and x4y :=

racks: G a group, X a subset of G,
and (x,g) < (y, h) :== on X x G.

» Not idempotent for X Z Z(G).

Some more exotic shelves

quandles: G a group, and x4y :=

racks: G a group, X a subset of G,
and (x,g) < (y, h) :== on X x G.

» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.

e The shelf:

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.

o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,

and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,
and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.

» In particular, X := N starting with sh: n+— n+ 1:

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,
and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.
» In particular, X := N starting with sh: n+— n+ 1:

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,
and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.
» In particular, X := N starting with sh: n+— n+ 1:

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,
and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.
» In particular, X := N starting with sh: n+— n+ 1:

O S B\

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,
and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.
» In particular, X := N starting with sh: n+— n+ 1:

R & BNNNNNN\\N\a
B NN\N\NN\a

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,
and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.
» In particular, X := N starting with sh: n+— n+ 1:

sh <sh:
(sh <sh) <sh:

sh < (sh <sh) :

ENNNNNNNNNC
EENNNNNNNNC
~IRNNNNNNNNC

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,
and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.
» In particular, X := N starting with sh: n+— n+ 1:

sh <sh:
(sh <sh) <sh:

sh < (sh <sh) :

e The shelf,

ENNNNNNNNNC
EENNNNNNNNC
~IRNNNNNNNNC

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,
and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.
» In particular, X := N starting with sh: n+— n+ 1:

sh <sh:
(sh <sh) <sh:

sh < (sh <sh) :

e The shelf, the

ENNNNNNNNNC
EENNNNNNNNC
~IRNNNNNNNNC

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

shelf,

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,
and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.
» In particular, X := N starting with sh: n+— n+ 1:

sh <sh:
(sh <sh) <sh:

sh < (sh <sh) :

e The shelf, the

ENNNNNNNNNC
EENNNNNNNNC
~IRNNNNNNNNC

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

shelf,

Some more exotic shelves

° quandles: G a group, and x4y :=
° racks: G a group, X a subset of G,
and (x,g) < (y, h) := on X x G.
» Not idempotent for X Z Z(G).
» the rack based on X when G is the free group based on X.
o The shelf: X an (infinite) set, Jx monoid of all injections from X to itself,
and f<ag(x) := for x € Im(g), and f < g(x) := x otherwise.
» In particular, X := N starting with sh: n+— n+ 1:

R & BNNNNNN\\N\a
B NN\N\NN\a

[P.D. Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989) 617-623]

e The shelf, the shelf, : see below...

Connection with topology (1)

e Planar diagrams:

Connection with topology (1)

e Planar diagrams:

-y

Connection with topology (1)

e Planar diagrams:

R SO

Connection with topology (1)

e Planar diagrams:

L) & &

Connection with topology (1)

e Planar diagrams:

L) & &

» projections of curves embedded in R3

Connection with topology (1)

e Planar diagrams:

L) SO XK

» projections of curves embedded in R3

e Generic question: recognizing whether two 2D-diagrams are
3D-figures

Connection with topology (1)

e Planar diagrams:

L) SO XK

» projections of curves embedded in R3

e Generic question: recognizing whether two 2D-diagrams are
3D-figures

Connection with topology (1)

e Planar diagrams:

L) SO XK

» projections of curves embedded in R3

e Generic question: recognizing whether two 2D-diagrams are
3D-figures

» find isotopy

Connection with topology (2)

e Two diagrams represent isotopic flgures one can go from the former to the latter
using finitely many

Connection with topology (2)

e Two diagrams represent isotopic flgures one can go from the former to the latter
using finitely many

- type | :

Connection with topology (2)

e Two diagrams represent isotopic flgures one can go from the former to the latter
using finitely many

- type | : QN
— —

Connection with topology (2)

e Two diagrams represent isotopic flgures one can go from the former to the latter
using finitely many

- type | : QN N-p
— —) ~—

Connection with topology (2)

e Two diagrams represent isotopic flgures one can go from the former to the latter
using finitely many

- type | : QN N-p
— —) ~—

- type Il :

Connection with topology (2)

e Two diagrams represent isotopic flgures one can go from the former to the latter
using finitely many

- type | : QN N-p
— — ~—
- type Il : \/\/-N
- B —

Connection with topology (2)

e Two diagrams represent isotopic flgures one can go from the former to the latter

using finitely many
9\

- type | :

\
P

/
\

- type Il : -

\
(

Connection with topology (2)

e Two diagrams represent isotopic flgures one can go from the former to the latter

using finitely many
9\

- type | :

\
P

/
\

- type Il : -

\
(

- type Il :

Connection with topology (2)

e Two diagrams represent isotopic figures iff one can go from the former to the latter

using finitely many

- type | : QN N-p
— —) ~—

- type Il : - -

- type Il : //_/\/N < -

Connection with topology (3)

e Fix a set S equipped with two operations .

Connection with topology (3)

e Fix a set S equipped with two operations .
and color the strands in diagrams obeying the rules:

XC
P b

Connection with topology (3)

e Fix a set S equipped with two operations .
and color the strands in diagrams obeying the rules:

b — b\ a
\ and f
a - b a N

Connection with topology (3)

e Fix a set S equipped with two operations .
and color the strands in diagrams obeying the rules:

b — b\ a
\ and f
a - b a N

e Action of Reidemeister moves on colors:

Connection with topology (3)

e Fix a set S equipped with two operations .
and color the strands in diagrams obeying the rules:

b — b -~ a
\ and f
a =’ b a N—
e Action of Reidemeister moves on colors:

XK

3__/

Connection with topology (3)

e Fix a set S equipped with two operations .
and color the strands in diagrams obeying the rules:

b — b\ a
\ and f
a - b a N

e Action of Reidemeister moves on colors:

Connection with topology (3)

e Fix a set S equipped with two operations .
and color the strands in diagrams obeying the rules:

b — b\ a
\ and f
a - b a N

e Action of Reidemeister moves on colors:

Connection with topology (3)

e Fix a set S equipped with two operations .
and color the strands in diagrams obeying the rules:

b — b\ a
\ and f
a - b a N

e Action of Reidemeister moves on colors:

Connection with topology (3)

e Fix a set S equipped with two operations .
and color the strands in diagrams obeying the rules:

b — b\ a
\ and f
a - b a N

e Action of Reidemeister moves on colors:

[y /a<1b bac
a =" c
b

» Hence:

(S, <)-colorings are invariant under Reidemeister move Il iff (S, <) is a shelf.

Connection with topology (4)

e Idem for Reidemeister move II:

b 2 b b b b~ A~

a=— N— 3 — a et
b bJla

Connection with topology (4)

e Idem for Reidemeister move II:

adb a

b b b=——— b~ —
a=— N— 3 — a et
b b<a
» Hence:

(S, <)-colorings are invariant under Reidemeister moves II+I111 iff (S,<) is a rack.

Connection with topology (4)

e Idem for Reidemeister move II:

b 2 b b b b~ A~

a=— N— 3 — a et
b bJla

» Hence:

(S, <)-colorings are invariant under Reidemeister moves II+I111 iff (S,<) is a rack.

e Idem for Reidemeister move I:

a<da a
~ ~
g — 9 — a —~—

Connection with topology (4)

e Idem for Reidemeister move II:

b 2 b b b b~ A~

a=—" N— 3 — a et
b bJla

» Hence:

(S, <)-colorings are invariant under Reidemeister moves II+I111 iff (S,<) is a rack.

e Idem for Reidemeister move I:
ada a
~ ~
9 — O —- & —~—
» Hence:

(S, <)-colorings are invariant under Reidemeister moves 4114111 iff (S, <) is a quandle.

v

A map of shelves

shelves)

racks)

quandles

A map of shelves

shelves)

racks)

quandles

monogenerated more than one generator

A map of shelves

shelves)

racks)

quandles

monogenerated

more than one generator

complexity

A map of shelves

Ao

shelves)

racks)

quandles

monogenerated

more than one generator

complexity

A map of shelves

Ao

shelves)

racks)

Coni(F2) _Conj(Fz) 943 ndles

monogenerated

more than one generator

complexity

A map of shelves

shelves)
racks)
2
3
Conj(F>) __Conj(Fy) 9uandles £
R a2 @Bl 8
AOO/
J
%

monogenerated

more than one generator

A map of shelves

shelves)
racks)
. oConithy).__ Con(Fy)_ Auandles
v
>
v
O
J
%

monogenerated

more than one generator

complexity

A map of shelves

shelves)
HalfConj(F2) racks)
s ' =4
£ : X
: 9
;Conj(Fz) Conj(F3) quandles g
O€-=c-Siannn OEEEEEEELE [e}
19
J
J
I |

monogenerated more than one generator

A map of shelves

shelves)

HalfConj(F: HalfConj(F-
?:_._?74_ F2) HalfConj(Fs)

racks)

monogenerated

more than one generator

complexity

A map of shelves

shelves)

HalfConj(Fy) HalfConj(F3)

O =
v

racks)

...................

NCont N quandles
YConj(F) Conj(F3)

.......... @o2802b0

complexity

monogenerated

more than one generator

A map of shelves

shelves)

HalfConj(Fy) HalfConj(F3)
o<

racks)

NCont N quandles
YConj(F) Conj(F3)

.......... @o2802b0

complexity

monogenerated

more than one generator

A map of shelves

~
Freey Frees shelves
@FeoSeosnonnoncomncancaonaseas| oenancoons@dotboonanas O <-=-----
P . racks)
AN HalfCe F7) YHalfC F
HalfConj(.2_2? HEC(%s)
YConj(Fs) _ ¥Conj(Fy) Auandles
O«€-=--5cuunn O€-=--=-

monogenerated

more than one generator

complexity

A map of shelves

shelves)

...................

HalfConj(Fy) YHalfConj(F3)

i racks)

...................

complexity

monogenerated

more than one generator

A map of shelves

shelves)

HalfConj(Fy) YHalfConj(F3)
-

racks)

monogenerated

more than one generator

complexity

A map of shelves

N
Freep Frees shelves
SR R e LR EEEEE] EECEEEEEEEI R SEEEEEEEEE OSEEGEEES
I) racks)
% HalfConj(Fp) YHalfConj(F:
HalfConj(.2_2? HEC(%s)
: >
H =
: X
° : o)
YConj(F>) iConj(F y Quandles £
\ A o=<-2:23L o
. S
)
o

monogenerated more than one generator

A map of shelves

shelves)
Freep Frees
SR R e LR EEEEE] EECEEEEEEEI R SEEEEEEEEE OSEEGEEES
I . racks
% HalfConj(Fp) YHalfConj(F:
N HalfConj(F2) Y 1zifConi(Fs)
o R H
: >
" ' 2
N H 3
o : K
YConj(F>) iConj(F y Quandles £
\ ®<F=E5=520=00 o=<-2:23L o
. 19
N\
o

monogenerated more than one generator

A map of shelves

shelves)
Freep Free3
O e O e Jo
o \\ : \
; aticoni (G alicon (e racks
o \\ :
! H
O‘ :
E YConj(F; YConi(Fy) duandles
o<o-n!§-2-)-...o<o.":’§.§2.
kY
O‘
g
J
%
(L
monogenerated

complexity

more than one generator

A map of shelves

N
= Freey Frees shelves
Q€ -mmmmmmmmsmmsssemsoeoooooe- € Temaeen OSEEGEEES
o . i \
: HalfConj(F2) ¥alfConi(Fs) "3k
4 A
. : .
3 g 2
N ! 5
o : K
.‘ . :
% VConj(F>) YConj(F3) quandles £
N O€----"0mann O<--=-22- o
. 19
A
O‘
S,
J
%
| |
monogenerated

more than one generator

A map of shelves

N
= Freey Frees shelves
O -mmmmmm e € Temaeen O€-nmmnn
RN ' o
o . i \
: HalfConj(F2) ¥alfConi(Fs) "3k
4 A
. : .
3 g 2
N ! 5
o) ' 2
“ . :
% VConj(F>) YConj(F3) quandles £
N O€----"0mann O<--=-22- o
. 19
A
O‘
S,
J
%
| |
monogenerated

more than one generator

A map of shelves

o shelves)
o Freep Free3
i S | SRR ;<. BN Frees

: 0

3 : :
5 Y3
: -

o . : \
34 HalfConj(F2) YHalfConj(F3) racks
o \\ :

! H

O‘ :

E YConj(F; YConi(Fy) duandles
o<o-n!§-2-)-...o<o.":’§.§2.
kY
O§
g
J
%
|
monogenerated

more than one generator

complexity

A map of shelves

_ _ shelves)
= = Freep Free3
O mmmmmm T e O€-mmnmnan O€-nmmnn
AN ' o
. H H
5 Y3
: o N)\
o .) \
: HalfConj(F2) ¥alfConi(Fs) "3k
o . g
; .
3 g 2
N g =
o : K
YConj(F>) iconj(,_-) quandles g
N O€----"0mann o o
. 19
A
O‘
S,
J
%
(L |
monogenerated

more than one generator

A map of shelves

_ shelves)
= Freep Free3
O mmmmmm e O€-mmnmnan O€-nmmnn
A\ ' o
N : :
) : Y3
: o A
o Ny : \
; e HalfConi(F2) YHaltConi(Fs) 12K
o " B
; .
) : 3
N g =
o : o)
YConj(F>) iconj(,_-) quandles g
N O€----"0mann o o
. 19
b
Oy
g
J
J
I |
monogenerated

more than one generator

Plan:
e Minicourse |. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

e Minicourse Il. Connection with set theory
- 1. The set-theoretic shelf

- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

«4O0>» «F>» «E)>» «

Braid groups

o Definition (Artin 1925/1948): The group is the group with presentation

Braid groups

o Definition (Artin 1925/1948): The group is the group with presentation

(o310)

Braid groups

o Definition (Artin 1925/1948): The group is the group with presentation

o0, =00 for|i—j|>2
0y .y O, " ! .
17 ¥n—1

Braid groups

o Definition (Artin 1925/1948): The group is the group with presentation

0,0; = 0;0; for |i —j| > 2
T 9%1| 0.0 = .00 for | — il = .
i0;9; = 0;0,0; for |i —j| =1

Braid groups

o Definition (Artin 1925/1948): The group is the group with presentation
o,0, = o0, for|i—j|>2
<a ey O ’ J gl . >
L n=1] 6,0,0; = 0,0,0; for |i — j| =1

~ { braid diagrams } / isotopy:

Braid groups

o Definition (Artin 1925/1948): The group is the group with presentation
< ’ 0,0, = 0,0, for|i—j\>2>
Oy O _ . :
L n=1] 6,0,0; = 0,0,0; for |i — j| =1
~ { braid diagrams } / isotopy: =

i+1

Braid groups

o Definition (Artin 1925/1948): The group is the group with presentation
< ’ 0,0, = 0,0, for|i—j\>2>
Oy O _ . :
L n=1] 6,0,0; = 0,0,0; for |i — j| =1
~ { braid diagrams } / isotopy: =

1

Braid groups

o Definition (Artin 1925/1948): The group is the group with presentation
0,0, = 0,0; for |i —j| =2
<a1,...,aH] od T)
I Joij or |’ J‘ -
~ { braid diagrams } / isotopy: 1 —
i+1 —
< 7 I
] o—
e Example:
— —
[-
P— - P ol
- —_—

Braid groups

o Definition (Artin 1925/1948): The group is the group with presentation
< ’ 0,0, = 0,0, for|i—j\>2>
Oy ey O _ . :
1 =1 0;0;0; = 0;0;0; for |i — j| =1
~ { braid diagrams } / isotopy: 1 —
i+1 —
< 7 I
] o—
e Example:
— —
[-
P— - P ol
- —_—\—
— —
s —_— = — N\
D) N JE—

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

» Direct limit

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

» Direct limit = <UI7U27... ’ >

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

- . o.0. =00, forl|i—j|>2
» Direct limit = <017U27... ’ ~J 70 >

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

’ Uio-j:ajaf fOr|I*J|22>
0;0;0; = 0,0;0; for |i—j|=1/"

» Direct limit = <UI7U27
Joi Ji

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

. L. 0,0, = 0.0; for |[i —j| > 2
» Direct limit = <UI7U27 J J T >
0;0;0; = 0;0;0; for |i —j| =1
> endomorphism of B.o: 10O

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

. L. o.0. =00, forl|i—j|>2
» Direct limit = <Ul,a2,... rJ J! T >
0;0;0; = 0;0;0; for |i — j| =1
> endomorphism of B.o: e /TRp

e Proposition: For «, 8 in Bso, define
:=a-sh(B) - oy - sh(a) 7L,

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

. L. o.0. =00, forl|i—j|>2
» Direct limit = <Ul,a2,... rJ J! T >
0;0;0; = 0;0;0; for |i — j| =1
> endomorphism of B.o: e /TRp

e Proposition: For «, 8 in Bso, define
:=a-sh(B) - oy - sh(a) 7L,
Then (B,>) is a shelf.

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

. L. 0,0, = 0.0; for |[i —j| > 2
» Direct limit = <UI7U27 J J T >
0,0;0; = 0;0,0; for |i —j| =1
> endomorphism of B.o: 10O

e Proposition: For «, 8 in Bso, define
:= o - sh(B) - oy - sh(a) L.
Then (B,>) is a shelf.

sh(B) sh(a)~!

—~

abf

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

. L. 0,0, = 0.0; for |[i —j| > 2
» Direct limit = <UI7U27 J J T >
0,0;0; = 0;0,0; for |i —j| =1
> endomorphism of B.o: 10O

e Proposition: For «, 8 in Bso, define
:= o - sh(B) - oy - sh(a) L.
Then (B,>) is a shelf.

sh(B) sh(a)~!

—~

abf

e Examples: 1>1 =0,

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

. L. 0,0, = 0.0; for |[i —j| > 2
» Direct limit = <UI7U27 J J T >
0,0;0; = 0;0,0; for |i —j| =1
> endomorphism of B.o: 10O

e Proposition: For «, 8 in Bso, define
:= o - sh(B) - oy - sh(a) L.
Then (B,>) is a shelf.

sh(B) sh(a)~!

—~

abf

e Examples: 1> 1 = o, 1poy =00,

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

. L. 0,0, = 0.0; for |[i —j| > 2
» Direct limit = <UI7U27 J J T >
0,0;0; = 0;0,0; for |i —j| =1
> endomorphism of B.o: 10O

e Proposition: For «, 8 in Bso, define
:= o - sh(B) - oy - sh(a) L.
Then (B,>) is a shelf.

sh(B) sh(a)~!

—~

abf

e Examples: 1pl=0y, 1>o =o0,0y, rrlblzcrlzcr;l,

The braid shelf

e Adding a strand on the right provides in ny1: By T Bpy1

. L. 0,0, = 0.0; for |[i —j| > 2
» Direct limit = <UI7U27 J J T >
0,0;0; = 0;0,0; for |i —j| =1
> endomorphism of B.o: 10O

e Proposition: For «, 8 in Bso, define
:= o - sh(B) - oy - sh(a) L.
Then (B,>) is a shelf.

sh(B) sh(a)~!

—~

abf

e Examples: 1> 1 = o, 1poy=o0,00, oy>1= 0120;1, o, > oy = 0,0, etc.

» Proof:

A=)

=

a
it
a
i

Hac

> Proof: a (B57) =

(O <Fr «

Hac

» Proof: ai>(8>v) = a-sh(8-sh(v) o, -sh(8)~1) oy - sh(a)~!

«0O>» «F»r «

!
a
i

DA™

» Proof: ai>(8>v) = a-sh(8-sh(v) o, -sh(8)71) oy - sh(a)~!

= a-sh(B) - sh?(y) - 0, - sh?(B) ! - o, - sh(a) !

«O0)>» «F»>» « >

<

i
v

DA™

» Proof: ai>(8>v) = a-sh(8-sh(v) o, -sh(8)71) oy - sh(a)~!

= a-sh(B) - sh?(y) - 0, - sh?(B) ! - o, - sh(a) !
= a-sh(8) -sh3(y) - op0; - sh(8) 1 - sh(a) ™.

«O0)>» «F»>» « >

<

i
v

DA™

» Proof: ai>(8>v) = a-sh(8-sh(v) o, -sh(8)71) oy - sh(a)~!

= a-sh(B) - sh?(y) - 0, - sh?(B) ! - o, - sh(a) !
= a-sh(8) -sh3(y) - op0; - sh(8) 1 - sh(a) ™.
(a>B)>(a>y)

«O0)>» «F»>» « >

<

i
v

DA™

» Proof: ai>(8>v) = a-sh(8-sh(v) o, -sh(8)71) oy - sh(a)~!

= a-sh(B) - sh?(y) - 0, - sh?(B) ! - o, - sh(a) !
= a-sh(8) -sh3(y) - op0; - sh(8) 1 - sh(a) ™.
(a>B)>(aby

= (ash(B) oy sh(a) 1) - sh(ash(v) oy sh(a)~1) - oy - sh(ash(B) oy sh(a) 1)L

«0O0>» «F>» « =)»

<

it
v

DA™

» Proof: ai>(8>v) = a-sh(8-sh(v) o -sh(8)7?1) oy - sh(a) !

= a-sh(B) - sh?(y) - 0, - sh?(B) ! - o, - sh(a) !
= a-sh(8) - sh(7) - 0,07 - sh(8) 1 - sh(a) L.
(a>B)>(aby
= (ash(B) o sh(a) 1) - sh(arsh(v) oy sh(a)~1) - oy - sh(ash(B) oy sh(a)~1)~L
= ash(B) g, sh(a) ! sh(a) sh?(y) o, sh?(a) ! oy sh?(a) 02_1 sh?(8) ! sh(a)~?

«0O0>» «F>» « =)»

<

it
v

DA™

» Proof: ai>(8>v) = a-sh(8-sh(v) o -sh(8)7?1) oy - sh(a) !

= a-sh(B) - sh?(y) - 0, - sh?(B) ! - o, - sh(a) !

~ a-sh(B) - sh*(y) - 050, - sh(8) - sh(a) .
(a>B)>(a>y)
(ash(B) oy sh(a) 1) - sh(arsh(v) oy sh(a)~1) - oy - sh(ash(B) oy sh(a)~1) 2
ash(B) oy sh(a) ! sh(a) sh?(y) o, sh?(a) ~* oy sh?(a) 02_1 sh?(8) ! sh(a)~?
ash(B) g, sh?(y) oy0,05 * sh?(8) L sh(a)~!

«4O0>» «F>» «E» 4«

it
!
V)
ye)
?

» Proof: ai>(8>v) = a-sh(8-sh(v) o -sh(8)7?1) oy - sh(a) !

= a-sh(B) - sh?(y) - 0, - sh?(B) ! - o, - sh(a) !

= a-sh(8) -sh3(y) - op0; - sh(8) 1 - sh(a) ™.
(a>B)>(a>y)
(ash(B) oy sh(a) 1) - sh(arsh(v) oy sh(a)~1) - oy - sh(ash(B) oy sh(a)~1) 2
ash(B) oy sh(a) ! sh(a) sh?(y) o, sh?(a) ~* oy sh?(a) 02_1 sh?(8) ! sh(a)~?
ash(B) o, sh?(y) oy0,05 + sh?(8) L sh(a)~!
a-sh(B) - sh?(y) - 0,0,0705 * - sh?(8) =1 - sh(a) ! O

«0O0>» «F>» «Z» «

it
!
V)
ye)
?

The braid shelf (cont'd)

» Proof: a> (B>7) = a-sh(B-sh(y) -0, -sh(8)71) o, -sh(a)~?

=a - sh(B) - sh?(7) - o, - sh?(8) 1 (7‘1 sh(a)~!

= a-sh(B) - sh?(y) - oy0; - sh?(B) ™1 - sh(a) L.
(a>B)> (ar>y)
(ash(B) oy sh(a)~1) - sh(a sh() oy sh(a) 1. o, - sh(ash(B) o, sh(a)~1)~!
= ash(p) oy sh(a) ™! sh(a) sh?(v) o, sh?(a) 1 orl sh?(a) 0271 sh?(8)~Lsh(a)~!
= ash(B) oy sh?(v) o,0y05 Shz(3)~Lsh(a)!
= a-sh(B) - sh(y) - oy0,0705 L.sh?(8) ! - sh(a) ! O

e Remark: Shelf (=right shelf) with
a<dB:=sh(B)"1- o0, -sh(a)- B,

o F = = £ DA

The braid shelf (cont'd)

» Proof: a> (B>v)=a-sh(s- sh(w) oy sh(/i’)*) oy sh(a)*1
= a-sh(B) - sh’(v) - o, - sh?(8) ! sh(a)~*
= a - sh(B) - sh? ('y) 0201 sh?(8) sh(a) Ly
(a>B)> (ar>y)

(ash(B) oy sh(a)~L) - sh(ash() oy sh(a)~1) - o - sh(ash(B) oy sh(a)~1)~1
= ash(B) oy sh(a) ™ sh(u) sh?(v) o, sh (u) Lo sh?(a) 0271 sh?(8)~Lsh(a)~!
= ash(B) oy sh?(v) o,0y05 1sh2 (3)~Lsh(a)!
= a-sh(B) - sh?(y) - 01020102 - sh? (,6’)_ -sh(a)™?! O

e Remark: Shelf (=right shelf) with
a<dB:=sh(B)"1- o0, -sh(a)- B,
but less convenient here.

o F = = £ DA

The braid shelf (cont'd)

» Proof: a> (B>7) = a-sh(B-sh(y) -0, -sh(8)71) o, -sh(a)~?
=a-sh(B) -sh?(7) - o, - sh?(8)~! - o, - sh(a)~?

= a-sh(B) - sh?(y) - oy0y - sh?(B) ™! - sh(a)~?
(a>B)> (a>7)

= (ash(B) oy sh(a)~1) - sh(ash(y) oy sh(a)71) - oy sh(ash((f)a1 sh(a)~1)~!
= ash(B) oy sh(a) ™! sh(c)sh () o, sh (@)~to sh?(a) o, Lsh?(8)~1sh(a)~t
= ash(f) oy shz(q)ﬂzrrlﬂz () sh(a)~?

= a-sh(B) - sh?(y) - 0'1020'102 h2(8)~! - sh(a)~! O

e Remark: Shelf (=right shelf) with
a<df:=sh(B)"t- oy - sh(a) - B,
but less convenient here.

e Remark: Works similarly with
x>y :=x-¢(y)-e-p(x)
whenever G is a group G, e belongs to G, and ¢ is an endomorphism ¢ satisfying

ep(e)e=d(e)eg(e) and Vx(ed’(x)=¢?(x)e).

1

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>>) to be free is that the relation — on S has no cycle.

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>>) to be free is that the relation — on S has no cycle.

if 3z(x>z=y).

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>>) to be free is that the relation — on S has no cycle.

if 3z(x>z=y).

» Equivalently: x = (- ((x > z1) > z2) > -+) > zp is impossible.

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>>) to be free is that the relation — on S has no cycle.

if 3z(x>z=y).

» Equivalently: x = (- ((x > z1) > z2) > -+) > zp is impossible.

e Theorem (D., 1991): Every braid in B generates in (Bso,>) a free left shelf.

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>>) to be free is that the relation — on S has no cycle.

if 3z(x>z=y).

» Equivalently: x = (- ((x > z1) > z2) > -+) > zp is impossible.

e Theorem (D., 1991): Every braid in B generates in (Bso,>) a free left shelf.
» Typically: The subshelf of (Bso,>) generated by 1 is a free left shelf.

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>>) to be free is that the relation — on S has no cycle.

if 3z(x>z=y).

» Equivalently: x = (- ((x > z1) > z2) > -+) > zp is impossible.

e Theorem (D., 1991): Every braid in B generates in (Bso,>) a free left shelf.
» Typically: The subshelf of (Bso,>) generated by 1 is a free left shelf.

Larue

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>>) to be free is that the relation — on S has no cycle.

if 3z(x>z=y).

» Equivalently: x = (- ((x > z1) > z2) > -+) > zp is impossible.

e Theorem (D., 1991): Every braid in B generates in (Bso,>) a free left shelf.
» Typically: The subshelf of (Bso,>) generated by 1 is a free left shelf.

Larue

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>>) to be free is that the relation — on S has no cycle.

if 3z(x>z=y).

» Equivalently: x = (- ((x > z1) > z2) > -+) > zp is impossible.

e Theorem (D., 1991): Every braid in B generates in (Bso,>) a free left shelf.
» Typically: The subshelf of (Bso,>) generated by 1 is a free left shelf.

Larue

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>>) to be free is that the relation — on S has no cycle.

if 3z(x>z=y).

» Equivalently: x = (- ((x > z1) > z2) > -+) > zp is impossible.

e Theorem (D., 1991): Every braid in B generates in (Bso,>) a free left shelf.
» Typically: The subshelf of (Bso,>) generated by 1 is a free left shelf.

Larue

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,>) is a monogenerated left shelf, a
sufficient condition for (S,>) to be free is that the relation = on S has no cycle.

1
if 3z(x>z=y).

» Equivalently: x = (- ((x > z1) > z2) > -+) > zp is impossible.

e Theorem (D., 1991): Every braid in B generates in (B ,>) a free left shelf.
» Typically: The subshelf of (Bso,>) generated by 1 is a free left shelf.

» Proof (Larue, 1992): Use the (faithful) Artin representation p of Bso in Aut(Fxo):
(xi) := XiXip1x: 1L (Xi+1) := xi, (xk) := xx for k #i,i+1,

Then ac B in Bso implies that a~1/3 has an expression with > 1 letter oy and no oy .

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,>) is a monogenerated left shelf, a
sufficient condition for (S,>) to be free is that the relation = on S has no cycle.
xcyifdz(x>z=y).
» Equivalently: x = (- ((x > z1) > z2) > -+) > zp is impossible.

e Theorem (D., 1991): Every braid in B generates in (B ,>) a free left shelf.
» Typically: The subshelf of (Bso,>) generated by 1 is a free left shelf.

» Proof (Larue, 1992): Use the (faithful) Artin representation p of Bso in Aut(Fxo):
p(o:)(Xi) == XiXip1X; 1L p(o:)(xix1) = xi, p(o:)(xk) := xi for k #i,i+1,

Then ac B in Bs implies that a~1/3 has an expression with > 1 letter oy and no oy
For such a braid v, the word p(7)(x1) in Feo finishes with the letter xfl. |

1

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>) to be free is that the relation = on S has no cycle.
xrcyifdz(x>z=y).
» Equivalently: x = (- (x> z1) > 2z2) > -+) > 2z, is impossible.

e Theorem (D., 1991): Every braid in B generates in (Bso,>) a free left shelf.
» Typically: The subshelf of (Bso,>) generated by 1 is a free left shelf.

» Proof (Larue, 1992): Use the (faithful) Artin representation p of Bso in Aut(Foo):
p(o:)(Xi) == XiXip1X; 4 p(o:)(xix1) = xi, p(o:)(xk) := xi for k #i,i+1,

Then o B in By implies that a—13 has an expression with >1 letter o, and no oy
For such a braid v, the word p(7)(x1) in Feo finishes with the letter xfl. |

1

e Corollary: (solution of the wp of SD) Given two terms T, T':

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>) to be free is that the relation = on S has no cycle.
xrcyifdz(x>z=y).
» Equivalently: x = (- (x> z1) > 2z2) > -+) > 2z, is impossible.

e Theorem (D., 1991): Every braid in B generates in (Bso,>) a free left shelf.
» Typically: The subshelf of (Bso,>) generated by 1 is a free left shelf.

» Proof (Larue, 1992): Use the (faithful) Artin representation p of Bso in Aut(Foo):
p(o:)(Xi) == XiXip1X; 4 p(o:)(xix1) = xi, p(o:)(xk) := xi for k #i,i+1,

Then o B in By implies that a—13 has an expression with >1 letter o, and no oy
For such a braid v, the word p(7)(x1) in Feo finishes with the letter xfl. |

e Corollary: (solution of the wp of SD) Given two terms T, T':
» Lvaluate T and T' at x :=1 in Boo;

A semantic solution of the word problem

e Proposition (D., 1989, Laver, 1989) If (S,1>) is a monogenerated left shelf, a
sufficient condition for (S,>) to be free is that the relation = on S has no cycle.
xrcyifdz(x>z=y).
» Equivalently: x = (- (x> z1) > 2z2) > -+) > 2z, is impossible.

e Theorem (D., 1991): Every braid in B generates in (Bso,>) a free left shelf.
» Typically: The subshelf of (Bso,>) generated by 1 is a free left shelf.

» Proof (Larue, 1992): Use the (faithful) Artin representation p of Bso in Aut(Foo):
p(o:)(Xi) == XiXip1X; 4 p(o:)(xix1) = xi, p(o:)(xk) := xi for k #i,i+1,

Then o B in By implies that a—13 has an expression with >1 letter o, and no oy
For such a braid v, the word p(7)(x1) in Feo finishes with the letter xfl. |

1

e Corollary: (solution of the wp of SD) Given two terms T, T':
» Lvaluate T and T' at x :=1 in Boo;
» Then T =sp T/ iff T(1) = T'(1) in Bo.

Plan:
e Minicourse |. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

e Minicourse Il. Connection with set theory
- 1. The set-theoretic shelf

- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

«4O0>» «F>» «E)>» «

Free shelves

o Describe the (left) shelf based on a set X

e Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)

«O)>» «F»r «

!
a
i

DA™

e Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)

(= the shelf generated by X, every shelf generated by X is a quotient of)

«O>» «F»r «

!
a
i

DA™

Free shelves

o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
(= the shelf generated by X, every shelf generated by X is a quotient of)

e Lemma: Let 7x be the family of all terms built from X and >,

Free shelves

o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
(= the shelf generated by X, every shelf generated by X is a quotient of)

e Lemma: Let 7x be the family of all terms built from X and >, and =<, be the
congruence (i.e., compatible equiv. rel.) on Tx generated by all pairs
(T1 [>(T2 > T3) 9 (T1 > TQ) [>(T1 > T3)).

Free shelves

o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
(= the shelf generated by X, every shelf generated by X is a quotient of)

e Lemma: Let /x be the family of all terms built from X and >, and =, be the
congruence (i.e., compatible equiv. rel.) on Tx generated by all pairs

(T1 [>(T2 > T3) 9 (T1 > TQ) [>(T1 > T3)).
Then Tx /=sp is the free left-shelf based on X.

Free shelves

o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
(= the shelf generated by X, every shelf generated by X is a quotient of)

e Lemma: Let 7x be the family of all terms built from X and >, and =<, be the
congruence (i.e., compatible equiv. rel.) on Tx generated by all pairs

(T1 [>(T2 > T3) 9 (T1 > TQ) [>(T1 > T3)).
Then Tx /=sp is the free left-shelf based on X.

» Proof: trivial. 0

Free shelves

o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
(= the shelf generated by X, every shelf generated by X is a quotient of)

e Lemma: Let 7x be the family of all terms built from X and >, and =<, be the
congruence (i.e., compatible equiv. rel.) on Tx generated by all pairs

(T1 [>(T2 > T3) 9 (T1 > TQ) [>(T1 > T3)).
Then Tx /=sp is the free left-shelf based on X.

» Proof: trivial. 0

» ...but says nothing: =sp not under control so far.

Free shelves

o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
(= the shelf generated by X, every shelf generated by X is a quotient of)

e Lemma: Let 7x be the family of all terms built from X and >, and =<, be the
congruence (i.e., compatible equiv. rel.) on Tx generated by all pairs

(T1 [>(T2 > T3) 9 (T1 > TQ) [>(T1 > T3)).
Then Tx /=sp is the free left-shelf based on X.

» Proof: trivial. 0

» ...but says nothing: =sp not under control so far. In particular, is it decidable?

Free shelves

o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
(= the shelf generated by X, every shelf generated by X is a quotient of)

e Lemma: Let 7x be the family of all terms built from X and >, and =<, be the
congruence (i.e., compatible equiv. rel.) on Tx generated by all pairs

(T1 [>(T2 > T3) 9 (T1 > TQ) [>(T1 > T3)).
Then Tx /=sp is the free left-shelf based on X.

» Proof: trivial. 0

» ...but says nothing: =sp not under control so far. In particular, is it decidable?

e Terms on X as binary trees with nodes > and leaves in X:

Free shelves

o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
(= the shelf generated by X, every shelf generated by X is a quotient of)

e Lemma: Let 7x be the family of all terms built from X and >, and =<, be the
congruence (i.e., compatible equiv. rel.) on Tx generated by all pairs

(T1 [>(T2 > T3) 9 (T1 > TQ) [>(T1 > T3)).
Then Tx /=sp is the free left-shelf based on X.

» Proof: trivial. 0

» ...but says nothing: =sp not under control so far. In particular, is it decidable?

e Terms on X as binary trees with nodes > and leaves in X: assuming X = {a,b,c},

Free shelves

o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
(= the shelf generated by X, every shelf generated by X is a quotient of)

e Lemma: Let 7x be the family of all terms built from X and >, and =<, be the
congruence (i.e., compatible equiv. rel.) on Tx generated by all pairs

(T1 [>(T2 > T3) 9 (T1 > TQ) [>(T1 > T3)).
Then Tx /=sp is the free left-shelf based on X.

» Proof: trivial. 0

» ...but says nothing: =sp not under control so far. In particular, is it decidable?

e Terms on X as binary trees with nodes > and leaves in X: assuming X = {a,b,c},

>
. /\
b a

b>a

Free shelves

o Describe the free (left) shelf based on a set X (= the most general shelf gen'd by X)
(= the shelf generated by X, every shelf generated by X is a quotient of)

e Lemma: Let 7x be the family of all terms built from X and >, and =<, be the
congruence (i.e., compatible equiv. rel.) on Tx generated by all pairs

(T1 [>(T2 > T3) 9 (T1 > TQ) [>(T1 > T3)).
Then Tx /=sp is the free left-shelf based on X.

» Proof: trivial. 0

» ...but says nothing: =sp not under control so far. In particular, is it decidable?

e Terms on X as binary trees with nodes > and leaves in X: assuming X = {a,b,c},

>

> / N\

: % AT
b>a @ N
cb

(a>(b>c))>b

The confluence property

e Lemma (confluence): Let be the semi-congruence on Tx gen'd by all pairs
(T1 > (T2 > T3) s (T1 > TQ) > (T1 > T3)).
Then Ty =sp T> holds iff

The confluence property

e Lemma (confluence): Let be the semi-congruence on Tx gen'd by all pairs
(T1 D(T2[> T3) 9 (T1 > TQ)D(Tl > T3)).
Then Ty =sp T» holds iff one has Ty —sp T and Tr —sp T for some T.

The confluence property

e Lemma (confluence): Let be the semi-congruence on Tx gen'd by all pairs
(T1 D(T2[> T3) 9 (T1 > TQ)D(Tl > T3)).
Then Ty =sp T» holds iff one has Ty —sp T and Tr —sp T for some T.

The confluence property

e Lemma (confluence): Let be the semi-congruence on Tx gen’d by all pairs
(T1 D(TQD T3) 9 (T1 > TQ)D(Tl > T3)).
Then Ty =sp T» holds iff one has Ty —sp T and Tr —sp T for some T.

The confluence property

e Lemma (confluence): Let be the semi-congruence on Tx gen’d by all pairs
(T1 D(TQD T3) 9 (T1 > TQ)D(Tl > T3)).
Then Ty =sp T» holds iff one has Ty —sp T and Tr —sp T for some T.

The confluence property

e Lemma (confluence): Let be the semi-congruence on Tx gen’d by all pairs
(T1 D(TQD T3) 9 (T1 > TQ)D(Tl > T3)).
Then Ty =sp T» holds iff one has Ty —sp T and Tr —sp T for some T.

The absorption property

e Lemma (absorption):

The absorption property

e Lemma (absorption): Define ‘= x and = xvx"1 forn > 2.

The absorption property

e Lemma (absorption): Define = x and = x> xI"=1 forn >2. For T in 7,
I =5 T [l
holds for n > ht(T),

The absorption property

e Lemma (absorption): Define = x and = x> xI"=1 forn >2. For T in 7,
I =5 T [l
holds for n > ht(T), where =0

The absorption property

e Lemma (absorption): Define = x and = x> xI"=1 forn >2. For T in 7,
I =5 T [l
holds for n > ht(T), where =0 and = max(ht(T1), ht(T2)) + 1.

The absorption property

e Lemma (absorption): Define = x and = x> xI"=1 forn >2. For T in 7,
I =5 T [l
holds for n > ht(T), where =0 and = max(ht(T1), ht(T2)) + 1.

The absorption property

e Lemma (absorption): Define = x and = x> xI"=U for n>2. For T in Ty,
I =5 T X[l
holds for n > ht(T), where =0 and = max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.

The absorption property

e Lemma (absorption): Define M= x and <7 = x> xI"=1 for n > 2. For T in Ty,
I =5 T X[l
holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Assume T = Ty > Ty and n > ht(T).

The absorption property

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,
It =gy T xlnl
holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Assume T = Ty > Ty and n > ht(T). Then n—1 > ht(T1) and n —1 > ht(T»).

The absorption property

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,
It =gy T xlnl
holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Assume T = Ty > Ty and n > ht(T). Then n—1 > ht(T1) and n —1 > ht(T»).
Then x["t1 =g T3 > x[7l by induction hypothesis for Ty

The absorption property

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,

I =5 T X[l

holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Then xI1 =5 T3 > x[]

Assume T = Ty > Ty and n > ht(T). Then n—1 > ht(T1) and n —1 > ht(T»).
=sD T1|>(T2|>X[n 1])

by induction hypothesis for Ty
by induction hypothesis for T,

The absorption property

I =5 T X[l
holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,
» Proof: Induction on T. For T = x, direct from the definitions.
Then xI1*1 =¢5 T7 > xI[

=sp T1 D> (T2 DX[’771])

Assume T = T1> Tp and n > ht(T). Then n—1 > ht(T1) and n — 1 > ht(T3).
=sp (T1 > Tz) > (Tl DX[nil])

by induction hypothesis for Ty
by induction hypothesis for T,

by applying SD

The absorption property

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,

I =5 T X[l

holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Then x[M1 =¢5 T3 > xI1

=sp T1 D> (T2 > X['771])

=sp (T1 > T2) > (Ty > x[1—1)

Assume T = T1> Tp and n > ht(T). Then n—1 > ht(T1) and n — 1 > ht(T3).
=sD (T1 > T2) DX[H]

by induction hypothesis for Ty

by induction hypothesis for T,
by applying SD

by induction hypothesis for Ty

The absorption property

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,
It =gy T xlnl
holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Assume T = T1> Tp and n > ht(T). Then n—1 > ht(T1) and n — 1 > ht(T3).
Then x[M1 =¢5 T3 > xI1
=sp T1 D> (T2 > X['771])
=sp (T1 > T2) > (Ty > x[1—1)
=sD (T1 > T2) > X[n]
= T x[,

by induction hypothesis for Ty
by induction hypothesis for T,
by applying SD

by induction hypothesis for Ty
(|

o F = = £ DA

The absorption property

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,
It =gy T xlnl
holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Assume T = T1> Tp and n > ht(T). Then n—1 > ht(T1) and n — 1 > ht(T3).
Then x[M1 =¢5 T3 > xI1
=sp T1 D> (T2 > X['771])
=sp (T1 > T2) > (Ty > x[1—1)
=sD (T1 > T2) > X[n]
= T x[,

by induction hypothesis for Ty
by induction hypothesis for T,
by applying SD

by induction hypothesis for Ty
(|

The absorption property

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,
It =gy T xlnl
holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Assume T = T1> Tp and n > ht(T). Then n—1 > ht(T1) and n — 1 > ht(T3).
Then xI1*1 =¢5 T7 > xI[
=sp T1 D> (T2 DX[’771])
=sD (T1 > Tz) > (Tl DX[nil])
=sp (T1 > T2) > xI
= T x[,

by induction hypothesis for Ty
by induction hypothesis for T,
by applying SD

by induction hypothesis for Ty
(|

=SsD

The absorption property

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,
It =gy T xlnl
holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Assume T = Ty > Ty and n > ht(T). Then n—1 > ht(T1) and n —1 > ht(T»).
Then xI1 =5 T3 > x[]

=sD Tl > (TQ > X[n 1])

=sp (T1 > Tz) > (Tl > X['771])

=sp (T1 > T2) > xI

= T x[,

by induction hypothesis for Ty
by induction hypothesis for T,
by applying SD

by induction hypothesis for Ty
(|

—SD =SsD

The absorption property

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,
It =gy T xlnl
holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Assume T = Ty > Ty and n > ht(T). Then n—1 > ht(T1) and n —1 > ht(T»).
Then xI1 =5 T3 > x[]
=sD Tl > (TQ > X[n 1])
=sp (T1 > Tz) > (Tl > X[nil])
=sp (T1 > T2) > xI
= T x[,

bl

by induction hypothesis for Ty
by induction hypothesis for T,
by applying SD

by induction hypothesis for Ty
(|

The absorption property

e Lemma (absorption): Define xI'l ;= x and xI"l := x> xI"=1 for n > 2. For T in T3,
It =gy T xlnl
holds for n > ht(T), where ht(x) :=0 and ht(T > T>) := max(ht(T1), ht(T2)) + 1.

» Proof: Induction on T. For T = x, direct from the definitions.
Assume T = Ty > Ty and n > ht(T). Then n—1 > ht(T1) and n —1 > ht(T»).
Then xI1 =5 T3 > x[]
=sD T1 D(TQ > X[” 1])
=sp (T1 > Tz) > (T1 > X[nil])
=sp (T1 > T2) > xI
= T x[,

=sb =sDb =sD =sb
Ti\[T2\/T1 T1\/ T2

[
T

by induction hypothesis for Ty
by induction hypothesis for T,
by applying SD

by induction hypothesis for Ty
(|

The comparison property

e Lemma (comparison |): Write for AT" (T =sp T>T"),

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of Csp.

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of

TES U

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of

T [;D T/, T =sD T/,

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of

TceHp T, T=oT, Tc&pHT.

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of

TceHp T, T=oT, Tc&pHT.

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of

TceHp T, T=oT, Tc&pHT.

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of —sp. Then, for all T, T’ in Tx, one has at least one of

TceHp T, T=oT, Tc&pHT.

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of —sp. Then, for all T, T’ in Tx, one has at least one of

TceHp T, T=oT, Tc&pHT.

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of

TceHp T, T=oT, Tc&pHT.

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of

TceHp T, T=oT, Tc&pHT.

—SD —SD

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of —sp. Then, for all T, T’ in Tx, one has at least one of

TceHp T, T=oT, Tc&pHT.

—SD —SD

NS

The comparison property

e Lemma (comparison |): Write

for the

for 3T" (T =sp T>T"), and
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of
=N

T =sD T/, T/ E;D T.

—SD

—SD

e
annns
o

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of
Tci, T/, T=sT', Tc&HT.

=SD

—SD

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of
Tci, T/, T=sT', Tc&HT.

=SD

—SD

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of
Tci, T/, T=sT', Tc&HT.

=SD

—SD

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of
Tci, T/, T=sT', Tc&HT.

=SD

—SD

The comparison property

e Lemma (comparison |): Write for 3T" (T =sp T>T"), and for the
transitive closure of csp. Then, for all T, T' in Tx, one has at least one of
Tci, T/, T=sT', Tc&HT.

=SD

—SD

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are ["-comparable

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are ["-comparable

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are ["-comparable

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are ["-comparable

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are ["-comparable

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T=dy T/ or T' &y T,

—SD

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T=dy T/ or T' &y T,
whence T(g)c* T'(g)

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T=dy T/ or T' &y T,
whence T(g)c* T'(g) or T'(g) c* T(g).

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C—*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,1) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies Tcdy T or T' &y T,

whence T(g)c* T'(g) or T'(g) =* T(g).
As C has no cycle in S, both imply T(g) # T'(g). O

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T=dy T/ or T' &y T,

whence T(g)c* T'(g) or T'(g) c* T(g).
As C has no cycle in S, both imply T(g) # T'(g).]

® Proposition: If there exists at least one shelf with C acyclic, then &, has no cycle.

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T=dy T/ or T' &y T,

whence T(g)c* T'(g) or T'(g) c* T(g).
As C has no cycle in S, both imply T(g) # T'(g).]

® Proposition: If there exists at least one shelf with C acyclic, then &, has no cycle.
» And such examples do exist: 1. lteration shelf (Laver, 1989);

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T=dy T/ or T' &y T,

whence T(g)c* T'(g) or T'(g) c* T(g).
As C has no cycle in S, both imply T(g) # T'(g).]

® Proposition: If there exists at least one shelf with C acyclic, then &, has no cycle.

» And such examples do exist: 1. lteration shelf (Laver, 1989);
2. Free shelf (Dehornoy, 1991);

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T=dy T/ or T' &y T,

whence T(g)c* T'(g) or T'(g) =* T(g).
As C has no cycle in S, both imply T(g) # T'(g). O

® Proposition: If there exists at least one shelf with C acyclic, then &, has no cycle.

» And such examples do exist: 1. lteration shelf (Laver, 1989);
2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T=dy T/ or T' &y T,

whence T(g)c* T'(g) or T'(g) c* T(g).
As C has no cycle in S, both imply T(g) # T'(g).]

® Proposition: If there exists at least one shelf with C acyclic, then &, has no cycle.

» And such examples do exist: 1. lteration shelf (Laver, 1989);
2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

e Corollary: (solution of the wp of SD) Given two terms T, T':

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T=dy T/ or T' &y T,
whence T(g)c* T'(g) or T'(g) c* T(g).

As C has no cycle in S, both imply T(g) # T'(g). O
e Proposition: If there exists shelf with C acyclic, then c, has no cycle.
» And such examples : 1. Iteration shelf (Laver, 1989);

2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

e Corollary: (solution of the wp of SD) Given two terms T, T':
» Find a common LD-expansion T"' of T > xI"l and T’ > xI1;

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T g, T/ or T' &, T,

whence T(g)c* T'(g) or T'(g) c* T(g).

As C has no cycle in S, both imply T(g) # T'(g). O
e Proposition: If there exists shelf with C acyclic, then c, has no cycle.
» And such examples : 1. Iteration shelf (Laver, 1989);

2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

e Corollary: (solution of the wp of SD) Given two terms T, T':
» Find a common LD-expansion T"' of T > xI"l and T’ > xI1;
» Find r and r’ satisfying T —sp left"(T"")

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T g, T/ or T' &, T,

whence T(g)c* T'(g) or T'(g) c* T(g).

As C has no cycle in S, both imply T(g) # T'(g). O
e Proposition: If there exists shelf with C acyclic, then c, has no cycle.
» And such examples : 1. Iteration shelf (Laver, 1989);

2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

e Corollary: (solution of the wp of SD) Given two terms T, T':
» Find a common LD-expansion T"' of T > xI"l and T’ > xI1;

» Find r and r’ satisfying T —sp left"(T”") and T’ —sp Ieft’l(T”).

A syntactic solution to the word problem

e Application: If (5,>) is a monogenerated left-shelf, any two distinct elements of S
are C*-comparable (with —*= transitive closure of = = iterated left divisibility).

e Proposition (freeness criterion): If (S,1>) is a monogenerated left-shelf and = has no
cycle, then (S,>) is free.

» Proof: Assume S gen'd by g. “S is free” means “T #sp T' = T(g) # T'(g)".
Now T #sp T’ implies T g, T/ or T' &, T,

whence T(g)c* T'(g) or T'(g) c* T(g).

As C has no cycle in S, both imply T(g) # T'(g). O
e Proposition: If there exists shelf with C acyclic, then c, has no cycle.
» And such examples : 1. Iteration shelf (Laver, 1989);

2. Free shelf (Dehornoy, 1991); 3. Braid shelf (D., 1991, Larue, 1992, D., 1994).

e Corollary: (solution of the wp of SD) Given two terms T, T':
» Find a common LD-expansion T"' of T > xI"l and T’ > xI1;
» Find r and r’ satisfying T —sp left"(T"") and T' —sp Ieft’l(T”).
» Then TZSD T iffr=r".

The Thompson's monoid of SD

e Definition: For v a binary address ,

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o".

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

e Now, for every term T, select an element of Msp that maps X1 to T 1 X1l

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

e Now, for every term T, select an element of Msp that maps It to T [Nl
» Follow the inductive proof of the absorption property:

Xx ‘=1, . (%)

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

e Now, for every term T, select an element of Msp that maps It to T [Nl
» Follow the inductive proof of the absorption property:
Xx ‘=1, . (%)

e Next, identify relations in Msp:

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

e Now, for every term T, select an element of Msp that maps It to T [Nl
» Follow the inductive proof of the absorption property:
(+)

xx =1,

e Next, identify relations in Msp:
SDllzvSD(\ - SD(VSDlll\r!

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

e Now, for every term T, select an element of Msp that maps It to T [Nl
» Follow the inductive proof of the absorption property:
(+)

xx =1,

e Next, identify relations in Msp:

SDllzvSDu - SD(VSDH(“ SDIHSDIVSD1(VSDOH - SD(VSDIHSDH! etc. (**)

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

e Now, for every term T, select an element of Msp that maps It to T [Nl
» Follow the inductive proof of the absorption property:
(+)

xx =1,

e Next, identify relations in Msp:
SDllzvSDu - SD(VSDH(“
» When every SD,, s.t. « contains 0 is collapsed, only the SD1;...1s remain.

SD145DaSD14SD0s = SDaSD14SDa, etc. (#x)

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

of Mgp that maps x["1 to T 1 xI7.

e Now, for every term T, select an element
» Follow the inductive proof of the absorption property:
: (*)

xx =1,

e Next, identify relations in Msp:
ot SD110SDa = SD4SD114, SD14SDaSD14SDga = SD4SD14SDa, etc. (**)
" » When every SD, s.t. « contains 0 is collapsed, only the SD1;...1s remain.

:.. » Write o, for the image of SD11...1, i times 1. Then (%) becomes
-.---.....-) (T’,()'j =] O’jo—i for ‘J - /‘ > 2,

The Thompson's monoid of SD

, let be the

e Definition: For v a binary address
partial operator “apply SD in the expanding direction at address o’. The

is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

of Mgp that maps x["1 to T 1 xI7.

e Now, for every term T, select an element
» Follow the inductive proof of the absorption property:
: (*)

xx =1,

e Next, identify relations in Msp:
ot SD110SDa = SD4SD114, SD14SDaSD14SDga = SD4SD14SDa, etc. (**)
" » When every SD, s.t. « contains 0 is collapsed, only the SD1;...1s remain.

:.. » Write o, for the image of SD11...1, i times 1. Then (%) becomes
RRRLEED = 0,0, = 0;0; for |[j —i| > 2, 0,0,0; = 0,0,0; for |j —i| = 1.

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

of Mgp that maps x["1 to T 1 xI7.

e Now, for every term T, select an element
» Follow the inductive proof of the absorption property:
: (*)

xx =1,

e Next, identify relations in Msp:
A SDllzvSDu - SD(VSDH(“ SDIHSDIVSD1(VSDOH - SD(VSDIHSDH! etc. (**)
..~" » When every SD,, s.t. « contains 0 is collapsed, only the SD1;...1s remain.
» Write o, for the image of SD11...1, i times 1. Then (%) becomes

;for |j—il 22 00,0, =000 for |j —i| = 1.

.

D
.
g

.."'--... —
D 4 0;0; = 0;0,

» The resulting quotient of Msp is

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

of Mgp that maps x["1 to T 1 xI7.

e Now, for every term T, select an element
» Follow the inductive proof of the absorption property:
: (*)

xx =1,

e Next, identify relations in Msp:
SD14SDaSD1,SDgo = SD4SD1,SD., etc. ()

A SD114SDa = SDaSD11a,
" » When every SD, s.t. « contains 0 is collapsed, only the SD1;...1s remain.

» Write o, for the image of SD11...1, i times 1. Then (%) becomes
for |[j—i| >2, o.00 =000 for|j—il=1.
J g0 [Joi
» The resulting quotient of Msp is M.
» If ¢ maps T to T/, then sho(¢) maps T > x[" to T/ x[",

D
.
g

...."---
" 0,0; = 0.0,

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

of Mgp that maps x["1 to T 1 xI7.

e Now, for every term T, select an element
» Follow the inductive proof of the absorption property:
: (*)

xx =1,

e Next, identify relations in Msp:
ot SDH”SD” = SD”SDH”, SDIHSD,,,SDh,,SDo” = SD”SDIHSD”, etc. (**)
..~"‘ » When every SD,, s.t. « contains 0 is collapsed, only the SD1;...1s remain.
» Write o, for the image of SD11...1, i times 1. Then (%) becomes
" d - for |j —i| > 2, 0,0;0; = 0,0,0; for |j —i| = 1.

» The resulting quotient of Msp is M.

» If ¢ maps T to T/, then sho(¢) maps T > x[" to T/ x[",
give an SD-operation on the quotient, i.e.,

D
.
g

...."---
" 0,0; = 0.0,

so collapsing all sho(¢)

The Thompson's monoid of SD

e Definition: For v a binary address , let be the
partial operator “apply SD in the expanding direction at address o’. The
is the monoid Msp gen'd by all SD,, and their inverses.

e Fact: Two terms T, T’ are SD-equivalent iff some element of Msp maps T to T'.

e Now, for every term T, select an element of Msp that maps It to T [Nl
» Follow the inductive proof of the absorption property:
Xx =1,) (%)
e Next, identify relations in Msp:

A SDllzvSDu - SD(VSDH(“ SDIHSDIVSD1(VSDOH - SD(VSDIHSDH! etc. "-_(**)

.

..~" » When every SD,, s.t. a contains 0 is collapsed, only the SDi; . 1s remain. _
:.... » Write o; , for the image of SD11...1, i times 1. Then (%) becomes :-'
RLITIPG 0,0, = 0,0; for |[j —i| > 2, 0,0;0; = 0;0,0; for |j —i| = 1. .f
» The resulting quotient of Msp is M. .‘."
» If ¢ maps T to T/, then sho(¢) maps T > x[" to T/ x[", ""
so collapsing all sho(¢) give an SD-operation on the quoss! |t ie.,

.
o

» Its definition is the projection of (x), i.e., o

The Thompson’s monoid of SD (cont'd)

e The "“magic” braid operation revisited:

The Thompson’s monoid of SD (cont'd)

e The "“magic” braid operation revisited:

The Thompson’s monoid of SD (cont'd)

e The “magic” braid operation revisited:

—SD

The Thompson’s monoid of SD (cont'd)

e The “magic” braid operation revisited:

The Thompson’s monoid of SD (cont'd)

e The “magic” braid operation revisited:

O

The Thompson’s monoid of SD (cont'd)

e The “magic” braid operation revisited:

— — — —
=sD =sD =sD =sD
Ti\[T2\/T1 T1\/T>

—_

The Thompson’s monoid of SD (cont'd)

e The “magic” braid operation revisited:

— — — —
=sD =sD =sD =sD
Ti\[T2\/T1 T1\/T>

whence ,

The Thompson’s monoid of SD (cont'd)

e The “magic” braid operation revisited:

— — — —
=sD =sD =sD =sD
Ti\[T2\/T1 T1\/T>

whence ,

which projects to the braid operation.

The Thompson’s monoid of SD (cont'd)

e The "“magic” braid operation revisited:

XT, shi(xt,) SDy sh1(xT,)
— — — —
=sD =sD =sD =sD
Ti\[T2\/T1 T1\/T>
| S

whence x 7,7, = x1; - shi(x7,) - SDy 'Shl(\nl)r

which projects to the braid operation.

]

Patrick Dehornoy
Braids ai

Self-Distributivity

e See more in [P0, Braids and selfdistributivity, PM192, Birkhaiiser (1999)]

Birkhiuser

Plan:
e Minicourse |. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

e Minicourse Il. Connection with set theory
- 1. The set-theoretic shelf

- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

«4O0>» «F>» «E)>» «

Elementary embeddings

e Set theory is the theory of infinities.

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is incomplete (Godel, Cohen).

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.
» Typical example: axioms of = solutions of
-infinite

infinite

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.
» Typical example: axioms of = solutions of
-infinite __ infinite

infinite finite

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is (very) incomplete (Godel, Cohen).

» ldentify further properties of infinite sets = explore further axioms.

» Typical example: axioms of large cardinal = solutions of
super-infinite __ infinite

infinite finite

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is (very) incomplete (Godel, Cohen).

» ldentify further properties of infinite sets = explore further axioms.

» Typical example: axioms of large cardinal = solutions of
super-infinite __ infinite

infinite finite

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is (very) incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.
» Typical example: axioms of large cardinal = solutions of
super-infinite __ infinite
infinite ~finite
» Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is (very) incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.
» Typical example: axioms of large cardinal = solutions of
super-infinite __ infinite
infinite ~finite
» Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

» Repeat the process with “super-infinite”.

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is (very) incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.
» Typical example: axioms of large cardinal = solutions of
super-infinite __ infinite
infinite ~finite
» Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;

» Repeat the process with “super-infinite”.

e Principle: self-similar implies large
» X infinite: 3j : X — X (j injective not bijective)

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is (very) incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.

» Typical example: axioms of = solutions of
-infinite __infinite R 1
infinite finite [¥

» Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;
» Repeat the process with “super-infinite”.

e Principle: self-similar implies large
» X infinite: 3j : X — X (J injective not bijective)
» X -infinite: 3/ : X — X (j inject. not biject. preserving all €-definable notions)

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is (very) incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.

» Typical example: axioms of = solutions of
-infinite __infinite R 1
infinite finite [¥

» Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;
» Repeat the process with “super-infinite”.

e Principle: self-similar implies large
» X infinite: 3j : X — X (j injective not bijective)

» X -infinite: 3/ : X — X (j inject. not biject. preserving all €-definable notions)

1
an of X

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is (very) incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.

» Typical example: axioms of = solutions of
-infinite __infinite R 1
infinite finite [¥

» Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;
» Repeat the process with “super-infinite”.

e Principle: self-similar implies large
» X infinite: 3j : X — X (j injective not bijective)

» X -infinite: 3/ : X — X (j inject. not biject. preserving all €-definable notions)

1
an of X

e Example: N is super-infinite.

Elementary embeddings

e Set theory is the theory of infinities.

e The standard axiomatic system ZF is (very) incomplete (Godel, Cohen).
» ldentify further properties of infinite sets = explore further axioms.

» Typical example: axioms of = solutions of
-infinite __infinite R 1
infinite finite [¥

» Set theory (as opposed to number theory) begins
when “there exists an infinite set” is in the base axioms;
» Repeat the process with “super-infinite”.

e Principle: self-similar implies large
» X infinite: 3j : X — X (j injective not bijective)

» X -infinite: 3/ : X — X (j inject. not biject. preserving all €-definable notions)

1
an of X

e Example: N is super-infinite.

» A super-infinite set must be so large that it contains undefinable elements
(since all definable elements must be fixed).

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal,

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by

=19,

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by

=0, = PB(Va),

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by
=0, = PB(Va), = Ugqen Vo for A limit.

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by
=0, = PB(Va), = Ugex Vo for X limit.

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by
=0, = PB(Va), = Ugqen Vo for A limit.

e Fact: If \ is a limit ordinal and f : V\ — V,

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by
=0, = PB(Va), = Ugex Vo for X limit.

e Fact: If \ is a limit ordinal and f : V\ — V,
then f = J, o, FNV2

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by
=0, = PB(Va), = Ugqen Vo for A limit.

2 7 Vi Vi...
v V2 I

e Fact: If \ is a limit ordinal and f : V\ — V,
then f = J, ., fNV2 and fNVZ belongs to V) for every a < .

Va+1

Ranks

e Fact: There is a canonical filtration of sets by the sets , « an ordinal, def'd by
=0, = PB(Va), = Ugex Vo for X limit.

e Fact: If \ is a limit ordinal and f : V\ — V,
then f = J, ., fN V2 and fNV2 belongs to V for every a < \.

» Proof: Every element of V) belongs to some V, with a <);

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by
=0, = PB(Va), = Ugex Vo for X limit.

e Fact: If \ is a limit ordinal and f : V\ — V,
then f = J, ., fN V2 and fNV2 belongs to V for every a < \.

» Proof: Every element of V) belongs to some V,, with a < A; The set fN \/42\
is included in V2,

C

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by
=0, = PB(Va), = Ugex Vo for X limit.

e Fact: If \ is a limit ordinal and f : V\ — V,
then f = J, ., fN V2 and fNV2 belongs to V for every a < \.

» Proof: Every element of V) belongs to some V,, with a < A; The set fN \/42\
is included in V2, hence in V2,

C

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by
=0, = PB(Va), = Ugex Vo for X limit.

e Fact: If \ is a limit ordinal and f : V\ — V,
then f = J, ., fN V2 and fNV2 belongs to V for every a < \.

» Proof: Every element of V) belongs to some V,, with a < A; The set fN \/42\
is included in \/{3‘, hence in V2, hence it belongs to V3,

Ranks

e Fact: There is a canonical filtration of sets by the sets \/.,, a an ordinal, def'd by
=0, = PB(Va), = Ugex Vo for X limit.

e Fact: If \ is a limit ordinal and f : V\ — V,
then f = J, ., fN V2 and fNV2 belongs to V for every a < \.

» Proof: Every element of V) belongs to some V,, with a < A; The set fN \/42\
is included in \/{3‘, hence in V2, hence it belongs to V.3, hence to V. O

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V
e Fact: Assume j: V\ — V) witnesses that X\ is a Laver cardinal.

» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal r satisfying j(k) > k:

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the “ " of j.

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

Vi

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

6)\

Vi

o

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the “ " of j.
» One necessarily has X\ = sup,, j"(crit(j)).

6)\

Vi

o

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

6)\

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

6)\

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

6)\

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

6)\

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

6)\

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

6)\

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

6)\

Laver cardinals

o Definition: A is a cardinal \ s.t. the set V/\ is “super-infinite”,
i.e., there exists a non-surjective elementary embedding from V/ to itself.

e Fact: If there exists a super-infinite set, there exists a super-infinite set V

e Fact: Assume j: V\ — V\ witnesses that \ is a Laver cardinal.
» The map j sends every ordinal o to an ordinal > a.
» There exists an ordinal « satisfying j(a) > a.
» There exists a smallest ordinal k satisfying j(k) > k: the
» One necessarily has X\ = sup,, j"(crit(j)).

“ ”

of j.

6)\

above, everybody is moved

below, nothing is moved

1
0

The application operation

e If \ is a Laver cardinal, let be the family of all non-trivial
elementary embeddings from V), to itself

The application operation

e If \ is a Laver cardinal, let be the family of all non-trivial
elementary embeddings from V), to itself

e Definition: For i, j in Ey, the result of itojis
= Ua<>\ i(jﬁVi).

The application operation

e If \ is a Laver cardinal, let be the family of all non-trivial
elementary embeddings from V), to itself

e Definition: For i, j in Ey, the result of itojis
= Ua<>\ i(jﬁVi).

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.

The application operation

e If \ is a Laver cardinal, let be the family of all non-trivial
elementary embeddings from V), to itself

e Definition: For i, j in Ey, the result of itojis
= Ua<>\ i(jﬁVi).

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.

The application operation

e If \ is a Laver cardinal, let be the family of all non-trivial
elementary embeddings from V), to itself

e Definition: For i, j in Ey, the result of itojis
= Ua<>\ i(jﬁVi).

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V) to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
ilj] := Ua<)\ i(jﬂVé).

e Lemma: The map (i,j) — i[j] is a binary operation on E,, and (Ex,—[—]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
ilj] = Ua<x iiNV3).

e Lemma: The map (i,j) — i[j] is a binary operation on E,, and (Ex,—[—]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on E,, and (Ex,—[—]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.

“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable,

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on E,, and (Ex,—[—]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i-e., i[j[k]] = il K]]:

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[k]]: the left SD law. O

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[K]]: the left SD law. O

e Attention! Application is not composition:

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[K]]: the left SD law. O

e Attention! Application is not composition:
crit(j o j) = crit(j),

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[K]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[K]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j).

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[K]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let k := crit(j). For a < &, j(a) = ¢,

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[K]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For a < &, j(a) = «, hence j(j()) = «,

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[K]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For a < &, j(a) = e, hence j(j(o)) = «, whereas

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[K]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For a < &, j(a) = e, hence j(j(o)) = «, whereas
J(K) > kK,

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is

i1= Uacx iGNVZ).

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[k]]: the left SD law. O

e Attention! Application is not composition:
crit(j o j) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For a < &, j(a) = e, hence j(j(o)) = «, whereas
H e e) 4

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is
i1 := Ugex iGNVE)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[k]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For a < &, j(a) = e, hence j(j(o)) = «, whereas
Jj(Kk) > K, hence j(j(k)) > j(k) > k.

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is

ilj] := Ua<)\ "UOVC%)-

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[k]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For a < &, j(a) = e, hence j(j(o)) = «, whereas
Jj(k) > K, hence j(j(k)) > j(k) > k. We deduce crit(j o j) = k.

u]
]
I
ul
!

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is

ilj] := Ua<)\ i(jnvé)'

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[-]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[K]],
i.e., i[j[K]] = i[j][i[k]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For a < &, j(a) = e, hence j(j(o)) = «, whereas
Jj(k) > K, hence j(j(k)) > j(k) > k. We deduce crit(j o j) = k.
On the other hand, Ya<k (j(o) = «)

u]
]
I
ul
!

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is

ilj] = Ua<x iiNV3).

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[—]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[k]],
i.e., i[j[K]] = i[j][i[k]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For o < k, j(a) = «, hence j(j()) = o, whereas

J(x) > K, hence j(j(k)) > j(k) > k. We deduce crit(j o j) = k.
On the other hand, Ya<k (j(a) = «) implies Va<j(k) (j[j](a) =),

u]
]
I
ul
!

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is

ilj] = Ua<x iiNV3).

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[—]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[k]],
i.e., i[j[K]] = i[j][i[k]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For o < k, j(a) = «, hence j(j()) = o, whereas
J(x) > K, hence j(j(k)) > j(k) > k. We deduce crit(j o j) = k.
On the other hand, Ya<k (j(a) = «) implies Ya<j(x) (j[/](a) =), whereas
J(r) >k

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is

ilj] = Ua<x iiNV3).

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[—]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[k]],
i.e., i[j[K]] = i[j][i[k]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For o < k, j(a) = «, hence j(j()) = o, whereas
J(x) > K, hence j(j(k)) > j(k) > k. We deduce crit(j o j) = k.
On the other hand, Ya<k (j(a) = «) implies Ya<j(x) (j[/](a) =), whereas
i(=) > r implies JGi(x)) > i(=).

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is

ilj] = Ua<x iiNV3).

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[—]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[k]],
i.e., i[j[K]] = i[j][i[k]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For o < k, j(a) = «, hence j(j()) = o, whereas
J(x) > K, hence j(j(k)) > j(k) > k. We deduce crit(j o j) = k.
On the other hand, Ya<k (j(a) = «) implies Ya<j(x) (j[/](a) =), whereas
J(r) > rk implies j[j](j(r)) > j(k). We deduce crit(j[j]) = j(x)

u}

F = = =

The application operation

e If X is a Laver cardinal, let £, be the family of all non-trivial (= non-surjective)
elementary embeddings from V), to itself (which is nonempty).

e Definition: For i, j in Ey, the result of applying i to j is

ilj] = Ua<x iiNV3).

e Lemma: The map (i,j) — i[j] is a binary operation on Ey, and (Ex,—[—]) is a
left-shelf.
» Proof: The sets jNV2 belong to Vy, and are pairwise compatible partial maps,
hence so are the sets i(jNV2): so i[j] is a map from Vj to itself.
“Being an elementary embedding” is definable, hence i[j] is an elementary embedding.
“Being the image of” is definable, hence ¢ = j[k] implies i[¢] = i[j][i[k]],
i.e., i[j[K]] = i[j][i[k]]: the left SD law. O

e Attention! Application is not composition:
crit(j oj) = crit(j), but crit(j[j]) > crit(j).
» Proof: Let x := crit(j). For o < k, j(a) = «, hence j(j()) = o, whereas
J(x) > K, hence j(j(k)) > j(k) > k. We deduce crit(j o j) = k.
On the other hand, Ya<k (j(a) = «) implies Ya<j(x) (j[/](a) =), whereas
J(r) > k implies j[j](j(r)) > j(k). We deduce crit(j[j]) = j(k) > k. O

u}

F = = =

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf
)

closure of {j} under the “application” operation: j[j], j[/][j]..-

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf J

closure of {j} under the “application” operation: j[j], j[/][j]..-

e Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V) to itself,
then = has no cycle in lter(j); J

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf J

closure of {j} under the “application” operation: j[j], j[/][j]..-

e Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V/ to itself,
then = has no cycle in Iter(j); hence, Iter(j) is a free left-shelf. J

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf J

closure of {j} under the “application” operation: j[j], j[/][j]..-

e Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V/ to itself,
then = has no cycle in Iter(j); hence, Iter(j) is a free left-shelf. J

» A realization (the “set-theoretic realization”) of the free (left)-shelf,

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf l

closure of {j} under the “application” operation: j[j], j[/][j]..-

e Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V/ to itself,
then = has no cycle in Iter(j); hence, Iter(j) is a free left-shelf. J

» A realization (the “set-theoretic realization”) of the free (left)-shelf,

» ...plus a proof of that a shelf with acyclic C exists,

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf ’

closure of {j} under the “application” operation: j[j], j[/][j]..-

e Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V/ to itself,
then = has no cycle in Iter(j); hence, Iter(j) is a free left-shelf. J

» A realization (the “set-theoretic realization”) of the free (left)-shelf,

» ...plus a proof of that a shelf with acyclic C exists,
» ...whence a proof that Csp is acyclic on 7,

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf
)

closure of {j} under the “application” operation: j[j], j[/][j]..-

e Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V/ to itself,
then = has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.
v

» A realization set-theoretic of the free (left)-shelf,

» ...plus a proof of that a shelf with acyclic C exists,
» ...whence a proof that cgp is acyclic on 7,
» ...whence a solution for the word problem of SD

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,

then the of j make a left-shelf . l

closure of {j} under the “application” operation: j[j], j[/][j]..-

e Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V) to itself,

then = has no cycle in Iter(j); hence, Iter(j) is a free left-shelf. J

» A realization (the “set-theoretic realization”) of the free (left)-shelf,

>
>
>

...plus a proof of that a shelf with acyclic C exists,
...whence a proof that csp is acyclic on 7,
...whence a solution for the word problem of SD

(because both =sp and C{&, are semi-decidable).

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf
v

closure of {j} under the “application” operation: j[j], j[/][j]..-

e Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V/ to itself,
then = has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.
v

» A realization set-theoretic of the free (left)-shelf,

» ...plus a proof of that a shelf with acyclic C exists,
» ...whence a proof that cgp is acyclic on 7,
» ...whence a solution for the word problem of SD

but all this

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf

v

closure of {j} under the “application” operation: j[j], j[/][j]..-

e Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V/ to itself,
then = has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

v

» A realization set-theoretic of the free (left)-shelf,

» ...plus a proof of that a shelf with acyclic C exists,
» ...whence a proof that cgp is acyclic on 7,
» ...whence a solution for the word problem of SD

but all this

~» motivation for finding another proof/another realization...

The iteration shelf

® Proposition: If j is a nontrivial elementary embedding from V) to itself,
then the of j make a left-shelf

v

closure of {j} under the “application” operation: j[j], j[/][j]..-

e Theorem (Laver, 1989): If j is a nontrivial elementary embedding from V/ to itself,
then = has no cycle in Iter(j); hence, Iter(j) is a free left-shelf.

v

» A realization set-theoretic of the free (left)-shelf,

» ...plus a proof of that a shelf with acyclic C exists,
» ...whence a proof that cgp is acyclic on 7,
» ...whence a solution for the word problem of SD

but all this

~» motivation for finding another proof/another realization...

Plan:
e Minicourse |. The SD-world

- 1. A general introduction
- Classical and exotic examples
- Connection with topology: quandles, racks, and shelves
- A chart of the SD-world
- 2. The word problem of SD: a semantic solution
- Braid groups
- The braid shelf
- A freeness criterion

- 3. The word problem of SD: a syntactic solution
- The free monogenerated shelf
- The comparison property
- The Thompson’s monoid of SD

e Minicourse Il. Connection with set theory
- 1. The set-theoretic shelf

- Large cardinals and elementary embeddings
- The iteration shelf
- 2. Periods in Laver tables
- Quotients of the iteration shelf
- The dictionary
- Results about periods

«4O0>» «F>» «E)>» «

Quotients of Iter(j)

e Notation: (“left powers”) = JjU1U1---UJ], p times j.

Quotients of Iter(j)

e Notation: (“left powers”) = JjU1U1---UJ], p times j.

e Definition: For j in E),
:= the (n+ 1)st ordinal (from bottom) in {crit(i) | i € Iter(j)}.

Quotients of Iter(j)

e Notation: (“left powers”) = JU1U1---Li], p times j.

e Definition: For j in E),
:= the (n+ 1)st ordinal (from bottom) in {crit(i) | i € Iter(j)}.
> One can show crito(j) = crit(j), crit1(j) = crit(j[i]), crit2(j) = crit([]GIL]). ete.

Quotients of Iter(j)

e Notation: (“left powers”) ji, := j[j][j]...[j], p times j.

e Definition: For j in E),
crity(j):= the (n 4+ 1)st ordinal (from bottom) in {crit(i) | i € Iter(j)}.
» One can show critg(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = critG[][1[]). etec.

e Proposition (Laver, 1994): Assume that \ is a Laver cardinal. Let j belong to E) .

Quotients of Iter(j)

e Notation: (“left powers”) ji, := j[j][j]...[j], p times j.

e Definition: For j in E),
crity(j):= the (n 4+ 1)st ordinal (from bottom) in {crit(i) | i € Iter(j)}.
» One can show critg(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = critG[][1[]). etec.

e Proposition (Laver, 1994): Assume that \ is a Laver cardinal. Let j belong to E) .
For i,i" in Iter(j) and v < A, declare i =, i" (“i and i’ agree up to ") if

VxeV, (i(x)NVy = i (x)NVs).

Quotients of Iter(j)

e Notation: (“left powers”) ji, := j[j][j]...[j], p times j.

e Definition: For j in E),
crity(j):= the (n 4+ 1)st ordinal (from bottom) in {crit(i) | i € Iter(j)}.
» One can show critg(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = critG[][1[]). etec.

e Proposition (Laver, 1994): Assume that \ is a Laver cardinal. Let j belong to E) .
For i,i" in Iter(j) and v < A, declare i =, i" (“i and i’ agree up to ") if

Vxe Vs (i(x)NVy = i’ (x)NVy).
Then =, (j) is a congruence on lter(j),

Quotients of Iter(j)

e Notation: (“left powers”) ji, := j[j][j].--[j], p times j.

e Definition: For j in E),
crity(j):= the (n 4+ 1)st ordinal (from bottom) in {crit(i) | i € Iter(j)}.
» One can show critg(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = critGLILI0]), ete.

e Proposition (Laver, 1994): Assume that \ is a Laver cardinal. Let j belong to E) .
For i,i" in Iter(j) and v < A, declare i =, i" (“i and i’ agree up to ") if

VxeV, (i(x)NVy = i (x)NVs).

Then =, (j) is a congruence on lter(j), it has 2" classes,

Quotients of Iter(j)

e Notation: (“left powers”) = JU1U1---Li], p times j.

e Definition: For j in E),
:= the (n+ 1)st ordinal (from bottom) in {crit(i) | i € Iter(j)}.
> One can show crito(j) = crit(j), crit1(j) = crit(j[i]), crit2(j) = crit([]GIL]). ete.

e Proposition (Laver, 1994): Assume that \ is a Laver cardinal. Let j belong to E) .
For i,i" in Iter(j) and v <)\, declare (“i and i’ agree up to~") if
Vxe Vs (i(x)NVy = i’ (x)NVy).
Then =, (j) is a congruence on lter(j), it has 2" classes,
which are those of j, jio], -+, Jj2n],

Quotients of Iter(j)

e Notation: (“left powers”) = JU1U1---Li], p times j.

e Definition: For j in E),
= the (n + 1)st ordinal (from bottom) in {crit(i) | i € Iter(j)}.
» One can show critg(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = critG[i]1[j]1[]). etc.

e Proposition (Laver, 1994): Assume that \ is a Laver cardinal. Let j belong to E) .
For i, i’ in Iter(j) and v < X, declare (“i and i’ agree up to~") if
Vxe Vs (i(x)NVy = i’ (x)NVy).
Then =, (j) is a congruence on lter(j), it has 2" classes,
which are those of j, jip|, ..., jon], the latter also being the class of id.

Quotients of Iter(j)

e Notation: (“left powers”) ji, := j[j][j]...[j], p times j.

e Definition: For j in E),
crity(j):= the (n 4+ 1)st ordinal (from bottom) in {crit(i) | i € Iter(j)}.
» One can show critg(j) = crit(j), crit1(j) = crit(j[j]), crit2(j) = critG[][1[]). etec.

e Proposition (Laver, 1994): Assume that \ is a Laver cardinal. Let j belong to E) .
For i,i" in Iter(j) and v < X, declare i =, i" ("I and i’ agree up to ~") if
Vxe Vs (i(x)NVy = i’ (x)NVy).
Then =, (j) is a congruence on lter(j), it has 2" classes,
which are those of j, jip|, ..., jon], the latter also being the class of id.

» Proof: (Difficult...) Starts from j =) i[j] and similar.
Uses in particular crit(jjm)) = critn(j) with n maximal s.t. 2" divides m. |

Quotients of Iter(j) (cont'd)

e Recall: The Ap, is the unique left-shelf on {1,...,2"}

Quotients of Iter(j) (cont'd)

e Recall: The Ap, is the unique left-shelf on {1,...,2"}
satisfying p = 1) for p < 2"

Quotients of Iter(j) (cont'd)

e Recall: The Ap, is the unique left-shelf on {1,...,2"}
satisfying p = 1|, for p < 2" and 2"1>1 = 1.

Quotients of Iter(j) (cont'd)

e Recall: The Laver table A, is the unique left-shelf on {1, ...,2"}
satisfying p = 1|, for p < 2" and 2"1>1 = 1.
(or, equivalently, on {0, ...,2"—1}) satisfying p = 1}, mod 2" for p < 2" and 0>1 = 1)

Quotients of Iter(j) (cont'd)

e Recall: The Ap, is the unique left-shelf on {1,...,2"}
satisfying p = 1|, for p < 2" and 2"1>1 = 1.

(or, equivalently, on {0, ...,2"—1}) satisfying p = 1}, mod 2" for p < 2" and 0>1 = 1)

e Corollary: The quotient-structure Iter(j)/=cu,(j) is (isomorphic to) the table Ap.

Quotients of Iter(j) (cont'd)

e Recall: The Laver table A, is the unique left-shelf on {1, ...,2"}
satisfying p = 1|, for p < 2" and 2">1 = 1.
(or, equivalently, on {0, ...,2"—1}) satisfying p = 1|,y mod 2" for p < 2" and 0>1 = 1)

e Corollary: The quotient-structure Iter(j)/=cu,(j) is (isomorphic to) the table Ap.
» Proof: Write p for the =, (j)-class of ji).

Quotients of Iter(j) (cont'd)

e Recall: The Laver table A, is the unique left-shelf on {1, .. }
satisfying p = 1 for p<2’and 2"p1=1.

(or, equivalently, on {0, ...,2"—1}) satisfying p = 1|,y mod 2" for p < 2" and 0>1 = 1)

e Corollary: The quotient-structure Iter(j)/=c,(j) is (isomorphic to) the table Ap.

» Proof: Write p for the =, (;)-class of J[p]
The proposition says that Iter()/ Zcrita(j) is @ left-shelf whose domain is {1, ...,2"};

Quotients of Iter(j) (cont'd)

e Recall: The Laver table A, is the unique left-shelf on {1, ...,2"}
satisfying p = 1|, for p < 2" and 2">1 = 1.

(or, equivalently, on {0, ...,2"—1}) satisfying p = 1|,y mod 2" for p < 2" and 0>1 = 1)

e Corollary: The quotient-structure Iter(j)/=c,(j) is (isomorphic to) the table Ap.

» Proof: Write p for the =g, (j)-class of ji).
The proposition says that Iter(j) /=i, (j) is a left-shelf whose domain is {1,...,2"};
By construction, p = 1[p] holds for p < 2".

Quotients of Iter(j) (cont'd)

e Recall: The Laver table A, is the unique left-shelf on {1, ...,2"}
satisfying p = 1|, for p < 2" and 2">1 = 1.
(or, equivalently, on {0, ...,2"—1}) satisfying p = 1|,y mod 2" for p < 2" and 0>1 = 1)

e Corollary: The quotient-structure Iter(j)/=c,(j) is (isomorphic to) the table Ap.
» Proof: Write p for the =g, (j)-class of ji).

The proposition says that Iter(j) /=i, (j) is a left-shelf whose domain is {1,...,2"};
By construction, p = 1[p] holds for p < 2".

Then j[zn] Ecr\'t,,(j) id implies j[2n+l] Ecr\'t,,(j) j,

u]

]
I
!

Quotients of Iter(j) (cont'd)

e Recall: The Laver table A, is the unique left-shelf on {1, ...,2"}
satisfying p = 1) for p <27 and 2">1 =1.
(or, equivalently, on {0, ...,2"—1}) satisfying p = 1|,y mod 2" for p < 2" and 0>1 = 1)

e Corollary: The quotient-structure Iter(j)/=c,(j) is (isomorphic to) the table Ap.
» Proof: Write p for the =, (j)-class of ji.

The proposition says that Iter(j)/=c,(j) is a left-shelf whose domain is {1,...,2"};
By construction, p = 1[p] holds for p < 2".

Then jion) =cit,(j) id implies jon (1] =cit,(j) J, whence 2" >1 =1 in the quotient. [

Quotients of Iter(j) (cont'd)

e Recall: The Laver table A, is the unique left-shelf on {1, ...,2"}
satisfying p = 1) for p <27 and 2">1 =1.
(or, equivalently, on {0, ...,2"—1}) satisfying p = 1|,y mod 2" for p < 2" and 0>1 = 1)

e Corollary: The quotient-structure Iter(j)/=c,(j) is (isomorphic to) the table Ap.
» Proof: Write p for the =, (j)-class of ji.

The proposition says that Iter(j) /=g, (j) is a left-shelf whose domain is {1,...,2"};
By construction, p = 1[p] holds for p < 2".

Then jon) =it j) id implies jjan 1) =i, j) J: Whence 27 >1 =1 in the quotient. [

» A (set-theoretic) realization of A, as a quotient of the iteration shelf Iter(j).

u]
]
I
ul
!

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
is equivalent to ; (%)

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
is equivalent to ; (%)
is equivalent to . ()

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
is equivalent to ; (%)
is equivalent to . ()

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
is equivalent to ; (%)
is equivalent to . ()

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)A = 2" js equivalent to crit(t(j)"'0)) > crita(j); (%)
t(1)A+1 = 2" s equivalent to crit(t(j)""0)) = crita(j). ()

» Proof: For (x): crit(t(j)) > critn(j) means t(j) =quit,(;) id
i.e., the class of t(j) in A,

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)A = 2" js equivalent to crit(t(j)"'0)) > crita(j); (%)
t(1)A+1 = 2" s equivalent to crit(t(j)""0)) = crita(j). ()

» Proof: For (x): crit(t(j)) > critn(j) means t(j) =, (j) id,
i.e., the class of t(j) in An, which is t(1)"n,

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)* = 2" s equivalent to crit(t(j)""0)) > critn(j); (*)
t(1)A+1 = 2" s equivalent to crit(t(j)""0)) = crita(j). ()

» Proof: For (x): crit(t(j)) > critn(j) means t(j) =, (j) id,
i.e., the class of t(j) in An, which is t(l)A”, is that of id, which is 2".

e Lemma: For every j in Ey, every term t(x), and every n,
t(l)A” —on
t(l)An\l —on

is equivalent to

A dictionary
crit(t(j)""0) > crita(j); (+)
is equivalent to crit(t(j)"0)) = crit, (j). ()
» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction

of crit(t(j)) = critn(j) and crit(t(j)) 2 crita+1(j)

DA™

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)4 =27 s equivalent to
t(1)A1 =27 i

crit(1(j)"er0)
is equivalent to crit(t())"* () = crit, (]
> Proof: For (x): crit(t(j)) > critn(j) means t(j) =i, () id,

()
i.e., the class of t(j) in As, which is t(1)”7, is that of id, which is 2"
For (#x): crit(t(j)) = critn(j) is the conjunction

2

critn(j);
).

(%)
of t(1)A" = 2" and t(1)An+1 £ 2+

of crit(t(j)) > critn(j) and crit(t(j)) # critn+1(j), hence

«0O)>» «F»

!
a
it
v

DA™

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)4 =27 s equivalent to
t(1)A1 =27 i

crit(1(j)"er0)
is equivalent to crit(t())"* () = crit, (]
> Proof: For (x): crit(t(j)) > critn(j) means t(j) =i, () id,

()
i.e., the class of t(j) in As, which is t(1)”7, is that of id, which is 2"
For (#x): crit(t(j)) = critn(j) is the conjunction

2

critn(j);
).

()

of crit(t(j)) > critn(j) and crit(t(j)) # critn+1(j), hence
of t(1)A" = 2" and t(1)A»+1 # 2"+1: the only possibility is t(1)%n+1 = 2"

O

«0O)>» «F»

!
a
it
v

DA™

e Lemma: For every j in Ey, every term t(x), and every n,
t(l)A” —on
t(l)An\l —on

is equivalent to

A dictionary
crit(t(j)"e0)) > crita(j); (%)
is equivalent to crit(t(j)"0)) = crit, (j). ()
» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction

) # critn41(j), hence

of crit(t(j)) > critn(j) and crit(t(j
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27
the period of p jumps from 2" to 27! between A, and A, |

)
1
e Proposition ("dictionary”): For m < n and p < 2",

O

DA™

e Lemma: For every j in Ey, every term t(x), and every n,
t(l)A” —on
t(l)An\l —on

is equivalent to

A dictionary
crit(t(j)""0) > crita(j); (+)
is equivalent to crit(t(j)"0)) = crit, (j). ()
» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction

) # critn41(j), hence

of crit(t(j)) > critn(j) and crit(t(j
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27
the period of p jumps from 2" to 27! between A, and A, |

)
1 O
e Proposition ("dictionary”): For m < n and p < 2",

iff jip) maps critm(j) to critn(j)

DA™

e Lemma: For every j in Ey, every term t(x), and every n,
t(l)A” —on
t(]_)Anu —on

is equivalent to

A dictionary
crit(t(j)""0) > crita(j); (+)
is equivalent to crit(t(j)"0)) = crit, (j). ()
» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction

) # critn41(j), hence

of crit(t(j)) > critn(j) and crit(t(j
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27
the period of p jumps from 2" to 27! between A, and A, |

)
1 O
e Proposition ("dictionary”): For m < n and p < 2",

iff jip) maps critm(j) to critn(j)
» Proof: Apply the lemma to the term x|

pl-

DA™

e Lemma: For every j in Ey, every term t(x), and every n,
t(l)A” —on
t(]_)Anu —on

is equivalent to

A dictionary
crit(t(j)""0) > crita(j); (+)
is equivalent to crit(t(j)"0)) = crit, (j). ()
» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction

) # critn41(j), hence

of crit(t(j)) > critn(j) and crit(t(j
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27
the period of p jumps from 2" to 27! between A, and A, |

)
1 O
e Proposition ("dictionary”): For m < n and p < 2",

iff jip) maps critm(j) to critn(j)
» Proof: Apply the lemma to the term x|
As critm(j) = crit(jim)),

pl-

DA™

e Lemma: For every j in Ey, every term t(x), and every n,
t(l)A” —on
t(1)Ant1 = 2n

is equivalent to

A dictionary
crit(t(j)"e0)) > crita(j); (%)
is equivalent to crit(t(j)"0)) = crit, (j). ()
» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction

) # critn41(j), hence

of crit(t(j)) = critn(j) and crit(t(j
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27
the period of p jumps from 2" to 27! between A, and A, |

)
1 O
e Proposition ("dictionary”): For m < n and p < 2",

iff jip) maps critm(j) to critn(j).
» Proof: Apply the lemma to the term x|

pl-
As critm(j) = crit(jiom)), the embedding ji;) maps critm(j) to crit(jjp lijzm]]),

e Lemma: For every j in Ey, every term t(x), and every n,
t(l)A” —on
t(1)Ant1 = 2n

is equivalent to

A dictionary
crit(t(j)"e0)) > crita(j); (%)
is equivalent to crit(t(j)"0)) = crit, (j). ()
» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction

) # critn41(j), hence

of crit(t(j)) = critn(j) and crit(t(j
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27
the period of p jumps from 2" to 27! between A, and A, |

)
1 O
e Proposition ("dictionary”): For m < n and p < 2",

iff jip) maps critm(j) to critn(j).
» Proof: Apply the lemma to the term x|

pl-
As critm(j) = crit(jiom)), the embedding ji;) maps critm(j) to crit(jjp lijzm]]),
so the RHT is crit(jpp) [iiom]]) = crita(j)

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)* = 2" s equivalent to crit(t(j)""0)) > critn(j); (%)
t(1)A+1 = 2" s equivalent to crit(t(j)""0)) = crita(j). ()

» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction
of crit(t(j)) = critn(j) and crit(t(j)) ;é critn+1(j), hence
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27 a

e Proposition ("dictionary”): For m < n and p <
the period of p jumps from 2" to 27! between Ap and Api1
iff jip) maps critm(j) to critn(j).

» Proof: Apply the lemma to the term x(;.
As critm(j) = crit(jiom)), the embedding ji;) maps critm(j) to crit(jjp lijzm]]),
so the RHT is crit(jjj [iom]]) = critn(j), whence (1j5 > 1ppm)+ = 27 by (),

which is also
(p>2m)Ant1 = 2n, (s %).

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)* = 2" s equivalent to crit(t(j)""0)) > critn(j); (%)
t(1)A+1 = 2" s equivalent to crit(t(j)""0)) = crita(j). ()

» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction
of crit(t(j)) = critn(j) and crit(t(j)) ;é critn+1(j), hence
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27 a

e Proposition ("dictionary”): For m < n and p <
the period of p jumps from 2" to 27! between Ap and Api1
iff jip) maps critm(j) to critn(j).

» Proof: Apply the lemma to the term x(;.
As critm(j) = crit(jiom)), the embedding ji;) maps critm(j) to crit(jjp lijzm]]),
so the RHT is crit(jjj [iom]]) = critn(j), whence (1j5 > 1ppm)+ = 27 by (),
which is also

(p>2m)Ant1 = 2n, (s %).
First, (%) implies wpy1(p) > 2.

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)* = 2" s equivalent to crit(t(j)""0)) > critn(j); (%)
t(1)A+1 = 2" s equivalent to crit(t(j)""0)) = crita(j). ()

» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction
of crit(t(j)) = critn(j) and crit(t(j)) # critn+1(j), hence
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27 O

e Proposition ("dictionary”): For m < n and p < 2",
the period of p jumps from 2" to 27! between A, and A, |
iff jip) maps critm(j) to critn(j).

» Proof: Apply the lemma to the term x(;.
As critm(j) = crit(jiom)), the embedding ji;) maps critm(j) to crit(jjp lijzm]]),
so the RHT is crit(jjp [im)]) = critn(j), whence (1, > 1[2m])A”71 = 2" by (*x),
which is also
(p>2m)Ant1 = 2. (s %).

First, (+*x) implies m,11(p) > 2™. Conversely, (xx*%) projects to (p>2™)An = 27,

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)* = 2" s equivalent to crit(t(j)""0)) > critn(j); (%)
t(1)A+1 = 2" s equivalent to crit(t(j)""0)) = crita(j). ()

» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction
of crit(t(j)) = critn(j) and crit(t(j)) # critn+1(j), hence
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27 O

e Proposition ("dictionary”): For m < n and p < 2",
the period of p jumps from 2" to 27! between A, and A, |
iff jip) maps critm(j) to critn(j).

» Proof: Apply the lemma to the term x(;.
As critm(j) = crit(jiom)), the embedding ji;) maps critm(j) to crit(jjp lijzm]]),
so the RHT is crit(jjp [im)]) = critn(j), whence (1, > 1[2m])A”71 = 2" by (*x),
which is also

(p>2m)Ant1 = 2. (s %).
First, (+*x) implies 7m,11(p) > 2™. Conversely, (%) projects to (p>2™)"4 = 2",
implying 7p(p) < 2.

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)* = 2" s equivalent to crit(t(j)""0)) > critn(j); (%)
t(1)A+1 = 2" s equivalent to crit(t(j)""0)) = crita(j). ()

» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction
of crit(t(j)) = critn(j) and crit(t(j)) # critn+1(j), hence
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27 O

e Proposition ("dictionary”): For m < n and p < 2",
the period of p jumps from 2" to 27! between A, and A, |
iff jip) maps critm(j) to critn(j).

» Proof: Apply the lemma to the term x(;.
As critm(j) = crit(jiom)), the embedding ji;) maps critm(j) to crit(jjp lijzm]]),
so the RHT is crit(jjp [im)]) = critn(j), whence (1, > 1[2m])A”71 = 2" by (*x),
which is also

(p>2m)Ant1 = 2. (s %).
First, (+*x) implies 7m,11(p) > 2™. Conversely, (%) projects to (p>2™)"4 = 2",
implying mn(p) < 2™. As mp1(p) is wa(p) or 2wn(p),

A dictionary

e Lemma: For every j in Ey, every term t(x), and every n,
t(1)* = 2" s equivalent to crit(t(j)""0)) > critn(j); (%)
t(1)A+1 = 2" s equivalent to crit(t(j)""0)) = crita(j). ()

» Proof: For (x): crit(t(j)) > crita(j) means t(j) =i, (j) id,
i.e., the class of t(j) in An, which is t(l)A", is that of id, which is 2".
For (s:x): crit(t(j)) = crita(j) is the conjunction

of crit(t(j)) = critn(j) and crit(t(j)) # critn+1(j), hence
of t(1)* = 2" and t(1)An+1 # 2"*1: the only possibility is t(1)An+1 = 27 O

e Proposition ("dictionary”): For m < n and p < 2",
the period of p jumps from 2" to 27! between A, and A, |
iff jip) maps critm(j) to critn(j).

» Proof: Apply the lemma to the term x(;.
As critm(j) = crit(jiom)), the embedding ji;) maps critm(j) to crit(jjp lijzm]]),
so the RHT is crit(jjp [im)]) = critn(j), whence (1, > 1[2m])A”71 = 2" by (*x),
which is also

(p>2m)Ant1 = 2. (s %).
First, (+*x) implies 7m,11(p) > 2™. Conversely, (%) projects to (p>2™)"4 = 2",
implying mp(p) < 2™. As mp1(p) is wa(p) or 2mp(p), (%) is equivalent to

the conjunction 7,(p)=2™ and m,1(p)=2"*1. O

o F = = =

Comparing the periods of 1 and 2

e Lemma: Ifj belongs to Ey, for every a < \,one has

Jlil(a) < j(a).

Comparing the periods of 1 and 2

e Lemma: Ifj belongs to Ey, for every a < \,one has

Jlil(a) < j(a).

Comparing the periods of 1 and 2

e Lemma: Ifj belongs to Ey, for every a < \,one has
ilil(a) <j(a).

» Proof: There exists 3 satisfying j(3) > «, hence there is a smallest such 3,

Comparing the periods of 1 and 2

e Lemma: Ifj belongs to Ey, for every a < \,one has
ilil(e) < j(e).

» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and

¥y < B ((7) <). (%)

Comparing the periods of 1 and 2

e Lemma: Ifj belongs to Ey, for every a < \,one has
ilil(a) <j(a).
» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and
vy < B ((7) € a). (*)
Applying j to (x) gives
vy <J(B8) GL(y) < (). (o)

Comparing the periods of 1 and 2
e Lemma: Ifj belongs to E,, for every o < \,one has

Jlil(e) <j(a).

» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,

which therefore satisfies j(3) > « and
vy < B (0
Applying j to () gives

V) < o).

(*)
vy <J(B) Gl1(y) <J(e)).
Taking v := « in (xx) yields j[j](«) < j().

Comparing the periods of 1 and 2
e Lemma: Ifj belongs to E,, for every o < \,one has

Jlil(a) < j(a).

» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and
Applying j to () gives

vy < B ((7) € @).

vy <J(B) Gll(y) <Jj(e)
Taking v := a in (xx) yields j[j](«) < j(«)

O
e Proposition (Laver): /f there exists a Laver cardinal, wn(2) = mwn(1) holds for all n. J

DA™

Comparing the periods of 1 and 2
e Lemma: Ifj belongs to E,, for every o < \,one has

Jlil(e) <j(a).

» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and
Applying j to () gives

vy < B ((7) € @).

vy <J(B) Gll(y) <Jj(e)
Taking v := a in (xx) yields j[j](«) < j(«)

O
e Proposition (Laver): /f there exists a Laver cardinal, wn(2) = mwn(1) holds for all n. J
» Proof: Write m,(1) = 2m+1,

Dac

Comparing the periods of 1 and 2

e Lemma: Ifj belongs to E,, for every o < \,one has
Jlil(e) <j(a).

» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and

Wy < B (i(7) <). (+)

Applying j to () gives
v <J(8) Gl1(y) < (). (o)
Taking v := a in (*x) yle|dS_j[J](Ct) <j(a). =

e Proposition (Laver): /f there exists a Laver cardinal, wn(2) = mwn(1) holds for all n. J

» Proof: Write mn(1) = 2™+1, and let 7 be maximal <n satisfying 77(1) < 2™.

Comparing the periods of 1 and 2
e Lemma: Ifj belongs to E,, for every o < \,one has

ilil(a) <j(a).
» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and

vy < 8 (i(7) < a).
Applying j to () gives

vy <J(8) Gll() <i(e))
Taking v := a in (*x) yields j[j](a) < j(a).

|
e Proposition (Laver): /f there exists a Laver cardinal, wn(2) = mwn(1) holds for all n. J

» Proof: Write mn(1) = 2™+1, and let 7 be maximal <n satisfying 77(1) < 2.
By construction, the period of 1 jumps from 2™ to 2™+l between Az and Az, ;.

Comparing the periods of 1 and 2
e Lemma: Ifj belongs to E,, for every o < \,one has

ilil(a) <j(a).

» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and
Applying j to () gives

vy < B (i(7) <o)

vy <J(8) Gll() <i(e))
Taking v := a in (*x) yields j[j](a) < j(a).

|
e Proposition (Laver): /f there exists a Laver cardinal, wn(2) = mwn(1) holds for all n. J

» Proof: Write m,(1) = 2™+, and let A be maximal <n satisfying m5(1) < 2™.
By construction, the period of 1 jumps from 2™ to 2™+l between Az and Az, ;.
By the dictionary, j maps critm(j) to critz(j).

Comparing the periods of 1 and 2

e Lemma: Ifj belongs to E,, for every o < \,one has
Jlil(a) <j(a).

» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and

vy <BU() <a)

: ()
Applying j to () gives

vy <J(B) Gl1(y) <J(e)). (*)

Taking v := a in (*x) yields j[j](a) < j(a). O

e Proposition (Laver): /f there exists a Laver cardinal, wn(2) = mwn(1) holds for all n. J

» Proof: Write mp(1) = 2™+1, and let 7 be maximal <n satisfying 77(1)

<2m,
By construction, the period of 1 jumps from 2™ to 2™+l between Az and Az, ;.
By the dictionary, j maps critm(j) to critz(j).

Hence, by the lemma, j[j] maps critm(j) to <critz(j).

it
)
ye)
?

R A R B R R RRRRRRRBRBREREPEEEREPTEEREEEEEBBEBBBEBEH ©Ew=
Comparing the periods of 1 and 2

e Lemma: Ifj belongs to E,, for every o < \,one has
Jlil(a) <j(a).

» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and

¥y < B (() <).

()

Applying j to () gives
vy <J(B) Gl1(y) <J(e)). (*)
Taking v := a in (*x) yields j[j](a) < j(a). O

e Proposition (Laver): /f there exists a Laver cardinal, wn(2) = mwn(1) holds for all n. J

» Proof: Write mn(1) = 2™+1, and let 7 be maximal <n satisfying 77(1) < 2.
By construction, the period of 1 jumps from 2™ to 2™+l between Az and Az, ;.
By the dictionary, j maps critm(j) to critz(j).

Hence, by the lemma, j[j] maps critm(j) to <critz(j).

Therefore, there exists n’ < n < n s.t. j[j] maps critm(j) to crit,/ (j).

it
)
ye)
?

Comparing the periods of 1 and 2

e Lemma: Ifj belongs to E,, for every o < \,one has
Jlil(a) <j(a).

» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and

¥y < B (() <).

()
Applying j to () gives

vy <J(B) Gl1(y) <J(e)). (*)
Taking v := a in (*x) yields j[j](a) < j(a). O

e Proposition (Laver): /f there exists a Laver cardinal, wn(2) = mwn(1) holds for all n. J

» Proof: Write mn(1) = 2™+1, and let 7 be maximal <n satisfying 77(1) < 2.
By construction, the period of 1 jumps from 2™ to 2™+l between Az and Az, ;.
By the dictionary, j maps critm(j) to critz(j).

Hence, by the lemma, j[j] maps critm(j) to <critz(j).

Therefore, there exists n’ < n < n s.t.j[j] maps critm(j) to crit,/ (j).

By the dictionary, the period of 2 jumps from 27 to 2™*! between A, and A,/ ;.

it
)
ye)
?

Comparing the periods of 1 and 2

e Lemma: Ifj belongs to E,, for every o < \,one has
Jlil(a) <j(a).

» Proof: There exists /3 satisfying j(/3) > «, hence there is a smallest such 3,
which therefore satisfies j(3) > « and

¥y < B (() <). ()
Applying j to () gives

vy <j(8) GUI(y) < (). (%)
Taking v := o in (%) yields j[j](a) < j(o).

e Proposition (Laver): /f there exists a Laver cardinal, wn(2) = mwn(1) holds for all n. J

» Proof: Write mn(1) = 2™+1, and let 7 be maximal <n satisfying 77(1) < 2.
By construction, the period of 1 jumps from 2™ to 2™+l between Az and Az, ;.
By the dictionary, j maps critm(j) to critz(j).

Hence, by the lemma, j[j] maps critm(j) to <critz(j).

Therefore, there exists n’ < n < n s.t.j[j] maps critm(j) to crit,/ (j).

By the dictionary, the period of 2 jumps from 27 to 2™*! between A, and A,/ ;.
Hence, the period of 2 in A, is at least om+1

Asymptotic behavior of the period of 1

e Lemma: Ifj belongs to Ey, then \ is the supremum of the ordinals critn(j).

Asymptotic behavior of the period of 1

e Lemma: Ifj belongs to Ey, then \ is the supremum of the ordinals critn(j).

» Not obvious:{crit(i) | i € Iter(j)} is countable, but its order type might be >w.

Asymptotic behavior of the period of 1

e Lemma: Ifj belongs to Ey, then \ is the supremum of the ordinals critn(j).

» Not obvious:{crit(i) | i € Iter(j)} is countable, but its order type might be >w.

Asymptotic behavior of the period of 1

e Lemma: Ifj belongs to Ey, then \ is the supremum of the ordinals critn(j).
» Not obvious:{crit(i) | i € Iter(j)} is countable, but its order type might be >w.
» Proof: (difficult...) O

e Proposition (Laver): , mn(1) tends to co with n.

Asymptotic behavior of the period of 1

e Lemma: Ifj belongs to Ey, then \ is the supremum of the ordinals critn(j).
» Not obvious:{crit(i) | i € Iter(j)} is countable, but its order type might be >w.
» Proof: (difficult...) O

e Proposition (Laver): , mn(1) tends to co with n.

» Proof: Assume 7,(1) = 2™.

Asymptotic behavior of the period of 1

e Lemma: Ifj belongs to Ey, then \ is the supremum of the ordinals critn(j).
» Not obvious:{crit(i) | i € Iter(j)} is countable, but its order type might be >w.
» Proof: (difficult...) O

® Proposition (Laver): /f there exists a Laver cardinal, wy(1) tends to oo with n.

» Proof: Assume 7,(1) = 2™. We wish to show that
there exists 1 > n s.t. m;(1) = 2™ and mq,1(1) = 2mFL.

Asymptotic behavior of the period of 1

e Lemma: Ifj belongs to Ey, then \ is the supremum of the ordinals critn(j).
» Not obvious:{crit(i) | i € Iter(j)} is countable, but its order type might be >w.
» Proof: (difficult...) O

® Proposition (Laver): /f there exists a Laver cardinal, wy(1) tends to oo with n.

» Proof: Assume 7,(1) = 2™. We wish to show that
there exists 1 > n s.t. (1) = 2™ and 75.1(1) = 2™+
By the dictionary, this is equivalent to j mapping critm(j) to critx(j).

Asymptotic behavior of the period of 1

e Lemma: Ifj belongs to Ey, then X is the supremum of the ordinals crit,(j).

» Not obvious:{crit(i) | i € Iter(j)} is countable, but its order type might be >w.

» Proof: (difficult...) O

® Proposition (Laver): /f there exists a Laver cardinal, wy(1) tends to oo with n.

J

» Proof: Assume 7,(1) = 2™. We wish to show that

there exists i > n s.t. m5(1) = 2™ and 75, 1(1) = 2M*1L
By the dictionary, this is equivalent to j mapping critm(j) to critx(j).

Now j maps critm(j), which is crit(jjom)), to crit(j[jjm]-
As j[jiom] belongs to lter(j), the lemma implies crit(j[jjom)] = critz(j) for some A. O

Asymptotic behavior of the period of 1

e Lemma: Ifj belongs to Ey, then \ is the supremum of the ordinals critn(j).

» Not obvious:{crit(i) | i € Iter(j)} is countable, but its order type might be >w.
» Proof: (difficult...) O

® Proposition (Laver): /f there exists a Laver cardinal, wy(1) tends to oo with n. J

» Proof: Assume 7,(1) = 2™. We wish to show that

there exists i > n s.t. m5(1) = 2™ and 75, 1(1) = 2M*1L
By the dictionary, this is equivalent to j mapping critm(j) to critx(j).
Now j maps critm(j), which is crit(jjom;), to crit(j[ijam;]-

As j[jjzm)] belongs to lter(j), the lemma implies crit(j[jom)] = critz(j) for some n. O

e Open questions: Find alternative proofs using no Laver cardinal.

The role of set theory

e Are the properties of Laver tables an of set theory?

The role of set theory

e Are the properties of Laver tables an of set theory?
» So far, yes;

The role of set theory

e Are the properties of Laver tables an of set theory?
» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

The role of set theory

o Are the properties of Laver tables an of set theory?

» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

» But, in any case, it is set theory that made the properties first accessible.

The role of set theory

e Are the properties of Laver tables an of set theory?

» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

The role of set theory

e Are the properties of Laver tables an of set theory?

» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

e An

The role of set theory

e Are the properties of Laver tables an of set theory?

» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

e An :
» In physics: using a physical intuition,

The role of set theory

e Are the properties of Laver tables an of set theory?

» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

e An :
» In physics: using a physical intuition, statements,

The role of set theory

e Are the properties of Laver tables an of set theory?

» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

e An :
» In physics: using a physical intuition, statements,
then pass them to the mathematician for a formal proof.

The role of set theory

e Are the properties of Laver tables an of set theory?

» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

e An :
» In physics: using a physical intuition, statements,
then pass them to the mathematician for a formal proof.

» Here: using a logical intuition

The role of set theory

e Are the properties of Laver tables an of set theory?

» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

e An :
» In physics: using a physical intuition, statements,
then pass them to the mathematician for a formal proof.

» Here: using a logical intuition ,

The role of set theory

e Are the properties of Laver tables an of set theory?

» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

e An :
» In physics: using a physical intuition, statements,
then pass them to the mathematician for a formal proof.
» Here: using a logical intuition ,
statements

The role of set theory

e Are the properties of Laver tables an of set theory?

» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

e An :
» In physics: using a physical intuition, statements,
then pass them to the mathematician for a formal proof.
» Here: using a logical intuition ,
statements ,

The role of set theory

e Are the properties of Laver tables an of set theory?

» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.

» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

e An :
» In physics: using a physical intuition, statements,

then pass them to the mathematician for a formal proof.
» Here: using a logical intuition ,

statements ,
then pass them to the mathematician for a formal proof.

e Are the properties of Laver tables an application of set theory?
» So far, yes;

The role of set theory
» In the future, formally no if one finds alternative proofs using no large cardinal.
» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
e An analogy:

one should agree that they can provide useful intuitions.

» In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.
» Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to co in Laver tables),

then pass them to the mathematician for a formal proof.
e The two main open questions about Laver tables:

e Are the properties of Laver tables an application of set theory?
» So far, yes;

The role of set theory
» In the future, formally no if one finds alternative proofs using no large cardinal.
» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
e An analogy:

one should agree that they can provide useful intuitions.

» In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.
» Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to co in Laver tables),

then pass them to the mathematician for a formal proof.
e The two main open questions about Laver tables:

» Can one find alternative proofs using no large cardinal?

e Are the properties of Laver tables an application of set theory?
» So far, yes;

The role of set theory
» In the future, formally no if one finds alternative proofs using no large cardinal.
» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
e An analogy:

one should agree that they can provide useful intuitions.

» In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.
» Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to co in Laver tables),

then pass them to the mathematician for a formal proof.
e The two main open questions about Laver tables:

» Can one find alternative proofs using no large cardinal?

(as done for the free shelf using the braid realization)

e Are the properties of Laver tables an application of set theory?
» So far, yes;

The role of set theory
» In the future, formally no if one finds alternative proofs using no large cardinal.
» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
e An analogy:

one should agree that they can provide useful intuitions.

» In physics: using a physical intuition, guess statements,

then pass them to the mathematician for a formal proof.
» Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to co in Laver tables),

then pass them to the mathematician for a formal proof.
e The two main open questions about Laver tables:

» Can one find alternative proofs using no large cardinal?

(as done for the free shelf using the braid realization)

» Can one use them in low-dimensional topology?

The role of set theory

e Are the properties of Laver tables an application of set theory?
» So far, yes;
» In the future, formally no if one finds alternative proofs using no large cardinal.
» But, in any case, it is set theory that made the properties first accessible.

e Even if one does not believe that large cardinals exist (or are interesting),
one should agree that they can provide useful intuitions.

e An analogy:
» In physics: using a physical intuition, guess statements,
then pass them to the mathematician for a formal proof.
» Here: using a logical intuition (existence of a Laver cardinal),
guess statements (periods tend to co in Laver tables),
then pass them to the mathematician for a formal proof.

e The two main open questions about Laver tables:

» Can one find alternative proofs using no large cardinal?
(as done for the free shelf using the braid realization)

» Can one use them in low-dimensional topology?

